

Fast Brownian Dynamics for Colloidal Suspensions

Aleksandar Donev, CIMS

and collaborators:

Florencio Balboa (CIMS)

Andrew Fiore and **James Swan** (MIT)

Courant Institute, *New York University*

Modeling Complex Fluids and Gels for Biological Applications

May 5th 2017

Colloidal Gelation

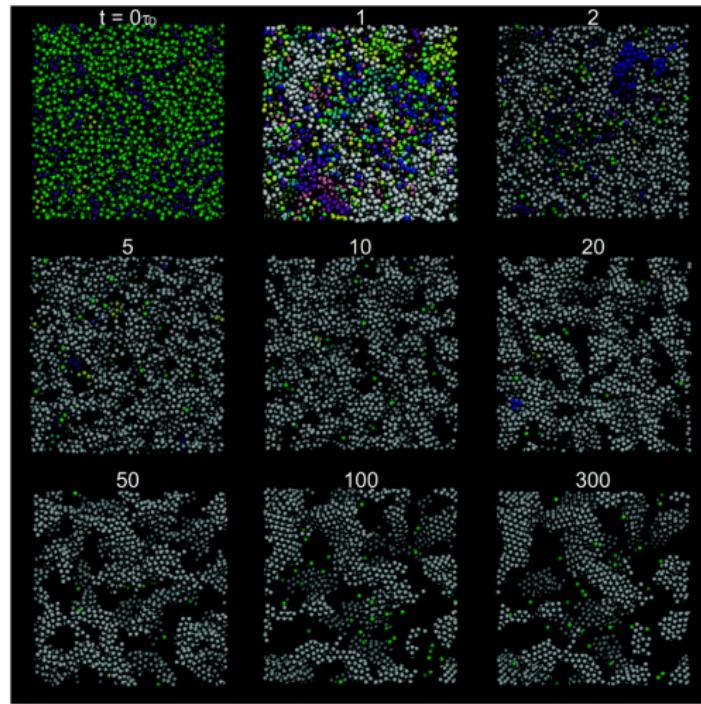


Figure : Colloidal gelation simulated using Brownian Dynamics with HIs (from work of James Swan, MIT Chemical Engineering).

Diffusion in Crowded Environments

- Diffusion of proteins in the cell cytoplasm is strongly dominated by **hydrodynamics and crowding** (Skolnick) [1].
- Modeling this requires **Brownian Dynamics with Hydrodynamic Interactions** that can handle hundreds of thousands of particles of **different sizes and shapes**, some rigid, some perhaps flexible.
- Thus, we have to **give up on high accuracy** methods such as boundary integral formulations, but we cannot throw the baby out with the bathwater and completely neglect hydrodynamics.
- Paper most closely associated to this talk [2]:
"Rapid Sampling of Stochastic Displacements in Brownian Dynamics Simulations"
A. M. Fiore, F. Balboa Usabiaga, A. Donev and J. W. Swan
J. Chem. Phys., 146, 124116, 2017 [**Arxiv:1611.09322**].
Codes at <https://github.com/stochasticHydroTools/PSE>

Goal of this talk

- **Brownian Dynamics with Hydrodynamic Interactions:**
How to efficiently capture the effect of long-ranged hydrodynamic correlations (interactions) in the Brownian motion of 10^6 spherical colloids?
- Because we want to simulate huge numbers of particles we have to sacrifice accuracy and use a very low-resolution (far-field) approximation for the hydrodynamics: “**long-ranged hydrodynamic interactions** are sufficient for establishing the gel boundary, structure and coarsening kinetics observed in experiments...” (Varga, Wang, Swan, 2015)
- Note: The problem of generating Gaussian variates with a covariance specified by a long-ranged kernel has many **other applications** as well, e.g., in data science, not discussed here.

Brownian Dynamics with Hydrodynamic Interactions (BD-HI)

- The Ito equations of **Brownian Dynamics** (BD) for the (correlated) positions of the N spherical particles $\mathbf{Q}(t) = \{\mathbf{q}_1(t), \dots, \mathbf{q}_N(t)\}$ are

$$d\mathbf{Q} = \mathbf{M} \cdot \mathbf{F} dt + (2k_B T \mathbf{M})^{\frac{1}{2}} d\mathcal{B} + k_B T (\partial_{\mathbf{Q}} \cdot \mathbf{M}) dt, \quad (1)$$

where $\mathcal{B}(t)$ is a vector of Brownian motions, and $\mathbf{F}(\mathbf{Q})$ are forces.

