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Fluctuating Hydrodynamics
Continuum Models of Fluid Dynamics

e Formally, we consider the continuum field of conserved quantities

p N mj
Urt)=| j | =U0rt)=)_| muv; |6[r—r(t)],
e i miv? /2

~

where the symbol = means that U(r, t) approximates the true
atomistic configuration U(r, t) over long length and time scales.

@ Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics.

@ This leads to SPDEs of Langevin type formed by postulating a
white-noise random flux term in the usual Navier-Stokes-Fourier
equations with magnitude determined from the
fluctuation-dissipation balance condition, following Landau and
Lifshitz.
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Fluctuating Hydrodynamics
Compressible Fluctuating Hydrodynamics

Dip=—pV -v
p(Dwv) =—VP+V . (nVv+X)
pcp (D T) =DP+V - (uVT +Z)+ (nVv+X) : Vv,

where the variables are the density p, velocity v, and temperature T
fields,

D:O0=00+v-V(O)
Vv=(Vv+ Vv )—2(V-v)I/3

and capital Greek letters denote stochastic fluxes:

X =/2nke T W.

<W,-J-(r, t)W,f,(r’, t/)> = (5ik5jl + (5,‘/(5][( - 25ij5k1/3) 5(1‘ — t')é(r — I‘I).
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

@ We will consider a binary fluid mixture with mass concentration
¢ = p1/p for two fluids that are dynamically identical, where
p = p1+p2.

@ Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

v +v-Vv=—VrtvrVv+ V. <\/2l/p*1 kBTW>

dec+v-Ve=xV2c+ V. <\/2mxp1 c(1- c)W(C)> ,

where the kinematic viscosity v = 1/p, and 7 is determined from
incompressibility, V - v = 0.

@ We assume that W can be modeled as spatio-temporal white noise
(a delta-correlated Gaussian random field), e.g.,

Wi (r, OV (F t)) = (k0 + Gindjx) 6(t — t')d(r —r').
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Fluctuating Hydrodynamics

Fluctuating Navier-Stokes Equations

@ Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

@ No problem if we linearize the equations around a steady mean
state, to obtain equations for the fluctuations around the mean,

U = (U) +6U = Up + 6U.

@ Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

e A renormalization of the transport coefficients is also necessary [1].

@ We have algorithms and codes to solve the compressible equations
(collocated and staggered grid), and recently also the
incompressible and low Mach number ones (staggered grid) [2, 3].

@ Solving these sort of equations numerically requires paying attention
to discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4, 5].
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Fluctuating Hydrodynamics
Finite-Volume Schemes

ct=-v-Vc+xV2c+ V. (@W) =V. [—cv+ch+\/ﬂW}

@ Generic finite-volume spatial discretization

c.=D [(—Vc + Ge) + /2x/ (AtAV)w] :

where D : faces — cells is a conservative discrete divergence,
G : cells — faces is a discrete gradient.

@ Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

e The divergence and gradient should be duals, D* = —G.
@ Advection should be skew-adjoint (non-dissipative) if V - v =0,

(DV)* = — (DV) if (DV)1=0.
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Fluctuating Hydrodynamics
Temporal Integration

OV = -V + vV 4 V- (\/ZVp*1 P TW)

@ We use a Crank-Nicolson method for velocity with a Stokes solver for

pressure:
n+1 _ ,n n n+1
% FGr"E = L, ("2") + (2vAt)? DyW"

Dv'tl = 0.

@ This coupled velocity-pressure Stokes linear system can be solved
efficiently even in the presence of non-periodic boundaries by using a
preconditioned Krylov iterative solver.

@ The nonlinear terms such as v- Vv and v - V¢ are handled explicitly
using a predictor-corrector approach [5].
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Fluctuating Hydrodynamics

Giant Fluctuations in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity
[1, 2, 3]. A similar pattern is seen over a broad range of Schmidt numbers
and is affected strongly by nonzero gravity.
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Incompressible Inertial Coupling
Fluid-Structure Coupling

o We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

@ Macroscopic coupling between flow and a rigid sphere:

e No-slip boundary condition at the surface of the Brownian particle.
o Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

@ The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

@ We saw already that fluctuations should be taken into account at
the continuum level.
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Incompressible Inertial Coupling
Brownian Particle Model

o Consider a Brownian “particle” of size a with position q(t) and
velocity u = ¢, and the velocity field for the fluid is v(r, t).

