Brownian Dynamics without Green’s Functions
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We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics
simulations of confined particle suspensions. Unlike traditional methods which employ analytical
Green’s functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating
finite-volume Stokes solver to generate the action of the response functions “on the fly”. Impor-
tantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic
interactions among the suspended particles, as well as the stochastic terms necessary to generate the
hydrodynamically-correlated Brownian motion, can be generated by solving the steady Stokes equations
numerically only once per time step. This is accomplished by including a stochastic contribution
to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel
temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian
dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably,
we propose a random finite difference approach to approximating the stochastic drift proportional
to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical
and existing computational results, we numerically demonstrate the ability of the FIB method to
accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.

I. Introduction

Stochastic fluctuations in fluids arise from the fact that
fluids are composed of molecules whose positions and
velocities are random. One can capture thermal fluctu-
ations using direct particle level calculations. But even
coarse-grained particle methods [1-3] are computationally
expensive because the dynamics of individual particles is
much faster than hydrodynamic time scales. Alternatively,
thermal fluctuations can be included in the Navier-Stokes
equations through stochastic forcing terms, as proposed
by Landau and Lifshitz [4]. The basic idea of fluctuating
hydrodynamics [5] is to add a stochastic stress tensor to
the usual viscous stress tensor [6]. This has been shown
to be a very good model of fluids down to essentially
molecular scales [3, 7-11].

The presence of suspended particles is a common feature
of complex fluids. At small scales, the motion of immersed
particles is driven by thermal fluctuations, giving rise
to Brownian motion strongly affected by hydrodynamic
effects. Fluctuating hydrodynamics has been shown to
be a useful tool in modeling the dynamics of colloidal
particles and polymer chains suspended in a fluid [12-23].
By coupling a fluctuating fluid solver with immersed
particles one can model the Brownian dynamics from the
short time scales, at which sound waves play a role [21],
to longer times, at which the velocity correlations decay
in a power-law manner due to viscous dissipation. At the
same time, the dynamics of interest in many problems
is the diffusive (Brownian) dynamics of the immersed
structures, which happens at much longer times due to the
very small Reynolds numbers, or more precisely, the very
large Schmidt numbers present in typical applications.

In the limit of zero Reynolds number, or more precisely,
infinite Schmidt number, the methods of Brownian [24-
30] and Stokesian dynamics [31, 32] have dominated in
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chemical engineering, and related techniques have been
used in biochemical engineering [33-36]. In this work we
focus on Brownian dynamics, which can be seen as a sim-
plified version of Stokesian dynamics that does not include
second-order multipole terms (rotlets and stresslets) or
lubrication effects in the hydrodynamic interactions among
the immersed particles. A key common feature of this class
of methods is that they simulate the overdamped (diffu-
sive) dynamics of the particles by using Green’s functions
for steady Stokes flow to capture the effect of the fluid.
While this sort of implicit solvent approach works very
well in many situations, it has several notable technical
difficulties: achieving near linear scaling for many-particle
systems is technically challenging [28, 30, 31], handling
non-trivial boundary conditions (bounded systems) is com-
plicated [29] and has to be done on a case-by-case basis
[14, 27, 32, 37, 38], and including Brownian motion requires
additional specialized treatment [24, 25]. Notably, combin-
ing all components together and performing Brownian or
Stokesian dynamics in complex geometry with accurate hy-
drodynamics, thermal fluctuations, and near-linear scaling
requires a rather sophisticated set of tools. This is evidenced
by the fact that existing Stokesian dynamics simulations
of Brownian suspensions in even the simplest confined ge-
ometry, a slit channel, have relied on several uncontrolled
approximations [39], even though all of the expressions and
tools have, in principle, been developed [37, 40].

At first sight, it may appear that there is a conceptual
gap between methods based on fluctuating hydrodynamics
and those based on Green’s functions. The fluid inertia, or,
more precisely, the momentum diffusion is inherently part
of the fluctuating hydrodynamics formulation of Brownian
motion [41-44], while it does not appear in the equations
of Brownian or Stokesian dynamics. For example, particles
suspended in a fluctuating fluid with inertial memory
exhibit a well-known power-law decay of the velocity
auto-correlation function (VACF) [43], which is not present
in Brownian dynamics (BD) because BD is meant to
describe longer time scales, at which the VACF looks like
a Dirac delta function. In order to access the diffusive



scaling, methods based on fluctuating hydrodynamics, such
as Lattice-Boltzmann (LB) techniques [16], must ensure
that the Schmidt number Sc is sufficiently large [45],
though in practice Sc is always limited by computational
efficiency considerations. Extensive testing has confirmed
that with proper care a match can be achieved between
results obtained using LB and BD methods [14, 15, 46].

Nevertheless, there remains a gap in the range of
accessible Reynolds/Schmidt numbers between the two
classes of methods. We close this gap in this work by
designing a Fluctuating Immersed Boundary (FIB) method
that solves the overdamped (inertia-less) equations of
Brownian dynamics using an ezplicit solvent representation
of the fluid hydrodynamics. Importantly, the FIB method
includes confinement in nontrivial geometries and Brownian
motion consistently and with a controlled accuracy, and
has linear complexity in the number of immersed particles.
The key observation underlying the FIB method is that
analytical Green’s functions can be replaced by a steady
Stokes solver with a stochastic stress tensor, as dictated
by fluctuating hydrodynamics. Specifically, the action
of the required response functions (on both deterministic
and stochastic terms) is computed “on the fly” rather than
pre-computed analytically. The fluid solver can be used
to handle nontrivial boundary conditions, including cases
where the concentration of chemical reactants affects the
fluid flow via osmo-phoretic effects [47, 48]. The stochastic
increments required to simulate the Brownian motion are
generated by the fluctuating Stokes solver with no addi-
tional effort, in arbitrary domains with a combination of
standard periodic, no-slip or slip boundaries [49]. Because
in confined systems the mobility strongly depends on the
positions of the particles relative to the boundaries, we
pay special attention to correctly capturing the well-known
stochastic drift term proportional to the divergence of the
configuration-dependent mobility matrix. In particular, we
develop a random finite difference approach that is related,
but distinct from, the traditional Fixman midpoint method.

Rather closely related to our proposal is the work on the
Stochastic Immersed Boundary Method (SIBM) and its
generalization the Stochastic Eulerian Lagrangian Method
(SELM) developed by Atzberger and collaborators [17, 50],
as well as the work of Maxey and collaborators on the
Force Coupling Method (FCM) [51-53]. In work indepen-
dent from ours, Keaveny has recently included thermal
fluctuations in the fluctuating FCM method [20], and also
accounted for stresslet and rotlet terms (which are not in-
cluded in our FIB method). While inertia can be included
easily in both SELM and FCM, as it can be in the Inertial
Coupling Method (ICM) [19] very closely-related to the FIB
method, both methods can also be used in the steady Stokes
limit [20]. At the level of the mathematical (continuum)
formulation the SELM, fluctuating FCM and FIB methods
are very similar, though the numerical techniques used
to discretize and solve the equations of motion are rather
distinct, leading to several crucial differences between the
work presented here and existing work. Specifically, we de-
velop novel temporal integrators that efficiently account for
the dependence of the mobility on configuration, which is
crucial in confined geometries. Crucially, we do not assume
specific forms of the boundary conditions when solving
the fluid (steady or unsteady) Stokes equations, and, in
particular, we do not rely on periodic boundary conditions
and using a Fourier basis (and the associated FFTs) to

diagonalize the Stokes operator [20, 50]. Furthermore, we
do not use Gaussian kernels as in the FCM, rather, we
employ the compact-support kernels Peskin specifically
constructed for immersed-boundary discretizations that
employ a finite-difference-type discretization of the fluid
equations [54]. Note also that we handle domain boundaries
(for both deterministic and stochastic terms) directly in
the finite-volume fluctuating Stokes solver, unlike recent
extensions to BD [29] that handle complex boundaries by
discretizing the boundary using immersed-boundary tech-
niques. Independently of our work, an extension to SELM
to nonperiodic domains, but using a finite-element rather
than a finite-volume Stokes solver, has recently been devel-
oped [55]. We will defer a more detailed comparison with
this related but distinct work until the concluding section,
after we present the technical details of the FIB method.

This paper is organized as follows. In the remainder of
this section we summarize the well-known and widely-used
method of Brownian dynamics, to the extent necessary for
subsequent comparison with our FIB method. In Section
IT we discuss the equations of motion solved in the FIB
method at the continuum level, and explain the relation to
the equations of Brownian dynamics. Then, we explain how
we discretize those equations in both space (Section IIT) and
time (Section IV). In Section V we perform a series of val-
idation tests confirming the accuracy and robustness of the
FIB method on a variety of tests of increasing complexity.
Several technical derivations are detailed in the Appendix.

A. Brownian Dynamics

The equations of Brownian Dynamics (BD)
model the diffusive dynamics of the positions
q(t)={q, (t),...,qy (t)} of a collection of N particles

via the Ito system of stochastic differential equations,

d 1~
d—‘t] = MF + \/2k5TM? W(t) + kT (95- M), (1)

where M(q) = 0 is the symmetric positive semidefi-
nite (SPD) mobility matrix, relating the applied forces,
F(q) = —0U(q)/0q with U(q) a conservative potential, to
the resulting (deterministic) velocity. For notational brevity

we will often omit the explicit dependence on the configura-

tion q or time ¢. The stochastic forcing W(t) denotes a vec-
tor of independent white noise process, formally time deriva-
tives of independent Wiener processes. The “square root”

of the mobility M? is a matrix (not necessarily square)
which satisfies the fluctuation dissipation balance condition

M (M%)* =M. 2)

We use a superscript star throughout to denote the adjoint
of a linear operator for a suitably-weighted inner product
(conjugate transpose for matrices for the standard inner
product). Throughout this paper we will rewrite the
equations of motion (1) to eliminate the final “thermal”,
“stochastic” or “spurious” drift term kg1 (Oq - M) by using
the kinetic interpretation of the stochastic integral [56],
denoted in this paper by the stochastic product symbol ¢,

d({TEt) = M(q)F(q) + V2ksTM?(q) o W(t).  (3)



Condition (2) insures that the dynamics (3) is time-
reversible with respect to the Gibbs-Boltzmann distribution

P.y(q) = Z ' exp (-U(q)/ksT), (4)

where Z is a normalization constant. This may be seen
by examining the Fokker-Planck equation for the evolution
of the probability distribution for observing the state q
at time ¢ corresponding to (1) or (3),

{M {gzp + (kpT) gﬂ } . ()

oP 0]

ot dq
and noting that the term in square brackets vanishes when
P =P,

Developing schemes to simulate Brownian dynamics has
several challenges. One such challenge is evaluating, or more
precisely, applying the mobility matrix, which contains
all of the information about hydrodynamic interactions
between the particles. This can be non-trivial to achieve
analytically even in relatively simple geometries, and the
mobility is generally approximated via a multipole expan-
sion or infinite series of images. Special care must be taken
to insure that the truncation of these infinite series result in
a positive-semidefinite matrix [32, 37]. Even if an efficient
application of the action of the mobility matrix is available,

one still must also be able to generate the action of M%,
typically approximated by Chebyshev polynomials as orig-
inally proposed by Fixman [57]. Finally, the thermal drift
term kpT Oq - (M(q)) must be calculated or approximated
in some way. This amounts to consistently discretizing the
kinetic interpretation of the stochastic integral, which is
traditionally-accomplished by using the Fixman midpoint
algorithm [56]. Note however that the Fixman method
(and in general the use of the kinetic stochastic integral)
requires handling the inverse of the mobilty matrix, which
can add substantial complication and cost [20].