- Here $\mathbf{M}(\mathbf{Q}) \succeq \mathbf{0}$ is a symmetric positive semidefinite (SPD) **mobility matrix**, assumed to have a far-field **pairwise approximation**

$$\mathbf{M}_{ij}(\mathbf{Q}) \equiv \mathbf{M}_{ij}(\mathbf{q}_i, \mathbf{q}_j) = \mathcal{R}(\mathbf{q}_i - \mathbf{q}_j).$$

- Here we use the **Rotne-Prager-Yamakawa (RPY) kernel**:

$$\mathcal{R}(\mathbf{r}) = \frac{k_B T}{6\pi\eta a} \begin{cases} \left(\frac{3a}{4r} + \frac{a^3}{2r^3}\right) \mathbf{I} + \left(\frac{3a}{4r} - \frac{3a^3}{2r^3}\right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2}, & r > 2a \\ \left(1 - \frac{9r}{32a}\right) \mathbf{I} + \left(\frac{3r}{32a}\right) \frac{\mathbf{r} \otimes \mathbf{r}}{r^2}, & r \leq 2a \end{cases}$$

where a is the radius of the colloidal particles.

Hydrodynamic Correlations

- Observe that in the far-field, $r \gg a$, the RPY tensor becomes the **long-ranged** Oseen tensor

$$\mathcal{R}(r \gg a) \rightarrow \frac{1}{8\pi r} \left(\mathbf{I} + \frac{\mathbf{r} \otimes \mathbf{r}}{r^2} \right). \quad (2)$$

- To solve the equations of BD numerically (*not* the subject of this talk), one needs two fast routines:
 - A fast matrix-vector product to compute **MF**.
This can be done using **Fast Multipole Methods (FMM)** (Greengard) in an unbounded domain or using the **Spectral Ewald (SE) Method** [3] (Tornberg) for periodic domains.
 - A fast method to compute $\mathbf{M}^{\frac{1}{2}}\mathbf{W}$, where \mathbf{W} is a vector of Gaussian random variables. More precisely, we want to sample Gaussian random variables with mean zero and covariance \mathbf{M} .
First part of this talk: **How to compute $\mathbf{M}^{\frac{1}{2}}\mathbf{W}$ using a fast method.**

Existing Approaches

- The product $\mathbf{M}^{\frac{1}{2}}\mathbf{W}$ is usually computed iteratively by **repeated multiplication** of a vector by \mathbf{M} .
- Traditionally chemical engineers have used an approach by **Fixman** based on a Chebyshev polynomial approximation to the square root.
- Recently, Chow and Saad have developed Krylov subspace **Lanczos methods** [4] for multiplying a vector with the principal square root of $\mathbf{M} = \mathbf{U}\Lambda\mathbf{U}^T$,

$$\mathbf{M}^{\frac{1}{2}}\mathbf{W} \equiv \mathbf{U}\Lambda^{\frac{1}{2}}\mathbf{U}^T\mathbf{W} \approx \|\mathbf{W}\|_2 \mathbf{V}_m \mathbf{H}_m^{1/2} \mathbf{e}_1,$$

where \mathbf{V}_m is an orthonormal basis for the Krylov subspace of order m , and $\mathbf{H}_m = \mathbf{V}_m^T \mathbf{M} \mathbf{V}_m$ is a tridiagonal matrix, both computed in the course of a Lanczos iteration through m matrix-vector multiplies.

- The Krylov method is vastly superior, but, because of the long-ranged nature of the Oseen kernel the number of iterations is found to grow with the number of particles, leading to an overall complexity of at least $O(N^{4/3})$.

