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I. INTRODUCTION

Since the pioneering work of Einstein and Smoluchowski on Brownian motion it has been clear that hydrodynamic
fluctuations are essential in the study of fluid dynamics at mesoscopic scales. In fact, fluctuations play an important
role in many physical, chemical, and biological processes, ranging from phase separation to ion transport in cells.
For example, high-fidelity molecular simulations reveal that thermal fluctuations significantly affect fluid mixing,
both in simple diffusion [1, 2] and in the Rayleigh-Taylor instability [3, 4]. The accurate modeling of droplets in
nanojets [5, 6] and lipid bilayer membranes [7, 8] necessitate the inclusion of hydrodynamic fluctuations. Chemical
processes, including combustion and explosive detonation, also depend strongly on spontaneous thermal fluctuations [9,
10]. Finally, the manifestation of hydrodynamic fluctuations is not restricted to mesoscale phenomena. Laboratory
experiments involving gases, liquids or crystals demonstrate that, away from equilibrium, thermal fluctuations lead
to large-scale structures, the so-called “giant fluctuation” effect [11–14].

As an extension of conventional hydrodynamic theory, fluctuating hydrodynamics incorporates spontaneous thermal
fluctuations in a fluid by adding stochastic flux terms to the deterministic fluid equations [15]. These noise terms are
white in space and time and are formulated using fluctuation-dissipation relations to yield the equilibrium covariances
of the fluctuations. This construction was first introduced by Landau and Lifshitz [16] for a single component fluid.
Fox and Uhlenbeck [17, 18] provide theoretical derivations of the fluctuation terms from perspectives of Brownian
motion and the Boltzmann equation. Numerous extensions of the theory have been developed, such as to Extended
Thermodynamics [19] and plasma dynamics [20].

The generalization of fluctuating hydrodynamics to binary mixtures was first presented by Cohen et al. [21] and
by Law and Nieuwoudt [22, 23]. Multicomponent gaseous systems are discussed within the GENERIC framework in
the work of Ottinger [24]. The standard fluctuating hydrodynamics theory for (thermo)diffusion in binary mixtures
(see, for example, Ortiz de Zarate and Senger [15]) has recently been extended to non-ideal ternary mixtures in
thermodynamic equilibrium by Ortiz de Zarate et al. [25].

Early work on numerical methods for the linearized fluctuating Navier-Stokes equations was performed by Garcia
et al. [26, 27]. More recently, we developed accurate and robust numerical techniques for the full nonlinear system
of equations [28–31]. In this paper, we extend to multicomponent systems the algorithm developed for binary gas
mixtures by Bell et al. [29] and subsequently improved by Donev et al. [30].

There are three reasons why this extension multi-species fluids is significant: First, it allows us to consider interest-
ing, realistic chemical reactions, which will be the treated in a subsequent paper. Second, the majority of microscopic
systems of interest (and certainly all biological systems) have negligible gradients of velocity and temperature. The
dominant mechanism for non-equilibrium entropy production in these systems is from gradients of chemical potential
(i.e., concentration gradients). Third, there are interesting interaction effects due to coupling of diffusion among
the species. In a single species fluid, the (deterministic) thermodynamic fluxes are always in the direction of their
conjugate thermodynamic force (e.g., heat flux is always from hot to cold). For a binary mixture there is an in-
teraction between concentration and temperature (e.g., heat flux due to a concentration gradient); however, this
coupling is typically weak. As we show in two examples in Section IV, diffusion barriers (zero concentration flux in
the presence of a concentration gradient) and reverse diffusion (concentration flux from low to high concentration) can
occur in multi-species mixtures (see for instance Duncan and Toor [32]). Giant fluctuations in binary mixtures out of
thermodynamic equilibrium have been studied for a long time, and here we demonstrate that the coupling between
the diffusive fluxes for different species also induces long-ranged correlations between the concentrations of different
species.

The paper is organized as follows: The mathematical formulation is summarized in Section II, and the numerical
scheme in Section III. Computational results validating the methodology are presented in Section IV along with
examples illustrating its capabilities. Conclusions and directions for future work are discussed in Section V.

II. THEORY

In this section, we summarize the mathematical formulation of the full multi-component, fluctuating Navier-Stokes
(FNS) equations and establish the elements needed to develop a suitable numerical method for the resulting stochastic
partial differential equations. Our formulation of species diffusion is based on classical treatments, such as in [33–
35]. We want to be able to utilize existing software for computing transport properties of realistic gases such as the
EGLIB package [36] commonly used in the reacting flow community. Consequently, we will adopt the notation given
by Giovangigli [37]. The formulation is general with the specific case of ideal gas mixtures treated in Section II D.
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A. Multicomponent Hydrodynamic Equations

The species density, momentum and energy equations of hydrodynamics are given by

∂

∂t
(ρk) +∇ · (ρkv) +∇ ·Fk = 0, (1)

∂

∂t
(ρv) +∇ ·

[
ρvvT + pI

]
+∇ ·Π = ρg, (2)

∂

∂t
(ρE) +∇ · [(ρE + p)v] +∇ · [Q + Π · v] = ρv · g, (3)

where ρk, v, p, g and E denote, respectively, the mass density for species k, fluid velocity, pressure, gravitational
acceleration, and total specific energy for a mixture with Ns species (k = 1, . . . Ns). Note that vvT is a (tensor) outer
product with T indicating transpose and I is the identity tensor (i.e., ∇ · pI = ∇p). Transport properties are given in
terms of the species diffusion flux, F , viscous tensor, Π, and heat flux, Q. For Newtonian fluids, the deterministic
viscous tensor is,

Π = −η
(
∇v + (∇v)T

)
−
(
κ− 2

3
η

)
I (∇ · v) , (4)

where η and κ are the shear and bulk viscosity, respectively.
Exact mass conservation requires that the species diffusion flux satisfies the constraint,

Ns∑
k=1

Fk = 0, (5)

so that summing the species equations gives the continuity equation.

∂

∂t
ρ+∇ · (ρv) = 0, (6)

where the total density ρ =
∑Ns

k=1 ρk. The mass fraction of the k-th species is denoted by Yk = ρk/ρ with
∑Ns

k=1 Yk = 1.
In fluctuating hydrodynamics, we augment the fluxes in (1)-(3) by adding a zero-mean stochastic flux to the

deterministic flux. For example, the viscous tensor becomes Π+Π̃ where 〈Π̃〉 = 0 with 〈 〉 denoting a suitably defined
ensemble average. The stochastic viscous flux tensor is a Gaussian random field that can be written as [16, 38]

Π̃(r, t) =
√

2kBTη Z̃v +

(√
kBκT

3
−
√

2kBηT

3

)
Tr(Z̃v), (7)

where kB is Boltzmann’s constant, T is temperature and Z̃v =
(
Zv + (Zv)T

)
/
√

2 is a symmetric Gaussian random

tensor field. (The
√

2 in the denominator accounts for the variance reduction from averaging.) Here Zv is a white-noise
random Gaussian tensor field; i.e.,

〈Zvαβ(r, t)Zvγδ(r′, t′)〉 = δαγδβδ δ(r− r′) δ(t− t′) .

B. Stochastic Diffusion and Heat Fluxes

The formulation of the multi-species stochastic diffusion and heat fluxes is complicated by the couplings among
the species fluxes (cross-diffusion effects) and by the thermal diffusion contribution (Soret and Dufour effects). The
starting point for determining these fluxes is the entropy production for a mixture, as formulated by de Groot and
Mazur [33] and by Kuiken [35], which establishes the form of the thermodynamic forces and fluxes. We then use
the fluctuation-dissipation principle to formulate the corresponding noise terms. Here we only need to consider the
contributions of the heat flux and mass diffusion fluxes to entropy production. The entropy production also has a
contribution due to the stress tensor, however, due to the Curie symmetry principle [33], fluxes and thermodynamic
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forces of different tensorial character do not couple. As such, the stochastic flux in the momentum equation is the
same as for a single species fluid, as given by (7).

