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We develop numerical methods for stochastic reaction-diffusion systems based on ap-
proaches used for fluctuating hydrodynamics (FHD). For hydrodynamic systems, the FHD
formulation is formally described by stochastic partial differential equations (SPDEs). In the
reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion
master equation (RDME) description when our SPDEs are spatially discretized and reac-
tions are modeled as a source term having Poisson fluctuations. However, unlike the RDME,
which becomes prohibitively expensive for increasing number of molecules, our FHD-based
description naturally extends from the regime where fluctuations are strong, i.e., each meso-
scopic cell has few (reactive) molecules, to regimes with moderate or weak fluctuations,
and ultimately to the deterministic limit. By treating diffusion implicitly, we avoid the se-
vere restriction on time step size that limits all methods based on explicit treatments of
diffusion, and construct numerical methods that are more efficient than RDME methods,
without compromising accuracy. Guided by an analysis of the accuracy of the distribution
of steady-state fluctuations for the linearized reaction-diffusion model, we construct sev-
eral two-stage (predictor-corrector) schemes, where diffusion is treated using a stochastic
Crank—Nicolson method, and reactions are handled by the stochastic simulation algorithm
of Gillespie or a weakly second-order tau leaping method. We find that an implicit midpoint
tau leaping scheme attains second-order weak accuracy in the linearized setting, and gives
an accurate and stable structure factor for a time step size an order of magnitude larger

than the hopping time scale of diffusing molecules. We study the numerical accuracy of our



methods for the Schlégl reaction-diffusion model both in and out of thermodynamic equi-
librium. We demonstrate and quantify the importance of thermodynamic fluctuations to
the formation of a two-dimensional Turing-like pattern, and examine the effect of fluctua-
tions on three-dimensional chemical front propagation. By comparing stochastic simulations
to deterministic reaction-diffusion simulations, we show that fluctuations accelerate pattern
formation in spatially homogeneous systems, and lead to a qualitatively-different disordered

pattern behind a traveling wave.



I. INTRODUCTION

While deterministic reaction-diffusion models have been successfully applied to explain various
spatiotemporal phenomena such as pattern formation, and to gain insight into nonequilibrium
transitions, it is now widely appreciated that spatiotemporal fluctuations in the concentration
of chemical species play an essential role. Such internal or thermodynamic fluctuations, which
arise from both reaction and diffusion processes, have molecular origin; microscopically, those
processes occur through the movement and collision of individual molecules under thermal fluctu-
ations. Hence, the deterministic macroscopic description eventually fails at smaller scales where
the fluctuations are significant, and a stochastic mesoscopic description is needed. Examples in-
clude fluctuation-induced instabilities [I], reversal of direction of front propagation [2], violation
of the law of mass action [3], long-time tails in kinetics [4], emergence of new steady states [5]
and patterns [0], acceleration of pattern formation [7], enhanced induction time for ignition [§],
and the onset of homogeneous oscillations [9]. Due to a small number of proteins involved in
cellular functions [10], processes in cell biology are good examples [I1HI4] where the stochastic

reaction-diffusion description provides an indispensable modeling tool [15, [16].

A microscopic picture of reaction-diffusion, dating back to Smoluchowski [I7], assumes that
molecules undergo independent Brownian motions and reactions can occur only when two molecules
are close to each other. Based on this picture, the particle-based approach to simulate a reaction-
diffusion system tracks the trajectories of diffusing molecules and uses the intermolecular distance
to determine whether a reaction occurs. Exact sampling of the Smoluchowski model can be per-
formed by first-passage kinetic Monte Carlo type algorithms [I8-20]; approximate reactive Brow-
nian dynamics (BD) using a fixed time step size forms another class of algorithms [21} 22]. While
molecular schemes, such as molecular dynamics (MD) and direct simulation Monte Carlo (DSMC),
can be used for reaction-diffusion problems [23, 24], they are computationally even more expen-
sive. Hybrid methods combining particle and coarse-grained descriptions, either using operator

splitting [25] or domain decomposition [26] 27], have also been proposed.