B. Mobility Matrix

For two well-separated spherical particles ¢ and j, we
can approximate the pairwise mobility, which determines
the velocity on particle ¢ resulting from a force on particle
j, with [15, 32]

M =My =
1 a? 2 a? 2 /
77_ (I + 6V,,.) (I + 6V,,./> K("'77’ )

where a is the radius of the particles. Here K is the
Green’s function for the steady Stokes problem with unit
viscosity, with the appropriate boundary conditions such as
no-slip on the boundaries of the domain. The differential
operator I + (a?/6) V? is called the Faxen operator [L5]
and leads to the well-known Faxen correction to the Stokes
drag law. Note that the form of (6) guarantees that an
SPD mobility matrix is obtained by construction.

v—a,(0)

’— )
T =q;

1. Unconfined systems

For a three dimensional unbounded domain with fluid
at rest at infinity, K(r,7') = K(r — 7') is isotropic and
given by the Oseen tensor,

K(T)=O(r):87lﬂd<1+rgr).

For many particles in an unbounded domain, applying (6)
to the Oseen tensor yields the far-field expression of the
Rotne-Prager-Yamakawa (RPY) tensor [58], commonly
used in Brownian dynamics simulations. A correction needs
to be introduced when particles are close to each other in
order to produce a mobility which is positive definite [58],

1 {CI(W)I + Cafrig) ™5™, 1y > 2a

Tij S 2a

(7)
where 7;; = q; — q;is the vector connecting the particles,
and r;; is its length, and

ij
Cs(rij) I + Cy(ri;) 4575,
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The diagonal blocks of the mobility matrix, i.e., the self-
mobility can be obtained by setting r;; = 0 (giving C3(0) =
1 and C4(0) = 0) to obtain M;; = (6wna)” ' I, which
matches the Stokes solution for the drag for flow around
a sphere. It is important physically that M;; = My,
when r;; = 0 since two perfectly overlapping particles must
behave as if there is only a single particle at that location.

For a single particle in an unbounded domain it is
obvious that M;; is constant and thus has vanishing
divergence. For the RPY mobility it can be shown that
Oq - (M(q)) = 0 even for multi-particle systems (this is in
fact a rather generic consequence of the incompressibility
of the flow [59]). Note, however, that when stresslet terms
are included the mobility becomes a complicated function
of configuration (see Appendix B) and the stochastic drift
term must be accounted for [20].

2. Confined systems

In the presence of boundaries, the Green’s function may
be decomposed as

K(r,r)=0(r—-7r")+K"(rr), (8)

where K% is the Green’s function for a disturbance
velocity field enforcing the no-slip condition at the walls.
One can approximate the pairwise far-field mobility by
using (6) and applying the Faxen operators to O and
K" separately [32]. For the diagonal blocks, we have
to consider the self-mobility in an unbounded domain
separately, and only use (6) with K replaced by K* in
order to account for the disturbance velocity from the
boundary conditions [32] (equivalently, to account for the
hydrodynamic interactions with the image particles),

1
M = 6mna
+n7 T+ “—2V2 I+ a—2v2 K*r )"
! 6 r 6 r/ ) r'=q;"

Note that this approach requires knowing the Green’s
function for the particular geometry in question. For a
single no-slip wall K* was obtained by Blake [60], but for
a slit channel with two no-slip walls there is no manageable
analytical form [37].



It is important to note that even for a single particle near
a boundary the mobility strongly depends on the position
of the particle relative to the boundary and therefore the
thermal drift kT 0q - M must be accounted for [37].

II. Fluctuating Immersed Boundary Method

In this section we present the continuum formulation
of the equations of motion as employed in the FIB
method. At the same time, we use operator notation that
generalizes to spatially-discretized equations, by simply
replacing the continuum integro-differential operators
with sums and differences (matrices), see the discussion
of Atzbeger [17] for more details. This makes the majority
of this section directly transferable to the semi-discrete
setting presented in Section III. The operator notation we
employ also enables us to treat in a unified way different
boundary conditions without requiring a specific basis for
the solution of the Stokes equations.

We consider n spherical neutrally-buoyant particles
of radius a in d dimensions, having spatial positions

qg = {qy,...,qy} with q;, = (qil),...,qﬁfl)). These
particles are immersed in an incompressible fluid of
constant density p, temperature T, and viscosity 7, and
described by the fluctuating time dependent Stokes

equations for the fluid velocity v(r,t),

pOw + V1 = V20 + f+/20kgTV-Z (9)
V.-v =0,

along with appropriate boundary conditions. Here f (r,t)
is a force density applied to the fluid, kg is Boltzmann’s con-
stant, and Z(r,t) is a random Gaussian tensor field whose
components are white in space and time with mean zero [5],

<Zij(’l“, t)Zkl(’l"/, t/)> = (6ik5jl + 5il6jk) ot — t/>(5(’l“ — Z“ll()))

The coupling between the fluid and particles employed
here is used in a large number of other methods and
related prior work. In particular, the same basic equations
are employed in SIBM [50, 61] and SELM [17]. In the
deterministic setting, Maxey and collaborators have
developed in extensive detail the use of smooth envelope or
kernel function to represent particles in flow in the context
of the Force Coupling Method (FCM) [51, 52, 62]. Recently,
Keaveny has included fluctuations in the description in a
manner fully consistent with our presentation [20]. Similar
representations of particles have also been used with
the Lattice Boltzmann method [16, 63]. Both Atzberger
[61] and Keaveny [20] have already noted the relation
to Brownian and Stokesian dynamics. Nevertheless, for
completeness and clarity and the benefit of the reader, here
we present a unified view of these somewhat disjoint works
and point out some less-appreciated but important features.

A. Fluid-Particle Interaction

In the FIB method, the shape of the particle and its
effective interaction with the fluid is captured through a
smooth kernel function 4, (7) that integrates to unity and
whose support is localized in a region of size a. This kernel
is used to mediate two crucial operations. First, it is used
to transfer (spread) the force exerted on the particle to the
fluid. Second, it is used to impose a minimally-resolved
form of the no-slip constraint stating that the velocity of the
particle equals the local velocity of the fluid. Following Refs.

4

[19, 21, 64, 65] we term this diffuse (rather than “point”)
particle a blob for lack of better terminology (in polymer
modeling the term bead is used for the same concept [16]).
In order to couple the fluid velocity field to the motion of
immersed particles, we introduce composite local averaging
J(q) and spreading S(q) operators. The operator J(q)
takes a continuous velocity field v (r) and computes
its local average at the position of each particle, while
S(q) takes the forces F = {F4,...,Fy} applied on the
particles and computes a smooth force density field,

(T (@ (7)), = / balg; — Tyo(rdr  (11)
S@F)(r) = Y dula, ~ )F. (12)

Note that J is dimensionless, and 8 has units of inverse
volume. The blobs are assumed to move with the
locally-averaged fluid velocity,

dq (t

40— g(gw (1), (13)
which is a minimally-resolved representation of the no-slip
constraint [19, 64]. Furthermore, the applied forces F
affect the motion of the fluid through the addition of a
continuous force density to the fluid equation (9),

f=8@F+ fu, (14)

where f,; is a thermal or stochastic forcing that we discuss
shortly. It is crucial for energy conservation and fluctuation-
dissipation balance that the coupling operators are adjoints
of one another [17, 19, 52], J = &*, as follows from

Z (Jv),;u; = /v'(Su) dr = /Zéa (g; —7) (v-u;)dr

(15)

In this work we focus on suspensions of spherical particles
(blobs), for which the kernel function 0, (r) = d, (1)
should be taken to be a spherically-symmetric function
of width ~ a. In our computational algorithm we employ
the compact-support kernels of Peskin [54], which are of

the tensor product form 4, (r) = Hizl dq (ro) and are
specifically designed to work well in the discrete context,
as discussed further in Section III. Note that a Gaussian
kernel, as used in FCM [51, 52], has the special property
that it is of the tensor product form while also being
isotropic. It should be noted, however, that much more
general forms of the local interpolation and spreading
operators are possible [17]; this has been successfully used
to generalize FCM to non-spherical particles [53] and can
also be used to further extend our FIB method. The local
averaging and spreading operators have to be modified
near physical boundaries, specifically, when the support of
the kernel §, overlaps with a boundary. A proposal for how
to do that has been developed by Yeo and Maxey [62], and
we have found it to be superior to an alternative proposal
developed in the context of the immersed boundary method
in Ref. [66]. In practice a a repulsive potential is imposed
between the boundaries and the particles, which may be
sufficient to keep the kernels from overlapping the walls.

In order to ensure that the system of equations
(9,13,14) obeys fluctuation-dissipation (i.e., that the



dynamics is time reversible with respect to an appropriate
Gibbs-Boltzmann distribution), the thermal forcing

fon=(kT)0q-S (16)

should be included in the fluid equations, as derived by
Atzberger [17] and also discussed from a different perspec-
tive in Appendix B in Ref. [19] and Ref. [21]. Here we use
the convention that the contraction in the divergence of an
operator is on the second index, f* = kpT0;S;;, consistent
with Ref. [17] but not with Ref. [19]; to avoid confusion we
will write things out in indicial notation when necessary[99].
For a translationally-invariant (e.g., periodic) system and
kernel, this term can be omitted. Namely, from the defini-
tion (12) it follows that f,, = — (kgT) V,>_,0(q; — ),
and the solution of the incompressible velocity equations
is not affected by the addition of a gradient of a scalar.
This is not strictly true in the discrete setting (see Section
VC1) and may not generalize to confined (i.e., not
translationally-invariant) systems for particles in the vicin-
ity of boundaries. The term (16) is therefore, in general,
required in order to obtain discrete fluctuation-dissipation
balance and is included in our temporal integrator.

B. Overdamped Limit

Equations (9), (13), and (14) together constitute a
physically-realistic description which obeys fluctuation-
dissipation balance [17], including in the presence of
additional particle inertia [19, 67]. Here we are interested in
the inertia-less or overdamped limit, where the momentum
of the fluid may be eliminated as a fast variable. More
precisely, we assume that the Schmidt number is very large,
Sc = n/(px) > 1, where x ~ kgT/ (6mna) is a typical
value of the diffusion coefficient of the particles [45].

Following the notation developed in [68], here we
use Z (r,t) to denote an infinite-dimensional standard
white-noise field, use W (t) to denote a finite dimensional
collection of standard white noise processes that represents
a spatial discretization of Z (7,t), and use W to denote
a collection of standard (mean zero and unit variance)
Gaussian variates that appears when W (t) is discretized
in time. For notational clarity, and to emphasize that
we also consider spatially-discretized operators in the
following calculations, we introduce symbols for the various
differential operators: D for the divergence, G = —D*

for the gradient, L for the vector Laplacian, and D for
the divergence operator acting on the stochastic tensor.
In the infinite-dimensional (continuum) setting these
are differential operators, while in the finite dimensional
(discrete) setting they are matrices that approximate the
corresponding differential operators (for example, using
finite differences), taking into account the boundary con-

ditions [69]. Note that the operator D does not have to be
a consistent representation of the tensor divergence, rather,
all that matters is that the covariance of the stochastic
fluid forcing DWV obey the fluctuation-dissipation property
L = -D (WWwW") D [565, 69]. For notational simplicity,
here we assume that the components of VW are independent,
(WW™*) = I, with the understanding that some modifi-
cations of either the covariance of W, or, equivalently, the

operator D, may be necessary near boundaries to preserve
fluctuation-dissipation balance for confined systems [69].