The entropy production for a multi-component mixture at rest, in the absence of external forces [39] and chemistry,
is given by [33]:

v = − 1

T 2
Q′ · ∇T − 1

T

Ns∑
i=1

F i · ∇Tµi (8)

= − 1

T 2
Q′ · ∇T − 1

T

Ns−1∑
i=1

F i · ∇T (µi − µNs
) , (9)

where µi is the chemical potential per unit mass of species i and

Q′ = Q−
Ns∑
k=1

hkFk = Q−
Ns−1∑
k=1

(hk − hNs)Fk, (10)

where hk is the specific enthalpy of the kth component (see discussion in II D). In other words, Q′ is the part of the
heat flux that is not associated with mass diffusion. Here, ∇T is a gradient derivative taken holding temperature
fixed, that is,

∇T µi(p, T,X1, . . . , XNs−1) = ∇µi −
(
∂µi
∂T

)
p,X1,...,XNs−1

∇T,

where Xk = nk/
∑Ns

j=1 nj are mole fractions, and nk are number densities. The mole fraction for species k is

given in terms of the mass fractions by Xk = (m/mk)Yk, where mk is the mass of a molecule of that species, and

m =
(∑Ns

k=1 Yk/mk

)−1
is the mixture-averaged molecular weight [35]. Note that only Ns − 1 of the mass or mole

fractions are independent.
The general form of the phenomenological laws expresses the fluxes as linear combinations of thermodynamics

forces, written in matrix form as

J̄ = L̄X̄ where v = J̄T X̄ = X̄T L̄
T
X̄.

Here we use an overbar to denote the system expressed in terms of the first Ns− 1 species. From (9) the fluxes J̄ and
the thermodynamics forces X̄ are given by

J̄ =

[
F̄
Q′
]

and X̄ =

[
− 1
T∇T (µi − µNs)
− 1
T 2∇T

]
respectively, where F̄ = [F1, . . . ,FNs−1]T is a vector of Ns − 1 independent species mass fluxes. By Onsager
reciprocity the matrix of phenomenological coefficients is symmetric so we can write L̄ as

L̄ =

[
L̄ l̄
l̄T `

]
,

where L̄ is a symmetric Ns− 1×Ns− 1 matrix that depends on the multicomponent flux diffusion coefficients, l̄ is an
Ns − 1 component vector that depends on the thermal diffusion coefficients, and the scalar ` depends on the partial
thermal conductivity (see II D).

Before discussing the form of the noise terms we will first recast L̄ in a slightly different form. This form will facilitate
comparison with the continuum transport literature (e.g., [37]) and lead to a more efficient numerical algorithm. We
introduce

ξ̄ = L̄−1 l̄ and ζ = `− ξ̄T L̄ξ̄

so that

L̄ =

[
L̄ L̄ξ̄
ξ̄T L̄ ζ + ξ̄T L̄ξ̄

]
. (11)
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It is important to point out that this construction works even when L̄ is not invertible, which happens when some of
the species are not present. This is because ξ̄ is always in the range of L̄.

We now want to establish the form of the stochastic fluxes in the fluctuating hydrodynamic equations. Since the
fluxes are white in space and time we can write them in the form

˜̄Jα = B̄Z̄(α) where ˜̄Jα =

[ ˜̄Fα

Q̃
′
α

]
and Z̄(α) =

[
Z̄(F ;α)

Z(Q′;α)

]

where α = x, y, z denotes spatial direction and Z̄(F ;α) = [Z̄(1;α), . . . , Z̄(Ns−1;α)]T is a vector of independent Gaussian
white noise terms, that is,

〈Z̄(i;α)(r, t)Z̄(j;β)(r′, t′)〉 = δij δαβ δ(r− r′)δ(t− t′),
〈Z(Q′;α)(r, t)Z(Q′;β)(r′, t′)〉 = δαβ δ(r− r′)δ(t− t′),

and 〈Z̄(F ;α)Z(Q′;β)〉 = 0.
To satisfy fluctuation dissipation balance, we need [15, 25]

B̄B̄T = 2kB L̄ .

If we write the noise amplitude matrix in the form

B̄ =

[
B̄ 0
ξ̄T B̄

√
ζ

]
then we obtain fluctuation-dissipation balance provided

B̄B̄T = 2kBL̄. (12)

Note that the matrix B̄ is not uniquely-defined; for numerics we employ the Cholesky factorization of L̄ to compute
B̄, corresponding to choosing a lower-triangular B̄. From the above, the species diffusion flux noise is then,

˜̄Fα = B̄ Z̄(F ;α) (13)

and the heat flux noise is,

Q̃α = Q̃
′
α + h̄T ˜̄Fα

=
√
ζZ(Q′;α) + (ξT + h̄T ) ˜̄Fα,

where h̄ is a vector with components hk−hNs
, the excess specific enthalpy. The conservation of mass equation remains

valid in the FNS equations so the sum of the species diffusion noise terms for the full system must be zero. Thus the
stochastic mass flux for species Ns is fixed by mass conservation.

For a given hydrodynamic system, the procedure for computing the noise is to determine L̄ in terms of mass
diffusion coefficients from the phenomenological law for Fk and use (12) to compute B̄. The phenomenological law
for the heat flux can be used to find expressions for ξ̄ and ζ. An example of this procedure is given in Section II D
for a gas mixture. More general non-ideal fluid mixtures will be discussed in future work, including the relation of
the above formulation to the Stefan-Maxwell form of expressing the phenomenological relations between fluxes and
thermodynamic forces [35].

C. Full System Construction

The form of the equations above requires that we distinguish a particular species, numbered Ns, which must be
present throughout the entire system. For many applications, this introduces an artificial requirement on the system
that is difficult to deal with numerically. In this section we transform the reduced form with Ns−1 equations, used by
de Groot and Mazur, to an equivalent full system construction. It is noted in de Groot and Mazur that the Onsager
reciprocal relations remain valid in the presence of linear constraints such as (5). In particular, we can consider the

full system with Ns + 1 equations (including thermal diffusion) with the constraint
∑
k(Fk + F̃k) = 0 by defining an
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augmented system that gives exactly the same entropy production. In particular, we define an augmented Onsager
matrix L of the form

L =

[
L̄ −L̄u

−uT L̄ uT L̄u

]
where u = [1, . . . , 1]T . Here the final row gives FNs

, the diffusion flux of the last species. The extra row and column
of L are fully specified by the requirement that column sums vanish (a consequence of vanishing of the sum of species
fluxes) and the Onsager symmetry principle.

Using L we can write the phenomenological laws for the full system as

J = LX,

where the fluxes J and thermodynamics forces X are given by

J =

[
F
Q′
]

and X =

[
− 1
T∇Tµ
−∇TT 2

]
with

L =

[
L l
lT `

]
and l =

[
l̄

−uT l̄

]
,

reflecting the fact that the Soret coefficients summed over all species vanishes. Here, µ is a vector of all of the chemical
potentials. A direct computation shows that (5) gives

v = J̄T X̄ = JTX = XTLX.

Hence the full system form gives exactly the same entropy production as the original form.
Before constructing the noise for the full system, we note that we can write the augmented Onsager matrix L in

a form analogous to (11). The key observation here is that the construction of an extended ξ remains valid because
l = Lξ is in the range of L. Note that ξ is not uniquely determined. We choose ξ such that ξTu = 0. With these
definitions, the Onsager matrix and associated noise term are given by

L =

[
L Lξ
ξTL ζ + ξTLξ

]
. (14)

Ottinger [24] gives a derivation of this form using the GENERIC formalism subject to the linear constraint
∑Ns

k=1 Yk =
1. From (14) we can then obtain the deterministic species flux

F = − 1

T
L

[
∇Tµ+

ξ

T
∇T
]

(15)

and the deterministic heat flux

Q = −ζ∇T
T 2

+ (ξT + hT )F , (16)

where h is the vector of specific enthalpies.
We can now construct the noise for the full system. We note that since 2kBL̄ = B̄B̄T we have that

2kBL = BBT where B =

[
B̄ 0

−uT B̄ 0

]
.

