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Motivation

Colloidal Gelation

Figure : Colloidal gelation simulated using Brownian Dynamics with HIs (from
work of James Swan, MIT Chemical Engineering).
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Motivation

Diffusion in Crowded Environments

Diffusion of proteins in the cell cytoplasm is strongly dominated by
hydrodynamics and crowding (Skolnick) [1].

Modeling this requires Brownian Dynamics with Hydrodynamic
Interactions that can handle hundreds of thousands of particles of
different sizes and shapes, some rigid, some perhaps flexible.

Thus, we have to give up on high accuracy methods such as
boundary integral formulations, but we cannot throw the baby out
with the bathwater and completely neglect hydrodynamics.

Paper most closely associated to this talk [2]:
”Rapid Sampling of Stochastic Displacements in Brownian
Dynamics Simulations”
A. M. Fiore, F. Balboa Usabiaga, A. Donev and J. W. Swan
J. Chem. Phys., 146, 124116, 2017 [Arxiv:1611.09322].
Codes at https://github.com/stochasticHydroTools/PSE
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Motivation

Goal of this talk

Brownian Dynamics with Hydrodynamic Interactions:
How to efficiently capture the effect of long-ranged
hydrodynamic correlations (interactions) in the Brownian
motion of 106 spherical colloids?

Because we want to simulate huge numbers of particles we have to
sacrifice accuracy and use a very low-resolution (far-field)
approximation for the hydrodynamics: “long-ranged hydrodynamic
interactions are sufficient for establishing the gel boundary, structure
and coarsening kinetics observed in experiments...” (Varga, Wang,
Swan, 2015)

Note: The problem of generating Gaussian variates with a covariance
specified by a long-ranged kernel has many other applications as
well, e.g., in data science, not discussed here.
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Brownian Dynamics

Brownian Dynamics with Hydrodynamic Interactions
(BD-HI)

The Ito equations of Brownian Dynamics (BD) for the (correlated)
positions of the N spherical particles Q (t) = {q1 (t) , . . . ,qN (t)} are

dQ = M · Fdt + (2kBT M)
1
2 dB + kBT (∂Q ·M) dt, (1)

where B(t) is a vector of Brownian motions, and F (Q) are forces.
Here M (Q) � 0 is a symmetric positive semidefinite (SPD) mobility
matrix, assumed to have a far-field pairwise approximation

Mij (Q) ≡Mij

(
qi ,qj

)
= R

(
qi − qj

)
.

Here we use the Rotne-Prager-Yamakawa (RPY) kernel:

R (r) =
kBT

6πηa


(

3a

4r
+

a3

2r3

)
I +

(
3a

4r
− 3a3

2r3

)
r ⊗ r

r2
, r > 2a(

1− 9r

32a

)
I +

(
3r

32a

)
r ⊗ r

r2
, r ≤ 2a

where a is the radius of the colloidal particles.
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Brownian Dynamics

Hydrodynamic Correlations

Observe that in the far-field, r � a, the RPY tensor becomes the
long-ranged Oseen tensor

R (r � a)→ 1

8πr

(
I +

r ⊗ r

r2

)
. (2)

To solve the equations of BD numerically (not the subject of this
talk), one needs two fast routines:

A fast matrix-vector product to compute MF.
This can be done using Fast Multipole Methods (FMM)
(Greengard) in an unbounded domain or using the Spectral Ewald
(SE) Method [3] (Tornberg) for periodic domains.

A fast method to compute M
1
2 W, where W is a vector of Gaussian

random variables. More precisely, we want to sample Gaussian random
variables with mean zero and covariance M.
First part of this talk: How to compute M

1
2 W using a fast method.
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Brownian Dynamics

Existing Approaches

The product M
1
2 W is usually computed iteratively by repeated

multiplication of a vector by M.

Traditionally chemical engineers have used an approach by Fixman
based on a Chebyshev polynomial approximation to the square root.

Recently, Chow and Saad have developed Krylov subspace Lanczos
methods [4] for multiplying a vector with the principal square root of
M = UΛUT ,

M
1
2 W ≡ UΛ

1
2 UT W ≈ ‖W‖2 VmH

1/2
m e1,

where Vm is an orthonormal basis for the Krylov subspace of order m,
and Hm = VT

mMVm is a tridiagonal matrix, both computed in the
course of a Lanczos iteration through m matrix-vector multiplies.

The Krylov method is vastly superior, but, because of the long-ranged
nature of the Oseen kernel the number of iterations is found to grow
with the number of particles, leading to an overall complexity of at
least O

(
N4/3

)
.
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Spectral Ewald approach to Brownian Dynamics

Near-Far field decomposition

Work done by Andrew Fiore and James Swan (MIT Chemical
Engineering), with help from Florencio Balboa (Courant).
We don’t really need to multiply any particular matrix “square root”
by W, rather, we want to generate a Gaussian random vector δU with
specified covariance, 〈(δU) (δU)T 〉 = M.
First key idea: Use (Spectral) Ewald approach to decompose
M = M(w) + M(r) into a far-field wave-space part M(w) and a
near-field real space part M(r), then in law,

M
1
2 W

d
=
(

M(w)
) 1

2
W(w) +

(
M(r)

) 1
2

W(r),

if both M(w) and M(r) are SPD and 〈W(w)W(r)〉 = 0.
For the real-space part, use the Krylov Lanczos method to compute(
M(r)

) 1
2 W(r) since M(r) is sparse and well-conditioned.

