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Introduction

Micro- and nano-hydrodynamics

e Flows of fluids (gases and liquids) through micro- (um) and
nano-scale (nm) structures has become technologically important,
e.g., micro-fluidics, microelectromechanical systems (MEMS).

o Biologically-relevant flows also occur at micro- and nano- scales.

@ The flows of interest often include suspended particles: colloids,
polymers (e.g., DNA), blood cells, bacteria: complex fluids.

o Essential distinguishing feature from “ordinary” CFD: thermal
fluctuations!
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Introduction

Example: DNA Filtering
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Figure: From the work of David Trebotich (LLNL)
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Introduction
Example: Droplet Formation

Figure: From Jens Eggers, Reviews of Modern Physics, 69, 1997
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Introduction
Polymer chains

@ | consider modeling of a polymer chain
in a flowing solution, for example,
DNA in a micro-array.

@ The detailed structure of the polymer
chain is usually coarse-grained to a
model of spherical beads:

Johan Padding, Cambridge
Bead-Link The beads are free joints between inextensible links
Bead-Spring Kuhn segments of the chain are point particles (beads)
connected by non-linear elastic springs (FENE, worm-like,
etc.)

The issue: How to couple the polymer model with the surrounding
fluid model?
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Particle Methods
Particle Methods for Complex Fluids

@ The most direct and accurate way to simulate the interaction between
the solvent (fluid) and solute (beads, chain) is to use a particle
scheme for both: Molecular Dynamics (MD)

mi; =) fi(ry)
j

e Standard (time-driven) molecular dynamics:
All of the particles are displaced synchronously in small time steps At,
calculating positions and forces on each particle at every time step.

@ The stiff repulsion among beads demands small time steps, and
chain-chain crossings are a problem.

@ For hard spheres, one can use asynchronous event-driven MD.
"Asynchronous Event-Driven Particle Algorithms’, by A. Donev, to
appear in SIMULATION, 2008, cs.OH/0703096.
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Particle Methods

Event-Driven (Hard-Sphere) MD

o Tethered (square-well) hard-sphere
chain polymers are the simplest but
useful model.

@ Most of the computation is “wasted”
on the unimportant solvent particles!

@ Over longer times it is hydrodynamics
(local momentum and energy
conservation) and fluctuations
(Brownian motion) that matter.

(MNG)
"Stochastic Event-Driven Molecular Dynamics’ [1],

A. Donev, A. L. Garcia and B. J. Alder,
J. Comp. Phys., 227(4):2644-2665, 2008
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Particle Methods

Direct Simulation Monte Carlo (DSMC)

et s e st @ Stochastic conservative collisions of
randomly chosen nearby solvent
particles, as in Direct Simulation
Monte Carlo (DSMC).

@ Solute particles still interact with both
solvent and other solute particles as
hard spheres.

@ Binary DSMC collisions can be
replaced with multiparticle collisions
(MPCD/SRD).
(MNG)

No fluid structure: Viscous fluid that is really an ideal gas! [2]
"Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal
Fluids', by A. Donev, A. L. Garcia and B. J. Alder, Phys. Rev. Lett.
101:075902 (2008) [arXiv:0803.0359]
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Particle Methods
Tethered Polymer in Shear Flow
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e We implement open (stochastic) boundary conditions: Reservoir
particles are inserted every timestep in the boundary cells with
appropriately biased velocities (local Maxwellian or Chapman-Enskog
distributions).
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Coarse Graining of the Solvent
The Need for Coarse-Graining

@ In order to examine the time-scales involved, we focus on a
fundamental problem:
A single bead of size a and density p’ suspended in a stationary fluid
with density p and viscosity 7 (Brownian walker).

@ By increasing the size of the bead obviously the number of solvent
particles increases as N ~ a3. But this is not the biggest problem
(we have large supercomputers).