For the mesoscopic description of a reactive system, the master equation approach is commonly
used. For a well-mixed (i.e., spatially homogeneous) system, the time evolution of the system (i.e.,
the number of molecules of each chemical species) is described by the chemical master equation
(CME). Exact sampling of the CME can be performed by the stochastic simulation algorithm (SSA)
of Gillespie [28], whereas the tau leaping method [29] can be employed as an approximate algorithm

with a given time step size. Several variants of these methods have been proposed [30} [31]. For



a spatially inhomogeneous system, the time evolution of the system is commonly described by
the reaction-diffusion master equation (RDME), which is also known as the multivariate master
equation [32] B3]. In this approach, the system is divided into homogeneous subsystems or cells
and the number of molecules of each chemical species in each cell is tracked. Changes in the
molecule numbers occur either through hopping events of a molecule between adjacent cells or
though chemical reactions within a cell. Hopping events correspond to diffusive transport and are
treated as first-order reactions. Since the RDME is a spatial extension of the CME, exact sampling
of the RDME can be performed by SSA-type algorithms [34], B5], which are called inhomogeneous
SSA (ISSA).

While conceptually simple and still widely used [0} [7, [36], the traditional approach of solving
the RDME by ISSA has the computational issue that the method becomes prohibitively slow as the
number of molecules or cells increases. Since the cell volume should be chosen sufficiently small
to ensure homogeneity over each cell, large, finely-resolved grids are required for two- or three-
dimensional problems. As the spatial resolution increases, the time interval between successive
events becomes very short due to rapid diffusive transfer, and hopping events greatly outnumber
reaction events, which slows down ISSA [30]. Several approaches have been proposed to improve
the performance of stochastic sampling of the RDME, such as the next subvolume method [35]
and its parallel simulation version [37]. Various implementations of the tau leaping method in a
spatial context [38-40], and the time-dependent propensity for diffusion method [41], have also been
proposed. A more aggressive approach to reduce the computational cost by avoiding the sampling
of the individual diffusion events is to split diffusion and reaction in each time step and to treat
diffusion in a more efficient manner. Various sampling methods for diffusion have been proposed,
including the Gillespie multi-particle method [42], the multinomial simulation algorithm [43], the
adaptive hybrid method on unstructured meshes [44, [45], and the diffusive finite-state projection
algorithm [46], [47].

In this paper, we propose a numerical algorithm for stochastic reaction-diffusion systems based
on approaches used for fluctuating hydrodynamics (FHD). To incorporate the effects of thermal
fluctuations in a fluid, in FHD one assumes that the dynamics of the fluid can be described by the
usual hydrodynamic equations (e.g., the Navier—Stokes equations), augmenting each dissipative flux
with a stochastic flux [48]. Those stochastic fluxes are modeled by spatiotemporal Gaussian white
noise (GWN) and the resulting governing equations are written as stochastic partial differential
equations (SPDEs). FHD was originally developed for equilibrium fluctuations by Landau and
Lifshitz [49] and its validity has been justified for nonequilibrium systems [50] through the theory



of coarse graining [51]. For further discussion of FHD compared to MD, see Ref. [52]. Various
extensions and generalizations of FHD theory have been developed and successfully applied to
fluctuation-induced phenomena; see Ref. [53] and references therein. Recent work by the authors
has focused on FHD models of hydrodynamic transport [54, 55] in binary fluid mixtures [56] [57],
multiphase flows [58], multispecies fluid mixtures [59] 60], multispecies reactive mixtures [61], and
electrolytes [62].

Compared to our previous work [61], where the coupling effects of fluid hydrodynamic and
chemical fluctuations have been investigated, here we focus on reaction and diffusion and neglect
all other hydrodynamic processes (advection, viscous dissipation, thermal conduction, and cross
term effects). Rather than using a Langevin description (i.e., based on Gaussian fluctuations) of
chemistry, which is only valid in the limit of vanishing fluctuations [61], here we employ a more
accurate description of reactions based on Poisson fluctuations. As pointed out in Ref. [51], even
though a formal SPDE description is employed, the actual interpretation of FHD always requires
the notion of a coarse-graining over a certain length scale. The FHD equations are discretized
using a finite volume approach [63] [64] that represents the solution in terms of the average over
cells, which provides an effective coarse-graining. Therefore, reactions can be treated in a similar
manner to the RDME approach when the SPDEs are spatially discretized, and integrated in time
using SSA or a weakly second-order tau leaping method [65, 66]. Recent relevant work by others
includes Ref. [67], in which the FHD approach has been applied to reaction-diffusion systems.
However, only fluctuations arising from diffusion have been considered (i.e., no fluctuations from
chemical reactions) and modeled as additive noise. The FHD approach has been also applied to
concentration fluctuations in a ternary liquid mixture in equilibrium [68] and the Model H equations
for binary mixtures [69].