Near-Far field decomposition

- Work done by **Andrew Fiore and James Swan** (MIT Chemical Engineering), with help from **Florencio Balboa** (Courant).
- We don't really need to multiply any particular matrix "square root" by \mathbf{W} , rather, we want to generate a Gaussian random vector $\delta\mathbf{U}$ with specified covariance, $\langle(\delta\mathbf{U})(\delta\mathbf{U})^T\rangle = \mathbf{M}$.
- *First key idea:* Use (Spectral) Ewald approach to decompose $\mathbf{M} = \mathbf{M}^{(w)} + \mathbf{M}^{(r)}$ into a **far-field wave-space part** $\mathbf{M}^{(w)}$ and a **near-field real space part** $\mathbf{M}^{(r)}$, then in law,

$$\mathbf{M}^{\frac{1}{2}}\mathbf{W} \stackrel{d}{=} \left(\mathbf{M}^{(w)}\right)^{\frac{1}{2}}\mathbf{W}^{(w)} + \left(\mathbf{M}^{(r)}\right)^{\frac{1}{2}}\mathbf{W}^{(r)},$$

if **both** $\mathbf{M}^{(w)}$ and $\mathbf{M}^{(r)}$ are **SPD** and $\langle\mathbf{W}^{(w)}\mathbf{W}^{(r)}\rangle = \mathbf{0}$.

- For the real-space part, use the Krylov Lanczos method to compute $(\mathbf{M}^{(r)})^{\frac{1}{2}}\mathbf{W}^{(r)}$ since $\mathbf{M}^{(r)}$ is **sparse and well-conditioned**.
- *Second key idea:* Compute $\mathbf{M}^{(w)}\mathbf{F}$ and $(\mathbf{M}^{(w)})^{\frac{1}{2}}\mathbf{W}^{(w)}$ in **Fourier space (using FFTs)** as in fluctuating hydrodynamics.

Spectral RPY

- We need to find an Ewald-like decomposition where both the real space and wave space kernels decay exponentially and are SPD.
- The most physically-relevant and simplest definition of RPY is the integral representation:

$$\mathcal{R}(\mathbf{r}_1, \mathbf{r}_2) = \mathcal{R}(\mathbf{r}_1 - \mathbf{r}_2) = \int \delta_a(\mathbf{r}_1 - \mathbf{r}') \mathbb{G}(\mathbf{r}', \mathbf{r}'') \delta_a(\mathbf{r}_2 - \mathbf{r}'') d\mathbf{r}' d\mathbf{r}'',$$

where δ_a denotes a surface delta function on a sphere of radius a .

- In other $O(N)$ methods for BD other regularized delta functions have been used (Peskin's in fluctuating immersed boundary methods and Gaussians in the fluctuating force coupling method).
- Here the Green's function for periodic Stokes flow is given by

$$\mathbb{G}(\mathbf{x}, \mathbf{y}) = \frac{1}{\mu V} \sum_{\mathbf{k} \neq 0} e^{i\mathbf{k} \cdot (\mathbf{x} - \mathbf{y})} \frac{1}{k^2} \left(\mathbf{I} - \hat{\mathbf{k}}\hat{\mathbf{k}} \right).$$

- The surface delta functions in Fourier space give us a sinc factor.

Positively Split Ewald RPY

- This gives us a previously-unappreciated simple spectral representation of the periodic RPY tensor:

$$\mathcal{R}(\mathbf{r}) = \frac{1}{\mu V} \sum_{\mathbf{k} \neq 0} e^{i\mathbf{k} \cdot \mathbf{r}} \frac{1}{k^2} \text{sinc}^2(ka) \left(\mathbf{I} - \hat{\mathbf{k}}\hat{\mathbf{k}} \right). \quad (3)$$

- We can now directly apply Hasimoto's Ewald-like decomposition [3] to RPY to get the desired **Positively Split Ewald (PSE) RPY tensor**, $\mathcal{R} = \mathcal{R}_\xi^{(w)} + \mathcal{R}_\xi^{(r)}$,

$$\mathcal{R}_\xi^{(w)}(\mathbf{r}) = \frac{1}{\mu V} \sum_{\mathbf{k} \neq 0} e^{i\mathbf{k} \cdot \mathbf{r}} \frac{\text{sinc}^2(ka)}{k^2} H(k, \xi) \left(\mathbf{I} - \hat{\mathbf{k}}\hat{\mathbf{k}} \right), \quad (4)$$

where the Hasimoto splitting function is determined by the **splitting parameter** ξ ,

$$H(k, \xi) = \left(1 + \frac{k^2}{4\xi^2} \right) e^{-k^2/4\xi^2}. \quad (5)$$

Real-space part

- Converting back to real space we get

$$\mathcal{R}_\xi^{(r)}(\mathbf{r}) = F(r, \xi) (\mathbf{I} - \hat{\mathbf{r}}\hat{\mathbf{r}}) + G(r, \xi) \hat{\mathbf{r}}\hat{\mathbf{r}}, \quad (6)$$

where and $F(r, \xi)$ and $G(r, \xi)$ are scalar functions that **both decay exponentially** in $r^2 \xi^2$.