Second key idea: Compute M(w)F and
(
M(w)

) 1
2 W(w) in Fourier

space (using FFTs) as in fluctuating hydrodynamics.
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Spectral Ewald approach to Brownian Dynamics

Spectral RPY

We need to find an Ewald-like decomposition where both the real
space and wave space kernels decay exponentially and are SPD.

The most physically-relevant and simplest definition of RPY is the
integral representation:

R (r1, r2) = R (r1 − r2) =

∫
δa

(
r1 − r′

)
G
(
r′, r′′

)
δa

(
r2 − r′′

)
dr′dr′′,

where δa denotes a surface delta function on a sphere of radius a.

In other O(N) methods for BD other regularized delta functions have
been used (Peskin’s in fluctuating immersed boundary methods and
Gaussians in the fluctuating force coupling method).

Here the Green’s function for periodic Stokes flow is given by

G (x, y) =
1

µV

∑
k6=0

e ik·(x−y) 1

k2

(
I− k̂k̂

)
.

The surface delta functions in Fourier space give us a sinc factor.
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Spectral Ewald approach to Brownian Dynamics

Positively Split Ewald RPY

This gives us a previously-unappreciated simple spectral
representation of the periodic RPY tensor:

R (r) =
1

µV

∑
k6=0

e ik·r 1

k2
sinc2 (ka)

(
I− k̂k̂

)
. (3)

We can now directly apply Hasimoto’s Ewald-like decomposition [3]
to RPY to get the desired Positively Split Ewald (PSE) RPY

tensor, R = R(w)
ξ + R(r)

ξ ,

R(w)
ξ (r) =

1

µV

∑
k6=0

e ik·r sinc2 (ka)

k2
H(k, ξ)

(
I− k̂k̂

)
, (4)

where the Hasimoto splitting function is determined by the splitting
parameter ξ,

H(k, ξ) =

(
1 +

k2

4ξ2

)
e−k2/4ξ2

. (5)
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Spectral Ewald approach to Brownian Dynamics

Real-space part

Converting back to real space we get

R(r)
ξ (r) = F (r , ξ) (I− r̂r̂) + G (r , ξ) r̂r̂, (6)

where and F (r , ξ) and G (r , ξ) are scalar functions that both decay
exponentially in r2ξ2.
Analytical formulas are complicated but these can easily be tabulated
for fast evaluation.

Diagonal part is well-defined,

M
(r)
ii = R(r) (0) =

1

24π3/2µξa2

(
1− e−4a2ξ2

+ 4π1/2aξ erfc (2aξ)
)

I.

If we choose 0 ≤ H(k, ξ) ≤ 1 (satisfied by Hasimoto but not
Beenakker) we obtain SPD real and wave space parts.
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Spectral Ewald approach to Brownian Dynamics

Conditioning

ξa
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Figure : Condition number of M(r) for varying number of particles N [2].
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Spectral Ewald approach to Brownian Dynamics

Fourier-space part

The wave space component of the mobility can be applied efficiently
using FFTs as

M(w) = D−1BD =
(

D†B1/2
)(

D†B1/2
)†
, (7)

where D is the non-uniform FFT (NUFFT) of Greengard/Lee [3] and

B1/2 = Diag

(
1

µV

sinc2 (ka)

k2
H(k, ξ)

)1/2

.

This shows that the wave space Brownian displacement can be
calculated with a single call to the NUFFT,(

M(w)
) 1

2
W(w) ≡ D†B1/2W(w). (8)

This is basically equivalent to fluctuating hydrodynamics (putting
stochastic forcing on fluid rather than on particles) as in existing
methods, but now corrected in the near field.
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Spectral Ewald approach to Brownian Dynamics

Efficiency
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Figure : Particle timesteps per second (PTPS) for a random suspension of hard
spheres (φ = 0.1) implemented as a plugin to the HOOMD GPU framework.

Red=MF, blue=M
1
2 W using PSE, black=M

1
2 W without PSE.
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Suspensions of Nonspherical Particles

Rigid Multiblob Models

Figure : Blob or “raspberry”models of a spherical colloid.

The rigid body is discretized through a number of spherical“beads”or
“blobs” which interact via the Rotne-Prager-Yamakawa tensor.
Standard is stiff springs but we want rigid multiblobs [5].
We do this efficiently for 103 − 104 particles (105 blobs) using
iterative solvers and specially-designed temporal integrators.
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Suspensions of Nonspherical Particles

Nonspherical Rigid Multiblobs

Figure : Rigid multiblob models of colloidal particles manufactured in recent
experimental work.
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Suspensions of Nonspherical Particles

Example: Confined Boomerang Suspension

Figure : Quasi-periodic suspension of sedimented colloidal boomerangs.
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Suspensions of Nonspherical Particles

Conclusions

Ewald (Hasimoto) splitting can be used to accelerate both
deterministic and stochastic colloidal simulations in periodic domains.

Key is to ensure that both the near-field and far-field are
(essentially) SPD so one piece of the noise is generated using FFTs
and the other using an iterative method.

Using these principles we have constructed a linear-scaling
Brownian dynamics method (106 particles on a GPU), and a
linear-scaling fluctuating boundary element method.

The far-field can be done in non-periodic but finite domains using
a discrete Stokes solver and fluctuating hydrodynamics.
How about unbounded or doubly-periodic suspensions, e.g.,
diffusion on interfaces (e.g., lipid bi-layers)?

Can a similar idea be used with grid-free fast multipole
methods?
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Suspensions of Nonspherical Particles
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