To obtain the asymptotic dynamics in the limit Sc — oo
heuristically, we delete the inertial term pd;v in (9) to

obtain the (potentially discretized) fluctuating steady
Stokes equations for the velocity v and the pressure m,

Gr—nLv = g=8F +/2kgTn DW  (17)
Dv = 0,

with appropriate boundary conditions. For periodic
systems we additionally constrain the average velocity
(v) = 0 to eliminate the non-trivial nullspace. In the

following we will denote with £7! the (continuum or
discrete) Stokes solution operator for the system (17) with
unit viscosity, v ="' L 'g. Note that L' = 0 is SPD
because the Stokes problem (17) is symmetric by virtue of
the adjoint relation G = —D* and the Laplacian operator
L is symmetric negative semi-definite.

In the overdamped regime, the (fast) fluid velocity
evolves instantaneously to its steady state and may be
viewed as a random function of the particles’ positions,
which are the relevant (slow) variables. Heuristically, one
expects that the Brownian dynamics of the particles is de-
scribed by dgq/dt = v = niljﬂflg. A rigorous adiabatic
mode elimination procedure [70, 71] informs us that the cor-
rect interpretation of the noise term in this equation is the
kinetic one, leading to the overdamped Langevin equation

%S(q)F(q) +f ijT Do W(t)} .

(18)
This is the rigorous asymptotic limit of (9,13,14) as Sc — o0
[72] and it is the equation of motion in the FIB method.

C. Relation to Brownian Dynamics

0 — gge

A key observation is that (18) is a specific instance of the
equation of Brownian dynamics (3), with the identification

M=n'JL '8 and M2 =y :gL'D. (19)

To demonstrate that this choice satisfies the fluctuation
dissipation balance condition (2), note the adjoint relations
J =8 and L = -DD". 1t is important to point
out that the spatially-discretized operators we employ
obey these properties even in the presence of nontrivial
boundary conditions [69]. Observe also that

'Lt =27t (20)

as seen from their action on an arbitrary vector g,

—L'LL g
L' (-Gr+g) =

—L 'nLv =
L™y,
where we used the fact that £7'G = 0 since adding a

gradient forcing to the Stokes equations does not affect
the velocity. This gives

M (M%)* = y'gL (DD LS =
-\ T (LTILLTYS = ' TLTIS =M. (2])

Also note that the mobility (19) is guaranteed to be
positive-semidefinite by virtue of (2).



More explicitly, (19) gives a pairwise mobility[100] that
only depends on the position of the pair of particles under
consideration [61],

M = 71/5a(qi*'f’)K(7‘,r’)5a(qj—r’) drdr’ (22)

where we recall that K is the Green’s function for the Stokes
problem with unit viscosity and the specified boundary
conditions. Note that in our approach the self-mobility M;
is also given by the same formula (22) with ¢ = j and does
not need to be treated separately. In fact, the self-mobility
of a particle in an unbounded three-dimensional domain
defines the effective hydrodynamic radius a of a blob,

1
M = Mgeis = I=
6mna

n! /5a(qi —7r)O(r —v')é,(g; — r') drdr'.

The value of a will therefore depend on the specific
kernel used, as discussed further in section IITA. In two
dimensions, the self-mobility Mo = pl of a disk of
radius a in a periodic domain (equivalently, a periodic array
of infinite cylinders) grows logarithmically with the length

of the square periodic cell L as p = (47n)” " In (L/3.708a)
[73]. The same scaling with the system size holds for a
blob and can be used to define an effective hydrodynamic
radius for a two-dimensional blob [45]. Note that in two
dimensions the mobility diverges for an infinite domain,
in agreement with Stokes’s paradox.

Maxey [52] observed that (22) consistently includes the
Faxen correction to the mobility of two well-separated
particles. Let J (g;) denote the local averaging operator
for a particle i, J(q;)v = (J (g)v),. For a smooth
velocity field, we can perform a second order Taylor
expansion of the velocity field,

J(g)v(r) = / 5ala, — Yo (r)dr

(i)
— (I + angQ) v (T) },ﬂ:qiv

where we assumed a spherical blob, §, (r) = d, (r). This
shows that we can approximate the local averaging operator
by a differential operator that is identical in form to the
Faxen operator appearing in (6), if we define the “Faxen”

radius of the blob ap = (3 [a%d,(x) dz)l/2 through
the second moment of the kernel function. In general,
ap # a, but for a suitable choice of the kernel one can
accomplish ar ~ a and thus accurately obtain the Faxen
correction for a rigid sphere (for example, for a Gaussian

afap = /3/m [52]). Interestingly, it has been shown
that the leading-order Faxen corrections to the linear and
angular velocities of an ellipsoidal particle can also be
captured remarkably accurately (to within 5%) by using a
stretched and rotated Gaussian for the kernel function [53].

The calculations above show that the mobility tensor
for a pair of blobs (22) is a good approximation to (6)
for well-separated blobs and thus correctly captures the

Q

mobility up to the Rotne-Prager level even in the presence of
confinement. This can also be seen from (22) by noting that
when the two particles are well separated, K is a smooth
function, and is well approximated by a Taylor series, giving

r=q,

— b
r'=q;

1 C’% 2 GQF 2 /
Mij ~ ’I’]_ (I + 6V,,,> <I+ 6V7,/> K(T‘—’I" )

which matches the expression (6) for well-separated rigid
spheres. At smaller distances the mobility is mollified
(regularized) in a natural way without requiring any special
handling of the case r;; < 2a as in the traditional RPY
tensor (7). Furthermore, a positive definite mobility tensor
is obtained by construction. Most importantly, the same
continues to hold in the presence of confinement (nontrivial
boundary conditions). The boundary conditions are taken
into account by the fluid solver when computing the action
of the Green’s function (8), while the regularization and
the Faxen corrections are handled via the local averaging
and spreading operators. This inherent self-consistency of
the formulation is inherited from the underlying fluctuating
hydrodynamics formulation (9,13,14) [19].

D. Thermal Drift

One key difference between the inertial formulation
(9,13,14) and the overdamped limit (18) is the fact that
the noise in (18) is multiplicative and therefore the
stochastic interpretation matters and affects the temporal
discretization. Methods for integrating (3) have been
developed in the Brownian Dynamics literature, however,
here we propose a more efficient approach which we term
Random Finite Difference (RFD). We believe this approach
will find uses in Brownian Dynamics simulations as well
as related methods for fluctuating hydrodynamics [20, 55].
We therefore explain it here in the more general setting of
solving (3), of which (18) is a special instance. A detailed
description of predictor-corrector schemes to solve (18) is
given in Section IV.

Of course, one can use the Ito equation (1) with integra-
tors based on the Euler-Maruyama scheme. This, however,
requires computing the stochastic drift term kT (9q - M),
which is difficult in general. First, we summarize the
well-known Fixman midpoint approach to approximating
Oq - M (q), and use it to construct an RFD approach that
works better in the context of our explicit fluid method.
Below we use the superscript to denote the time step level
at which quantities are evaluated, for example, M" =
M (g™) denotes the mobilitity evaluated at the beginning

of time step m, while M= M (q"“‘%
midpoint approximation of the mobility during time step n.
1. Fixman’s Method

The Fixman midpoint scheme used to capture the
thermal drift [24, 25] can be seen as corresponding to a
direct discretization of the kinetic stochastic integral [56],

) denotes a

q"t: = q" + %M"F”

AtkgT
2
qn—i-l — qn_i_AtMn—&-%Fn—&-%
+V2ALkETM ™ E (M™) "2 W™, (23)

(M) W™




where W is a vector of i.i.d. standard Gaussian variables
and

(M7E (M) =

While the Fixman method is quite elegant and has been
widely used with notable success, it requires handling the
inverse of the mobility matrix, which would add significant
complication to our method [20].

In order to show that (23) is consistent with (3) one has
to show that the first and second moments of the increment
q" ! — g" are O (At) with coefficients matching the drift
and diffusion terms in the Ito equation (18), and higher mo-
ments should be of higher order in At¢. The only nontrivial
component is the stochastic drift term kgT dq - M (q). In
order to compact the notation, henceforth we will index ma-
trices and vectors without regard for the physical particles
represented. For example, we will write ¢; to represent the
scalar that is the ith entry of the length nd vector of posi-
tions g, disregarding which particle this entry describes. We
will likewise consider the mobility M as a matrix of scalars
M;;. This allows us to use Einstein summation notation
and indicial algebra. We can show that the Fixman algo-
rithm (23) generates the correct stochastic drift term from

A, M<Mﬁ (% AR ) "
V2ALkT (M7) "2 W,?> = kT 9;M;; (q"), (24)

where the average is over realizations of W and the
shorthand d; denotes a partial derivative with respect to
the j-th component of q.

2. Random Finite Difference

The equivalence (24) only relies on the covariance
structure of W, and there is no reason that we must use
an increment that is related in any way to the noise term
in (3). More generally, we can obtain a divergence of the
mobility in expectation from the general relation,

lim + (M (q +eAq) Ap — M (q) Ap) = 04 - M(q),

e—0 €

(25)
where Aq and Ap are Gaussian variates with mean zero
and covariance <Ainpj> = 0j;. In particular, the choice
Aq = Ap is much simpler to use than the Fixman method
choice Ag ~ (M”)% W" and Ap ~ (M")_% W™, Here
€ is a small discretization parameter that can be taken to
be related to At as in the Fixman method, but this is not
necessary. One can more appropriately think of (25) as
a “random finite difference” (RFD) with € representing the
small spacing for the finite difference, to be taken as small
as possible while avoiding numerical roundoff problems.
The advantage of the “random” over a traditional finite
difference is that only a small number of evaluations of
the mobility per time step is required. Note that the
subtraction of M (gq) Ap in (25) is necessary in order to
control the variance of the RFD estimate. One can use
a centered difference to improve the truncation error and

obtain the correct thermal drift via the RFD

1 §~\ ~— d~\ —
5 <<./\/lzj (q,’; + 2Wk> W; — M, <q,’§ — 2Wk> WJ)>

= 0;M;; (q") + O(6%), (26)

where W is a vector of dn i.i.d. standard Gaussian random
variables and § is a small parameter.

While expression (26) could be used to approximate the
drift term and may be a useful alternative to the Fixman
scheme in related methods such as the fluctuating FCM
[20], using an RFD of the form (26) requires at least one
more Stokes solve per time step in order to evaluate the
action of M (q + €Aq). Tt is, however, possible to avoid
the second Stokes solve by splitting the divergence of the
mobility into two pieces,

N0qgM =0g(TLT'S) = (95T) : (LT'8)+T L (94 S),

where colon denotes a double contraction, see (32). We
approximate the first term involving the gradient dqJ using
a standard two-stage Runge-Kutta (predictor-corrector)
approach, and use an RFD to approximate 04 - S, as
explained in detail in Section IV.

ITI. Spatial Discretization

In this section we describe our spatial discretization
of (18), which is constructed from components described
in extensive detail in prior work by some of us; here we
only briefly summarize the key points. The finite-volume
solver used here to solve the fluctuating Stokes equations
in confined domains is taken from Ref. [69], while the
discretization of the fluid-particle interaction operators
is based on the immersed-boundary method [54] and is
described in extensive detail in Ref. [19]. The key novel
component here is the use of a steady Stokes fluid solver
to generate a fluctuating velocity, as also done in Refs.
[20, 23, 55] using different techniques.

We discretize the fluid equation (9) using a standard
staggered “marker and cell” (MAC) grid with uniform
mesh width A in a rectangular domain with an arbitrary
combination of periodic, no-slip, or free-slip boundaries.
The differential operators D, G, and L are discretized on
the staggered grid using standard second order centered
differences.  The stochastic stress tensor Z (r,t) is

discretized as AV =2 W (t), where the additional factor

of AV~2 comes from the fact that Z is white in space
[68]. Adjustments to the stochastic increments are made
near boundaries to preserve the fluctuation-dissipation

relation fINDIN)T = L (more precisely, to ensure that
~ ~T

L--D(WW")D) [69.

