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Velocity Autocorrelation Function

e Key is the velocity autocorrelation function (VACF) for the
immersed particle

C(t) = (V(to) - V(to + t))

e From equipartition theorem C(0) = (V?) = d kg T /M for a
compressible fluid, but for an incompressible fluid the kinetic energy
of the particle that is less than equipartition.

e Hydrodynamic persistence (conservation) gives a long-time
power-law tail C(t) ~ (ks T/M)(t/tyisc)3/%.

o Diffusion coefficient is given by the integral of the VACF and is hard
to compute in MD even for a single nanocolloidal particle.
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@ Classical picture for the following dissipation process: Push a sphere
suspended in a liquid with initial velocity Vi, =~ \/kg T /M and watch
how the velocity decays:

e Sound waves are generated from the sudden compression of the fluid
and they take away a fraction of the kinetic energy during a sonic time
tsonic = a/c, where c is the (adiabatic) sound speed.

e Viscous dissipation then takes over and slows the particle
non-exponentially over a viscous time t,;. ~ pa®/n, where 7 is the
shear viscosity.

e Thermal fluctuations get similarly dissipated, but their constant
presence pushes the particle diffusively over a diffusion time
tairr ~ a°/D, where

D ~ kgT/(an) (Stokes-Einstein relation).
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Timescale Estimates

o The mean collision time is teoy & A/ Vi ~ n/(pc?),
teoll ~ 1071%s = 1fs
@ The sound time

1ns for a ~ um tsonic 5 5
tsonic { 1ps for a~ nm with gap —— — 10 — 10

@ It is often said that sound waves do not contribute to the long-time
diffusive dynamics because their contribution to the VACF integrates
to zero.

A. Donev (CIMS) Coarse Blob 7/2016 5/21



Estimates contd...

@ Viscous time estimates

f ~ ) tvi
tyisc ~ { Lps for a ~ jum , with gap =< ~1—103

1ps for a ~ nm teonic

@ Finally, the diffusion time can be estimated to be

taifr ~ { Ls for a ~ pum , with gap — Laiff ~ 103 — 10°

1ns for a~ nm tyisc

which can now reach macroscopic timescales!

@ In practice the Schmidt number is very large,
Sc = v/D = tyie [ tvisc > 1,
which means the diffusive dynamics is overdamped.
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Brownian Dynamics

e Overdamped equations of Brownian Dynamics (BD) for the particle
positions R (t) are
dR 1
G =M RksTM): W) +ksT (k- M), ()
where M(R) = 0 is the symmetric positive semidefinite (SPD)
hydrodynamic mobility matrix.
@ Hydrodynamic mobility matrix is given by Green-Kubo formula

(ks T) M = OT ot (V3(0)-V(£))° 2)

@ The upper bound 7 must satisfy
ra 12
T S~ > b,
v v
so that the whole VACF power law tail is included in the integral.
Therefore computing hydrodynamic interactions is infeasible
with MD.
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Hydrodynamic Diffusion Tensor

@ Since computing the hydrodynamic mobility is so difficult in MD,
usually M is modeled by the Rotne-Prager mobility [1],

r=q;
r'=q;’

-1 a2 2 o /
M =n I+€Vr I—i—EVr/ G(r—r')

where G is the Green's function for the Stokes problem (Oseen
tensor for infinite domain).

@ This is not only an approximate closure neglecting a number of
effects, but also requires an estimate of the effective hydrodynamic
radius a as input.

@ Our goal will be to split the integral into a short-time piece,
computed by feasible MD via Green-Kubo integrals, and a long-time
contribution, computed by fluctuating hydrodynamics coupled to an
immersed particle.
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“Old" approach: Particle/Continuum Hybrid
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Figure : Hybrid method for a polymer chain.
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VACF using a hybrid

E T = T, . FII= 3

e T—/: :\‘ - Ij/ HE :1_5 ‘( SER @ Split the domain into a particle and a
j’\* 5 :j«:‘ - ENES T *: continuum (hydro) subdomains [2].
ENEARASS b= e Particle solver is a coarse-grained fluid
FLK - model (Isotropic DSMC).

CEERRD “57 e Hydro solver is a simple explicit

N : L\l\ an ki ’:‘,‘VJ} " e (fluctua'ting) compressitfle

SNAL ‘r': B ESERE 1\ MO fll'Jctuatmg hydro.dy.namlcs code.
4EANL P LT I S ‘, 4 }/, e Time SCE.lleS. are I|m|teq l?y the MD
:k = :,“r’ HEE LA part despite increased efficiency.
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Small Bead (710 particles)

I I
——— Stoch. hybrid (L=1)
— — - Det. hybrid (L=1)
el ——— Stoch. hybrid (L=2)
. — — - Det. hybrid (L=2)
ol = == .« Particle(L=1) |
’ Theory
|_
m
4
~
~~
=
O 0.0~
=
0.001—
|
0.01 0.1 1 T 10
t/t, t
visc L=1

A. Donev (CIMS) Coarse Blob 7/2016 1 /21



Large Bead (71000 particles)
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New Approach: Fluctuating Hydrodynamics

Figure : Coarse-Graining a Nanoparticle: Schematic representation of a
nanoparticle (left) surrounded by molecules of a simple liquid solvent (in blue).
The shaded area around node 11 located at r, is the support of the finite element
function v, (r) and defines the hydrodynamic cell (right).
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@ Define an orthogonal set of basis functions,

”(Suqu)l/” = 6HV7 (3)
where |f]| = [ drf(r).
@ Continuum fields which are interpolated from discrete “fields”:

p(r) = Yu(r)pu (4)
@ Introduce a regularized Dirac delta function
A(r.¥) = 8,()uu() = A7) (5)

@ Note the exact properties

/dréu(r) =1, /dr ro,(r) =ry, (6)
/ A A(r,¥')5,(¢) = 5,(r)
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Slow variables

@ Key to the Theory of Coarse-Graining is the proper selection of the
relevant or slow variables.