The key difference between the FHD and RDME descriptions lies in the more efficient treatment
of fast diffusion. A number of approximate numerical methods for the RDME [42/47] are based
on operator splitting using first-order Lie or second-order Strang splitting [70]. In Appendix [A| we
review and discuss in more detail a split scheme that uses multinomial diffusion sampling [71] for
diffusion and SSA for reactions. These RDME-based schemes use a time step size At comparable
to the hopping time scale 7, = Ax?/(2dD) with d being the spatial dimension, Az being the grid
spacing, and D being a typical diffusion coefficient. Even though 73, is much larger than the mean
duration between successive events in ISSA, using At comparable to 7y is still very restrictive for
large D or small Az. In our FHD formulation, we treat diffusion implicitly using backward Euler or

Crank—Nicolson, so that the time step size can be significantly larger (e.g., an order of magnitude



larger for a given accuracy tolerance) than the hopping time scale. Since the time steps used in
RDME simulations are already (usually an order of magnitude or more) larger than those in BD
simulations, our approach allows even larger time step size compared to particle-based methods.

While the development of numerical schemes for stochastic reaction-diffusion systems described
by spatiotemporal GWN dates back to the 1990s [72] [73], much of the prior work has not been
guided by numerical analysis or extensive experience from deterministic computational fluid dy-
namics (CFD). With the help of well-established techniques for numerical solution of PDEs and
SPDESs, we construct numerical schemes in a systematic manner to ensure accuracy is maintained
for a large time step size. To this end, we employ two-stage (i.e., predictor-corrector) Runge-Kutta
temporal integrators [64, [74]. Rather than using operator splitting, we treat reaction and diffusion
together in each stage in a manner that is second-order weakly accurate for general linearized
FHD equations. The construction of these schemes is guided by a stochastic accuracy analysis of
the (static) structure factor for linearized FHD [63], [64]. The structure factor is the steady-state
spectrum of the concentration fluctuations, i.e., the covariance matrix in Fourier space, see Eq. .
We apply the techniques in [63, 64] to predict the discrete structure factors for our scheme, and
compare them to analytical predictions of the continuum structure factors for our model in the
linearized setting.

The FHD approach inherently outperforms the RDME approach as the number of molecules
per cell increases in exactly the same way that multinomial diffusion outperforms diffusion by hop-
ping, or tau leaping outperforms SSA. In fact, the computational cost of FHD methods does not
significantly change as the magnitude of the fluctuations changes. This is an obvious advantage
of the FHD approach since the macroscopic limit cannot be efficiently simulated by the RDME
approach. However, the validity of the FHD approach cannot be taken for granted when there
are only a small number of molecules in each cell, since in FHD the number of molecules in each
cell is a continuous real-valued variable, rather than a discrete nonnegative integer variable as in
the RDME. We investigate this issue carefully and propose techniques to improve the accuracy
of the FHD description for the case of a small number of molecules per cell, making our numer-
ical schemes robust even for large fluctuations. In particular, we develop a spatial discretization
that significantly mitigates nonnegativity of the species number densities and closely reproduces
the Poisson thermodynamic equilibrium distribution for the number of molecules in a cell. For
numerical examples considered in this paper, we show that the mean number of molecules in a
cell can be as low as 10. However, if one is specifically interested in systems with only a small

number of molecules per cell, one should use an integer-based description like RDME. Moreover, in



very dilute cases, a particle-based description like BD is actually fastest since most cells will have
essentially no molecules in them. However, for practical stochastic simulation of reaction-diffusion
systems, where the populations of chemical species may have different orders of magnitude, this
kind of robustness is required; even if there are a large number of molecules in a cell, some species
may have a small number of molecules.