@ The real issue is that a wide separation of timescales occurs: The
gap between the timescales of microscopic and macroscopic processes
widens as the bead becomes much bigger than the solvent particles
(water molecules).

e Typical bead sizes are nm (nano-colloids, short polymers) or um
(colloids, DNA), while typical atomistic sizes are 1A = 0.1nm.
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Coarse Graining of the Solvent

Estimates from Fluid Dynamics

@ Classical picture for the following dissipation process: Push a sphere
suspended in a liquid with initial velocity Vi, =~ \/kT /M, M ~ p’a3,
and watch how the velocity decays:

e Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic /2 a/c, where c is the (adiabatic) sound speed.

e Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time t,;. ~ pa’/n, where 7 is the
shear viscosity. Note that the classical Langevin time scale
trang =~ m/na applies only to unrealistically dense beads!

e Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tgirr ~ a>/D, where D ~ kT /(an).
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Coarse Graining of the Solvent
Estimates from Molecular Theory

@ For a typical particle fluid with particle size R, mass m, at
temperature kT, and density (volume fraction) ¢, we have the
mean-free path

A~ —,
¢
For typical liquids, ¢ =~ 1, R = 1A = 0.1nm.

e The equation of state (EOS) of the fluid, p = PV /NkT = p(¢, T),

determines the incompressibility C ~ dp/d¢ and the speed of sound

c~+C.
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Coarse Graining of the Solvent
Timescale estimates.

@ The mean collision time, i.e., the MD time-scale, is teo = A/ vip,

where the thermal velocity is vy, &= 1/’%, for water

teon ~ 1075 = 1fs

o Coarse-grained fluids such as the DSMC, the Stochastic Hard-Sphere,
or Dissipative Particle Dynamics fluids increase the MD timescale
artificially by not resolving the full atomistic structure structure.

@ The sound speed ¢ ~ v/C-+/kT/m, giving an estimate for the sound
time

1ns for a~ pum . tsonic a 2 5
Esonic { 1ps fora~ nm ’ With gap teoll VC 0 0
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Coarse Graining of the Solvent
Estimates contd...

@ The viscosity of the particle fluid can be estimated to be

oA
N~ = mkT

giving viscous time estimates

1,u5 for a ~ um . tisc a 3
tVISC ~ { ]_ps for 2~ nm s Wlth gap 7tsom-c ~ \/EX ~ ]_ — ].0

@ Finally, the diffusion time can be estimated to be

1s for a ~ um . tdiff a 3 6
diff { 1ns for a~ nm * ' &3P tiise OR 0 0

which can now reach macroscopic timescales!
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Coarse Graining of the Solvent

Levels of Coarse-Graining

Smoluchowski
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Figure: From Pep Espafiol, “Statistical Mechanics of Coarse-Graining”

Classical Mechanics

Fokker-Planck
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Coarse Graining of the Solvent
Smoluchowski level: Brownian Dynamics

@ When the bead momenta are not of interest, we can focus only on
bead positions and use an implicit solvent.

@ Overdamped Brownian dynamics:

DFR) 0
kT OR
where R is the vector containing bead positions, R = {r1,...,ry}, U is
the unperturbed velocity field at the bead centers, F are the
bead-bead interaction forces, and dW; = v/dt - N; are independent
Wiener process increments (white noise).

@ Typical assumption for the diffusion tensor is that it depends only on
the configuration:

D =D(R) = B-B’, usually D = kg T[(671a) }15; + Q]

dR =[U + D]dt + V2B - dW,

where €;; is the Oseen tensor, with additional complex corrections
for flow in bounded domains (channels).
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Continuum Solvent
The equations of hydrodynamics

e Formally, we consider the continuum field of conserved quantities

p 1 m;
u(r) = j = Z V| m,-(5€(r — q,) = Z Pi 6e(r - qi)7
i | v?)2 i L oe

where € < 1 is a small coarse-graining parameter.

@ Due to the microscopic conservation of mass, momentum and
energy, the hydrodynamic field satisfies a conservation law

uu=-V-o=-V.-(H+D+5S),
where the flux is broken into a hyperbolic, diffusive, and a

stochastic flux.
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Continuum Solvent
Navier-Stokes Equations

The flux expressions assumed in the compressible
Navier-Stokes(-Fourier) (NS) equations:

pv 0
H=| pw' +P§ | and D = T
(e + P)v T-v+krkVT

Here the primary variables are density p, velocity v, and temperature T,
determined from:
pv?
Jj = pv and e:cva+T

the pressure is determined from the equation of state P = P(p, T), and
the viscous stress

Tr(A 1
T =27 [*’y — ré’y)] , where the strain rate 4 = E(Vv +WwvT)
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Continuum Solvent
Stochastic Fluxes

The NS equations do not include the influence of thermal
fluctuations, which is essential at small scales!