@ We assume that the nanoparticle is smaller than hydrodynamic
cells and accordingly choose the coarse-grained variables [3],

R(z={a,p}) = o, (7)
@ We define the mass and momentum densities of the hydrodynamic
node u according to
N

N
pu(z) = Z m;o,(q;), discrete of py(z) = Z m;é(q; —r)
i=0 i=0

N N
&.(2) =D _pidu(a), discrete of g,(z) =Y p;d(ai—r)
i=0 i=0

where / = 0 labels the nanoparticle. Note that both mass and
momentum densities include the nanoparticle!
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Final Discrete (Closed) Equations

dR D D
T =V(R) — — oF , Do P+ V2ke TDo W(t

dt kT aR
dp _
v v,
d _ ex
= [§V-V3,l + ks TVO,(R) — 5,V P| + 0,(R)F™
_ n dg
g3+ (3+¢) 18,9 (Vo) |+ 2 (8)
The pressure equation of state is modeled by
2 g —c? _
PI) = S (o — 2) + m C—Da®npm. ()
2peq Peq
and the gradient of the free energy is modeled by
Zi; ~ mo(co/drA R, r)V5(r). (10)
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Final Continuum Equations

The same equations can be obtained from a Petrov-Galerkin discretization
of the following system of the fluctuating hydrodynamics SPDEs

%R = /drA(r, R)v(r) + /f;‘JTcht + \/2kg TDg W(t)
Do mo(c3 — c?)
B ks T Peq
8tp(r> t) =-V.g
Og(r,t) = —V-(gv) — ke TVA(r,R)
— VP(r) + F*'A(r,R)

/ drA(R, 1)V p(r)

V2t (g+C)V(V-v)+V-E?5 (11)
where v = g/p, and the pressure is given by
c? mo(c? — ¢
P = 5 (p(e — p2) + ™ O DAR ) (12
Peq Peq
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Diffusion Coefficient

@ The scalar bare diffusion coefficient is grid-dependent,

Do = ://OT dt <5\7(0)-5\7(t)> (13)

eq

where the particle excess velocity over the fluid is
IR ~\Rg .
N =V <v> "~V _¥(R).

@ The crucial point is that now the integration time 7 > h?/v, where h
is the grid spacing, is accessible in MD.

@ The true or renormalized diffusion coefficient [4] should be
grid-independent,

D = Do+ AD =~ Dy + % /OT dt (W(R(0))-v(R(t)))™

~o+ 5 [ " dt 0u(R) (v (0) v (6)) 2 e (R)

A. Donev (CIMS) Coarse Blob 7/2016 18 / 21



Numerical VACF
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Figure : VACF for a neutrally buoyant particle for Dy = 0 and ¢ = ¢, from
coupling a finite-volume fluctuating hydrodynamic solver [5, 6].
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Conclusions

@ We considered the problem of modeling the Brownian motion of a
solvated nanocolloidal particle over a range of time scales.

@ Hydrodynamic scales are not accessible in direct MD so
coarse-grained models are necessary.

o If one eliminates the solvent DOFs one obtains a long-memory
non-Markovian SDE in the inertial case or a long-ranged overdamped
SDE in the Brownian limit.

o If fluctuating hydrodynamic variables are retained in the
description, one obtains a large system of Markovian S(P)DEs.

@ A concurrent hybrid coupling approach couples MD directly to
fluctuating hydrodynamics; time scales are limited by the MD.

@ We derive coarse-grained equations by a combination of Mori-Zwanzig
with physically-informed modeling.

@ It remains to actually try this in practice and see what range of
effects can be captured correctly and efficiently.

It also remains to generalize this to a denser suspension of colloids.

A. Donev (CIMS) Coarse Blob 7/2016 20 /21



References

B

S. Delong, F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev.

Brownian Dynamics without Green's Functions.
J. Chem. Phys., 140(13):134110, 2014
Software available at https://github.com/stochasticHydroTools/FIB

A. Donev, J. B. Bell, A. L. Garcia, and B. J. Alder.

A hybrid particle-continuum method for hydrodynamics of complex fluids.
SIAM J. Multiscale Modeling and Simulation, 8(3):871-911, 2010

P. Espafiol and A. Donev.

Coupling a nano-particle with isothermal fluctuating hydrodynamics: Coarse-graining from microscopic to mesoscopic
dynamics.
J. Chem. Phys., 143(23), 2015.

A. Donev, T. G. Fai, and E. Vanden-Eijnden.
A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law.
Journal of Statistical Mechanics: Theory and Experiment, 2014(4):P04004, 2014

F. Balboa Usabiaga, R. Delgado-Buscalioni, B. E. Griffith, and A. Donev.

Inertial Coupling Method for particles in an incompressible fluctuating fluid.
Comput. Methods Appl. Mech. Engrg., 269:139-172, 2014
Code available at https://github.com/fbusabiaga/fluam

F. Balboa Usabiaga, X. Xie, R. Delgado-Buscalioni, and A. Donev.

The Stokes-Einstein Relation at Moderate Schmidt Number.
J. Chem. Phys., 139(21):214113, 2013

Donev (CIMS) Coarse Blob

/2016 21 /21



https://github.com/stochasticHydroTools/FIB
https://github.com/fbusabiaga/fluam