@ We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

e Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel 6,(Ar) with
compact support of size a (integrates to unity).

@ Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle (as in the Force
Coupling Method (FCM) of Maxey et al).

@ We will call our particles “blobs” since they are not really point
particles.
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Incompressible Inertial Coupling
Local Averaging and Spreading Operators

@ Postulate a no-slip condition between the particle and local fluid
velocities,

a=u=B@lv=[d(@-nv(rd

where the local averaging linear operator J(q) averages the fluid
velocity inside the particle to estimate a local fluid velocity.
@ The induced force density in the fluid because of the particle is:
f=—-Xd:(q—r)=—[S(a)] A,

where the local spreading linear operator S(q) is the reverse (adjoint)
of J(q).

@ The physical volume of the particle AV is related to the shape and
width of the kernel function via

AV =(JS) 1 = [/ 52 (r) dr]l. (1)
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Incompressible Inertial Coupling
Fluid-Structure Direct Coupling

@ The equations of motion in our coupling approach are postulated to
be [6]
p(Ov+v-Vv) = —Vr—V.o—[S(q)] A+ 'thermal' drift
meu = F(q)+ A
st.u = [J(q)]Jvand V-v =0,
where A is the fluid-particle force, F (q) = -V U(q) is the

externally applied force, and m. is the excess mass of the particle.

@ The stress tensor o0 =7 (Vv + VTV) + X includes viscous
(dissipative) and stochastic contributions. The stochastic stress

T = (kg )2 (W+WT)

drives the Brownian motion.

@ In the existing (stochastic) IBM approaches inertial effects are
ignored, me = 0 and thus A = —F.
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Incompressible Inertial Coupling
Momentum Conservation

@ In the standard approach a frictional (dissipative) force
A = —((u— Jv) is used instead of a constraint.

@ In either coupling the total particle-fluid momentum is conserved,

dP

P:meu+/pv(r,t)dr, E_F'

@ Define a momentum field as the sum of the fluid momentum and the
spreading of the particle momentum,

p(r,t) = pv+ meSu= (p+ mSJ)v.

@ Adding the fluid and particle equations gives a local momentum
conservation law

op=-Vr—-V-0-V-[pw’ + mS (uu”)] +SF.
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Incompressible Inertial Coupling
Effective Inertia

@ Eliminating A we get the particle equation of motion
mi = AV I (V7 + V -0o)+ F + blob correction,

where the effective mass m = m. + my includes the mass of the
"excluded” fluid
me = pAV = p(JS)~L.

o For the fluid we get the effective equation

PeiiOtv = — |p(v- V) + meS U'EJ v—-Vr—-V.o+SF
eff aq

where the effective mass density matrix (operator) is
Pest = p + MePSIP,

where P is the L, projection operator onto the linear subspace
V -v =0, with the appropriate BCs.
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Incompressible Inertial Coupling
Fluctuation-Dissipation Balance

@ One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.

@ We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.

@ This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P(v,q) = Z~" exp[~BH]
where the Hamiltonian (coarse-grained free energy) is

U2 V2
Hiv.a) = U(a) + me'5 + [ o5

:
:u(q)+/"”2eff"dr

@ No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal

structure.
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Incompressible Inertial Coupling
contd.

@ A key ingredient of fluctuation-dissipation balance is that that the
fluid-particle coupling is non-dissipative, i.e., in the absence of
viscous dissipation the kinetic energy H is conserved.

e Crucial for energy conservation is that J(q) and S(q) are adjoint,
S =J

(Jv)-u:/v~(Su)dr:/éa(q—r)(v-u)dr. (2)

@ The dynamics is not incompressible in phase space and “thermal
drift” correction terms need to be included [7], but they turn out to
vanish for incompressible flow (gradient of scalar).

@ The spatial discretization should preserve these properties: discrete
fluctuation-dissipation balance (DFDB).
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Numerics
Numerical Scheme

@ Both compressible (explicit) and incompressible schemes have been
implemented by Florencio Balboa (UAM) on GPUs.

@ Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [2] and the IBM kernel functions of
Charles Peskin.

@ Temporal discretization follows a second-order splitting algorithm
(move particle + update momenta), and is limited in stability only by
advective CFL.

@ The scheme ensures strict conservation of momentum and (almost
exactly) enforces the no-slip condition at the end of the time step.

@ Continuing work on temporal integrators that ensure the correct
equilibrium distribution and diffusive (Brownian) dynamics.
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Numerics
Spatial Discretization

o IBM kernel functions of Charles Peskin are used to average

d
Jv= Z {li[lqﬁa [da —(rk)a]}v

kegrid

o Discrete spreading operator S = (A V)™t J*

(SF), = (AxAyAz)~ {H ba[qa — a]}

@ The discrete kernel function ¢, gives translational invariance

Z¢a q—rk) = land Z q—rk)Pa(g—rg) =0,

kegrid kegrid
Z 2 (q—ry) = AV!=const, (3)
kegrid

independent of the position of the (Lagrangian) particle q

relative to the underlying (Eulerian) velocity grid.
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Numerics
Temporal Discretization

@ Predict particle position at midpoint:

At
qn+% — qn 4 7Jnvn'
@ Solve the coupled constrained momentum conservation
. o 1
equations for v**! and u™?! and the Lagrange multipliers 7""2 and

A3 (hard to do efficiently!)

n+l _ ,n 1
P%JFVWH% - _Vv. (pva+a)n+§_sn+%An+%
meu™l = mou” + AtFTI 4 At AT
vyt o= 0
uttl = gyt (Jn+% _ J") v, @
o Correct particle position,
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Numerics
Temporal Integrator (sketch)

@ Predict particle position at midpoint:

At
n+% —aq" b VLY
q q + 5 v
@ Solve unperturbed fluid equation using stochastic Crank-Nicolson
for viscous+-stochastic:
~n+l _ .n
P VR = DL V) £ VR SR L ady,
vl = o,

where we use the Adams-Bashforth method for the advective
(kinetic) fluxes, and the discretization of the stochastic flux is
described in Ref. [2],

> _ < kg Tn >1/2 [(Wn) w7

AV At

where W" is a (symmetrized) collection of i.i.d. unit normal variates.
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Numerics
contd.

@ Solve for inertial velocity perturbation from the particle Av (too
technical to present), and update:

vl = ¢ 4 Av,
If neutrally-buyoant me = 0 this is a non-step, Av = 0.
o Update particle velocity in a momentum conserving manner,

1 ) )
u™t = J7 2y L slip correction.

@ Correct particle position,

qn+1 — qn + %Jn—l—% (vn+1 + vn) ]
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Numerics
Implementation

With periodic boundary conditions all required linear solvers (Poisson,
Helmholtz) can be done using FFTs only.

Florencio Balboa has implemented the algorithm on GPUs using
CUDA in a public-domain code (combines compressible and
incompressible algorithms):

https://code.google.com/p/fluam

Our implicit algorithm is able to take a rather large time step size, as
measured by the advective and viscous CFL numbers:

VAt vAt
where V is a typical advection speed.

Note that for compressible flow there is a sonic CFL number

as = cAt/Ax > «, where c is the speed of sound.

Our scheme should be used with o < 1. The scheme is stable for any
B, but to get the correct thermal dynamics one should use g < 1.
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Results
Equilibrium Radial Correlation Function
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Figure: Equilibrium radial distribution function g» (r) for a suspension of blobs

interacting with a repulsive LJ (WCA) potential.
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Results
Hydrodynamic Interactions
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Results
Velocity Autocorrelation Function

e We investigate the velocity autocorrelation function (VACF) for
the immersed particle

C(t) = (u(to) - u(to + t))

o From equipartition theorem C(0) = (u?) = dkBTT.
@ However, for an incompressible fluid the kinetic energy of the particle
that is less than equipartition,

]

as predicted also for a rigid sphere a long time ago, m¢/m = p//p.

e Hydrodynamic persistence (conservation) gives a long-time
power-law tail C(t) ~ (kT /m)(t/tyisc)~3/? not reproduced in
Brownian dynamics.
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Numerical VACF
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Figure: VACF for a blob with me = mg = pAV.
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Results
Diffusive Dynamics

@ At long times, the motion of the particle is diffusive with a diffusion
coefficient x = lim¢— 00 X(t ft 0o C t)dt, where

x(r>=A‘;t” 22t<[q(t> aO)P).