Analytical formulas are complicated but these can easily be **tabulated** for fast evaluation.

- Diagonal part is well-defined,

$$\mathbf{M}_{ii}^{(r)} = \mathcal{R}^{(r)}(\mathbf{0}) = \frac{1}{24\pi^{3/2}\mu\xi a^2} \left(1 - e^{-4a^2\xi^2} + 4\pi^{1/2}a\xi \operatorname{erfc}(2a\xi) \right) \mathbf{I}.$$

- If we choose $0 \leq H(k, \xi) \leq 1$ (satisfied by Hasimoto but not Beenakker) we obtain SPD real and wave space parts.

Conditioning

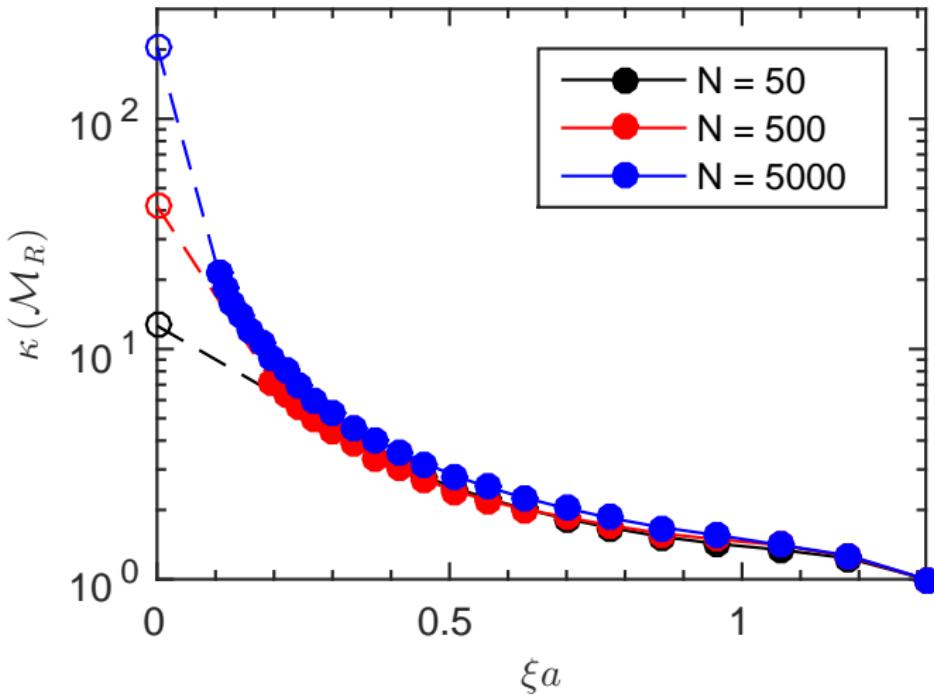


Figure : Condition number of $\mathbf{M}^{(r)}$ for varying number of particles N [2].

Fourier-space part

- The wave space component of the mobility can be applied efficiently using FFTs as

$$\mathbf{M}^{(w)} = \mathbf{D}^{-1} \mathbf{B} \mathbf{D} = \left(\mathbf{D}^\dagger \mathbf{B}^{1/2} \right) \left(\mathbf{D}^\dagger \mathbf{B}^{1/2} \right)^\dagger, \quad (7)$$

where \mathbf{D} is the non-uniform FFT (NUFFT) of Greengard/Lee [3] and

$$\mathbf{B}^{1/2} = \text{Diag} \left(\frac{1}{\mu V} \frac{\text{sinc}^2(ka)}{k^2} H(k, \xi) \right)^{1/2}.$$

- This shows that the wave space Brownian displacement can be calculated with a single call to the NUFFT,

$$\left(\mathbf{M}^{(w)} \right)^{\frac{1}{2}} \mathbf{W}^{(w)} \equiv \mathbf{D}^\dagger \mathbf{B}^{1/2} \mathbf{W}^{(w)}. \quad (8)$$

- This is basically **equivalent to fluctuating hydrodynamics** (putting stochastic forcing on fluid rather than on particles) as in existing methods, but now corrected in the near field.

