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Introduction
Fluid-Structure Coupling

@ We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

@ Macroscopically, the coupling between flow and a rigid sphere relies
on:

e No-slip boundary condition at the surface of the Brownian particle.
o Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

@ The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

@ It is important to point out that fluctuations should be taken into
account at the continuum level.

A. Donev (CIMS) Hybrid 10/2011 4 /27



Introduction

Levels of Coarse-Graining

Smoluchowski
Hydrodynamics

Thermodynamics

AN
*

ee oo

~
®

Figure: From Pep Espafiol, “Statistical Mechanics of Coarse-Graining”

Classical Mechanics

Fokker-Planck

A. Donev (CIMS) Hybrid

5 /27



Particle-Continuum Hybrid

Particle/Continuum Hybrid

Alac 41 Al yl €l » vl
gl e a A X A
has? = 2 s S99, 0 f » e | b
L & 2
= ; i
b\
» : {4 |y
A 15 N B IR e
Y AR 58 KR B
SRR SRR D = R aa hass B
| i > A': L \ s \ » [N TIR »
X
Lol M Y "A// /¥ 4 A ilq T
FALL Al 8 V‘/ > 4 * :

Figure: Hybrid method for a polymer chain.
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Particle-Continuum Hybrid

Particle: Stochastic Collision Dynamics

@ The most direct and accurate way to simulate the interaction between
the fluid and blob is to use a particle scheme for both, e.g.,
Molecular Dynamics (MD).

@ Over longer times it is hydrodynamics (local momentum and energy
conservation) and fluctuations (Brownian motion) that matter.

@ Coarse grain fluid: Markov Chain Monte Carlo instead of MD.

@ Replace deterministic interactions with conservative stochastic
pairwise collisions between nearby fluid particles [1] (based on
DSMC, also related to MPCD/SRD and DPD).

@ Fluid particles interact with blobs either via deterministic
(hard-sphere) or stochastic (MCMC) collisions.
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Particle-Continuum Hybrid

Continuum: Fluctuating Hydrodynamics

Dip=—pV -v
p(Dwv) =—VP+V . (nVv+X)
pcp (D T) =DP+V - (uVT +Z)+ (nVv+X) : Vv,

where the variables are the density p, velocity v, and temperature T
fields,

DO =00+v-V (O
Vv=(Vv+ Vv )—2(V-v)I/3

and capital Greek letters denote stochastic fluxes:

X =\/2nkg T W.

<W,-J-(r, t)W,f,(r’, t/)> = (5ik5jl + (5,‘/(5][( - 25ij5k1/3) 5(1‘ — t')é(r — I‘I).
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Particle-Continuum Hybrid

Incompressible Fluctuating Navier-Stokes

@ Ignoring density and temperature fluctuations, we obtain the
incompressible approximation:

pDv = Vv — V1 4+ \/2nkg T (V- W),
V-v=0

where the stochastic stress tensor WV is a white-noise random
Gaussian tensor field with covariance

(Wi (r, YW (', 1)) = (0idj) o(t — t')(r — ).

@ We have developed numerical schemes to solve the compressible
and incompressible fluctuating equations for simple fluids and miscible
binary mixtures on collocated [2] and staggered grids [3].

@ Solving them numerically requires paying attention to discrete
fluctuation-dissipation balance, in addition to the usual
deterministic difficulties.
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Particle-Continuum Hybrid

Fluid-Structure Coupling using Particles

@ Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps Aty = KAtp.

@ Hydro solver is a simple explicit
(fluctuating) compressible code and
is not aware of particle patch.

@ The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
laws and ensures strict conservation
MNG of mass, momentum, and energy.
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Particle-Continuum Hybrid

Continuum-Particle Coupling

e Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

@ The coupling is roughly of the state-flux form:

e The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.

e The particle subdomain provides flux boundary conditions for the
continuum subdomain.

@ The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

@ The coupling is greatly simplified because the ideal particle fluid has
no internal structure.

"A hybrid particle-continuum method for hydrodynamics of complex fluids’, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010
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Particle-Continuum Hybrid
Our Hybrid Algorithm

@ The hydro solution uy is computed everywhere, including the particle
patch, giving an estimated total flux ®4.

@ Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

© Reservoir particles are propagated by At and collisions are processed,
giving the total particle flux ®.

@ The hydro solution is overwritten in the particle patch based on the
particle state up.

© The hydro solution is corrected based on the more accurate flux,
uH<—uH—¢H+¢p.
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Particle-Continuum Hybrid Brownian Bead

Velocity Autocorrelation Function

@ We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C(t) = (v(to) - v(to + t))
e From equipartition theorem C(0) = kT /m.

@ For a Brownian particle with density p’ incompressible hydrodynamic

theory gives
kT
+ 1 o
c(0*) = (+2p) L

because the momentum correlations decay instantly due to sound
waves.

e Hydrodynamic persistence (conservation) gives a long-time
power-law tail C(t) ~ (kT /m)(t/tisc)~3/? not reproduced in
Brownian dynamics.
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Particle-Continuum Hybrid Brownian Bead

Large Bead (71000 particles)
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Figure: VACF for a neutrally-buyouant spherical Brownian particle.
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Direct Fluid-Blob Coupling
Fluid-Structure Coupling

Consider a blob (Brownian particle) of size a with position q(t) and
velocity u = g, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel 0,(Ar) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the blob.

