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Introduction

Fluid-Structure Coupling

We want to construct a bidirectional coupling between a fluctuating
fluid and a small spherical Brownian particle (blob).

Macroscopically, the coupling between flow and a rigid sphere relies
on:

No-slip boundary condition at the surface of the Brownian particle.
Force on the bead is the integral of the (fluctuating) stress tensor over
the surface.

The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner.

It is important to point out that fluctuations should be taken into
account at the continuum level.
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Introduction

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Particle-Continuum Hybrid

Particle/Continuum Hybrid

Figure: Hybrid method for a polymer chain.
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Particle-Continuum Hybrid

Particle: Stochastic Collision Dynamics

The most direct and accurate way to simulate the interaction between
the fluid and blob is to use a particle scheme for both, e.g.,
Molecular Dynamics (MD).

Over longer times it is hydrodynamics (local momentum and energy
conservation) and fluctuations (Brownian motion) that matter.

Coarse grain fluid: Markov Chain Monte Carlo instead of MD.

Replace deterministic interactions with conservative stochastic
pairwise collisions between nearby fluid particles [1] (based on
DSMC, also related to MPCD/SRD and DPD).

Fluid particles interact with blobs either via deterministic
(hard-sphere) or stochastic (MCMC) collisions.
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Particle-Continuum Hybrid

Continuum: Fluctuating Hydrodynamics

Dtρ =− ρ∇ · v
ρ (Dtv) =−∇P + ∇ ·

(
η∇v + Σ

)
ρcp (DtT ) =DtP + ∇ · (µ∇T + Ξ) +

(
η∇v + Σ

)
: ∇v,

where the variables are the density ρ, velocity v, and temperature T
fields,

Dt� = ∂t� + v ·∇ (�)

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3

and capital Greek letters denote stochastic fluxes:

Σ =
√

2ηkBT W .

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk − 2δijδkl/3) δ(t − t ′)δ(r − r′).
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Particle-Continuum Hybrid

Incompressible Fluctuating Navier-Stokes

Ignoring density and temperature fluctuations, we obtain the
incompressible approximation:

ρDtv = η∇2v −∇π +
√

2ηkBT (∇ ·W) ,

∇ · v = 0

where the stochastic stress tensor W is a white-noise random
Gaussian tensor field with covariance

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl) δ(t − t ′)δ(r − r′).

We have developed numerical schemes to solve the compressible
and incompressible fluctuating equations for simple fluids and miscible
binary mixtures on collocated [2] and staggered grids [3].

Solving them numerically requires paying attention to discrete
fluctuation-dissipation balance, in addition to the usual
deterministic difficulties.
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Particle-Continuum Hybrid

Fluid-Structure Coupling using Particles

MNG

Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps ∆tH = K∆tP .

Hydro solver is a simple explicit
(fluctuating) compressible code and
is not aware of particle patch.

The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
laws and ensures strict conservation
of mass, momentum, and energy.
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Particle-Continuum Hybrid

Continuum-Particle Coupling

Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

The coupling is roughly of the state-flux form:

The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.
The particle subdomain provides flux boundary conditions for the
continuum subdomain.

The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

The coupling is greatly simplified because the ideal particle fluid has
no internal structure.

”A hybrid particle-continuum method for hydrodynamics of complex fluids”, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010
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Particle-Continuum Hybrid

Our Hybrid Algorithm

1 The hydro solution uH is computed everywhere, including the particle
patch, giving an estimated total flux ΦH .

2 Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

3 Reservoir particles are propagated by ∆t and collisions are processed,
giving the total particle flux Φp.

4 The hydro solution is overwritten in the particle patch based on the
particle state up.

5 The hydro solution is corrected based on the more accurate flux,
uH ← uH −ΦH + Φp.

A. Donev (CIMS) Hybrid 10/2011 13 / 27



Particle-Continuum Hybrid Brownian Bead

Velocity Autocorrelation Function

We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C (t) = 〈v(t0) · v(t0 + t)〉

From equipartition theorem C (0) = kT/m.

For a Brownian particle with density ρ′ incompressible hydrodynamic
theory gives

C (0+) =

(
1 +

ρ

2ρ′

)−1 kT

m

because the momentum correlations decay instantly due to sound
waves.

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (kT/m)(t/tvisc)−3/2 not reproduced in
Brownian dynamics.
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Particle-Continuum Hybrid Brownian Bead

Large Bead (˜1000 particles)
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Figure: VACF for a neutrally-buyouant spherical Brownian particle.
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Direct Fluid-Blob Coupling

Fluid-Structure Coupling

Consider a blob (Brownian particle) of size a with position q(t) and
velocity u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

Take an Immersed Boundary Method (IBM) approach and describe
the fluid-blob interaction using a localized smooth kernel δa(∆r) with
compact support of size a (integrates to unity).

Often presented as an interpolation function for point Lagrangian
particles but here a is a physical size of the blob.

See Florencio Balboa’s talk and paper [4].

