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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

An important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

I hope to demonstrate the general conclusion that fluctuations
should be taken into account at all level.
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Introduction

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Fluctuating Hydrodynamics

Thermal Fluctuations Matter

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity
[1, 2, 3]. A similar pattern is seen over a broad range of Schmidt numbers
and is affected strongly by nonzero gravity.
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Fluctuating Hydrodynamics

Fluctuating Navier-Stokes Equations

We will consider a binary fluid mixture with mass concentration
c = ρ1/ρ for two fluids that are dynamically identical, where
ρ = ρ1 + ρ2 (e.g., fluorescently-labeled molecules).

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv + v ·∇v =−∇π + ν∇2v + ∇ ·
(√

2νρ−1 kBT W
)

∂tc + v ·∇c =χ∇2c + ∇ ·
(√

2mχρ−1 c(1− c)W(c)

)
,

where the kinematic viscosity ν = η/ρ, and π is determined from
incompressibility, ∇ · v = 0.

We assume that W can be modeled as spatio-temporal white noise
(a delta-correlated Gaussian random field), e.g.,

〈Wij (r, t)W?
kl (r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).
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Fluctuating Hydrodynamics

Fractal Fronts in Diffusive Mixing
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Fluctuating Hydrodynamics

Giant Fluctuations in Experiments

Experimental results by A. Vailati et al. from a microgravity environment
[2] showing the enhancement of concentration fluctuations in space (box
scale is macroscopic: 5mm on the side, 1mm thick)..
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Fluctuating Hydrodynamics

Fluctuating Hydrodynamics Equations

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

No problem if we linearize the equations around a steady mean
state, to obtain equations for the fluctuations around the mean.

Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

A renormalization of the transport coefficients is also necessary [1].

We have algorithms and codes to solve the compressible equations
(collocated and staggered grid), and recently also the
incompressible and low Mach number ones (staggered grid) [4, 3].

Solving these sort of equations numerically requires paying attention
to discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4].
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Fluctuating Hydrodynamics

Finite-Volume Schemes

ct = −v ·∇c + χ∇2c + ∇ ·
(√

2χW
)

= ∇ ·
[
−cv + χ∇c +

√
2χW

]

Generic finite-volume spatial discretization

ct = D
[
(−Vc + Gc) +

√
2χ/ (∆t∆V )W

]
,

where D : faces→ cells is a conservative discrete divergence,
G : cells→ faces is a discrete gradient.

Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

The divergence and gradient should be duals, D? = −G.

Advection should be skew-adjoint (non-dissipative) if ∇ · v = 0,

(DV)? = − (DV) if (DV) 1 = 0.
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Fluctuating Hydrodynamics

Weak Accuracy

Figure: Spectral power of the first solenoidal mode for an incompressible fluid as
a function of the wavenumber. The left panel is for a (normalized) time step
α = 0.5, and the right for α = 0.25.
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Incompressible Inertial Coupling

Fluid-Structure Coupling

We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

Macroscopic coupling between flow and a rigid sphere:

No-slip boundary condition at the surface of the Brownian particle.
Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

We saw already that fluctuations should be taken into account at
the continuum level.
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Incompressible Inertial Coupling

Brownian Particle Model

Consider a Brownian “particle” of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the particle.

We will call our particles “blobs” since they are not really point
particles.
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Incompressible Inertial Coupling

Local Averaging and Spreading Operators

Postulate a no-slip condition between the particle and local fluid
velocities,

q̇ = u = [J (q)] v =

∫
δa (q− r) v (r, t) dr,

where the local averaging linear operator J(q) averages the fluid
velocity inside the particle to estimate a local fluid velocity.

The induced force density in the fluid because of the particle is:

f = −λδa (q− r) = − [S (q)]λ,

where the local spreading linear operator S(q) is the reverse (adjoint)
of J(q).

The physical volume of the particle ∆V is related to the shape and
width of the kernel function via

∆V = (JS)−1 =

[∫
δ2

a (r) dr

]−1

. (1)
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Incompressible Inertial Coupling

Fluid-Structure Direct Coupling

The equations of motion in our coupling approach are postulated [5]
to be

ρ (∂tv + v ·∇v) = −∇π −∇ · σ − [S (q)]λ+ thermal drift

me u̇ = F (q) + λ

s.t. u = [J (q)] v and ∇ · v = 0,

where λ is the fluid-particle force, F (q) = −∇U (q) is the
externally applied force, and me is the excess mass of the particle.

