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Introduction

Micro- and nano-hydrodynamics

Flows of fluids (gases and liquids) through micro- (µm) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

Biologically-relevant flows also occur at micro- and nano- scales.

An important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

I hope to demonstrate the general conclusion that fluctuations
should be taken into account at all level.
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Introduction

Levels of Coarse-Graining

Figure: From Pep Español, “Statistical Mechanics of Coarse-Graining”
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Particle Methods

Particle Methods for Complex Fluids

The most direct and accurate way to simulate the interaction between
the solvent (fluid) and solute (beads, chain) is to use a particle
scheme for both: Molecular Dynamics (MD)

mr̈i =
∑
j

f ij(rij)

The stiff repulsion among beads demands small time steps, and
chain-chain crossings are a problem.

Most of the computation is “wasted” on the unimportant solvent
particles!

Over longer times it is hydrodynamics (local momentum and energy
conservation) and fluctuations (Brownian motion) that matter.

We need to coarse grain the fluid model further: Replace
deterministic interactions with stochastic collisions.
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Particle Methods

Direct Simulation Monte Carlo (DSMC)

(MNG)

Tethered polymer chain in
shear flow.

Stochastic conservative collisions of
randomly chosen pairs of nearby
solvent particles, as in DSMC (also
related to MPCD/SRD and DPD).

Solute particles still interact with both
solvent and other solute particles as
hard or soft spheres.

No fluid structure: Viscous ideal gas.

One can introduce biased collision
models to give the fluids consisten
structure and a non-ideal equation
of state. [1].
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Fluctuating Hydrodynamics

Continuum Models of Fluid Dynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 ∼= Ũ(r, t) =
∑
i

 mi

miυi

miυ
2
i /2

 δ [r − ri (t)] ,

where the symbol ∼= means that U(r, t) approximates the true
atomistic configuration Ũ(r, t) over long length and time scales.

Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [2].

This leads to SPDEs of Langevin type formed by postulating a
white-noise random flux term in the usual Navier-Stokes-Fourier
equations with magnitude determined from the
fluctuation-dissipation balance condition, following Landau and
Lifshitz.
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Fluctuating Hydrodynamics

Compressible Fluctuating Hydrodynamics

Dtρ =− ρ∇ · v
ρ (Dtv) =−∇P + ∇ ·

(
η∇v + Σ

)
ρcp (DtT ) =DtP + ∇ · (µ∇T + Ξ) +

(
η∇v + Σ

)
: ∇v,

where the variables are the density ρ, velocity v, and temperature T
fields,

Dt� = ∂t� + v ·∇ (�)

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3

and capital Greek letters denote stochastic fluxes:

Σ =
√

2ηkBT W .

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk − 2δijδkl/3) δ(t − t ′)δ(r − r′).
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

We will consider a binary fluid mixture with mass concentration
c = ρ1/ρ for two fluids that are dynamically identical, where
ρ = ρ1 + ρ2.

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv =P
[
−v ·∇v + ν∇2v + ρ−1 (∇ ·Σ)

]
∂tc =− v ·∇c + χ∇2c + ρ−1 (∇ ·Ψ) ,

where the kinematic viscosity ν = η/ρ, and
v ·∇c = ∇ · (cv) and v ·∇v = ∇ ·

(
vvT

)
because of

incompressibility, ∇ · v = 0.

Here P is the orthogonal projection onto the space of divergence-free
velocity fields.

A. Donev (CIMS) Fluct. Hydro. 8/2011 12 / 36



Fluctuating Hydrodynamics

Landau-Lifshitz Navier-Stokes (LLNS) Equations

The non-linear LLNS equations are ill-behaved stochastic PDEs,
and we do not really know how to interpret the nonlinearities precisely.

Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

A renormalization of the transport coefficients is also necessary [3].

We have algorithms and codes to solve the compressible equations
(collocated and staggered grid), and recently also the incompressible
and low Mach number ones (staggered grid) [4, 5].

Solving the LLNS equations numerically requires paying attention to
discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4, 6].
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Fluctuating Hydrodynamics

Finite-Volume Schemes

ct = −v ·∇c + χ∇2c + ∇ ·
(√

2χW
)

= ∇ ·
[
−cv + χ∇c +

√
2χW

]
Generic finite-volume spatial discretization

ct = D
[
(−Vc + Gc) +

√
2χ/ (∆t∆V )W

]
,

where D : faces→ cells is a conservative discrete divergence,
G : cells→ faces is a discrete gradient.

Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

The divergence and gradient should be duals, D? = −G.

Advection should be skew-adjoint (non-dissipative) if ∇ · v = 0,

(DV)? = − (DV) if (DV) 1 = 0.
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Fluctuating Hydrodynamics

Weak Accuracy

Figure: Equilibrium discrete spectra (static structure factors) Sρ,ρ(k) ∼ 〈ρ̂ρ̂?〉
(should be unity for all discrete wavenumbers) and Sρ,v(k) ∼ 〈ρ̂v̂?x 〉 (should be
zero) for our RK3 collocated scheme.
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Hybrid Particle-Continuum Method

Particle/Continuum Hybrid Framework

Figure: Hybrid method for a polymer chain.
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Hybrid Particle-Continuum Method

Fluid-Structure Coupling using Particles

MNG

Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps ∆tH = K∆tP .

Hydro solver is a simple explicit
(fluctuating) compressible LLNS
code and is not aware of particle
patch.