Landau and Lifshitz assumed stochastic stress and energy fluxes in
the form of uncorrelated (in time and space) Gaussian noise

0
S = o ,
O-V+¢
and solved the linearized NS equations in Fouier space to obtain
the local fluctuations in the density, momentum and energy.

By comparing to statistical mechanics, they obtained a
fluctuation-dissipation theorem:

<0','j( t)a'k/(r' t/)> = 217kT5,-jk,5(r —r ) (t — t )
(si(r,t)si(v, ') = 2kkT&j6(r — ¥')o(t — t')
giving the Landau-Lifshitz Navier-Stokes (LLNS) equations.
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Continuum Solvent
Problems with the LLNS equations

@ Numerically solving the compressible LLNS equations via explicit
real-space methods has proven to be difficult (work by Alejandro
Garcia and John Bell [3], as well as Rafael Delgado-Buscalioni et al.
[4]): At < Ax/c. No one has even tried (semi) implicit methods or
spectral methods yet, or compared carefully to fluctuating
Lattice-Boltzmann!

@ Adding stochastic fluxes to the non-linear NS equations (as derived in
the mesoscopic limit by Pep Espafiol [5]) produces ill-behaved
stochastic PDEs: At small scales one gets negative densities and
temperatures.

@ Fluctuations at scales smaller than the atomistic correlation length
and time should be renormalized to account for discreteness of matter
(recall ultra-violet catastrophe).
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Continuum Solvent
Hydrodynamics at the nanoscale?

@ It is not clear whether the Navier-Stokes equations apply at
nano-scales. Berni Alder et al. have proposed generalized
hydrodynamics for atomistic scales (wavelength and
frequency-dependent viscosity), but this is intractable.

@ The non-linear LLNS equations have an equilibrium correction to the
temperature of order 1/Ns due to the term pv? > 0 for the
center-of-mass motion.

@ Conclusion: It is necessary to perform systematic coarse graining
of particle models to find a non-phenomenological form of the
evolution equations for the hydrodynamic fields.
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Continuum Solvent
Incompressible Navier-Stokes

@ Under the assumption that the speed of sound is very large,
§P(6p,8T) ~ c6p, the energy equation decouples from the other
two and the density becomes nearly constant, giving the
incompressible Navier-Stokes equations

V-v=0
pove = =V P — po(v- V)v + V3,

where now the pressure P(r, t) is the Lagrange multipler for the
incompressibility constraint.

@ Physically, this means that very small changes in the density are
sufficient to adjust the pressure arbitrarily and that temperature
variations are negligible (isothermal).
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Continuum Solvent
When is incompressible/isothermal OK?

@ For incompressibility assumption to apply, there must be separation of
time scales tyjsc > tsonic, giving the constraint a > 1nm

@ Density and temperature thermal fluctuations need to also be small.
Estimates from statistical mechanics

sp\2 1 §T\> 1 RS
— ] = d| =) ~—=— 1
<p> o 2" <T> N, g3 ST

give a > 1nm.

e Conclusion: Unless the compressibility is very (unrealistically!)
small, an incompressible/isothermal formulation is applicable
only when a > 1nm.
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Bead-Solvent Coupling
Back to the Brownian Bead

@ The solvent (fluid, liquid) can be modeled implicitly via analytical
solutions (Brownian dynamics). But we want reverse coupling of the
polymer motion on the flow (e.g., drag reduction)! We also need to
resolve shorter time scales at nano systems.

@ Macroscopically, the coupling between flow and moving
bodies/structures/beads relies on:
e No-stick boundary condition v, = 0 at the surface of the bead.

e Force on the bead is the integral of the stress tensor over the bead
surface.

@ The above two conditions are questionable at nanoscales, but even
worse, they are very hard to implement numerically in an efficient and
stable manner, even in the (phenomenological) Lattice-Boltzmann
method.
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Bead-Solvent Coupling
Point-Bead Approximations

@ Lots of people make a point approximation for the beads (as in
Brownian dynamics).