A. Discrete Local Averaging and Spreading

The discrete operator (matrix) J averages velocities
on the staggered mesh by discretizing the integral
[ 64(g; — r)v(r)dr using a simple quadrature

(Tv)7 = 8a(g; —T2) P AV,
k

where the sum is taken over faces k of the grid, and AV
is the volume of a grid cell. Here « indexes coordinate



directions (z,y, z) as a superscript, r{ is the center of the
grid face k in the direction «, and vy = v(®) (1) is the
staggered velocity field. Likewise, & spreads forces to the
staggered grid, and its expression remains identical to (11),
but is evaluated only at faces of the staggered grid normal
to the component of force being spread,

(SF)y =Y Fbalg;—75),

where now the sum is over the particles. Near no-slip
physical boundaries, the discrete delta function is modified
following the image-monopole construction proposed by
Yeo and Maxey, see (2.17) in Ref. [62]; this is found to
be superior to the modification proposed in Ref. [66].
For a uniform grid, the matrices representing the
discrete local averaging and spreading operators are scaled
transposes of each other, J7 = AV 8. Note that these
discrete operators are adjoints like their continuum coun-
terparts, J = 8, but in an inner product that includes
an appropriate weighting [17] because the integral over
the domain in (15) is replaced by a sum over grid points k,

> (Tv), - Fi = Y v (SF); AV
i k,a
= D dalg; —rR) R ETAV. (27)

ik,

Note that this adjoint relation is strictly preserved even
in the presence of no-slip boundaries.

In the majority of the simulations we use the four-point
kernel of Peskin [54] to discretize the kernel d,, although
in some cases we employ the three-point discrete kernel
function of Roma and Peskin [64, 74]. The effective hydro-
dynamic radius a for a given discrete kernel function can
be obtained from the self-mobility of a blob in a periodic
domain. For large periodic domains in three dimensions
we numerically estimate the effective hydrodynamic (rigid
sphere) radius to be a = (0.91 & 0.01) & for the three-point
kernel [19, 64], and a = (1.255 £ 0.005) h for the four-point
kernel [65]. In two dimensions, the effective (rigid disk)
hydrodynamic radii are estimated to be a = (0.72 +0.01) h
for the three point and a = (1.04 £ 0.005) h for the four
point kernel [45]. Note that the spatial discretization we
use is not perfectly translationally invariant and there
is a small variation of a (quoted above as an error bar)
as the particle moves relative to the underlying fixed
fluid grid [19, 65]. By using the Peskin four-point kernel
instead of the three-point discrete kernel function the
translational invariance of the spatial discretization can
be improved, however, at a potentially significant increase
in computational cost, particularly in three dimensions.

It is important to note that, perhaps unexpectedly, these
Peskin kernels give close agreement between the hydrody-
namic and the Faxen radii of the blob. For example, in three
dimensions, the three-point kernel gives ap &~ 0.93h (this
number is again not exactly constant due to the imperfect
translational invariance), as compared to a ~ 0.91h. Using
the four-point kernel gives an even better agreement, with
a =~ ap =~ 1.25h. In particular, it is important to choose a
kernel with a nonzero second moment in order to capture the
Faxen corrections in a physically-realistic manner; this elim-
inates the Peskin six-point kernel [54] from consideration.

B. Stokes Solver

In the FIB method we obtain the fluid velocity
v =n~1L£7'g by numerically solving the discrete steady
Stokes equation

Qk‘BTU ~

Gr—nLv = g=8F + AV Dw  (28)

Dv = 0

using a preconditioned Krylov iterative solver [49].

Note that we can explicitly write £7! using the Schur
complement of (28),

—£'=L'-L'G(DL'G) ' DL (29)

In the continuum setting, and also in the discrete setting
with periodic boundary conditions, the various operators
commute and one can simplify £7! = —PL™!, where
P =1-G(DG)™'D is the Ly projection operator onto
the subspace of (discretely) divergence free vector fields.
In general, however, for many spatial discretizations,
including the one we use, the operators do not commute

and one must keep the full form (29) [68, 69].
C. Discrete Fluctuation Dissipation Balance

The spatially-discretized equation of motion for the
particles has the same form as the continuum (18), and
is an instance of (3) with the identification

M =nlgces (30)
M: = (3AV) 2 JLD.

Note that the key relation (20) continues to hold,
—L7'Le™t = £, which follows directly from (29).
This can be used to show that (2) is satisfied

M? (M%)T (31)
= —mav) " [ge (DD") £ AV S)
T (LT'LLT) S=ntTLTIS = M,

where we made use of J7 = AV S. Note that these
relations are independent of the boundary conditions and
thus (31) holds in confined systems.

IV. Temporal Discretization

In this section we introduce our approach for temporal
integration of the spatially-discretized equations of motion.
A significant challenge is accurately capturing the thermal
drift present in the Ito interpretation, dq - M (q), without
which the system would not obey fluctuation-dissipation
balance. This requires consistently discretizing the kinetic
integral, which can be done in multiple dimensions using
a Fixman predictor corrector scheme [56]. The Fixman
scheme, however, requires applying the action of the inverse
of the mobility (or, equivalently, the action of the square
root of the inverse of the mobility), which is a complicating
and a potentially expensive step [20]. Note that in certain
cases, notably, for translationally-invariant situations such
as periodic systems, the divergence of mobility vanishes
and one can use a simple Euler-Maruyama integrator, as



done in the work of Atzberger and collaborators [17]. This
is not applicable to confined systems, however, and here
we employ the Random Finite Difference (RFD) approach
introduced in Section IID 2.

Below we use the superscript n to denote the current
time step and quantities evaluated at the beginning of
the current time step, and superscript n + 1 for the
updated quantities at the end of the time step. Quantities
estimated at the midpoint of the time step are denoted with

For example, M= M (q"+%)

denotes a midpoint approximation of the mobility. We
develop two temporal integrators, a first-order simple
midpoint method that requires only a single Stokes solve
per time step, and an improved midpoint midpoint scheme
that achieves second-order accuracy in the additive-noise
(linearized) case at the cost of requiring two Stokes solves
per time step. Which scheme allows for better tradeoff
between accuracy and efficiency will depend on the specific
problem at hand, and in particular, on the time step
limitations imposed by stability considerations.

superscript n + %

A. Simple midpoint scheme

A direct application of the RFD approach to integrating
(18) would require evaluating the action of the mobility
at two different configurations and thus at least two Stokes
solves per time step. In order to avoid using a separate
Stokes solver just to obtain the thermal drift term, we
take an alternative approach and split the thermal drift
into two pieces,

n0;Mi; (@) = 0; (Tin(a) Ly Si() =
(0; T (@) L1 Sii (@) + Tin(@) L (9;815(a)) (32)

where we use the implied summation convention. The
two pieces can be handled separately, and only require the
derivatives of J and S. We approximate the term 0;7;x(q)
using a predictor-corrector approach in the spirit of Runge-
Kutta algorithms such as the Euler-Heun temporal integra-
tor for Stratonovich equations [75]. We use an RFD of the
form (25) with Ag ~ Ap to calculate the term 9;5;;(q).

Our basic temporal integrator for the spatially-discretized
equations (18) consists of first solving the steady Stokes
equations with a random forcing,

2nkpT ~
—nLv+ Gr = S"F" + A”tkzv DW™" (33)

Jﬁfk<w+gwﬁs(¢§wﬁ}wT

and then advecting the particles with the computed
velocity field using a midpoint predictor-corrector scheme,

At
g = q”+7.7"v (34)
gt = ¢+ AtT" . (35)

Here W" is a random vector of i.i.d. standard Gaussian
random numbers that represent stochastic fluxes of momen-

tum, with W7 /+/At, loosely speaking, being a temporal
discretization of W(¢). The auxiliary displacement w"

is a vector of nd i.i.d. standard Gaussian variates. The
parameter § should be as small as possible while still

resolving to numerical roundoff the length scale over which
S varies; we use d ~ 1075, where h is the grid spacing.

The first-order midpoint temporal integrator (33)-(35)
has the advantage that we can recreate the stochastic
drift 94 - M by performing only two additional spreading
operations and one local averaging operation per time step,
in addition to the required Stokes solve. We use a midpoint
corrector step (35) because in the absence of the RFD term
it gives the correct diffusion coefficient for freely-diffusing
single particles, regardless of the time step size. Namely,
for any choice of At, the second moment of the stochastic
increment of the particle positions is in agreement with
the Einstein formula for the diffusion coefficient,

Var (¢~ q") = 2AtkpTy ! (TELTIS™HE)

— 2AtkgT M2, (36)

up to correction terms coming from the RFD term in the
second line of (33). In section V B, we confirm that this
property continues to hold to very high accuracy when the
RFD is included, even for relatively large At. Note that a
trapezoidal scheme that replaces the term J"2v in (35)
with (J" + J"*") v/2 does not have the property (36)
and only gives the correct diffusion coefficient for small At.

The predictor corrector steps (34)-(35) reproduce the
first term on the right hand side of (32). The added
stochastic force in the Stokes solve generates the thermal
forcing (16), which appears in the second term on the right
hand side of (32), in expectation to order §2,

(o (e g s (oo gw) )

— kT (08, (") (Wi W) + 0 (5%)

= kpT 9;S; (¢") + O (67) . (37)
In Appendix A we demonstrate that the simple midpoint

scheme (33)-(35) is a first-order weak integrator for the
equations of Brownian dynamics (18).

B. Improved midpoint scheme

It is possible to obtain second order accuracy in the
additive-noise (linearized) approximation by using an addi-
tional Stokes solve in the corrector stage, as summarized by

4’[7k‘BT 1
—nL — nFTL n,
nLv+Gr =8 + AAV Dw™
Dv=0
g =q" -I- J v (predictor)
N - ntl nal nkgT n,1 n,2
—nLd +Gi =8" T2 F"T 4 AtAVD(W +wW )

kpT N R P
—1-76 [S(q +2W>—S<q 2W )}W
Dv =0

qn+1 _ qn +Atjn+%’l~)

Here the independent random variables W™! and W2
represent the two independent Wiener increments over each

(corrector). (38)



half of the time step, as explained in more detail in Ref. [68].
Note that by using a midpoint corrector step we ensure that
the property (36) continues to hold. Here we only include
an RFD term in the corrector step and use the initial
position of the particle in the RFD term. One can also use
q"*’% instead of g” but this gains no additional accuracy.

Note that the scheme (38) is still only first order weakly
accurate (see Appendix A) because the noise in (18) is mul-
tiplicative. Achieving second-order weak accuracy in the
nonlinear case requires more sophisticated stochastic Runge-
Kutta schemes [76]. However, we will demonstrate in Sec.
VD that the improved midpoint scheme can sometimes give
results which are significantly more accurate because the
scheme (38) can be shown to be second order weakly accu-
rate for the linearized (additive-noise) equations of Brown-
ian dynamics [68]. The improved midpoint scheme may also
give improved stability in certain cases, as we observe nu-
merically in Section V E. Note, however, that both midpoint
schemes are explicit and are thus subject to stability limits
on At, dictated by the stiffness of the applied forces F (q).

V. Results

In this section we test the performance of the FIB by
simulating a number of scenarios of increasing complexity.
We start by confirming that our spatial discretization
gives a mobility in agreement with known results for a
single particle in a slit channel. We then confirm that our
temporal integrators preserve the correct Gibbs-Boltzmann
distribution for both single and multiparticle systems.
After also verifying that the FIB method correctly
reproduces the dynamical correlations between particles in
the presence of shear flow and hydrodynamic interactions,
we compare our method to standard Brownian Dynamics
on the nonequilibrium dynamics of a colloidal cluster.
Unless otherwise mentioned, the tests were conducted
using the simple midpoint temporal integrator (33)-(35).