In this form the species diffusion noise is given by F̃α = BZ(F ,α), where Z(F ,α) = [Z̄(F ,α), 0]. Although B is of size
Ns ×Ns, only Ns − 1 noise terms are needed because the last column of B is identically zero. Note also that the last
row is chosen so that the sum of the noise terms over all species vanishes. We can now define the noise matrix for
species diffusion, B, such that fluctuation-dissipation balance is obeyed, BBT = 2kBL, namely,

B =

[
B 0
ξTB

√
ζ

]
. (17)
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The augmented stochastic heat flux is thus given by

Q̃α =
√
ζZ(Q′;α) + (ξT + hT )F̃α,

in analogy (and fluctuation-dissipation balance) with the deterministic heat flux (16). This form is identical to that
given by Ottinger [24] and we use it in the next section to establish the relationship between the Onsager matrix
and deterministic transport models. Note that ζ ≥ 0 since L̄ must be positive definite while L must be positive
semi-definite.

Finally, the methodology can also be applied when not all species are present. Rows and columns of L corresponding
to missing species are identically zero. By applying a suitable permutation matrix P to obtain Ľ = PLPT we can
arrange for the missing species to be the last rows and columns of Ľ. If m species are present then the upper m×m
block has rank m − 1 with the structure discussed above. For ξ̌ = Pξ the first m elements sum to zero and the last
Ns −m elements are equal to zero. We note that although the extension of the formalism is straightforward, some
care is needed to prevent numerical roundoff error from spuriously generating small amounts of absent species.

D. Gas Mixtures

The hydrodynamic properties of a fluid are fixed by its thermodynamic functions (e.g., equation of state) and
its transport properties. This section summarizes these relations for a multi-species mixture of gases, following the
notation in [37]. The ideal gas equation of state is

p = RuT

Ns∑
k=1

ρk
Wk

= ρRuT

Ns∑
k=1

Yk
Wk

=
ρRuT

W
, (18)

where Ru = kBNA is the universal gas constant, NA is Avogadro’s number, the molecular weight of the k-th species
is Wk = mkNA, and W = mNA is the mixture-averaged molecular weight.

The total specific energy is

E =
1

2
|v|2 + e, (19)

where e is the specific internal energy. For an ideal gas mixture we can write,

e (T, Yk) =

Ns∑
k=1

Ykek(T ), (20)

where ek is the specific internal energy of the k-th species. Similarly, we can write the specific and partial enthalpies
as

h = e+
p

ρ
=

Ns∑
k=1

Ykhk(T ) and hk = ek +
Ru
Wk

T. (21)

The specific heats at constant volume and pressure for the mixture are:

cv(T ) =

(
∂e

∂T

)
Yk,v

=

Ns∑
k=1

Ykcv,k(T );

cp(T ) =

(
∂h

∂T

)
Yk,p

=

Ns∑
k=1

Ykcp,k(T ).

Given cv,k and cp,k one obtains ek(T ) and hk(T ) by integration. For a calorically perfect gas, cv,k and cp,k are
constants, and for a thermally perfect gas they are usually expressed as polynomial expressions in T .

For an ideal gas the chemical potential per unit mass can be written as,

µi =
RuT

Wi
(lnXi + ln p) + f(T ),
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where f(T ) is a function only of temperature. Recalling that µ represents the vector of µi then we have

∇T µ = RuTW−1X−1∇X +
RuT

p
W−1u∇p

=
RuT

W
Y−1∇X +

W

ρ
W−1u∇p,

where X and Y are vectors of mole fractions and mass fractions, respectively, X , Y and W are diagonal matrices of
mole fractions, mass fractions and molecular weights, and u is vector of all ones.

We will use this form to relate the transport coefficients to the noise amplitude matrix. Software libraries, such as
EGLIB [36], used to compute these transport coefficients typically express fluxes in terms of gradients of X, p and T
rather chemical potential. In particular, these packages typically compute: a matrix of multicomponent flux diffusion
coefficients, C, a vector of thermal diffusion coefficients θ or rescaled thermal diffusion ratios, χ̃; and either thermal

conductivity λ or partial thermal conductivity λ̂ = λ+ p
T χ̃

TX θ. Here, θ and χ̃ are related by

CX χ̃ = ρYθ

Computation of χ̃ and λ is more computationally efficient than computation of θ and λ̂ so we will focus on relating
L as given in (14) to the diffusion fluxes expressed in terms of C, χ̃ and λ.

In terms of these variables we then have

F = −C

(
d+ X χ̃∇T

T

)
; (22)

Q′ = Q− hTF = −λ∇T +RuT χ̃
TW−1F (23)

For an ideal gas, the diffusion driving force [35] is

d = ∇X + (X − Y )
∇p
p
.

In (22) and (23) we can replace d with d̂ where

d̂ = ∇X +X
∇p
p
.

These forms are equivalent because CY = 0 and θTY = 0. The additional term in d is to enforce dTu = 0 by adding

to d̂ an appropriate element in the null space of C.
By comparison, in the phenomenological laws, J = LX, the flux is given by

F = −L

(
1

T
∇Tµ+ ξ

1

T 2
∇T
)

= −L

(
Ru

W
Y−1∇X +RuW−1

∇p
p

+
1

T 2
ξ∇T

)
.

By matching the ∇X terms we have,

L =
W

Ru
CY. (24)

A bit of algebra gives the same result for the ∇p term, which is the baro-diffusion contribution. Note that, in general,
the ∇X and ∇p terms will yield the same result since the baro-diffusion contribution is of thermodynamic origin and
thus it does not have an associated transport coefficient [16]. From the ∇T term,

ξ =
RuT

W̄
Y−1X χ̃ = RuTW−1χ̃,

which corresponds to the Soret term in the species diffusion equations.
Similarly, in the phenomenological laws, using the expression for heat flux we have,

Q′ = Q− hTF = − ζ

T 2
∇T + ξTF ,

which by comparison to (23) gives the relation

ζ = T 2λ. (25)
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III. NUMERICAL SCHEME

The numerical integration of (1)-(3), (6) is based on a method of lines approach in which we discretize the equations
in space and then use an ODE integration algorithm to advance the solution. Here we use the low-storage third-order
Runge-Kutta (RK3) scheme previously used to solve the single and two-component FNS equations [30], using the
weighting of the stochastic forcing proposed by Delong et al. [40]. We can write the governing equations in the
following form:

∂U

∂t
= −∇ · FH −∇ · FD −∇ · FS + H ≡ R(U, Z) (26)

where U = [ρ, ρYk, ρv, ρE]
T

is the set of conservative variables, FH , FD, and FS are the hyperbolic, diffusive and
stochastic flux terms, respectively and H is a forcing term. Here, R is a shorthand for the right hand side of the
equation used later for describing the temporal discretization scheme and Z is a spatio-temporal discretization of the
random Gaussian fields Z used to construct the noise.

The fluxes are given by

FH =

 ρv
ρvYk

ρvvT + pI
ρv(E + p)

 ; FD =

 0
F
Π

Q + Π · v

 ; FS =


0

F̃
Π̃

Q̃ + Π̃ · v

 . (27)

Here we consider only a gravitational source term H = [0, 0, ρg, ρg · v]; however, in a more general case H can include
both deterministic and stochastic forcing terms (e.g., chemical reactions). Thus, for Ns species, k = 1, . . . , Ns there
is a total of 5 + Ns governing equations in three dimensions. Note that for a single-species fluid the equation for ρ1
and ρ are identical. [41]

A. Spatial discretization

The spatial discretization uses a finite volume representation with cell spacings in the x-, y- and z-directions given
by ∆x, ∆y and ∆z. We let Un

ijk denote the average value of U in cell-ijk at time step n. To ensure that the algorithm

satisfies discrete fluctuation-dissipation balance, the spatial discretizations are done using centered discretizations (see
Donev et al. [30]).

