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Introduction

Micro- and nano-hydrodynamics

@ Flows of fluids (gases and liquids) through micro- (um) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

o Biologically-relevant flows also occur at micro- and nano- scales.

@ An important feature of small-scale flows, not discussed here, is
surface/boundary effects (e.g., slip in the contact line problem).

@ Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!

@ | hope to demonstrate the general conclusion that fluctuations
should be taken into account at all level.
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Introduction
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Particle Methods
Particle Methods for Complex Fluids

@ The most direct and accurate way to simulate the interaction between
the solvent (fluid) and solute (beads, chain) is to use a particle
scheme for both: Molecular Dynamics (MD)

mi; = f(ry)
j

@ The stiff repulsion among beads demands small time steps, and
chain-chain crossings are a problem.

@ Most of the computation is “wasted” on the unimportant solvent
particles!

@ Over longer times it is hydrodynamics (local momentum and energy
conservation) and fluctuations (Brownian motion) that matter.

@ We need to coarse grain the fluid model further: Replace
deterministic interactions with stochastic collisions.
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Particle Methods

Direct Simulation Monte Carlo (DSMC)
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Tethered polymer chain in
shear flow.
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Stochastic conservative collisions of
randomly chosen pairs of nearby
solvent particles, as in DSMC (also
related to MPCD/SRD and DPD).

Solute particles still interact with both
solvent and other solute particles as
hard or soft spheres.

No fluid structure: Viscous ideal gas.

One can introduce biased collision
models to give the fluids consisten
structure and a non-ideal equation
of state. [1].
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Fluctuating Hydrodynamics
Continuum Models of Fluid Dynamics

e Formally, we consider the continuum field of conserved quantities

p N mj
Urt)=| j | =U0rt)=)_| muv; |6[r—r(t)],
e i miv? /2

~

where the symbol = means that U(r, t) approximates the true
atomistic configuration U(r, t) over long length and time scales.

@ Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics [2].

@ This leads to SPDEs of Langevin type formed by postulating a
white-noise random flux term in the usual Navier-Stokes-Fourier
equations with magnitude determined from the
fluctuation-dissipation balance condition, following Landau and
Lifshitz.
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Fluctuating Hydrodynamics
Compressible Fluctuating Hydrodynamics

Dip=—pV -v
p(Dwv) =—VP+V . (nVv+X)
pcp (D T) =DP+V - (uVT +Z)+ (nVv+X) : Vv,

where the variables are the density p, velocity v, and temperature T
fields,

DO =00+v-V (O
Vv=(Vv+ Vv )—2(V-v)I/3

and capital Greek letters denote stochastic fluxes:

X =\/2nkg T W.

<W,-J-(r, t)W,f,(r’, t/)> = (5ik5jl + (5,‘/(5][( - 25ij5k1/3) 5(1‘ — t')é(r — I‘I).
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Fluctuating Hydrodynamics

Incompressible Fluctuating Navier-Stokes

@ We will consider a binary fluid mixture with mass concentration
¢ = p1/p for two fluids that are dynamically identical, where
p = p1+ p2.

@ Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

Ov =P [-v Vv + vV +p (V- ¥)]
dc=—v-Vc+xVic+p (V- W),
where the kinematic viscosity v = n/p, and

v-Vc=V-(cv)andv- Vv =V (w') because of
incompressibility, V - v = 0.

@ Here P is the orthogonal projection onto the space of divergence-free
velocity fields.

A. Donev (CIMS) Fluct. Hydro. 8/2011 12/ 36



Fluctuating Hydrodynamics

Landau-Lifshitz Navier-Stokes (LLNS) Equations

The non-linear LLNS equations are ill-behaved stochastic PDEs,
and we do not really know how to interpret the nonlinearities precisely.

Finite-volume discretizations naturally impose a grid-scale
regularization (smoothing) of the stochastic forcing.

A renormalization of the transport coefficients is also necessary [3].
We have algorithms and codes to solve the compressible equations

(collocated and staggered grid), and recently also the incompressible
and low Mach number ones (staggered grid) [4, 5].