We have implemented the FIB algorithm in the open
source code IBAMR [77], a parallel implementation of
the immersed boundary method. The state-of-the-art
multigrid-based iterative Stokes solvers [49] implemented
in IBAMR enable us to efficiently solve the steady Stokes
equations for any combination of periodic, no-slip or
free-slip boundaries on the side of a rectangular domain,
including in the presence of thermal fluctuations [69].
Although IBAMR supports adaptive mesh refinement
(AMR) for deterministic time-dependent problems, at
present only uniform grids are supported for steady-state
flows with fluctuations. Unless otherwise specified, the
simulations reported here were performed using the
IBAMR implementation of the FIB method.

For periodic domains, no iterative solvers are necessary
for uniform grids since the discrete Fourier transform diag-
onalizes the discrete Stokes equations and the Fast Fourier
Transform (FFT) can be used to solve the steady Stokes
equations very efficiently. This was used by some of us
to solve the inertial fluid-particle equations efficiently on
Graphical Processing Units (GPUs), as implemented in the
open-source fluam CUDA code [19]. Implementing the FIB
method in fluem amounted to simply changing the tempo-
ral integration scheme (for both the fluid and the particle
dynamics) to the midpoint scheme (33)-(35), while reusing
the core numerical implementation. Note that we only use
FFTs as a linear solver for the discrete Stokes equations,
similar to what is done in SIBM [50]. This means that the
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IBAMR and fluam codes give the same results for periodic
systems to within solver tolerances. For periodic systems at
zero Reynolds number flow a much higher (spectral) spatial
accuracy can be accomplished by using a Fourier represen-
tation of the velocity and pressure, as done by Keaveny [20].
In fact, with proper care in choosing the number of Fourier
modes kept and the help of the non-uniform FFT algorithm
[78] one can construct a spatial discretization where the
truncation error is at the level of roundoff tolerance [59].
In the presence of simple confinement such as a slit channel
with only two walls, a Fourier representation can be used
in the directions parallel to the channel walls, along with a
different basis for the direction perpendicular to the walls.
Here we do not explore such specialized geometries and
use a finite-volume Stokes solver to handle more general
combinations of boundary conditions.

While the different tests performed have different rele-
vant timescales, there is an important common timescale of
diffusion given by the typical time it takes a free particle to
diffuse a distance h, where h is the grid spacing. The typical
value of the diffusion coefficient of a single spherical particle
in a translationally-invariant system can be obtained from
the mobility p via the Stokes-Einstein relation, X . =
kT Mgar = kpTul = xI, and leads to x ~ kgT/(67na)
in three dimensions, and x ~ kgT (47n) " In (L/3.708a)
in two dimensions [45], where we recall that a is the effective
hydrodynamic radius of a blob and L is the length of the
periodic domain. In three dimensions there are well-known
finite size corrections to the mobility that are taken into
account in the calculations below [16, 19, 65, 73]. Based on
the estimated diffusion coefficient we can define a dimen-
sionless time step size through the diffusive Courant number

2x

This dimensionless number should be kept small (e.g.,
B < 0.25) in order to prevent a particle from jumping more
than one grid cell during a single time step. Note that this
time step limitation is much weaker than the corresponding
limitation in methods that resolve the inertial dynamics,
such as the Inertial Coupling method [19]. Resolving the
time scale of the momentum diffusion requires keeping 3, =
2vAt/h? = Sc 3 small, which requires a time step on the
order of Sc ~ 103 — 104 smaller than the FIB method. Note,
however, that in applications the time step may further be
limited by other factors such as the presence of stiff inter-
particle potentials, as we discuss further in Section V E.

A. Mobility in a Slit Channel

The mobility of a single particle in a slit channel is
affected by the presence of the two walls. We estimate
this effect by placing a particle at multiple points across a
128hx128hx32h channel with planar no-slip walls at z = 0
and z = 32h, and periodic boundaries along the x and y
directions. For each position of the blob, a unit force is
applied either parallel and perpendicular to the wall, the
Stokes system (17) without the stochastic momentum flux
is solved, and the resulting particle velocity is calculated,
giving the parallel y and perpendicular p; mobilities.
The results of these calculations are reported in Fig. 1.

Unlike the case of a single no-slip boundary [32], writing
down an analytical solution for slit channels is complex
and requires numerically-evaluating the coeflicients in
certain series expansions [37]. For the parallel component
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Figure 1: Mobility (relative to unbounded flow) of a blob
of hydrodynamic radius a in a slit channel of thickness
~ 25.5a in the directions parallel (blue lines and symbols) and
perpendicular (green lines) to the confining no-slip walls as
a function of the distance H to the wall (expressed here in
terms of the blob hydrodynamic radius a), in three dimensions.
Note that small oscillations appear due to numerical grid
artifacts. For the parallel mobility, simulation is in excellent
agreement with two exact results obtained by Faxen (symbols),
and over the range of distances where the blob does not overlap
the wall, the results are in good agreement with the MCSA
approximation for a blob in a channel (dashed lines, see eq.
(40)). Also shown is the MCSA approximation for a hard
sphere in a channel (dotted lines, see eq. (41, 42)) [79].

of the mobility, Faxen has obtained exact series expansions
for the mobility at the half and quarter channel locations,

L 1 a a’
H=2) = — |1-1.004Z + 0418 %
“'( 2> 67Tna[ 0047 + 04185
CL4 a5
+021 57 = 0.169 7= + ..
LY - 1| 065262% 0.7
FIN"=4) = 6mna oS T s
CL4 a5
013125 — 0.0644 = + ...

where H denotes the distance from the blob to the nearest
wall, and L is the distance between the walls. Here we
neglect the corrections coming from the use of periodic
boundary conditions in the x and y directions. As seen
in Fig. 1, the exact results of Faxen are in excellent
agreement with the numerical mobilities.

For other positions of the blob, we employ two
different approximations. Both of these make use the
Modified Coherent Superposition Assumption (MCSA)
approximation to the unwieldy full expression for the
mobility [37]. This approach considers an infinite sum of
reflections of the single-wall solutions in another wall [79].
In Fig. 1 we show two MCSA approximations which we
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evaluated using (c.f. Eq. (9) in Ref. [79])
(2) s
K n Ho
£ — 0 B P o
o { P {u(”(nLﬂLH) } i
-1

O [t - 1” .

where ;) is either the parallel u|(|2)

ﬂ(f) mobility in the slit channel, pg is the mobility in an

unbounded domain, and (1) is the parallel or perpendic-
ular single-wall mobility. Note that x® ~ p(Y) when the
distance between the walls is very large, L > H > a, as
it must. Both of the the MCSA approximations are for an
infinite slit geometry, whereas we use periodic boundary
conditions in the directions parallel to the walls; we
expect this has a small effect on the value of the mobility
calculated due to hydrodynamic screening, as evidenced
by the match with the exact results by Faxen.

We compare our numerical mobility to two different
evaluations of (39), based on two different approximation

for the single-wall mobility ;(!). The first is given by Swan
and Brady [32],

or the perpendicular

(1) H 3 5
py ' ( ):1_97a+a(_ a (40)
1o 8H 2H3 8H?
1
MI(\ )(H) _ 1 9a n 2a3 _ a®
w 16H 16H3 16H5’

as a generalization of the Rotne-Prager tensor using
Blake’s image construction for a single wall [60]. As such,
we expect this result to be accurate for blob particles near
a single wall, and we see good agreement in Fig. 1. We
also use a second expression for p!) which more closely
approximates a hard sphere. For this approximation, the
perpendicular mobility is given by a semi-empirical rational
relation approximation to an exact series of Brenner [80],

g0 63 2(8) )
m 6 (2) 9 () +2

a

The hard sphere approximation to the parallel single wall
mobility is given by a combination of a near-wall expression
derived using lubrication theory and a truncated expansion
in powers of a/H which is more accurate further from the
wall. The near-wall calculation involves a complicated ex-
pression which we do not reproduce here (see [81]), and it is
used when H —a < 0.05a. When the blob is further from the
wall, we calculate the single wall parallel mobility from the
exact power series expansion truncated to fifth order [82],

1
M|(\ )(H) 1 9a la® 45a* a®

Lo " 16H " 8HS  256H*  16HS

(42)

Both MCSA (39) approximations are seen to be in very
good agreement with our numerical results away from
the wall in Fig. 1. Near the wall, the fact that we use a
minimally resolved “blob” model becomes relevant, and the
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Figure 2: Normalized diffusion coefficient for multiple time
step sizes using the midpoint (34,35) or the trapezoidal (43)
predictor-corrector schemes.

numerical results agree more with (40) than with (41,42).
The approximations (40) and especially (41,42) are intended
to work only for H > a. In particular, the Swan-Brady
Rotne-Prager-Blake tensor only ensures an SPD mobility
when the blobs do not overlap the wall or each other.
By contrast, our numerical calculation does not diverge
when the blob overlaps the wall, giving instead a mobility
that smoothly decays to zero as the centroid of the blob
approaches the wall, and is SPD for all blob configurations
as long as all blob centroids are inside the channel. Close
to the wall our numerical results are expected to be in close
agreement with the Rotne-Prager-Yamakawa-Blake tensor
[83], which is, unfortunately, not available in closed form.

B. Diffusion Coefficient

As explained in Section IV A we chose the midpoint form
of the predictor corrector (34,35), because this gives an
accurate diffusion coefficient even for large time step size At.
Here we confirm this by numerically estimating the time-
dependent diffusion coefficient of a single freely-diffusing
particle in a two dimensional periodic domain

a(®)l*)

for a range of time step sizes. For comparison, we also
try a simple trapezoidal predictor-corrector scheme that
replaces (34,35) with

x(s) = 5= (lla(t +5) -

q*,n+1 _ qn+At.7'n’U

At
qn+1 — qn_|_7 (J-n+j*,n+1) v. (43)

This scheme is also a first-order weakly accurate integrator,
but does not satisfy the property (36).

Figure 2 shows that the midpoint predictor correc-
tor (34,35) gives a diffusion coefficient that agrees with
the theoretical result x(s) = kgTu independent of s to
within statistical error for time step sizes as large as
B = At/t = 2xAt/h?* = 1.43, where 7 is the natural
diffusive time scale for this test. By contrast, the trape-
zoidal scheme (43) introduces a measurable truncation error
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already for 8 2 0.2. Both schemes include an RFD term
to approximate the (small) drift term present due to the
discretization showing that the RFD term does not ruin the
accuracy of the diffusion coefficient for the midpoint scheme.

C. Thermodynamic Equilibrium

One of the most important requirements on any scheme
that couples fluctuating hydrodynamics to immersed par-
ticles is to reproduce the Gibbs-Boltzmann distribution (4)
at thermodynamic equilibrium, independent of any dynam-
ical parameters such as viscosity. In prior work [19], we
confirmed that when fluid and particle inertia are consis-
tently included in the formulation, the numerical method
reproduces the correct equilibrium distribution for both the
particle positions and the appropriate Maxwell-Boltzmann
distribution for the particle velocities. In the overdamped
limit considered here there are no velocity degrees of free-
dom, but the method should still reproduce the correct
Gibbs-Boltzmann distribution (4) for sufficiently small time
steps. In this section we consider several scenarios and ver-
ify that the FIB method correctly reproduces the theoretical
equilibrium distribution. As we demonstrate next, in the
case of a non-constant mobility this necessitates the proper
inclusion of the stochastic drift terms using the specialized
temporal integration techniques we developed in Section IV.