To obtain the hyperbolic fluxes we first compute the primitive variables, ρ, Yk, v, T , and p from the conserved
variables at cell centers. These values are then interpolated to cell faces using a PPM-type [42] spatial interpolation.
For example, for temperature we set

Tni+1/2,j,k =
7

12

(
Tni+1,j,k + Tni,j,k

)
− 1

12

(
Tni−1,j,k + Tni+2,j,k

)
. (28)

From these interpolants we evaluate the flux terms at the face. The divergence of the fluxes is then computed as
Df−c FH where Df−c is the standard discrete divergence operator that computes the cell-centered divergence of a
field defined on cell faces.

The computation of the diffusive and stochastic terms is a bit more complex. The evaluation of the deterministic
heat flux and the species diffusion terms is done in a straightforward fashion using the face-based operators and simple
arithmetic averages to compute transport coefficients at cell faces. However, a complication arises because the viscous
stress tensor Π uses a symmetrized gradient, namely

Π = −η(∇v + (∇v)T )− (κ− 2

3
η)(I ∇ · v) .

Standard discretizations of the stress tensor in this form do not satisfy a discrete fluctuation dissipation balance. More
precisely, they lead to a weak correlation between velocity components at equilibrium. These problems stem from
the fact that the concept of a symmetric stress tensor does not have a natural expression on a cell-centered grid as
employed here [30]. By contrast, if a staggered grid is used to handle the momentum equation, it is straightforward
to construct a symmetric stochastic stress tensor using straightforward centered second-order staggered difference
operators [31]. The staggered grid discretization is particularly useful for incompressible flow; here we consider the
full compressible equations and focus on cell-centered grids.
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Extending the development in [30] to the case of variable viscosity, we first rewrite the viscous term in the form,

∇ ·Π = −∇ · (η∇v)−∇
[
(κ+

1

3
η) (∇ · v)

]
+
[
(∇η)(∇ · v)− (∇η) · (∇v)T

]
. (29)

Observe that the last two terms only involve first derivatives of v and, in fact, vanish completely when η is a constant
and were not omitted in [30]. We note that this rewriting of the stress tensor can be written in a conservative form
in which there are cancellations in the last two terms,

Π = −∇ · (η∇v)−∇ ·
[
(κ+

1

3
η) I (∇ · v)

]
+
[
∇ · (η I (∇ · v))−∇ · (η(∇v)T )

]
.

Our spatial discretization follows this conservative form and thus ensures discrete conservation of momentum.
We use different discretizations of the different terms in equation (29). For the first term, we approximate

∇ · (η∇v) ≈ Gc−f (η Df−cv
)
, (30)

where Gc−f defines normal gradients at cell faces from cell centered values. Here, we average adjacent cell-centered
values of η to edges. For the remaining terms we use a nodal (corner) based discretization. For example we approximate

∇
[
(κ+

1

3
η) (∇ · v)

]
≈ Gc−n

[
(κ+

1

3
η) Dn−cv

]
, (31)

where Dn−c uses nodal values of a field to compute the divergence at cell centers and Gc−n computes gradients at
corner nodes from cell-centered values. Again, the discretizations are standard second-order difference approximations.
Here, coefficients are computed by averaging cell-centered values at all eight adjacent cells centers to the node. We
also discretize the last terms in (29) using nodal discretizations based on the conservative form,[

∇ · (η I (∇ · v))−∇ · (η(∇v)T )
]
≈ Gc−n (η Dn−cv

)
+ Dn−c (η (Gc−nv)T

)
, (32)

noting that the second-order derivative terms cancel at the discrete level just as they do in the continuum formulation,
leaving only first-order differences when the two terms are combined.

With these definitions, we have that Df−c = −(Gc−f )T and Dn−c = −(Gc−n)T , i.e., both the nodal and face-based
discrete divergence and gradient operators are discretely skew-adjoint. These skew-adjoint properties are important
for numerically satisfying discrete fluctuation-dissipation balance. The viscous heating contribution to the energy
equation, ∇· (Π ·v) is evaluated using face centered values of Π multiplied by an arithmetic averge of v to faces from
cell centers. The terms of Π corresponding to (30) are defined on faces; the terms corresponding to (31) and (32) are
computed by averages of corner values to faces and forming Π ·v at faces then computing the divergence of the fluxes
using Df−c.

The noise terms in the momentum equation that represent the stochastic stress tensor need to respect the correlation
structure given in (7). In addition, the discrete treatment of the noise needs to match the discretization of the
deterministic stress tensor. In particular, they need to use the same discrete divergence. This, combined with the
skew adjoint construction of the gradient operators, is needed for fluctuation-dissipation balance. For that reason, we
generate noise terms for the first two terms in (29) separately. No stochastic terms are added for the last two terms
because they only involve first derivatives of v.

The stochastic stress tensor is expressed as Π̃ = Π̃(f) + Π̃(n). The term Π̃(f) corresponds to the ∇ · (η∇v)
contribution to the dissipative (viscous) flux; at a face we form it as

Π̃
(f)

i+ 1
2 ,j,k

=
√

2kB(ηT )i+ 1
2 ,j,k

SZ(v,x),

where

(ηT )i+ 1
2 ,j,k

= (ηi,j,kTi,j,k + ηi+1,j,kTi+1,j,k)/2, (33)

and Z(v,x) are three-component, independent face-centered standard Gaussian random variables and

S =
1√

∆x ∆y ∆z ∆t
(34)

is a scaling due to the δ function correlation in space and time of the noise, see [30, 40] for a more precise derivation.
Other faces are treated analogously and the resulting stochastic momentum fluxes are differenced using the discrete
divergence Df−c.
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The stochastic flux corresponding to the contribution ∇
[
(κ+ 1

3η) (∇ · v)
]

in the dissipative flux is generated at
corner nodes [30]. Namely,

Π̃
(n)

i+ 1
2 ,j+

1
2 ,k+

1
2

=

√
2kB

[
(κ+

1

3
η)T

]
i+ 1

2 ,j+
1
2 ,k+

1
2

SZ(v,n),

where Z(v,n) are three-component, independent node-centered standard Gaussian random variables. Note that the
coefficients at the corner nodes are averages over the eight cells adjacent to the node, analogously to (33). The
divergence of these nodal fluxes is computed using the discrete divergence operator Dn−c. The viscous heating
contribution from the stochastic stress is computed analogously to the deterministic contribution described above.

The noise terms for the species and energy equation are generated in the full-system form B using the expressions
written in terms of L, ξ, and ζ. Here we use the particular form of these expressions given for gas mixtures. In
particular, for edge i+ 1

2 , j, k we define

Li+ 1
2 ,j,k

=

(
W i,j,k +W i+1,j,k

2Ru

)(
(CY)i,j,k + (CY)i+1,j,k

2

)
and obtain B by forming the Cholesky decomposition of Li+ 1

2 ,j,k
,

Bi+ 1
2 ,j,k

BT
i+ 1

2 ,j,k
= 2kBLi+ 1

2 ,j,k
.

The stochastic flux for species is then given by

F̃i+ 1
2 ,j,k

= Bi+ 1
2 ,j,k

SZ
(F,x)

i+ 1
2 ,j,k

,

where Z(F,x) are face-centered independent standard Gaussian random variables. Stochastic fluxes on other edges are
constructed analogously and the divergence is computed with Df−c.

We then define

ξi+1/2,j,k =
Ru(Ti,j,k + Ti+1,j,k)

2
W−1

(
χ̃i,j,k + χ̃i+1,j,k

2

)
.