@ The coupling between the solute and solvent is phenomenological
and approximate for most methods in use:

mdv = [F(R) — yv] dt + \/2vkTdW

e Point beads with artificial friction coefficients v &~ 6ran based on
asymptotic Stokes law

e Point beads exerting (smeared) d-function forces on the fluid

e Uncorrelated fluctuating forces on the beads

@ Such a Langevin equation is physically inconsistent, except at
(unrealistic?) asymptotic time-scales (see Kramer, Peskin and
Atzberger)!
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Bead-Solvent Coupling
The Immersed-Structure Method

@ Beyond the wrong Langevin equation approach: Immersed-structure
method of Kramer, Peskin and Atzberger for incompressible
fluctuating hydro.

@ The bead is in fact a lump of fluid: It moves with the
volume-averaged velocity of the fluid and the force exerted on the
bead is in fact exerted on the fluid.

@ The method appears fully consistent, however, effects of sound waves
and bead mass (inertial forces) are not taken into account: separation
of timescales is assumed.

@ Approximates the true mass and size into an effective bead size to
match long-time behavior. This size is often physically-meaningful.
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Hybrid Particle-Continuum Method

Complex Boundary Conditions using Particles

@ Split the domain into a particle and a hydro
patch, with timesteps Aty = KAtp.

@ Hydro solver is a simple explicit MacCormack
(fluctuating) compressible LLNS code
and is not aware of particle patch.

@ The method is based on Adaptive Mesh and
Algorithm Refinement (AMAR) methodology
for conservation laws and ensures strict
conservation of mass, momentum, and
energy [6].

(MNG)

Algorithm Refinement for Fluctuating Hydrodynamics, J. B. Bell and A. L. Garcia
and S. A. Williams, SIAM Multiscale Modeling and Simulation, 6, 1256-1280,
2008
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Hybrid Particle-Continuum Method

Freedom in Bead-Solvent Coupling

Figure: No event-driven handling at boundaries: immersed bead
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Hybrid Particle-Continuum Method
Hydro-particle coupling

Steps of the coupling algorithm:

The hydro solution is computed everywhere, including the particle
patch, giving an estimated total flux ®4.

Reservoir particles are inserted at the boundary of the particle patch
based on Chapman-Enskog distribution from kinetic theory,
accounting for both collisional and kinetic viscosities.

Reservoir particles are propagated by At and collisions are processed
(including virtual particles!), giving the total particle flux ®.

The hydro solution is overwritten in the particle patch based on the
particle state up.

The hydro solution is corrected based on the more accurate flux,
uy «—uy — Py + &,
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Hybrid Particle-Continuum Method

Back to the Brownian Bead
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Hybrid Particle-Continuum Method
Velocity Autocorrelation Function

e We investigate the velocity autocorrelation function (VACF) for a
Brownian bead

C(t) = (v(to) - v(to + 1))

e From equipartition theorem C(0) = kT /M.

e For a neutrally-boyant particle, p’ = p, incompressible hydrodynamic
theory gives C(0) = 2kT /3M because the momentum correlations
decay instantly due to sound waves.

e Hydrodynamic persistence (conservation) gives a long-time
power-law tail C(t) ~ (kT /M)(t/t,isc)~3/? not reproduced in
Brownian dynamics.
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Hybrid Particle-Continuum Method

Small Bead (710 particles)

Small boyant bead (M=8m) hybrid
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Hybrid Particle-Continuum Method

Medium Bead (7100 particles)

Medium boyant bead (M=60m) hybrid
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Hybrid Particle-Continuum Method
Large Bead in Small Box

Large boyant hard bead (D=0.5, M=1000m) for L=1.25
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Hybrid Particle-Continuum Method

Large Bead (71000 particles)

Large boyant hard bead (D=0.5, M=1000m) for L=2
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Hybrid Particle-Continuum Method

Future Directions

@ New and better numerical schemes for fluctuating compressible
hydro: resolving small wavelength fluctuations correctly with a large
timestep (exponential integrators in Fourier space?).

@ Theoretical work on the equations of fluctuating hydrodynamics:
systematic coarse-graining and approximations.

o Test, validate, and apply the methodology for polymer problems.

@ Couple our non-ideal stochastic hard-sphere gas to continuum
hydrodynamics with microscopic fidelity.

o Ultimately we require an Adaptive Mesh and Algorithm
Refinement (AMAR) framework that couples deterministic MD for
the polymer chains (micro), a stochastic solvent (micro-meso), with
compressible fluctuating Navier-Stokes (meso), and incompressible
CFD (macro).
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Hybrid Particle-Continuum Method
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