1. Free Diffusion

In the continuum setting, for a single particle in a
periodic system translational invariance implies that the
mobility does not depend on the position of the particle,
and therefore 04 - M = 0. However, upon spatial discretiza-
tion, translational invariance is broken by the presence of
a fixed Eulerian grid on which the fluid equation is solved.
Even though the Peskin kernels give excellent translational
invariance of the mobility, there is still a fraction to a few
percent (depending on the kernel) variation in the mobility
as the particle position shifts relative to the underlying
grid. Here we show that our midpoint temporal integra-
tors correct for this and ensure a uniform equilibrium
distribution for the position of freely-diffusing particles.

In this test, 3000 particles are allowed to diffuse freely in a
periodic two-dimensional domain of size 16h x 16h. Because
the particles do not exert forces on each other, each of the
particles is statistically identical to an isolated particle dif-
fusing in the same domain (even though the particles are not
independent because of the hydrodynamic interactions [72]),
and at equilibrium their positions should be independent
and uniformly distributed in the periodic domain. A small
time step size corresponding to 8 ~ 0.01 is used to approach
the limit At — 0. The three-point Peskin kernel is used
in order to maximize the lack of translational invariance.

For testing purposes, we dropped the RFD and corrector
stages in the simple midpoint scheme (33)-(35) to obtain
the Euler-Maruyama integrator,

UepT ~
_ _ Qnpn n
nLv + Gm S"F" + AtAVDW
Dv =0
" = ¢" + AtT . (44)

Note that this temporal integrator is inconsistent with
the kinetic interpretation of the noise term, i.e., it is not
consistent with the Fokker-Planck equation (5); it is biased
even in the limit At — 0.
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Figure 3: (Left panel) Normalized equilibrium probability distribution for finding a free particle at a particular position inside
a grid cell when using the Euler-Maruyama scheme (44). A slightly nonuniform distribution is observed, in disagreement with
the correct uniform Gibbs-Boltzmann distribution. This error does not vanish in the limit At — 0. (Right panel) Using the
midpoint scheme (33)-(35) preserves the correct distribution. The small residual artifacts disappear in the limit At — 0. The
same color scale (with variation in the range 0.985 — 1.015) is used for both panels.

The Euler-Maruyama method was compared with our
midpoint scheme (33)-(35) by computing an empirical
histogram for the equilibrium distribution of the position of
a particle inside a cell (due to translational invariance of the
periodic grid the distribution is the same in all grid cells).
The results in Fig. 3 show small but clear artifacts in the
equilibrium distribution when using the Euler-Maruyama
(44) scheme, specifically, the particle is more likely to be
found near the corners of the grid cell instead of the center
of the grid cell. By contrast, our consistent integrator
(33)-(35) give a uniform distribution for the position of
the particle for sufficiently small time step sizes; the same
is true for the improved integrator (38), not shown.

2. Diffusion in a slit channel

One key strength of the FIB method is the ability to
handle non-periodic boundary conditions. In this test
particles are placed in a two-dimensional channel and
allowed to diffuse freely. When a particle comes within
a cutoff range w from one of the two no-slip walls, it is
repelled with a harmonic potential with spring stiffness &,

k
UH)==(H—-w)* if H<w and zero otherwise,

2

(45)
where H is the distance of the particle from the wall. The
total potential for the equilibrium distribution is the sum of
the top and bottom wall potentials. A long equilibrium run
is performed in order to compute an empirical histogram
for the marginal equilibrium distribution P(H) for finding
a particle at a given distance H from the nearest wall (note
that all particles are statistically identical). We perform
the simulations in two dimensions in order to maximize
the statistical accuracy. The values of the simulation
parameters are given in Table I. Note that here we employ
a relative large time step size in order to test the robustness
of our temporal integrators.

As illustrated in Fig. 4, the results of the mid-

Number of particles 100 (midpoint) or 1 (Euler)
wall “spring” constant k 6 (kBT/hQ)
wall potential range w 2h
dimensionless time step size 3 0.023
domain width L, 8h
domain height L, 16h

Table I: Parameters used for the slit channel simulation results
shown in Fig. 4.

point algorithm (33) with 100 particles compares
favorably to the correct Gibbs-Boltzmann distribution
P(H) = Ztexp(—U(H)/kpT). We also test the biased
Euler-Maruyama scheme (44) for a single particle. This
scheme does not reproduce the thermal drift term from Eq.
(18), and thus yields an unphysical result where particles
are more likely to be found near the boundaries (see also
discussion in Section III.C in Ref. [37]).

In fact, the equilibrium distribution preserved by the
biased scheme (44) in the limit At — 0 can be calculated
analytically for a single particle. For one particle in a
slit channel, the z and y components of (1) decouple,
and the only interesting dynamics occurs in the direction
perpendicular to the channel walls. The Euler-Maruyama
scheme (46) is consistent with the Ito equation

‘% = —pL(H)U'(H) + /2kpTu. (H) Wa (t) . (46)

By adding and subtracting kg7, (H) we can convert this
into the kinetic stochastic interpretation,

% —  —p (H)U'(H) + /2kpTu, (H)Ws (1)
+kpT ', (H)
=— pi(H)U'(H) + /2kpTp, (H) o Wa (t),
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Figure 4: Probability distribution of the distance H to one of
the walls for a freely-diffusing single blob (Euler-Maruyama
scheme (44)), as well as many non-interacting (midpoint scheme
(33)) blobs, in a two dimensional slit channel. The correct
(unbiased) (4) and the biased (47) Gibbs-Bolzmann distribution
are shown for comparison.

where the biased potential is
U(H) = U(H) + kpT In(u (H)).

This shows that the Euler-Maruyama scheme (46) preserves
the biased Gibbs-Boltzmann distribution corresponding

to the biased potential U (H),

Pg(H)=Z "exp (- i;?) . (47)

The biased distribution Pg(H) is shown in Fig. 4
with g, calculated numerically (see Fig. 1). The biased
distribution indeed matches the simulation results from
the Euler-Maruyama scheme, confirming that the correct
equilibrium distribution is not preserved without the RFD
term and predictor-corrector steps. At the same time, we
see that the temporal integrator (33)-(35) preserves the
correct thermodynamic equilibrium distribution even in
the presence of confinement.

3. Colloidal suspension

In this section we verify that our FIB algorithm gives the
correct equilibrium distribution P (q) for a multi-particle
system by computing the radial (pair) distribution
function (RDF) g(r) for a periodic collection of N colloidal
particles interacting with a pairwise repulsive truncated
Lennard-Jones (LJ) potential V (r),

N

U@=> V(la-gl),

ij=1

as described in more detail in Section 4.1 in Ref. [19]. The
parameters used for these simulations are given in Table
II, and the GPU-based code fluam with the three point
kernel is used for these simulations [19]. In the left panel
of Fig. 5 we compare g(r) between a simulation where the
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grid spacing Ax 1
grid size 323
shear viscosity n 1
time step size At Variable
temperature kgT 1073
LJ strength e 1073
LJ / hydro diameter o 2

number of particles N [1000 (dilute) or 3300 (dense)

Table II: Parameters used in the colloidal suspension equilibrium
simulations shown in Fig. 5.

particles are immersed in an incompressible viscous solvent,
and a standard computation of the equilibrium RDF
using a Monte Carlo algorithm to sample the equilibrium
distribution (4). We test the FIB algorithm at two different
densities, a dilute suspension corresponding to a packing
fraction based on the LJ diameter of ¢ ~ 0.13, and a dense
suspension (close to the freezing point) at packing fraction
¢ =~ 0.42. Note that while the minimally-resolved model
here cannot accurately model the dynamics (hydrodynamic
interactions) at high packing fractions [31, 51|, we do obtain
the correct equilibrium properties because our formulation
and numerical scheme obey discrete fluctuation-dissipation

balance for any interaction potential and any viscosity.
As seen in Fig. 5, we obtain excellent agreement with
the Monte Carlo calculations even for time steps close to
the stability limit. The Brownian time scale here is[101]
a®>  6ma’n

BT T kgl

~2-10%,

and the time step size is primarily limited (to At < 100,
corresponding to 8 = 0.005, for the dilute suspension,
and At < 50 for the denser suspension) by stability
requirements relating to the presence of the stiff LJ
repulsion between the particles. Note that the time step
size in these simulations is substantially larger than those
required in the Inertial Coupling scheme developed by some
of us in Ref. [19] (there, a time step of At =1 was used).

D. Particles in Shear Flow

In this section we verify the the FIB method correctly
models the dynamics of hydrodynamically-interacting Brow-
nian particles by computing time correlation functions of
the positions of particles in shear flow. Particles are an-
chored with a harmonic spring to their initial locations and
subjected to shear flow, as can be experimentally realized
by using optical tweezers to apply the potential [84]. Bram-
mert, Holzer, and Zimmerman have performed theoretical
analysis of this system [85, 86] and provide explicit expres-
sions used to test the accuracy of our scheme. The numer-
ical results presented below demonstrate the ability of our
midpoint schemes to correctly reproduce the effect of hydro-
dynamic interactions between distinct immersed particles.

Note that it is not possible to have an unbounded system
in a finite-volume approach; a finite system is necessary
and it is most convenient to use a large but finite periodic
system [102]. In these tests, we add a background shear
flow with velocity w to the periodic fluctuating component
v calculated by the steady Stokes solver; this mimics com-
mon practice in Brownian dynamics simulations of polymer
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Figure 5: Radial pair correlation function g(r) for a suspension
of particles interacting with repulsive Lennard-Jones potentials
at packing fractions ¢ ~ 0.13 (dilute) and ¢ =~ 0.42 (dense).
Results from two different time step sizes are compared to
Monte Carlo (MC) simulations.

| domainwidth, L | 64n |
hydrodynamic radius, a 1.04h
spring constant, k l(k‘BT/h2)

time step size 2£  0.22, 0.11, 0.02
diffusive CFL number 3[0.45, 0.22, 0.05
Weissenberg number 1.0

Table III: Parameters for the simulation of a single particle
in shear flow.

chains in flow [26]. We will define y as the direction of shear,
and z as the direction of flow. The background flow is of the
form w (z,y) = (%y,0,0) for some constant 4. Note that
the total flow w + v is a solution to the Stokes equations
with the same forces that generated v, but with boundary
conditions modified to match the added background flow.
The resulting velocity of the particle is then J (q)v+J (q)u.
With a spherically symmetric kernel and the constant-shear
flow u, we have J (q)u = u(q). To implement the addition
of the background flow, we calculate Jv without any mod-
ification for the shear flow, and then separately add u(q).
The temporal scheme is then the same as (33)-(35) but

with J" replaced by J"v + u (¢") and likewise J"* % v
is replaced by J"+%v+u (q”*é . Note that here q is the

position of the particle not on the periodic torus but in an
unbounded domain obtained by periodically replicating the
fixed unit cell. In our tests the particles are localized to a
single unit cell and do not interact with periodic image parti-
cles; in more general situations such as sheared suspensions
more complicated approaches (reminiscent of Lees-Edwards
boundary conditions commonly employed in molecular dy-
namics) are necessary to account for the lack of periodicity
in shear flow [87]. Alternatively, one can use periodic
flows of the form u, ~ sinky with k sufficiently small (i.e.,
periodic box sufficiently large) to approach the limit & — 0.
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domain width, L | 32h |
well separation, b 5h
hydrodynamic radius, a 1.25h
spring constant, k  |10(ksT/h?)
time step size 2¢ 0.3, 0.08
diffusive CFL numbers | 0.06, 0.015
Weissenberg number 1.0

Table IV: Parameters for the simulation of two particles in
shear flow.