The noise term, Q̃x, in the energy flux is then

Q̃i+ 1
2 ,j,k

=
√
kB(ζi,j,k + ζi+1,j,k)SZ(Q,x) +

(
ξTi+ 1

2 ,j,k
+ hTi+ 1

2 ,j,k

)
F̃i+ 1

2 ,j,k
,

where Z(Q,x) are face-centerd independent standard Gaussian random variables. Here, hi+ 1
2 ,j,k

is obtained by evalu-

ating the specific enthalpies at the temperature

Ti+ 1
2 ,j,k

= (Ti,j,k + Ti+1,j,k)/2,

and the same face-centered value of
(
ξi+ 1

2 ,j,k
+ hi+ 1

2 ,j,k

)
is used to weight the contribution of mass fluxes to the heat

flux for both the deterministic and the stochastic fluxes.

B. Temporal discretization

The temporal discretization uses the low-storage third-order Runge-Kutta (RK3) scheme previously discussed in
Donev et al. [30] using the weights specified in [40]. With this choice of weights, the temporal integration is weakly
second-order accurate for additive noise (e.g., the linearized equations of fluctuating hydrodynamics [15]).

The RK3 scheme involves three stages, which can be summarized as follows:

U
n+1/3
i,j,k = Un

i,j,k + ∆tR(Un, Z1);

U
n+2/3
i,j,k =

3

4
Un
i,j,k +

1

4

[
U
n+1/3
i,j,k + ∆tR(Un+ 1

3 , Z2)
]

; (35)

Un+1
i,j,k =

1

3
Un
i,j,k +

2

3

[
U
n+2/3
i,j,k + ∆tR(Un+ 2

3 , Z3)
]
,
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k Species Molecular Weight Diameter (cm) Yk Xk

1 Helium 4.0026 2.18 ×10−8 0.25 0.7428
2 Neon 20.1797 2.58 ×10−8 0.25 0.1473
3 Argon 39.9480 3.63 ×10−8 0.25 0.0744
4 Krypton 83.8000 4.16 ×10−8 0.25 0.0355

TABLE I. Molecular properties for the equilibrium test case.

where the Zi denote the random fields used in each stage of the integration. To compute the weights for each stage,
we generate two sets of normally distributed independent Gaussian fields, ZA and ZB , and set

Z1 = ZA + β1Z
B ;

Z2 = ZA + β2Z
B ;

Z3 = ZA + β3Z
B ,

where β1 = (2
√

2 +
√

3)/5, β2 = (−4
√

2 + 3
√

3)/5, and β3 = (
√

2− 2
√

3)/10.

C. Boundary conditions

In addition to periodicity, our implementation of the methodology described above supports three boundary con-
ditions. The first is a specular wall at which the normal velocity vanishes and the other velocity components, mole
fractions and temperature satisfy homogeneous Neumann boundary conditions. A second type of boundary condition
is a no slip, reservoir wall at which the normal velocity vanishes and the other velocity components, mole fractions
and temperature satisfy inhomogeneous Dirichlet boundary conditions. The third boundary condition is a variant
of the no slip condition for which the wall is impermeable to species so that the normal derivative of mole fraction
vanishes. When a Dirichlet condition is specified for a given quantity, the corresponding diffusive flux is computed as
a difference of the cell-center value and the value on the boundary. In such cases the corresponding stochastic flux is
multiplied by

√
2 to ensure discrete fluctuation-dissipation balance, as explained in detail [31, 43].

IV. NUMERICAL RESULTS

In this section we describe several test problems that demonstrate the capabilities of the numerical methodology.
The first two examples serve as validation that the methodology produces the correct fluctuation spectra in both
equilibrium and non-equilibrium settings. The other two examples illustrate the type of phenomena that can occur
in multicomponent systems.

A. Equilibrium mixture of gases

We start with equilibrium simulations of non-reacting, multi-species mixtures, specifically, four noble gases (see
Table I). The hard sphere model was used with the ideal gas equation of state and cv,k = 3kB/2mk. For the hard
sphere transport coefficients, η and λ were evaluated using the dilute gas formulation in [44]; for χ̃ it was more
convenient to use the formulation in [45]. Finally, the binary diffusion coefficients, as formulated in [44], were used to
obtain C using a numerically efficient iterative method from [37].

The system was initialized at rest with pressure p = 1.01× 106 dyn/cm
2

and temperature T = 300 K. The density

was ρ = 4.83× 10−4 g/cm
3

with initial mass fractions of Yk = 0.25 for each species, leading to a wide range in mole
fractions, as shown in the table. The simulations were run in a 643 domain with periodic boundary conditions, cell
dimensions of ∆x = ∆y = ∆z = 8× 10−6 cm, and a time step of ∆t = 10−12 s, corresponding to an acoustic Courant
number [30] of between 0.15 and 0.2. At these conditions, the fluctuations are fairly significant with instantaneous
variations in ρ within the domain of the order of 10%.

Simulations were initially run for an equilibration time of 40000 time steps and then the run continued for approxi-
mately 500000 additional time steps, with data collected every 10 time steps. The data from the spatial computational
grid was then Fourier transformed in 3D and pair-wise correlations were computed for each wave number and averaged
in time. These static structure factors were normalized by the equilibrium values (see Appendix A) except for the
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(a) (b)

(c) (d)

(e) (f)

1.200

1.143

1.086-

1.029
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0.914
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FIG. 1. (Color online) Static structure factors. (a) 〈(δρ̂)(δρ̂∗)〉), (b) 〈(δĴx)(δĴx
∗
)〉, (c) 〈(δρ̂E)(δρ̂E

∗
)〉, (d) 〈(δρ̂1)(δρ̂1

∗)〉, (e)

〈(δρ̂4)(δρ̂4
∗)〉, (f) 〈(δT̂ )(δT̂ ∗)〉. Data range is set to ±20% of the theoretical value of unity, as shown in the color bar. The wave

number domain represented here is [−3.93× 107, 3.93× 107]× [−3.93× 107, 3.93× 107] in units of cm−1.

case of correlations that are zero at equilibrium. For those correlations the normalization used the corresponding

variances, for example, |〈(δρ̂)(δT̂ ∗)〉| is normalized by

√
〈(δρ̂)(δρ̂∗)〉〈(δT̂ )(δT̂ ∗)〉 [30].

In Figure 1 we present selected static structure factors from the simulation. In each case, the color scale is adjusted
to represent ±20% of the equilibrium value, which is independent of wave number. The simulations show excellent
agreement with the theoretical values. The structure factor for ρ, given by 〈(δρ̂)(δρ̂∗)〉, is the noisiest. This occurs
because the continuity equation, (6), does not contain either a diffusive term or a stochastic flux so density fluctuations
are solely driven by velocity fluctuations in the hyperbolic flux. Nevertheless, the (unnormalized) variance of density
(i.e., the average static structure factor over all wavenumbers) is 5.7904 × 10−11 g2/cm6, which is within 0.07% of
the analytic value of 5.7942 × 10−11 g2/cm6. The other relatively noisy structure factor is 〈(δρ̂4)(δρ̂∗4)〉, which is a
result of the relatively low mole fraction which makes ρ4 noisy with over 40% instantaneous variation. Here again,
the average variance is correct to within 0.15%. Note that the grid-based finite-volume methods we employ here are
neither translationally (Gallilean) invariant nor rotationally invariant, and this leads to non-isotropic structure factors
for finite time step sizes (i.e., to non-isotropic spatial truncation errors), particularly for high wave numbers.
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(a) (b)

(c) (d)

(e) (f)

2.00 x 10-1

1.71 x 10-1

1.43 x 10-1

1.14 x 10-1

8.57 x 10-2

5.71 x 10-2

2.86 x 10-2

0.00

FIG. 2. (Color online) Magnitude of correlations: (a) |〈(δρ̂)(δĴx
∗
)〉|, (b) |〈(δρ̂)(δT̂ ∗)〉|, (c) |〈(δĴx)(δĴy

∗
)〉|, (d) |〈(δĴx)(δρ̂E

∗
)〉|,

(e) |〈(δρ̂1)(δρ̂∗4)〉|, (f) |〈(δv̂x)(δT̂ ∗)〉|. In all cases the theoretical value is zero for all wave numbers. Data range is set to 20% of
the normalization, as shown in the color bar. The wave number domain represented here is [−3.93× 107, 3.93× 107]× [−3.93×
107, 3.93× 107] in units of cm−1.