See Florencio Balboa's talk and paper [4].
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Direct Fluid-Blob Coupling
Local Averaging and Spreading Operators

@ Postulate a no-slip condition between the particle and local fluid
velocities,

c'|:u:[J(q)]v:/5a(q—r)v(r,t)dr,

enforced by a Lagrange multiplier fluid-blob force A.
@ The induced force density in the fluid because of the particle is:

f=-Xd(q—r)=—[S(aq)] A,

which ensures momentum conservation.

@ Crucial for energy conservation is that the local averaging operator
J(q) and the local spreading operator S(q) are adjoint, S = J*.

o | will ignore the nonlinear advective terms and simply denote them
with ellipses ...
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Direct Fluid-Blob Coupling
Fluid-Structure Direct Coupling

@ The equations of motion in our coupling approach are postulated

p(Ov+v-Vv) = —V.o—-SA
meu = F+ A
st.u = Jv,

where X is a Lagrange multiplier that enforces the no-slip condition
and m. is the excess mass of the particle.

@ The fluid fluctuations drive the Brownian motion: no stochastic
forcing of the particle motion.

@ In the existing (stochastic) IBM approaches inertial effects are
ignored, me = 0 and thus A = —F.

e In Lattice-Boltzmann approaches [5] a frictional (dissipative) force
A = —((u— Jv) is used instead of a constraint.
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Direct Fluid-Blob Coupling
Effective Inertia

@ Eliminating A we get the particle equation of motion
mi=—-AVIV.-o)+F+---,

where the effective mass m = m. + my includes the mass of the
“excluded” fluid

-1
me=pJS) 1 =pAV =p [/53 (r) dr] :
o For the fluid we get the effective equation
peﬂ‘atV: —VU+SF+
where the effective mass density matrix (operator) is

Peie = pl + meSJ.
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Direct Fluid-Blob Coupling

Fluctuation-Dissipation Balance

@ One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system. This is work in progress...

@ This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P(x) = Z Y exp[-H]

where the Hamiltonian is postulated to be

H=v@+m o+ [ o5+ e ar

@ We can eliminate the particle velocity using the no-slip constraint, to
obtain the effective Hamiltonian

T
H:U(q)—i—/vgeffvdr—i-/e(p) dr.

@ The equations as written do not formally satisfy fluctuation-dissipation
balance as the dynamics is not incompressible in phase space.
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Direct Fluid-Blob Coupling
Brownian Dynamics Limit

@ For the case of a neutrally-bouyant particle, me = 0,
fluctuation-dissipation balance is restored if one adds an extra drift
term to the fluid dynamics:

0
o Paul Atzberger [6] has obtained these equations by carefully taking
the limit me — 0 and then infinite friction of the Stokes dissipative
fluid-particle coupling [5].
@ In the overdamped or Brownian dynamics limit

q = MF + /2kg T M2y ¢ (aaq : M) kg T,

where the mobility tensor is related to the Stokes solution operator
£t
M(q) = —JC1s.
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Direct Fluid-Blob Coupling
Incompressible Approximation

@ For an incompressible fluid the fluid forcing must be projected using
the projection operator P, in Fourier space P =1 — k=2 (kk ).
@ Now the effective density matrix for the fluid is

Peff = P+ mePSJIP.

@ The modified Gibbs distribution gives a kinetic energy of the particle
that is less than equipartition suggests,

=] ()

as predicted also for a rigid sphere a long time ago, ms/m = p'/p.

@ Incompressible hydro is much harder for non-periodic systems due to
additional splitting of pressure terms.

A. Donev (CIMS) Hybrid 10/2011 23 /27



Direct Fluid-Blob Coupling
Numerical Scheme

@ Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [3] and the IBM kernel functions of
Charles Peskin [7].

e Temporal discretization follows a first-order splitting algorithm
(move particle + update momenta) based on the Direct Forcing
Method of Uhlmann [8].

@ The scheme ensures strict conservation of momentum and strictly
enforces the no-slip condition using a projection step at the end of the
time step.

@ Continuing work on second-order temporal integrators that
reproduce the correct equilibrium distribution and diffusive
dynamics.

@ Both compressible (explicit) and incompressible (semi-implicit)
methods are work in progress...
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Direct Fluid-Blob Coupling
Numerical VACF
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Figure: (F. Balboa) VACF for a blob with me = ms = pAV.
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Direct Fluid-Blob Coupling

Conclusions / Discussion

o Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

o Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

@ It is necessary to include fluctuations in the continuum solver in
hybrid methods.

o Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure can replace expensive particle methods and
complicated hybrid algorithms.

@ Ensuring fluctuation-dissipation balance is crucial and nontrivial:
How to do it when me £ 07

@ Can one derive the proper set of fluid-blob equations, or at least their
structure, via coarse graining (work with Pep Espanol)?
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Direct Fluid-Blob Coupling
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