@ The Stokes-Einstein relation predicts

ke T
X = BT (Einstein) and xsg = (Stokes), (6)

ks T
67['77RH
where for our blob with the 3-point kernel function Ry ~ 0.9Ax.
@ The dimensionless Schmidt number S. = v/xsg controls the
separation of time scales between v (r, t) and q(t).

@ Self-consistent theory [1] predicts a correction to Stokes-Einstein’s
relation for small S,

¥ (v+

X) _ kBT
2 67TpRH'
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Results
Stokes-Einstein Corrections
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Figure: Corrections to Stokes-Einstein with changing viscosity v = 1/p,
me = me = pAV.
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Results

Passively-Advected (Fluorescent) Tracers
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Larger Reynolds Numbers
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Figure: Drag force on a blob particle in a periodic domain as a function of the
particle Reynolds number Re = 2Ry (u) /v, normalized by the Stokes drag.
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Outlook

Overdamped Limit (m. = 0)

e [With Eric Vanden-Eijnden] In the overdamped limit, in which
momentum diffuses much faster than the particles, the motion of the
blob at the diffusive time scale can be described by the fluid-free
Stratonovich stochastic differential equation

q=pF+J(q)ov

where the random advection velocity is a white-in-time process is the
solution of the steady Stokes equation

Vr=uvVN 4 V. (\/QVp*1 kBTW) such that V -v = 0,
and the blob mobility is given by the Stokes solution operator £71,

(q) =—J(a)£7'S(a).
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Outlook
Brownian Dynamics

e For multi-particle suspensions the mobility matrix M (Q) = {“u}
depends on the positions of all particles Q = {q;}, and the limiting
equation in the Ito formulation is the usual Brownian dynamics
equation

Q =MF + /2kgT MW+kBT<880 M).

@ It is possible to construct temporal |ntegrators for the overdamped
equations, without ever constructing Mz WY (work in progress).

@ The limiting equation when excess inertia is included has not been
derived though it is believed inertia does not enter in the overdamped
equations.
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Immersed Rigid Blobs

@ Unlike a rigid sphere, a blob particle would not perturb a pure shear
flow.

@ In the far field our blob particle looks like a force monopole
(stokeset), and does not exert a force dipole (stresslet) on the fluid.
@ Similarly, since here we do not include angular velocity degrees of

freedom, our blob particle does not exert a torque on the fluid
(rotlet).

@ It is possible to include rotlet and stresslet terms, as done in the force
coupling method [8] and Stokesian Dynamics in the deterministic
setting.

@ Proper inclusion of inertial terms and fluctuation-dissipation balance
not studied carefully yet...
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Immersed Rigid Bodies

@ This approach can be extended to immersed rigid bodies (work with
Neelesh Patankar)

p(Ov+v-Vv) = —Vw—V-a—/S(q))\(q)dq+th. drift
Q
mell = F—|—/)\(q)dq
Q

lew = T+/Q[qX>\(q)]dq

H(q)lv = u+gxwforallge

V -v = 0 everywhere.

Here w is the immersed body angular velocity, 7 is the applied torque,
and /. is the excess moment of inertia of the particle.

@ The nonlinear advective terms are tricky, though it may not be a
problem at low Reynolds number...

@ Fluctuation-dissipation balance needs to be studied carefully...
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Qutlook
Conclusions

@ Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

@ Fluctuating hydrodynamics seems to be a very good coarse-grained
model for fluids, despite unresolved issues.

o Particle inertia can be included in the coupling between blob
particles and a fluctuating incompressible fluid.
@ Even coarse-grained methods need to be accelerated due to large

separation of time scales between advective and diffusive
phenomena.

@ One can take the overdamped (Brownian dynamics) limit:
See work by Atzberger et al. for specialized exponential integrators
for > 1 for m, = 0.
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Outlook
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