We also examine correlations between different hydrodynamic variables as a function of wave number. A set of
representative correlations are presented in Figure 2. In each of these cases the correlation should be zero and
the results show that the normalized values are indeed quite small. Of particular note is absence of a correlation

for different components of momentum (|〈(δĴx)(δĴy
∗
)〉| ≈ 0) validating the treatment of the stress tensor in the

momentum equations. Furthermore, the correlation between δρ1 and δρ4 is near zero, illustrating that there is no
spurious correlation in the treatment of species diffusion. The relaxation time for the largest wavelengths is extremely
long, which is manifested as a large statistical error at the lowest wavenumbers.

B. Long-ranged Correlations in a Diffusion Barrier

The next example considers a non-equilibrium system in which the fluctuations exhibit long-range correlations in
the presence of concentration gradients. Here we use a hard sphere gas mixture where the three gases (called Red,
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a)

4.90 x 10-4

4.66 x 10-4

4.41 x 10-4

4.17 x 10-4

3.93 x 10-4

3.69 x 10-4

3.44 x 10-4

3.20 x 10-4

b)

5.40 x 10-6

3.77 x 10-6

2.14 x 10-6

5.14 x 10-7

-1.16 x 10-6

-2.74 x 10-6

-4.37 x 10-6

-6.00 x 10-6

FIG. 3. (Color online) Typical snapshot of density of Red species in diffusion barrier simulation is shown in (a). In (b) we
subtract the background stratification and show the variation from the background. The range of the color scale in (b) is
approximately ±5σR where σR is the standard deviation of equilibrium fluctuations based on the value of ρR in the center of
the system. The domain is 6.912× 10−3 cm × 3.456× 10−3 cm × 2.7× 10−5 cm. Units are g/cm3.

Blue, and Green or R, B, G) have equal molecular masses, taken as the mass of argon used in the previous example.
Furthermore, Red and Blue are the same diameter, taken as that of argon, so that they are dynamically equivalent,
with the diameter of Green being a factor of 10 larger. We set YR = YB = 0.25 and YG = 0.5 at the center of the
domain and impose gradients of dYR/dy = 28.935, dYB/dy = 90.760 and dYG/dy = −119.695 cm−1 for Red, Blue and
Green, respectively across the domain. These conditions produce a “diffusion barrier” for the Red species, that is, the
deterministic flux of Red is zero in spite of its gradient. The initial temperature in the domain is 300K and the initial
pressure is one atmosphere. The top and bottom boundaries are no slip walls at a constant temperature of 300K
with fixed reservoir boundaries for concentrations. Fluctuating hydrodynamics theory predicts that the spectrum
of the concentration fluctuations exhibits long-range correlations due to the nonequilibrium conditions, even for the
non-fluxing Red species, see derivation in Appendix B.

Obtaining good statistics requires a long simulation, consequently we use a domain that is only one cell thick in
the z-direction, corresponding to an essentially two-dimensional domain. It can be shown using linearized fluctuating
hydrodynamics (i.e., small fluctuations, which corresponds to a system of thickness much larger than molecular in the
z-direction) that the spectrum of the concentration fluctuations is not affected by dimensionality. Namely, upon taking
a Fourier transform in the directions perpendicular to the gradient, only the square of the perpendicular component
of the wavevector enters, and in three dimensions one obtains the same spectrum as a function of the modulus of
the wavevector as one does in two dimensions. This is easily seen in a quasi-periodic approximation, as detailed in
Appendix B, but is true even in the presence of confinement [46].

We take ∆x = ∆y = ∆z = 2.7 × 10−5 cm on a 256 × 128 × 1 domain and a time step of ∆t = 10−10 s. A no slip
boundary was used in the y direction and periodic boundary conditions were used in the x direction. The simulation
is run for 200000 steps to relax to a statistical steady state and then run for an additional 2.8 million steps, computing
〈(δρ̂R)(δρ̂R)∗〉, 〈(δρ̂B)(δρ̂B)∗〉 and 〈(δρ̂R)(δρ̂B)∗〉 in Fourier space on the vertically averaged profiles every 10 steps.
An image illustrating a typical snapshot of ρR is shown in Figure 3a. In Figure 3b we subtract off the background
variation in ρR to more clearly show the large scale structures. Horizontal variation of ρR is apparent in the image.

To provide a quantitative characterization of the large-scale fluctuations, we plot in Figure 4 a comparison of
the computed static spectra of the species densities, averaged along the direction of the gradient, with theory (see
Appendix B). It is these spectra that can be measured experimentally using low-angle light-scattering and shadow-
graph techniques. We note that at low wave numbers the comparison breaks down because of finite size effects [15].
Otherwise the agreement between theory and simulation is excellent.

These results show that the correlations are long-ranged with the characteristic k−4 power-law decay [13, 47, 48],
as in binary mixtures [2], even for the first species which has no mass flux. This demonstrates that the long-ranged
correlations are associated with the system being out of thermodynamic equilibrium, and not with diffusive fluxes



16

1000 10000
1e-26

1e-25

1e-24

1e-23

1e-22

<δρR, δρR*> Theory
<δρB, δρB*> Theory
<δρR, δρB*> Theory
<δρR, δρR*> Simulation
<δρB, δρB

*> Simulation
<δρR, δρB*> Simulation

^

^^

^

^
^^

^

^

^

^^

Wave Number ( cm-1)

Co
rr

el
at

io
n 

(g
m

2 /
cm

3 )

FIG. 4. (Color online) Static structure factor of vertically-averaged densities showing effect of giant fluctuations. Dashed lines
represent the predictions of linearized fluctuating hydrodynamics theory, see Appendix B. The constant limit obtained at high
k in the two autocorrelations corresponds to the equilibrium values given by Eq. B4.

Species Molecular Weight (g) Diameter (cm) Yk at top Yk at bottom
Species 1 2.0 2.0 ×10−8 0.4 0.1
Species 2 20.0 20.0 ×10−8 0.4 0.1
Species 3 2.0 20.0 ×10−8 0.1 0.4
Species 4 20.0 2.0 ×10−8 0.1 0.4

TABLE II. Molecular properties and configuration for the diffusion Rayleigh-Taylor instability.

per se. Interestingly, we find that there are giant fluctuations in all species and also giant correlations between the
fluctuations in different species. It is anticipated that measurement of these giant fluctuations in ternary mixtures can
be used to calculate diffusion and Soret coefficients in mixtures [48]. The main difficulty is the ability to experimentally
observe the fluctuations in different species independently.

C. Diffusion-driven Rayleigh-Taylor Instability

In this example, we illustrate how multicomponent diffusion can induce density stratification leading to a Rayleigh-
Taylor instability [49, 50]. We model a four species hard sphere mixture in which two of the species are light particles
and two are heavy particles, specifically, m1 = m3 < m2 = m4. For each mass, we have two different diameters, large
and small, specifically, d1 = d4 < d2 = d3; see Table II. We initialize two layers, each of which has identical numbers
of light and heavy particles in hydrostatic equilibrium with pressure of one atmosphere at the bottom of the domain.
The result is a stably stratified isothermal initial condition of 300K with a switch in composition in the middle of
the domain as shown in Table II. The simulation used a 400 × 400 × 200 grid with ∆x = ∆y = ∆z = 6 × 10−6 cm
and ∆t = 5× 10−12 s. Gravity is set to g = 4× 1012 cm/s

2
in order to reduce the time needed for the instability to

develop. Boundary conditions are periodic in x and y with specular walls in the z direction.