1. A Single Particle

In this simulation, a single particle is placed in a back-
ground shear flow and is attached to an anchor location, g,
by a harmonic spring with potential U = (k/2) [|q — go*.
The strength of the shear flow relative to the harmonic
force is measured with the dimensionless Weissenberg

number, Wi = 47, where 7 = (uk) ™" is the timescale of
the particle’s relaxation to its anchor location due to the
harmonic spring. Theoretical results are given for three
dimensions in Ref. [85], but the analysis also holds in two
dimensions with the appropriate diffusion coefficient. We
perform the single-particle tests in two dimensions and
the two-particle tests in three dimensions.

The simulation parameters are given in Table III. The
strength of the spring is such that the equilibrium Gaussian
distribution for ||g — g, || has a standard deviation of h
(one grid cell). We define the fluctuation Z = x — (x), where
(x) is the average position, and similarly for y. The time
correlations Cyy (t) = (Z(¢)Z(0)), Cyy(t) = (§(t)y(0)) , and
Coy(t) = (Z(t)y(0)) are then calculated and compared to
the known theoretical results [85],

A kT Wi? t

Cralt) = 2= [1+ L (H'T')}etw
. kT Wi t

Coy(t) = %7’ (1+2TH(t)) e,

where H(t) is the Heaviside function. The time correlations
in the direction of shear, Cy,(t), are not influenced by the
background flow and are omitted. It can be seen in Fig.
6 that the simulation results converge to the correct time
correlations as the time step size is reduced, which confirms
that the FIB method’s accurately captures the dynamics of
an immersed particle subject to external forcing and flow.
Significantly more accurate time correlation functions
can be obtained by using the improved midpoint scheme
(38). Because the equations of motion of a single blob in
shear flow are additive-noise equations, the improved mid-
point scheme is second-order accurate. This is confirmed
in Fig. 6 where we see that the second-order scheme is
able to obtain the same accuracy as the first-order scheme
with a time step that is an order of magnitude larger.

2. Two Particles

In the previous section, we tested the ability of our al-
gorithm to reproduce the dynamics of a single particle.
We now test the ability of our approach also correctly
capture the hydrodynamic interactions between particles.
We extend the previous simulation to include two particles,
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Figure 6: Normalized time correlation functions for a single particle in a harmonic potential in the presence of shear flow. As
the time step size is reduced, the numerical results converge to the theoretical expressions, substantially faster for the improved
midpoint algorithm. Error bars of two standard deviations are drawn, and are generally on the order of symbol size. (Left panel)
Autocorrelation of the displacement of the particle in the direction of flow, (Z(t)Z(0)). (Right panel) Cross correlation of the

displacements in flow and shear directions, (Z(t)5(0)).

each in its own harmonic potential with minima separated
by vector of length b in the direction of flow, U(q) =

(k/2)11q — @y ll®, where g, are the positions of the min-
ima of the two harmonic wells. The shear flow used is the
same as in the previous section. In this simulation we study
the correlations between the motion of particle 1 and parti-
cle 2 (cross-correlations), as well as correlations of particle
1 with itself (self-correlations). The self-correlations are dif-
ferent from the single-particle case due to the disturbances
in the fluid caused by the presence of the second particle.
Theoretical results are calculated in Ref. [86] for an
infinite domain by linearizing the equations around the
equilibrium location of the particles g (which is in general
different from q,,;,,) and forming equations of motion for the
fluctuations ¢ = g — q under the assumption that q is small.
This leads to a simple Ornstein-Uhlenbeck process [86]
dq N NS - 1,_
5 = A4 kEM(@)q+ Bq+ M=(@W (1),

where A is the shear rate tensor, A1o = A45 = ¥ and all

(48)

other entries are zero, and B;; = 0; M ;1(q) (qgfi)n — (_l(k)>
Because we have chosen to have the shear flow in the
direction that separates the wells, we have that g = g,

if we choose 652) = ?152) = 0, and therefore B = 0 and
no derivatives of the mobility are required. Since we
employ periodic boundary conditions for the velocity in
our simulations, we approximate M(q) using a periodic
correction to the Rotne-Prager- Yamakawa tensor calculated
with an Ewald sum [88] and evaluated at position gq.
The simulation was run using a periodic three dimen-
sional domain, and the temperature was set such that
the standard deviation of the particles’ displacements was
V/10h, keeping the particles near the potential minima and
thus giving better agreement with the linearized theoretical
calculations. The simulation parameters are given in Table
IV. The numerical time correlation functions shown in
Figs. 7, 8 and 9 are in good agreement with the theoretical

results for the moderate time step size. The error is
improved as the time step size is decreased to better resolve
the relevant timescale. Note that the improved midpoint
scheme (38) gives better agreement with theoretical results,
as it is second-order accurate for this example because
the equations of motion are essentially linear. Note that
a visible mismatch with the theoretical curve is seen for
the cross-correlation (g1 (¢)g2(0)) in the right panel of Fig.
8; since the two midpoint schemes are in agreement with
each other this mismatch comes from the approximations
made in the theory.

E. Colloidal Gelation

In this section, we confirm that the FIB method correctly
reproduces the dynamical effect of multi-particle hydro-
dynamic interactions for a collection of colloidal particles
interacting via excluded-volume (non-bonded) interactions
with an attractive tail. It has been demonstrated that
hydrodynamic interactions play a significant role in the pro-
cess of colloidal gelation [89]. Here we use the FIB method
to study a model test example of colloidal cluster dynamics,
and compare the FIB results to those of traditional
Brownian Dynamics (with hydrodynamic interactions).

As a simple test problem illustrating the effect of
hydrodynamics on gelation, a 13-particle colloidal cluster
collapse example has been constructed in Ref. [89]. The
physical system consists of 13 blobs initially placed at the
vertices of an icosahedron (see Fig. 4 in Ref. [89]), and then
released to relax toward the thermodynamically-preferred
collapsed (bound) cluster of 13 spheres. In the absence
of hydrodynamic interactions the collapse is rapid. In
the presence of hydrodynamic interactions, however, the
cluster undergoes a slow rearrangement process through
multiple elongated configurations (see Fig. 4 in Ref. [89])
before it collapses. This results in a dramatic slowing down
of the collapse when hydrodynamics is accounted for.

The collapse of the cluster can be monitored via the
radius of gyration of the cluster R,(t). An ensemble
average (Ry(t)) over 64 trajectories obtained using the FIB
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grid spacing Az 3.27
grid size 323
shear viscosity 7 1

time step size At |0.05 (simple) or 0.1 (improved)

temperature kpT 12.3

LJ strength € 10

LJ / hydro diameter o 6.4

number of particles N 13

Table V: Parameters used in the colloidal cluster collapse
simulations shown in the right panel of Fig. 5. These are
chosen to match those in Ref. [89] as closely as possible.

method is shown in Fig. 10. In the first set of simulations,
we employ periodic boundary conditions with a grid of
323 cells and use the GPU-based code fluam with the
three-point Peskin kernel [19] and the simple midpoint
integrator. The second set of simulations were performed
using IBAMR on a periodic grid of 643 cells with the
four-point kernel and the improved midpoint integrator.
We use the Asakura-Oosawa depletion force with a repulsive
Lennard-Jones interaction, following Ref. [89]. Important
parameters of our simulations are summarized in Table V.

It is important to note that the time step size used for
these simulations is much smaller than the Brownian time
scale T = a2/x ~ 50. This is because the time step size
here is severely limited by stability considerations. The stiff
hard-core repulsion between the particles and the fact that
the particles are close to each other due to the attractive
tail combine to make the simple midpoint scheme unstable
for At > 0.05 (determined empirically). The improved mid-
point scheme shows slightly improved stability and we have
successfully used it for At = 0.1, however, the cost per time
step is approximately doubled so this improvement is not
substantial. Achieving larger time step sizes and avoiding
exploding (unstable) trajectories requires specialized tem-
poral integration methods such as Metropolization[103] [90].
Note that in a small fraction of the trajectories (we only ob-
served two such trajectories) the cluster dissolves instead of
collapsing. This could be the signature of a rare event but
it could also be an artifact of numerical instabilities arising
from the stiff interparticle potentials; lacking better statis-
tics we have excluded these trajectories from the averages.

In Ref. [89], the authors compare their method to BD
without hydrodynamic interactions (HI) (i.e., employ a mo-
bility that it a diagonal matrix), but do not compare to BD
with hydrodynamic interactions. In the right panel of Fig.
10 we compare the results from the FIB method to BD with
and without HI. We included hydrodynamics using the free-
space Rotne-Prager-Yamakawa (RPY) mobility (7), and
employed a simple Euler-Maruyama integrator with time
step size At = 0.05 instead of the Fixman method since the
divergence of the free-space RPY mobility vanishes identi-
cally. The results in Fig. 10 demonstrate that both BD-with
HI and the FIB method reproduce the slowing down (rel-
ative to BD without HI) in the cluster collapse and agree
with each other. While inclusion of higher-order effects such
as stresslets and lubrication , may lead to some quantitative
differences, our results are already in good agreement with
those in Fig. 4 in Ref. [89] and indicate that the primary
effect comes from the far-field hydrodynamic interactions.
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Figure 10: Relaxation of the radius of gyration of a colloidal
cluster of 13 spheres toward equilibrium, as obtained by
averaging 64 independent simulations. The FIB method is
compared to traditional Brownian Dynamics (BD) with and
without hydrodynamic interactions (HI). For comparison, FIB
simulations were performed both using the fluam code with the
three-point kernel and a domain of 32% grid cells, as well as using
the IBAMR code with the four-point kernel and 642 grid cells.

VI. Conclusions

We have developed a method for performing Brownian
Dynamics (BD) with hydrodynamic interactions in con-
fined geometries such as slit or square channels or chambers.
Unlike traditional methods for BD, our FIB method does
not rely on analytical Green’s functions, and only requires
the numerical solution of a single steady Stokes system per
time step to capture both the deterministic, stochastic, and
thermal drift contributions to the overdamped dynamics of
the hydrodynamically-coupled particles. The FIB method
is particularly appealing when dealing with more complex
boundary conditions such as confined flows in non-trivial
channel geometries, since analytical solutions are quite
involved and ensuring a positive semi-definite mobility is
nontrivial, even in the presence of only a single no-slip pla-
nar wall [15, 32]. Computing analytical solutions in cases
where there are osmophoretic flows at the boundaries, as in
active suspensions of particles [48], is essentially impossible
because the boundary condition itself comes from the solu-
tion of another nontrivial reaction-diffusion problem. The
only alternative would be to use relatively-expensive and
complex boundary integral methods [91-93], none of which,
to our knowledge, include the effects of thermal fluctuations.