Efficiency

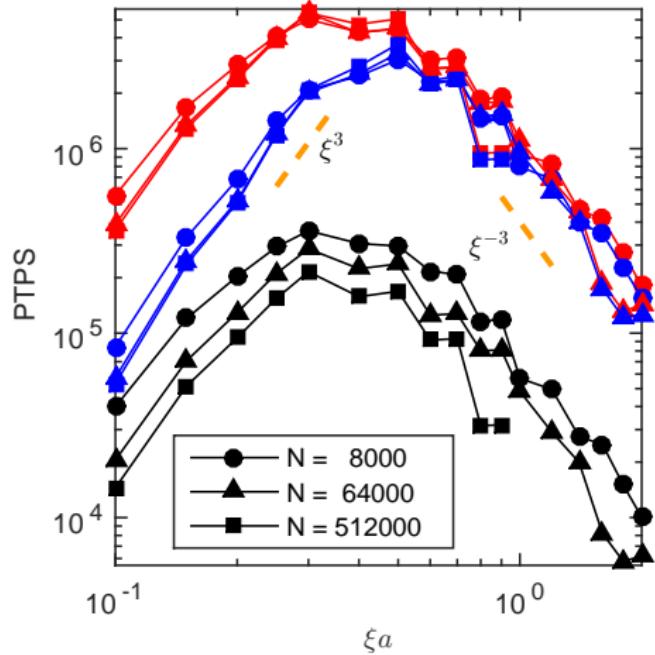


Figure : Particle timesteps per second (PTPS) for a random suspension of hard spheres ($\phi = 0.1$) implemented as a plugin to the **HOOMD GPU framework**. Red=MF, blue= $\mathbf{M}^{\frac{1}{2}}\mathbf{W}$ using PSE, black= $\mathbf{M}^{\frac{1}{2}}\mathbf{W}$ without PSE.

Rigid Multiblob Models

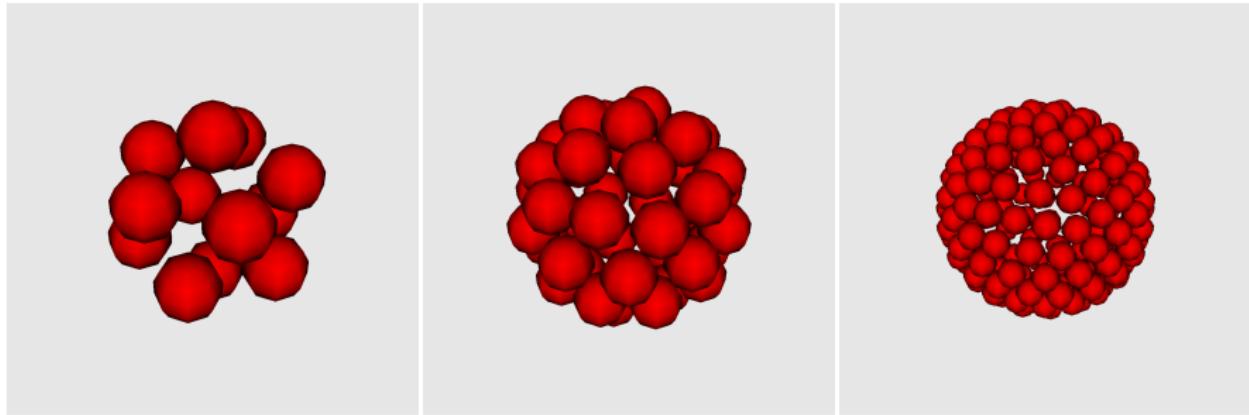


Figure : Blob or “raspberry” models of a spherical colloid.

- The rigid body is discretized through a number of spherical “**beads**” or “**blobs**” which interact via the **Rotne-Prager-Yamakawa** tensor.
- Standard is **stiff springs** but we want **rigid multiblobs** [5].
- We do this efficiently for $10^3 - 10^4$ particles (10^5 blobs) using **iterative solvers** and specially-designed **temporal integrators**.