The large particles diffuse slowly compared with the small particles so that diffusion of the latter dominates the
early dynamics. Initially the small, light particles are concentrated in the upper half of the domain while the small,
heavy particles are concentrated on the lower half. This results in diffusion creating an unstable (heavier fluid on
top of lighter fluid) density stratification [50], as shown in Figure 5. At later times fluctuations within the system
trigger a Rayleigh-Taylor instability, as illustrated in Figures 6 and 7 which show the density of species 2 (large, heavy
particles).
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FIG. 5. (Color online) Vertical cross section of total density, ρ, for the Rayleigh-Taylor instability simulation at early times
(t = 2.5× 10−8 s). The cross secion shown is 2.4× 10−3 cm × 1.2× 10−3 cm. Units are g/cm3.
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FIG. 6. (Color online) Vertical cross section of ρ2, the species with large, heavy particles. Frames correspond to (a) t =
7.5× 10−8 s, (b) t = 15.0× 10−8 s, and (c) t = 22.5× 10−8 s.

The cross secion shown is 2.4× 10−3 cm × 1.2× 10−3 cm. Units are g/cm3.

D. Reverse Diffusion Experiment

Our final example illustrates an application of the methodology using realistic gas properties. In particular, we
consider a three species mixture whose constituents are molecular hydrogen, carbon dioxide, and nitrogen. Instead of
using the hard sphere model, for this final test case the fluid properties of the gas mixture were accurately modeled
using EGLIB [36], a general-purpose Fortran library for evaluating transport and thermodynamic properties of gas
mixtures.

This test case is qualitatively similar to the reverse diffusion experiments of Duncan and Toor [32]. The domain
is split into two sections (chambers in the experiment) with equal pressures, temperatures, and nitrogen densities.
The lower half of the domain is rich in carbon dioxide (XH2

= 0.1, XCO2
= 0.4, XN2

= 0.5) while the upper half is
rich in hydrogen (XH2

= 0.4, XCO2
= 0.1, XN2

= 0.5). The system is initialized at T = 312.5K and atmospheric
pressure. The simulation is performed in a 32 × 32 × 64 mesh so that each half is 323 with a uniform mesh spacing
of 2.7× 10−6 cm in each direction with periodic boundaries in x and y and a specular walls in the z. The simulation
is run for 100000 times steps with ∆t = 4.× 10−13 s. We note that there is no gravity in this problem and ordinary
diffusion occurs for the carbon dioxide and hydrogen.

In Figure 8, we show slices of nitrogen density, ρN2
, at a sequence of times. At t = 4.0 × 10−9 s we see that,
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FIG. 7. (Color online) Horizontal slice through the center of the domain showing ρ2 at (a) t = 7.5×10−8 s, (b) t = 15.0×10−8 s,
and (c) t = 22.5× 10−8 s. The cross secion shown is 2.4× 10−3 cm × 2.4× 10−3 cm. Units are g/cm3.
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FIG. 8. (Color online) Slices showing temporal evolution of ρN2 . Frames correspond to (a) t = 0.0 s, (b) t = 4.0× 10−9 s, (c)
t = 8.0 × 10−9 s, (d) t = 24.0 × 10−9 s, and (e) t = 40.0 × 10−9 s. Cross section shown is 8.64 × 10−5 cm × 2.32 × 10−5 cm.
Units are g/cm3.
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FIG. 9. (Color online) Time evolution of average composition in upper and lower halves of the domain.

although its concentration is initially uniform, due to interdiffusion effects there has been a flux of N2 into the upper
half of the domain. In spite of the adverse gradient, diffusive transport continues to increase the amount of N2 in the
upper half as seen in Figure 8c. This “reverse diffusion” of nitrogen is driven by the rapid diffusion of H2 out of the
upper half, as compared with the slow diffusion of carbon dioxide into it. The last two frames in Figure 8 show the
slow return towards uniform nitrogen concentration.

This reverse diffusion phenomenon is shown quantitatively in Figure 9 where we plot the time history of the average
mole fractions in the upper and lower halves of the domain. We see that there is a flux of N2 into the upper half
until approximately t = 8.0 × 10−9 s in spite of the adverse N2 gradient, at which point a diffusion barrier occurs
(gradient of N2 without a flux). At later times the diffusion is “normal” for all three species. We note that the data
in Figure 9 is in qualitative agreement with the experimental results of Duncan and Toor; the primary differences
between the simulation and the experimental set-up are the size and geometry of the system. Thermal fluctuations
do not play a significant role in this numerical experiment, although the appearance of giant fluctuations due to the
transient concentration gradients is expected. The primary purpose of this final numerical test is to demonstrate the
ability of our implementation to simulate gas mixtures using transport and thermodynamic properties given by the
EGLIB library, allowing quantitative comparison with experiments.

V. CONCLUSIONS AND FUTURE WORK

The four examples in the previous section confirm the accuracy of our numerical formulation for the multispecies
fluctuating Navier-Stokes equations. Furthermore, they illustrate some of the interesting phenomena unique to such
fluid mixtures. While these numerical examples were all gas mixtures the methodology is directly extendable to
liquids, the main challenge being the formulation of accurate thermodynamic and transport properties [25]. Work in
this direction is currently underway and fluctuating hydrodynamics should prove useful for experimental studies of
the properties of liquid mixtures [48].

A numerical limitation of the methodology presented here is that the stochastic PDE solver is explicit. This restricts
practical application of the method to the study of phenomena of mesoscopic duration (≈ microsecond) given the
magnitude of the algorithm’s stable time step. This restriction is particularly severe for liquid mixtures for which there
are orders of magnitude of separation between the fast acoustic, intermediate viscous, and slow diffusive time scales,
at which phenomena of interest occur (e.g., minutes or hours for giant fluctuation experiments [13]). To lift the time
step limitation we are investigating low-Mach number approximations for mixtures [43]. Another important avenue of
research we are presently persuing is to extend our formulation to non-ideal multispecies mixtures of non-ideal fluids
[25, 35].

We are also extending the formulation to reacting, multi-component mixtures, which will lay the groundwork
for the investigation of a wide variety phenomena combining hydrodynamic and chemical fluctuations. Numerical
methods for fluctuating reaction-diffusion systems date back to the early 1970’s [51–53] but these methods neglect
all hydrodynamic transport other than diffusion and typically diffusion is also simplified [54]. While this is a good
approximation for many phenomena, a complete description of transport is required for combustion.
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Appendix A: Variances in a Multicomponent Gas Mixture

For species i the number of molecules in a volume V is Ni = V ρi/mi where mi is the mass of a molecule. At
equilibrium for an ideal gas this number is Poisson distributed and independent of other species so 〈δNiδNj〉 = N̄iδij
and,

〈δρiδρj〉eq =
ρ̄2i
N̄i
δij =

ρ̄2i kBT̄

P̄ X̄iV
δij , (A1)

where the subscript “eq” indicates an equilibrium result. At equilibrium the variance of density is thus,

〈δρ2〉eq =
∑
i

∑
j

〈δρiδρj〉eq =
∑
i

ρ̄2i
N̄i

=
ρ̄2

N̄

∑
i

Y 2
i

Xi
=
ρ̄2kBT̄

P̄ V

∑
i

Y 2
i

Xi
. (A2)

From this,

〈δρ2〉eq = ζ〈δρ2〉(1)eq where ζ =
∑
i

Y 2
i

Xi
(A3)

and 〈δρ2〉(1)eq = ρ̄2/N̄ is the variance for a single species gas at the same density, temperature, and pressure (i.e., same
N̄ = P̄ V/kBT̄ ). Note that all of the expressions in this appendix may be generalized easily to spatial correlations,
for example,