The stress tensor σ = η
(
∇v + ∇T v

)
+ Σ includes viscous

(dissipative) and stochastic contributions. The stochastic stress

Σ = (2kBTη)1/2 W

drives the Brownian motion.

In the existing (stochastic) IBM approaches [6] inertial effects are
ignored, me = 0 and thus λ = −F.

A. Donev (CIMS) IICM 10/2012 18 / 34
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Incompressible Inertial Coupling

Momentum Conservation

In the standard approach a frictional (dissipative) force
λ = −ζ (u− Jv) is used instead of a constraint.

In either coupling the total particle-fluid momentum is conserved,

P = meu +

∫
ρv (r, t) dr,

dP

dt
= F.

Define a momentum field as the sum of the fluid momentum and the
spreading of the particle momentum,

p (r, t) = ρv + meSu = (ρ+ meSJ) v.

Adding the fluid and particle equations gives a local momentum
conservation law

∂tp = −∇π −∇ · σ −∇ ·
[
ρvvT + meS

(
uuT

)]
+ SF.
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Incompressible Inertial Coupling

Effective Inertia

Eliminating λ we get the particle equation of motion

mu̇ = ∆V J (∇π + ∇ · σ) + F + blob correction,

where the effective mass m = me + mf includes the mass of the
“excluded” fluid

mf = ρ (JS)−1 = ρ∆V = ρ

[∫
δ2

a (r) dr

]−1

.

For the fluid we get the effective equation

ρeff∂tv = −
[
ρ (v ·∇) + meS

(
u · ∂

∂q
J

)]
v −∇π −∇ · σ + SF

where the effective mass density matrix (operator) is

ρeff = ρ+ mePSJP ,

where P is the L2 projection operator onto the linear subspace
∇ · v = 0, with the appropriate BCs.
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Incompressible Inertial Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.

We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.
This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (v,q) = Z−1 exp [−βH]

where the Hamiltonian (coarse-grained free energy) is

H (v,q) = U (q) + me
u2

2
+

∫
ρ

v 2

2
dr.

= U (q) +

∫
vTρeffv

2
dr

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

A. Donev (CIMS) IICM 10/2012 21 / 34



Incompressible Inertial Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.
We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.

This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (v,q) = Z−1 exp [−βH]

where the Hamiltonian (coarse-grained free energy) is

H (v,q) = U (q) + me
u2

2
+

∫
ρ

v 2

2
dr.

= U (q) +

∫
vTρeffv

2
dr

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

A. Donev (CIMS) IICM 10/2012 21 / 34



Incompressible Inertial Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.
We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.
This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (v,q) = Z−1 exp [−βH]

where the Hamiltonian (coarse-grained free energy) is

H (v,q) = U (q) + me
u2

2
+

∫
ρ

v 2

2
dr.

= U (q) +

∫
vTρeffv

2
dr

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

A. Donev (CIMS) IICM 10/2012 21 / 34



Incompressible Inertial Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.
We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.
This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (v,q) = Z−1 exp [−βH]

where the Hamiltonian (coarse-grained free energy) is

H (v,q) = U (q) + me
u2

2
+

∫
ρ

v 2

2
dr.

= U (q) +

∫
vTρeffv

2
dr

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

A. Donev (CIMS) IICM 10/2012 21 / 34



Incompressible Inertial Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system.
We can eliminate the particle velocity using the no-slip constraint, so
only v and q are independent DOFs.
This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (v,q) = Z−1 exp [−βH]

where the Hamiltonian (coarse-grained free energy) is

H (v,q) = U (q) + me
u2

2
+

∫
ρ

v 2

2
dr.

= U (q) +

∫
vTρeffv

2
dr

No entropic contribution to the coarse-grained free energy because
our formulation is isothermal and the particles do not have internal
structure.

A. Donev (CIMS) IICM 10/2012 21 / 34



Incompressible Inertial Coupling

contd.

A key ingredient of fluctuation-dissipation balance is that that the
fluid-particle coupling is non-dissipative, i.e., in the absence of
viscous dissipation the kinetic energy H is conserved.

Crucial for energy conservation is that J(q) and S(q) are adjoint,
S = J?,

(Jv) · u =

∫
v · (Su) dr =

∫
δa (q− r) (v · u) dr. (2)

The dynamics is not incompressible in phase space and “thermal
drift” correction terms need to be included [6], but they turn out to
vanish for incompressible flow (gradient of scalar).

The spatial discretization should preserve these properties: discrete
fluctuation-dissipation balance (DFDB).
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Numerics

Numerical Scheme

Both compressible (explicit) and incompressible schemes have been
implemented by Florencio Balboa (UAM) on GPUs.

Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [3] and the IBM kernel functions of
Charles Peskin [7].

Temporal discretization follows a second-order splitting algorithm
(move particle + update momenta), and is limited in stability only by
advective CFL.

The scheme ensures strict conservation of momentum and (almost
exactly) enforces the no-slip condition at the end of the time step.

Continuing work on temporal integrators that ensure the correct
equilibrium distribution and diffusive (Brownian) dynamics.
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Numerics

Temporal Integrator (sketch)

Predict particle position at midpoint:

qn+ 1
2 = qn +

∆t

2
Jnvn.

Solve unperturbed fluid equation using stochastic Crank-Nicolson
for viscous+stochastic:

ρ
ṽn+1 − vn

∆t
+ ∇π̃ =

η

2
L
(
ṽn+1 + vn

)
+ ∇ ·Σn + Sn+ 1

2 Fn+ 1
2 + adv.,

∇ · ṽn+1 = 0,

where we use the Adams-Bashforth method for the advective
(kinetic) fluxes, and the discretization of the stochastic flux is
described in Ref. [3],

Σn =

(
2kBTη

∆V ∆t

)1/2

Wn,

where Wn is a (symmetrized) collection of i.i.d. unit normal variates.
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Numerics

contd.

Solve for inertial velocity perturbation from the particle ∆v (too
technical to present), and update:

vn+1 = ṽn+1 + ∆v.

If neutrally-buyoant me = 0 this is a non-step, ∆v = 0.

Update particle velocity in a momentum conserving manner,

un+1 = Jn+ 1
2 vn+1 + conservation correction.

Correct particle position,

qn+1 = qn +
∆t

2
Jn+ 1

2
(
vn+1 + vn

)
.
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Numerics

Passively-Advected (Fluorescent) Tracers
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Numerics

Velocity Autocorrelation Function

We investigate the velocity autocorrelation function (VACF) for
the immersed particle

C (t) = 〈u(t0) · u(t0 + t)〉

From equipartition theorem C (0) = kT/m.

However, for an incompressible fluid the kinetic energy of the particle
that is less than equipartition,

〈u2〉 =

[
1 +

mf

(d − 1)m

]−1(
d

kBT

m

)
,

as predicted also for a rigid sphere a long time ago, mf /m = ρ′/ρ.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kT/m)(t/tvisc)−3/2 not reproduced in
Brownian dynamics.
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power-law tail C (t) ∼ (kT/m)(t/tvisc)−3/2 not reproduced in
Brownian dynamics.
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Figure: (F. Balboa) VACF for a blob with me = mf = ρ∆V .
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Outlook

Immersed Rigid Blobs

Unlike a rigid sphere, a blob particle would not perturb a pure shear
flow.

In the far field our blob particle looks like a force monopole
(stokeset), and does not exert a force dipole (stresslet) on the fluid.

Similarly, since here we do not include angular velocity degrees of
freedom, our blob particle does not exert a torque on the fluid
(rotlet).

It is possible to include rotlet and stresslet terms, as done in the force
coupling method [8] and Stokesian Dynamics in the deterministic
setting.

Proper inclusion of inertial terms and fluctuation-dissipation balance
not studied carefully yet...
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Outlook

Immersed Rigid Bodies

This approach can be extended to immersed rigid bodies (see work by
Neelesh Patankar)

ρ (∂tv + v ·∇v) = −∇π −∇ · σ −
∫

Ω
S (q)λ (q) dq + th. drift

me u̇ = F +

∫
Ω
λ (q) dq

Ieω̇ = τ +

∫
Ω

[q× λ (q)] dq

[J (q)] v = u + q× ω for all q ∈ Ω

∇ · v = 0 everywhere.

Here ω is the immersed body angular velocity, τ is the applied torque,
and Ie is the excess moment of inertia of the particle.

The nonlinear advective terms are tricky, though it may not be a
problem at low Reynolds number...
Fluctuation-dissipation balance needs to be studied carefully...
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Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics seems to be a very good coarse-grained
model for fluids, despite unresolved issues.

Particle inertia can be included in the coupling between blob
particles and a fluctuating incompressible fluid.

Even coarse-grained methods need to be accelerated due to large
separation of time scales between advective and diffusive
phenomena.

One can take the overdamped (Brownian dynamics) limit but it
would be much better to construct many-scale temporal integrators
that are accurate even when they under-resolve the fast fluctuations.
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