Solving the LLNS equations numerically requires paying attention to
discrete fluctuation-dissipation balance, in addition to the usual
deterministic difficulties [4, 6].
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Fluctuating Hydrodynamics
Finite-Volume Schemes

ct=-v-Vc+xV2c+ V. (@W) =V. [—cv+ch+\/ﬂW}

@ Generic finite-volume spatial discretization

c.=D [(—Vc + Ge) + /2x/ (AtAV)w] :

where D : faces — cells is a conservative discrete divergence,
G : cells — faces is a discrete gradient.

@ Here W is a collection of random normal numbers representing the
(face-centered) stochastic fluxes.

e The divergence and gradient should be duals, D* = —G.
@ Advection should be skew-adjoint (non-dissipative) if V - v =0,

(DV)* = — (DV) if (DV)1=0.
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Fluctuating Hydrodynamics
Weak Accuracy
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Figure: Equilibrium discrete spectra (static structure factors) S, ,(k) ~ (pp*)
(should be unity for all discrete wavenumbers) and S, (k) ~ (5V;) (should be
zero) for our RK3 collocated scheme.
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Hybrid Particle-Continuum Method

Particle/Continuum Hybrid Framework
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Figure: Hybrid method for a polymer chain.
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Hybrid Particle-Continuum Method
Fluid-Structure Coupling using Particles

@ Split the domain into a particle and a
continuum (hydro) subdomains,
with timesteps Aty = KAtp.

@ Hydro solver is a simple explicit
(fluctuating) compressible LLNS
code and is not aware of particle
patch.

@ The method is based on Adaptive
Mesh and Algorithm Refinement
(AMAR) methodology for conservation
MNG laws and ensures strict conservation
of mass, momentum, and energy.
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Hybrid Particle-Continuum Method
Continuum-Particle Coupling

e Each macro (hydro) cell is either particle or continuum. There is
also a reservoir region surrounding the particle subdomain.

@ The coupling is roughly of the state-flux form:

e The continuum solver provides state boundary conditions for the
particle subdomain via reservoir particles.

e The particle subdomain provides flux boundary conditions for the
continuum subdomain.

@ The fluctuating hydro solver is oblivious to the particle region: Any
conservative explicit finite-volume scheme can trivially be substituted.

@ The coupling is greatly simplified because the ideal particle fluid has
no internal structure.

"A hybrid particle-continuum method for hydrodynamics of complex fluids’, A.
Donev and J. B. Bell and A. L. Garcia and B. J. Alder, SIAM J. Multiscale
Modeling and Simulation 8(3):871-911, 2010
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Hybrid Particle-Continuum Method The Adiabatic Piston

The adiabatic piston problem

MNG
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Hybrid Particle-Continuum Method The Adiabatic Piston

Relaxation Toward Equilibrium
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Figure: Massive rigid piston (M/m = 4000) not in mechanical equilibrium: The
deterministic hybrid gives the wrong answer!
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Fluctuation-Enhanced Diffusive Mixing

Nonequilibrium Fluctuations

@ When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

o Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state co(r):

c(r,t) = co(r) + dc(r, t)

@ The concentration fluctuations are advected by the random
velocities v(r, t) = ov(r, t), approximately:

Ot (6¢) + (0v) - Voo = x V2 (5¢) + /2xks T (V - W,)
@ The velocity fluctuations drive and amplify the concentration

fluctuations leading to so-called giant fluctuations [7].
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Fluctuation-Enhanced Diffusive Mixing

Fractal Fronts in Diffusive Mixing

Figure: Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface between two miscible fluids in zero gravity [3, 7, 5].
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Fluctuation-Enhanced Diffusive Mixi

Giant Fluctuations in Experiments
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Figure: Experimental results by A. Vailati et al. from a microgravity environment
[7] showing the enhancement of concentration fluctuations in space (box scale is
macroscopic: 5mm on the side, Imm thick).
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Fluctuation-Enhanced Diffusive Mixing

Fluctuation-Enhanced Diffusion Coefficient

@ The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities,

O (0c) + (0v) - Vo =V - [—(dc) (0v) + xV (dc)] + ...

e Simple (quasi-linear) perturbative theory suggests that concentration
and velocity fluctuations become correlated and

—((3¢) (4v)) ~ (BY) Voo,

o The fluctuation-renormalized diffusion coefficient is y + Ay
(think of eddy diffusivity in turbulent transport).