〈δρ(r)δρ(r′)〉 =
ρ̄2kBT̄

P̄
δ(r− r′)

∑
i

Y 2
i

Xi
. (A4)

For the variance and correlations of momentum the results are the same as those for a single species gas when
v̄ = 0, specifically,

〈δρδJ〉eq = 0 (A5)

〈δJαδJβ〉eq =
ρ̄kBT̄

V
δαβ . (A6)

Similarly, for velocity,

〈δρδv〉eq = 0 (A7)

〈δvαδvβ〉eq =
kBT̄

ρ̄V
δαβ . (A8)

Finally, for energy fluctuations,

δE = δ(ρE) = δ

(
1

2
ρv2 +

∑
i

ρiei(T )

)
(A9)

= ρ̄v̄ · δv +
1

2
v̄2δρ+

∑
i

δρiei(T̄ ) + ρ̄cv(T̄ ) δT, (A10)

where

cv(T ) =
1

ρ

∑
i

ρicv,i(T ) =
∑
i

Yicv,i(T ) (A11)
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is the molar averaged specific heat. Note that if cv is independent of temperature then ei(T̄ ) = cv,iT̄ .
The resulting variance and correlations for energy are,

〈δρδE〉eq =
∑
i

ei(T̄ )〈δρ2i 〉eq; (A12)

〈δJδE〉eq = 0; (A13)

〈δE2〉eq =
∑
i

ei(T̄ )2〈δρ2i 〉eq + ρ̄2cv(T̄ )2〈δT 2〉eq. (A14)

Similarly for temperature,

〈δρδT 〉eq = 0; (A15)

〈δvδT 〉eq = 0; (A16)

〈δT 2〉eq =
kBT

2

ρ̄cv(T̄ )V
. (A17)

Appendix B: Giant fluctuations in a ternary mixture

This appendix outlines the fluctuating hydrodynamics theory for the long-range correlations of concentration fluc-
tuations in a ternary mixture, in order to model the simulations described in Section IV B. We neglect the Dufour
effect and assume the system to be isothermal, taking contributions from temperature fluctuations to be of higher
order. Furthermore, we neglect gravity, assume the system is incompressible, and take the density and transport
coefficients to be constant. We consider a “bulk” system [15], i.e., we neglect the influence of the boundaries. This
gives an accurate approximation for wavenumbers that are large compared to the inverse height of the domain; for
smaller wavenumbers the boundaries are expected to suppress the giant fluctuations [13, 15, 46]. Lastly, we initially
ignore the equilibrium fluctuations in the calculation and simply add them to the non-equilibrium contribution at the
end. This is not necessary and the additional stochastic diffusive fluxes can easily be accounted for at the expense of
algebraic complications. This confirms that the equilibrium fluctuations enter additively to the nonequilibrium ones
calculated here, as confirmed by an anonymous reviewer.

As in the problem considered in Section IV B, we assume all of the concentration gradients are in the same direction
(say, the y axis). The incompressibility constraint is most easily handled by applying a ∇ ×∇× operator to the
momentum equation to obtain a system involving only the component of the velocity parallel to the gradient (in this
case, the y-direction). [15] With the above, the momentum and concentration equations yield,

∂t
(
∇2v‖

)
= ν∇2

(
∇2v‖

)
+ ρ−10 ∇×∇×

(
∇ · Π̃

)
∂t (δY) = −v‖f + D∇2 (δY) ,

where ρ0 is the constant density, and ν = η/ρ0 is the kinematic viscosity. Here D = ρ−1C
(
∂X
∂Y

)
is a matrix of diffusion

coefficients and ∂X/∂Y is the Jacobian of the transformation from mass to mole fractions, which is a function of the
mean molecular mass and the individual species molecular masses. Here f = d〈Y〉/dy are the imposed mass fraction
gradients and δY = Y − 〈Y〉 is the concentration fluctuation.

This system of equations can be most easily solved in the Fourier domain, where it becomes

∂tv̂‖ = −νk2v̂‖ + F̂ (B1)

∂t

(
δŶ
)

= −v̂‖f − k2DδŶ, (B2)

and the covariance of the random forcing F̂ is (see (5.12) in Ref. [15])〈
F̂ F̂ ?

〉
=

2kBT0
ρ0

νk2⊥,

where k⊥ is the component of the wavevector in the plane perpendicular to the gradient and T0 is the constant
temperature. The equilibrium covariance of the fluctuations, written as a matrix of static structure factors,

S =

 〈
v̂‖v̂

?
‖

〉 〈(
δŶ
)
v̂?‖

〉
〈
v̂‖

(
δŶ
)?〉 〈(

δŶ
)(

δŶ
)?〉


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can be obtained most directly by writing the equations (B1,B2) in the form of an Ornstein-Uhlenbeck (OU) process,

∂t

[
v̂‖
δŶ

]
=

[
−νk2 0
−f −k2D

] [
v̂‖
δŶ

]
+

[
F̂
0

]
= M

[
v̂‖
δŶ

]
+ m,

and using the well-known equation for the equilibrium covariance of an OU process [53] (see, for example, derivation
in Ref. [30]),

MS + SM? = −〈mm?〉 . (B3)

This is a linear system of equations for the static structure factors that can easily be solved using computer algebra
systems. Note that here the equation for the third species is redundant and it is simpler to develop the theory by
considering the equations for only the first two species.

Turning now to the specific example of a ternary mixture considered in Section IV B: The molecular masses are
identical and therefore mole and mass fractions are the same, ∂X/∂Y = I. Furthermore, the first two of the three
species are indistinguishable so D has the simple form,

D =

[
D1 D2

D2 D1

]
.

The system is set up with a diffusion barrier, that is, there is no deterministic flux for the first species. This implies
that,

f1 =
d〈Y1〉
dy

= −D2

D1

d〈Y2〉
dy

.

We consider the spectrum of the fluctuations of the partial densities averaged along the direction of the gradient, as
is measured in experiments [13, 47, 48], i.e., we take k‖ = 0, k = k⊥. The solution of (B3) gives the non-equilibrium
contribution to the static structure factor for vertically-averaged concentration fluctuations to be

〈(
δŶ
)(

δŶ
)?〉

neq
= K

 8D1
3+5D1

2ν−ν D2
2

D1
2D2

− 3D1
2ν+ν D2

2+4D1
3+4D2

2D1

D2
2D1

− 3D1
2ν+ν D2

2+4D1
3+4D2

2D1

D2
2D1

D2
4ν+2D1

4ν+2D1
5+D1

2ν D2
2+2D2

4D1+4D1
3D2

2

D1
2D2

3


where the common pre-factor is

K =
kBT

2ρ k4
· D1D2

(D1 −D2) (D1 +D2) (D1 + ν +D2) (D1 + ν −D2)
· f21 .

The equilibrium static structure factor for the mixture of ideal gases considered here is〈(
δŶ
)(

δŶ
)?〉

eq
= ρ−20

[
m1〈ρ1〉 0

0 m2〈ρ2〉

]
, (B4)

which is to be added to the nonequilibrium contribution to obtain the full spectrum, as shown in Fig. 4.
In the case of liquids, the Schmidt number is very large and D1 � ν and D2 � ν and the expressions simplify

considerably,

〈(
δŶ
)(

δŶ
)?〉

neq
=

D1D2kBT |∇zY1 |2

2η k4 (D1 −D2) (D1 +D2)

 5D1
2−D2

2

D1
2D2

− 3D1
2+D2

2

D2
2D1

− 3D1
2+D2

2

D2
2D1

D2
4+2D1

4+D1
2D2

2

D1
2D2

3

 .
This can be more straightforwardly obtained by simply deleting the inertial term ∂tv̂‖ on the left-hand side of the
momentum equation (B1) [46]. Note however that the Schmidt number is not large for gas mixtures and one must
retain the complete expression to obtain a good match to the numerical results.
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