Following the completion of this work we learned about
a related recent extension of the SELM approach to use a
(P1-MINT) finite-element Stokes solver to generate the hy-
drodynamic response [55], very similar to the approach we
independently took in this work. Note, however, that our
temporal integrators are different from the Euler-Maruyama
scheme used in Ref. [55], which requires calculating the
divergence of the mobility by other means (We remark
that the issue of computing the divergence of the mo-
bility does not appear to be addressed directly in Ref.
[55].). In terms of spatial discretizations, the key relation

—L7'LL7 = £71 is used in both works to generate the



correct stochastic increments by simply solving the saddle-
point steady Stokes problem. A key difference, however,
is that on the structured MAC grid used in this work the
generation of a stochastic stress tensor with covariance
~ —L is straightforward [69], where as accomplishing the
same for unstructured FEM grids appears to require an
iterative stochastic multigrid method [55]. Furthermore,
the P1-MINI discretization is only first-order spatially accu-
rate and requires more degrees of freedom (DOF) per cell,
where as the structured staggered (MAC) grid (which can
be thought of as a particular FEM discretization) achieves
second-order spatial accuracy with only a single velocity
DOF per grid face and a single pressure DOF per cell
center. This makes the methods developed here particu-
larly attractive, due to their simplicity and efficiency, in
simple confined geometries such as channels or chambers.
At the same time, unstructured FEM discretizations have
a notable advantage for complex geometries. Additionally,
achieving variable spatial resolution is natural on unstruc-
tured grids [55] but requires (block structured) adaptive
mesh refinement (AMR) techniques [77] on structured grids.
Adaptive resolution is very important at low densities of sus-
pended particles to avoid using a fine spatial grid to resolve
long-ranged hydrodynamics; this is in fact a key advantage
of using Green’s functions instead of numerical solvers. In
future work we will consider solving the fluctuating Stokes
equations on block-structured refined staggered grids.
The FIB method presented here and related methods
[20, 55] are only a first step toward the ultimate goal of
performing Brownian (i.e., overdamped) dynamics for
a collection of rigid and flexible bodies in flow in the
presence of complex boundaries. Achieving that goal may
ultimately require a combination of techniques, such as
multipole series, immersed boundary [94] and immersed
finite-element [18], or boundary integral representations for
the suspended structures, together with cut cell (embedded
boundary) or finite-element methods [55] for representing
the complex geometry. What our work makes evident is
that thermal fluctuations are most easily and consistently
included by using fluctuating hydrodynamics combined
with appropriate multiscale temporal integrators. This
illustrates the power of a bottom-up approach in which
one starts with the fundamental formulation of the fluid
dynamics of suspensions [41-43] and then coarse-grains in
space and time to reach larger length scales and longer time
scales, instead of starting at the top from a formulation of
the equations of motion that contains difficult-to-calculate
objects such as multi-body mobility or resistance tensors
that hide all of the coarse-grained information inside them.
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Appendix
A. Weak Temporal Accuracy

In this Appendix we show that the algorithms outlined
in Section IV are first order weakly accurate temporal
integrators for the system (18). It suffices to show that the
first three moments of the numerical one-step increment
in time match to first order the moments of the exact
increment [95]. Without loss of generality, we consider
the case n = 1 for this analysis. The RFD term (37)
introduces an error proportional to 62. This is a spatial
truncation error and will be ignored in the context of
temporal accuracy. Note that in practice, § will be a very
small fixed value that introduces a negligible truncation
error to the approximation of the thermal drift.

For the continuous equation, we have, to first order,

A% = gal(n+1)AY) - gu(nA)
= At( auﬁ/,u/ Vﬂ)F

+ 2‘ZCBT/ au ;u/ ,/,BdW,B

+ AETO, - (T2, L080) + 0 (AtF),

ap™~ py

(A1)

where J, & and F' are evaluated at the beginning of the
time step. The first moment of the true increment is

E[AY] = AtT™ L

ap ,ul/

jorzlp, ;u}a (Sn )+8’Y(j(;7p,) ;/,1/181’7‘|

SisFy + 0 (At?)

+ AtkpT

1. First Order Midpoint Scheme

Looking at the discrete increment to first order, we get,
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Inserting the expression for the predictor increment
q"‘*‘% — q", simplifying and ignoring terms of order At2,
along with terms of order At? with zero expectation, and
terms of order 42, we obtain

AL = AT Lo S)F]
+ ALRRT T2 Lok 0, () WIS
AtkpT n 1D W L£7ID W
+ a4 (el DeagWiy) L2 DoV

[2kg T At
+ AV — Tl

The first moment of this increment is obtained by
using the adjoint relation J,e = Sey AV, as well as

LD, Wh + 0O (At%) .

£33 Denlyit Dus (WaWE ) = £ Doy Doyt = L2
virtue of (20),
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n
AL = g0t —ah = At Ty Lo
At k‘BT " n+i n 1
S0 () (47 - ap) £
AtkpT _, .,
5 jauﬁﬁw

Inserting the expression for the predictor increment and
removing terms that are either O(At2), O(At2) with mean

5N7L — P
|:Suﬁ(qn + §W W5 —Sup(q" — W

(

which matches the O (At) terms in the continuous
increment (A1).

The second moment of the discrete increment,

E[ALAYL] = 2AtkpT Japl;pSun + O(A?),

also matches the continuous second moment to second
order. Finally the third moments are both O(At?), because

3
the order At2 terms are mean zero.

2. Improved Midpoint Scheme

We show here that the scheme given by Eq. (38) is also
first order weakly accurate. The discrete increment for
this scheme to first order is

n n kBT n,1 n,2
vel's T\ Ay arPve (! w;?)

Dus (Wg s 2)

")Wg‘} +0 (ath).

(

zero, or O(6?), we get,
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The second and third terms on the right hand side of this
expression give us the thermal drift. The first moment is
identical to that of the simple scheme to O (At), as is the
second moment. The third moments of both the discrete
and continuous terms are already each O(At?). Note that
for the special case of additive noise, such as for example
the linearized equation (48), the improved midpoint scheme
can be shown to match the first five moments of the true
increment to O (At2), and is thus weakly second-order

accurate (see Appendix Al in Ref. [68]).
B. Including Stresslet Terms

As summarized in Section II C and discussed at length
in the work of Maxey and collaborators [51, 52, 62], the
simple coupling between the fluid and the particles used
here correctly reproduces the hydrodynamic interactions
between particles only up to the Rotne-Prager level
(including in the presence of boundaries). This is because
only the monopole term (Stokeslet) is included in the
fluid-particle force, along with the Faxen correction for the
resulting particle velocity. As a consequence the present
approach can only accurately resolve the fluid flow at
distances larger than the typical size of the particles. For
traditional applications of Brownian Dynamics such as
polymeric fluids [26, 27, 29, 96] this is probably sufficient,
since polymer chains are themselves described at a
coarse-grained level and in reality they are not made of a
collection of rigid spheres linked with spheres or rods. For
colloidal suspensions, however, at higher packing densities
one must include higher-order multipole terms in order to
more accurately capture the hydrodynamics, as done in the
method of Stokesian Dynamics [31] and the improved Force
Coupling Method (FCM) [51]. This amounts to including
the anti-symmetric component of the dipole (rotlet) and
the symmetric components of the dipole (stresslet) force
terms. Note that here we do not discuss lubrication forces.

It is not difficult to extend our approach to also include
the rotlet contributions, as has been done by Keaveny [20]
in the fluctuating FCM method. Firstly, particle rotational
degrees of freedom would need to be added to the blob
description, along with an angular velocity w; for each blob.
We would need to impose an additional rotational no-slip
constraint, requiring that the particle rotate with the locally-
averaged angular velocity of the fluid, w = J (V x v) /2,
and distribute (spread) the torque 7 applied on the
particles as a torque density f,. = V x (S7) /2 in the fluid
momentum equation. This type of approach has already
been employed in deterministic immersed-boundary meth-
ods to model suspensions of neutrally-buoyant semi-rigid
rods [97, 98]. The FIB method and the discrete fluctuation-
dissipation results we presented continue to apply since
inclusion of rotation simply amounts to augmenting
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the local averaging and spreading operators. The main
difficulties are in developing a translationally-invariant and
accurate discretization for the curl operator and its adjoint
therot operator, including in the presence of boundaries.
Inclusion of the stresslet contributions, on the other
hand, is not trivial as it requires including an additional
rigidity constraint on the locally-averaged deformation
tensor, as proposed by Maxey and collaborators in the
context of the deterministic FCM [51] and extended to
account for thermal fluctuations by Keaveny [20]. In this
appendix we present the continuum formulation including
stresslets, and demonstrate that the random increments
can easily be generated by including the random stress in
the Stokes equations. This has already been observed and
proven by Keaveny in the Appendices of Ref. [20]; here we
present a simple proof using compact operator notation [17].
Importantly, we do not rely on periodic boundary condi-
tions and Fourier transform techniques, thus demonstrating
that the power of the fluctuating hydrodynamics approach
to modeling Brownian motion in confined suspensions.
We will omit rotlet contributions here by focusing on
the case when there are no torques applied on the particles
and assuming that the particles are spherical, so that their
orientation does not affect the external or inter-particle
forces. We can account for the rigidity of the particle by
including a constraint that the locally the rate of strain of
the fluid velocity vanish inside the particle, approximated
here in a spirit similar to the no-slip constraint (13) [51],

/5b (q; —7) [Vv (r,t) + V7o (r,t)| dr = (Kv), = 0.

(B1)
Here K (q) is linear integro-differential operator that
locally-averages the strain rate. In principle a different ker-
nel 0, # d, can be used here in order to better approximate
the behavior of a rigid sphere [51]. In the discrete setting
one would have to construct a discrete operator (matrix) IC
that gives good translational invariance; this is a nontrivial
task that amounts to constructing an immersed boundary
representation of force dipoles similar to that for monopoles
constructed by Peskin [54]. Enforcing the constraint (B1)
requires including Lagrange multipliers (stresslets) A; in
the velocity equation (9) [51], V -v =0 and

pow + V1 = 77V20+\/mv'z+fth (B2)
+ Y Fibalq;—7)+ Y AV (g —7),

where the unknown stresslets A; are symmetric traceless
d x d tensors that need to be solved for.

Putting the pieces together and using compact composite
operator notation we can write the equations of motion



including stresslet terms in a form that applies either to
the continuum or the spatially-discretized equations,

pov = nLv+ D*r+ K*A+ f (B3)
Dv =0
Kv =0
where A = {A4,..., Ay} are unknown stresslets and

f=JF+\/nkgT DW + f,,.

The (translational) dynamics of the particles continues
to be described by the no-slip condition dq/dt = Jv. It is
evident from the form of (B3) that the rigidity constraint
JICv = 0 is in principle no different from the divergence-free
constraint, except for the fact that IC (q) depends on the
configuration of the particles just like J (g) does. In fact,
as observed by Keaveny [20] and also used in Stokesian
Dynamics, the inclusion of stresslets simply amounts
to redefining the mobility matrix, and the overdamped
limiting dynamics for the positions of the particles is still
given by (3). Equation (3) in fact applies much more
generally and is not specific to multipole expansions.

The form of the modified mobility matrix can be
obtained by deleting the inertial term pdiv and solving
the augmented steady Stokes system (B3) using a Schur
complement approach, to obtain

(B4)

v= [z:—l — e (kete) ! m:—l} f=NT¥,

where £ is the (discrete) inverse Stokes operator given
by (29) (note the identical structure of £' and N'). This
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gives the mobility matrix
M=FNT* =JNS.

Just as without stresslets, by solving the steady Stokes
equation with the random forcing (B4) one can compute
both MF' and the stochastic increments. That, is the
square root of the mobility matrix can be taken to be

M? = JN'D, as evident from the identity
IN (DD )N*T* = TNS = M,

which is the generalization of (31) to account for stresslets.

This shows that, in principle, it is relatively straight-
forward to incorporate both boundary conditions and
stresslets into the FIB algorithm and thus do Stokesian
dynamics without Green’s functions. In practice, there
are significant challenges to surmount to accomplish this
goal. The main difficulty is that solving the system (B3)
efficiently in the presence of nontrivial boundary conditions
is hard and requires the development of novel precondition-
ers. For periodic domains one can use Fourier transform
techniques to diagonalize the Stokes operator, as used by
Keaveny [20], but in general one cannot easily decouple
the computation of the stresslets from solving the Stokes
system. Furthermore, a nontrivial generalization of the tem-
poral algorithms developed here is required to obtain the
correct thermal drift term which comes from the fact that
N (q) depends on the configuration because K (q) does.
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required response function and is easy to compute. Note
however that when simulating periodic domains (e.g.,
colloidal suspensions) one requires the Green’s functons
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Note, however, that Metropolization of even the simple
midpoint scheme is a rather nontrivial task because the
mobility matrix is never formed or factorized in FIB.