@ Because fluctuations are affected by boundaries, Ay is system-size
dependent.
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Fluctuation-Enhanced Diffusive Mixing

Fluctuation-Enhanced Diffusion Coefficient

@ Consider the effective diffusion coefficient in a system of dimensions
Ly x L, x L, with a concentration gradient imposed along the y axis.

@ In two dimensions, L, < L, < L, linearized fluctuating
hydrodynamics predicts a logarithmic divergence

(20) keT | Lx
et X T o+ )L L

@ In three dimensions, [, = L, = L < L, xeff converges as L — oo
to the macroscopic diffusion coefficient,

(3D) - OszT <1 1)
Xeff =~ P(X+V) LO L

@ We have verified these predictions using particle (DSMC) simulations
at hydrodynamic scales [3].
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Fluctuation-Enhanced Diffusive Mixing

Particle Simulations
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Direct Fluid-Particle Coupling
Fluid-Structure Direct Coupling

o Consider a particle of diameter a with position q(t) and its velocity
u = q, and the velocity field for the fluid is v(r, t).

@ We do not care about the fine details of the flow around a particle,
which is nothing like a hard sphere with stick boundaries in reality
anyway.

@ The fluid fluctuations drive the Brownian motion: no stochastic
forcing of the particle motion.

@ Take an Immersed Boundary approach and assume the force density
induced in the fluid because of the particle is:

fing = —Ad, (q - r) = —SA,

where 4, is an approximate delta function with support of size a
(integrates to unity).
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Direct Fluid-Particle Coupling
Fluid-Structure Direct Coupling

@ The equations of motion of the Direct Forcing method are postulated
to be

p(Ov+v-Vv) = V.o—-SX (1)
meit = F4A )
st u— Ju=— /53 (@=nv(rt)dr, (3

where A is a Lagrange multiplier that enforces the no-slip condition.
@ Here m, is the excess mass of the particle over the “dragged fluid”,
and the effective mass is

~—

m=me+mg=m+p(IS) "t =m+pAV

@ The Lagrange multipliers can be eliminated formally to get a fluid
equation with effective mass density matrix

Peff = p + AmSJ.
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Direct Fluid-Particle Coupling

Fluctuation-Dissipation Balance

@ One must ensure fluctuation-dissipation balance in the coupled
fluid-particle system, with effective Hamiltonian

H= % [/vadH— meuz} + U(q),

and implement a discrete scheme.
@ We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C(t) =2d7 1 (v(tg) - v(to + t))

e Hydrodynamic persistence (conservation) gives a long-time
power-law tail C(t) ~ (t/t,)~3/2 that can be quantified using
fluctuating hydrodynamics.

e From equipartition theorem C(0) = kg T /m, but incompressible
hydrodynamic theory gives C(t > t.) =2/3 (kg T/m) for a
neutrally-boyant particle.
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Direct Fluid-Particle Coupling

Velocity Autocorrelation Function
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Figure: (Work with Florencio Balboa and Rafael Delgado-Buscallioni) Normalized
VACF C(t) = (v(0)vx(t)) for different fluid compressibilities (speeds of sound).
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Conclusions
Conclusions

o Coarse-grained particle methods can be used to accelerate
hydrodynamic calculations at small scales.

@ Hybrid particle continuum methods closely reproduce purely
particle simulations at a fraction of the cost.

@ It is necessary to include fluctuations in continuum hydrodynamics
and in compressible, incompressible, and low Mach number
finite-volume solvers.

@ Instead of an ill-defined “molecular” or “bare” diffusivity, one should
define a locally renormalized diffusion coefficient x( that depends
on the length-scale of observation.

o Direct fluid-structure coupling between fluctuating hydrodynamics
and microstructure.
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Conclusions
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