A. Donev (CIMS) Hybrid 10/2011 17 / 27



Direct Fluid-Blob Coupling

Local Averaging and Spreading Operators

Postulate a no-slip condition between the particle and local fluid
velocities,

q̇ = u = [J (q)] v =

∫
δa (q− r) v (r, t) dr,

enforced by a Lagrange multiplier fluid-blob force λ.

The induced force density in the fluid because of the particle is:

f = −λδa (q− r) = − [S (q)]λ,

which ensures momentum conservation.

Crucial for energy conservation is that the local averaging operator
J(q) and the local spreading operator S(q) are adjoint, S = J?.

I will ignore the nonlinear advective terms and simply denote them
with ellipses . . .
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Direct Fluid-Blob Coupling

Fluid-Structure Direct Coupling

The equations of motion in our coupling approach are postulated

ρ (∂tv + v ·∇v) = −∇ · σ − Sλ

me u̇ = F + λ

s.t. u = Jv,

where λ is a Lagrange multiplier that enforces the no-slip condition
and me is the excess mass of the particle.

The fluid fluctuations drive the Brownian motion: no stochastic
forcing of the particle motion.

In the existing (stochastic) IBM approaches inertial effects are
ignored, me = 0 and thus λ = −F.

In Lattice-Boltzmann approaches [5] a frictional (dissipative) force
λ = −ζ (u− Jv) is used instead of a constraint.
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Direct Fluid-Blob Coupling

Effective Inertia

Eliminating λ we get the particle equation of motion

mu̇ = −∆V (J∇ · σ) + F + · · · ,

where the effective mass m = me + mf includes the mass of the
“excluded” fluid

mf = ρ (JS)−1 = ρ∆V = ρ

[∫
δ2
a (r) dr

]−1

.

For the fluid we get the effective equation

ρeff∂tv = −∇ · σ + SF + . . .

where the effective mass density matrix (operator) is

ρeff = ρI + meSJ.
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Direct Fluid-Blob Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system. This is work in progress...

This really means that the stationary (equilibrium) distribution must
be the Gibbs distribution

P (x) = Z−1 exp [−βH]

where the Hamiltonian is postulated to be

H = U (q) + me
u2

2
+

∫ [
ρ

v 2

2
+ ε (ρ)

]
dr.

We can eliminate the particle velocity using the no-slip constraint, to
obtain the effective Hamiltonian

H = U (q) +

∫
vTρeffv

2
dr +

∫
ε (ρ) dr.

The equations as written do not formally satisfy fluctuation-dissipation
balance as the dynamics is not incompressible in phase space.
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Direct Fluid-Blob Coupling

Brownian Dynamics Limit

For the case of a neutrally-bouyant particle, me = 0,
fluctuation-dissipation balance is restored if one adds an extra drift
term to the fluid dynamics:

ρ∂tv = −∇ · σ + SF + (kBT )
∂

∂q
· S.

Paul Atzberger [6] has obtained these equations by carefully taking
the limit me → 0 and then infinite friction of the Stokes dissipative
fluid-particle coupling [5].

In the overdamped or Brownian dynamics limit

q̇ = MF +
√

2kBT M1/2W̃ +

(
∂

∂q
·M
)

kBT ,

where the mobility tensor is related to the Stokes solution operator
L−1:

M (q) = −JL−1S.
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Direct Fluid-Blob Coupling

Incompressible Approximation

For an incompressible fluid the fluid forcing must be projected using
the projection operator P , in Fourier space P̂ = I− k−2

(
kkT

)
.

Now the effective density matrix for the fluid is

ρeff = ρ+ mePSJP .

The modified Gibbs distribution gives a kinetic energy of the particle
that is less than equipartition suggests,

〈u2〉 =

[
1 +

mf

(d − 1)m

]−1(
d

kBT

m

)
,

as predicted also for a rigid sphere a long time ago, mf /m = ρ′/ρ.

Incompressible hydro is much harder for non-periodic systems due to
additional splitting of pressure terms.
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Direct Fluid-Blob Coupling

Numerical Scheme

Spatial discretization is based on previously-developed staggered
schemes for fluctuating hydro [3] and the IBM kernel functions of
Charles Peskin [7].

Temporal discretization follows a first-order splitting algorithm
(move particle + update momenta) based on the Direct Forcing
Method of Uhlmann [8].

The scheme ensures strict conservation of momentum and strictly
enforces the no-slip condition using a projection step at the end of the
time step.

Continuing work on second-order temporal integrators that
reproduce the correct equilibrium distribution and diffusive
dynamics.

Both compressible (explicit) and incompressible (semi-implicit)
methods are work in progress...
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Direct Fluid-Blob Coupling

Numerical VACF
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Figure: (F. Balboa) VACF for a blob with me = mf = ρ∆V .
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Direct Fluid-Blob Coupling

Conclusions / Discussion

Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

It is necessary to include fluctuations in the continuum solver in
hybrid methods.

Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure can replace expensive particle methods and
complicated hybrid algorithms.

Ensuring fluctuation-dissipation balance is crucial and nontrivial:
How to do it when me 6= 0?

Can one derive the proper set of fluid-blob equations, or at least their
structure, via coarse graining (work with Pep Espanol)?
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Direct Fluid-Blob Coupling
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