The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
laws and ensures strict conservation
of mass, momentum, and energy.
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Hybrid Particle-Continuum Method

Continuum-Particle Coupling

Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

The coupling is roughly of the state-flux form:

The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.
The particle subdomain provides flux boundary conditions for the
continuum subdomain.

The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

The coupling is greatly simplified because the ideal particle fluid has
no internal structure.

”A hybrid particle-continuum method for hydrodynamics of complex fluids”, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010
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Hybrid Particle-Continuum Method The Adiabatic Piston

The adiabatic piston problem

MNG
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Hybrid Particle-Continuum Method The Adiabatic Piston

Relaxation Toward Equilibrium
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Figure: Massive rigid piston (M/m = 4000) not in mechanical equilibrium: The
deterministic hybrid gives the wrong answer!
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Fluctuation-Enhanced Diffusive Mixing

Nonequilibrium Fluctuations

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t) = δv(r, t), approximately:

∂t (δc) + (δv) ·∇c0 = χ∇2 (δc) +
√

2χkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations [7].
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Fluctuation-Enhanced Diffusive Mixing

Fractal Fronts in Diffusive Mixing

Figure: Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity [3, 7, 5].
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Fluctuation-Enhanced Diffusive Mixing

Giant Fluctuations in Experiments

Figure: Experimental results by A. Vailati et al. from a microgravity environment
[7] showing the enhancement of concentration fluctuations in space (box scale is
macroscopic: 5mm on the side, 1mm thick).
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Fluctuation-Enhanced Diffusive Mixing

Fluctuation-Enhanced Diffusion Coefficient

The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities,

∂t (δc) + (δv) ·∇c0 = ∇ · [− (δc) (δv) + χ∇ (δc)] + . . .

Simple (quasi-linear) perturbative theory suggests that concentration
and velocity fluctuations become correlated and

−〈(δc) (δv)〉 ≈ (∆χ)∇c0.

The fluctuation-renormalized diffusion coefficient is χ+ ∆χ
(think of eddy diffusivity in turbulent transport).

Because fluctuations are affected by boundaries, ∆χ is system-size
dependent.
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Fluctuation-Enhanced Diffusive Mixing

Fluctuation-Enhanced Diffusion Coefficient

Consider the effective diffusion coefficient in a system of dimensions
Lx × Ly × Lz with a concentration gradient imposed along the y axis.

In two dimensions, Lz � Lx � Ly , linearized fluctuating
hydrodynamics predicts a logarithmic divergence

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz
ln

Lx

L0

In three dimensions, Lx = Lz = L� Ly , χeff converges as L→∞
to the macroscopic diffusion coefficient,

χ
(3D)
eff ≈ χ+

α kBT

ρ(χ+ ν)

(
1

L0
− 1

L

)
We have verified these predictions using particle (DSMC) simulations
at hydrodynamic scales [3].
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Fluctuation-Enhanced Diffusive Mixing

Particle Simulations
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Figure: Divergence of diffusion coefficient in two dimensions.
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Direct Fluid-Particle Coupling

Fluid-Structure Direct Coupling

Consider a particle of diameter a with position q(t) and its velocity
u = q̇, and the velocity field for the fluid is v(r, t).

We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

The fluid fluctuations drive the Brownian motion: no stochastic
forcing of the particle motion.

Take an Immersed Boundary approach and assume the force density
induced in the fluid because of the particle is:

f ind = −λδa (q− r) = −Sλ,

where δa is an approximate delta function with support of size a
(integrates to unity).
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Direct Fluid-Particle Coupling

Fluid-Structure Direct Coupling

The equations of motion of the Direct Forcing method are postulated
to be

ρ (∂tv + v ·∇v) = ∇ · σ − Sλ (1)

me u̇ = F + λ (2)

s.t. u = Jv =

∫
δa (q− r) v (r, t) dr, (3)

where λ is a Lagrange multiplier that enforces the no-slip condition.

Here me is the excess mass of the particle over the “dragged fluid”,
and the effective mass is

m = me + mf = m + ρ (JS)−1 = m + ρ∆V

The Lagrange multipliers can be eliminated formally to get a fluid
equation with effective mass density matrix

ρeff = ρ+ ∆mSJ.
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Direct Fluid-Particle Coupling

Fluctuation-Dissipation Balance

One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system, with effective Hamiltonian

H =
1

2

[∫
ρv 2dr + meu2

]
+ U(q),

and implement a discrete scheme.

We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C (t) = 2d−1 〈v(t0) · v(t0 + t)〉

Hydrodynamic persistence (conservation) gives a long-time
power-law tail C (t) ∼ (t/tν)−3/2 that can be quantified using
fluctuating hydrodynamics.

From equipartition theorem C (0) = kBT/m, but incompressible
hydrodynamic theory gives C (t > tc) = 2/3 (kBT/m) for a
neutrally-boyant particle.
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Direct Fluid-Particle Coupling

Velocity Autocorrelation Function
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Figure: (Work with Florencio Balboa and Rafael Delgado-Buscallioni) Normalized
VACF C (t) = 〈vx(0)vx(t)〉 for different fluid compressibilities (speeds of sound).
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Conclusions

Conclusions

Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

It is necessary to include fluctuations in continuum hydrodynamics
and in compressible, incompressible, and low Mach number
finite-volume solvers.

Instead of an ill-defined “molecular” or “bare” diffusivity, one should
define a locally renormalized diffusion coefficient χ0 that depends
on the length-scale of observation.

Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure.
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Conclusions
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