Nonspherical Rigid Multiblobs

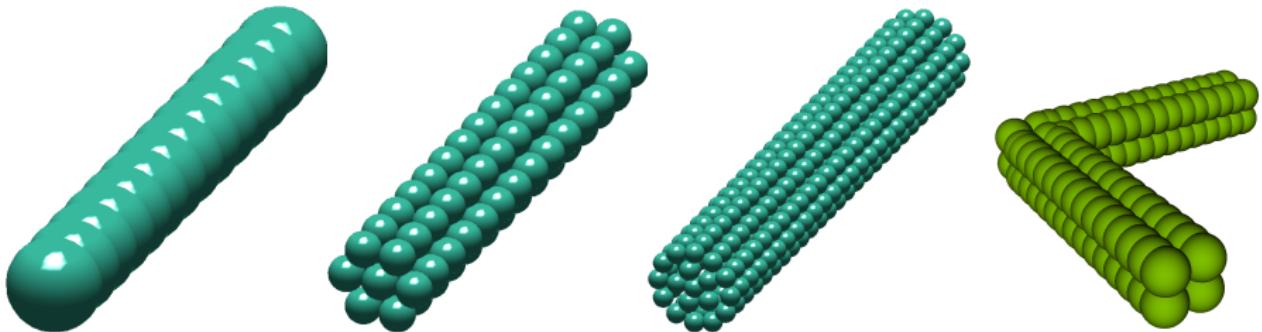


Figure : Rigid multiblob models of colloidal particles manufactured in recent experimental work.

Example: Confined Boomerang Suspension

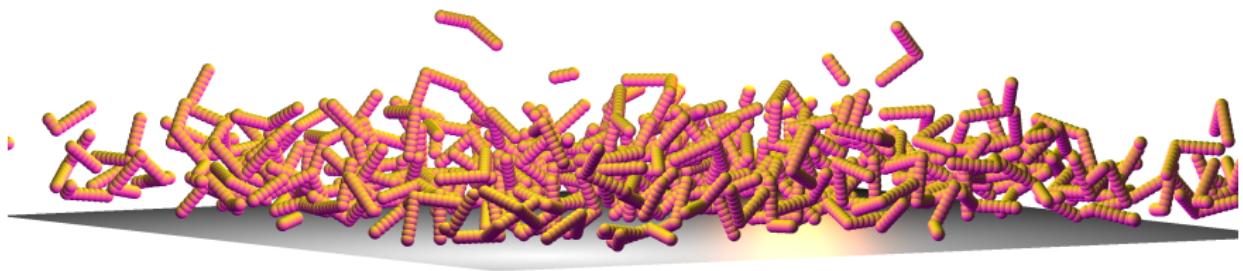


Figure : Quasi-periodic suspension of sedimented colloidal boomerangs.

Conclusions

- **Ewald (Hasimoto) splitting** can be used to accelerate both deterministic and stochastic colloidal simulations in periodic domains.
- Key is to ensure that **both the near-field and far-field are (essentially) SPD** so one piece of the noise is generated using FFTs and the other using an iterative method.
- Using these principles we have constructed a **linear-scaling Brownian dynamics** method (10^6 particles on a GPU), and a linear-scaling fluctuating boundary element method.
- The far-field can be done in **non-periodic but finite domains** using a discrete Stokes solver and fluctuating hydrodynamics.

How about unbounded or doubly-periodic suspensions, e.g., diffusion on interfaces (e.g., lipid bi-layers)?

- **Can a similar idea be used with grid-free fast multipole methods?**

References

Jeffrey Skolnick.

Perspective: On the importance of hydrodynamic interactions in the subcellular dynamics of macromolecules.
The Journal of Chemical Physics, 145(10):100901, 2016.

A. M. Fiore, F. Balboa Usabiaga, A. Donev, and J. W. Swan.

Rapid sampling of stochastic displacements in brownian dynamics simulations.
J. Chem. Phys., 146(12):124116, 2017.

Software available at <https://github.com/stochasticHydroTools/PSE>.

Dag Lindbo and Anna-Karin Tornberg.

Spectrally accurate fast summation for periodic stokes potentials.
Journal of Computational Physics, 229(23):8994–9010, 2010.

Edmond Chow and Yousef Saad.

Preconditioned krylov subspace methods for sampling multivariate gaussian distributions.
SIAM Journal on Scientific Computing, 36(2):A588–A608, 2014.

F. Balboa Usabiaga, B. Kallelov, B. Delmotte, A. P. S. Bhalla, B. E. Griffith, and A. Donev.

Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach.
Communications in Applied Mathematics and Computational Science, 11(2):217–296, 2016.

Software available at <https://github.com/stochasticHydroTools/RigidMultiblobsWall>.