The rest of the paper is organized as follows. Section [[I] presents the background for our
approach, including the FHD description of reaction-diffusion systems and linearized analysis in
a Gaussian approximation. Section [ITI] explains how the FHD reaction-diffusion equations can be
spatially discretized using a finite-volume approach. Section [[V] presents temporal integrators for
the spatially discretized equations that handle diffusion using existing FHD techniques, and treat
reactions using SSA or second-order tau leaping. Section [V] presents simulation results of several
reaction-diffusion systems. In Section [VA] for testing and validation of our numerical schemes,
we use a one-species Schlogl model [75] [76]. In Section to compare our methods to each
other and to RDME-based methods, we study two-dimensional Turing-like pattern formation in
the three-species Baras—Pearson—-Mansour (BPM) model [77, [78]. In Section to demonstrate
the ability of our approach to scale to larger systems, we present numerical simulation results
for three-dimensional front propagation in a two-species model [7]. In Section we offer some

concluding remarks and suggest future research directions.

II. BACKGROUND

In Section [[TA] we present the continuous-time continuous-space FHD description of reaction-
diffusion systems. Here, we assume that fluctuations in chemistry are described by GWN (i.e.,
Langevin type). A more accurate description of chemistry based on Poisson fluctuations is in-
corporated in the continuous-time discrete-space description in Section [[II} In Sections [[TB| and
[[TC] we introduce the structure factor and the Schlogl reaction-diffusion model, respectively. As
one of the criteria for the development and analysis of numerical schemes, later in the paper we
investigate how accurately a numerical scheme produces the structure factor for the Schlégl model.

In this section, we introduce several GWN vector and scalar random fields and denote them
by Z(x,t) = (Z1(x,t),..., Z4(x,t)) and Z(x,t), respectively, with additional superscripts to dis-
tinguish the different fields. We assume that any two distinct processes are independent and
that the noise intensity of each process is normalized, (Z;(x,t)Z; (', 1)) = &;0(x — 2)5(t — t')
and (Z(z,t)Z(2',t')) = 6(x — x')6(t — ¢'). Similarly, we denote GWN vector and scalar ran-



dom processes by W(t) and W(t), respectively, and assume (W;(t)W;/(t')) = 6;;0(t — t') and
WEW(t)) = o(t —t').

A. FHD Description

We consider a reaction-diffusion system having Ny species undergoing N, reactions in d-
dimensional space. By denoting the number density of species s by ns(x,t), the equations of

FHD for n(x,t) = (n1(x,t),...,nn.(x,t)) are written formally as the SPDEs [61]

Ny
gtns =V (DSVnS + \/2DSnSZgD)> + Z Ver (ar(n) + \/ar(n)ZﬁR)> , (1)
r=1

where Dy is the diffusion coefficient of species s, a,(n) is the propensity function indicating the rate
of reaction r, and v, is the stoichiometric coefficient of species s in reaction r. In the macroscopic
limit of vanishing fluctuations, Eq. approaches the deterministic reaction-diffusion PDE (law

of large numbers),

0

Ny
_ 2
o"s = DsVins + > verar(n). (2)

r=1

We explain below how the diffusion and reaction parts are obtained by considering the diffusion-

only (i.e., no-reaction) and reaction-only (i.e., well-mixed) cases.

1. Diffusion

The diffusion-only SPDE

gtns -V (stns + \/2D5nsng>) (3)

can be justified by considering a microscopic system where each molecule ¢ undergoes independent
Brownian motion,

;= /2D Wy, (4)
In this formal derivation [79], one defines the instantaneous number density field ng(x,t) =
> 0(x — @4(t)) and uses Ito’s rule to obtain Eq. (3). This equation can also be obtained from
the diffusion portion of the general multispecies FHD equations [60)}, [61], given by nonequilibrium
statistical mechanics [80], by assuming a dilute solution and considering only solute species. In
addition, the linearized version of Eq. can be obtained from the multivariate master equation
model (i.e., diffusion by hopping) near the macroscopic limit [32]. However, although relations to

those equations reaffirm Eq. near the macroscopic limit, it is important to note that Eq.



is formally exact even in the case where fluctuations are large, since it is simply a rewriting of
Eq. (), in a representation in which the particle numbering (identity) is lost [81].

We note that the FHD equations and are not mathematically well-defined because the
solution needs to be interpreted as a distribution (or a generalized function), and the square root
of a distribution is not well-defined in general. The linearized FHD equation does not suffer from
such an issue and is well-defined; the problems arise due to the multiplicative noise in Eq. .
However, even though Eq. is ill-defined, it is formally consistent with the law of large numbers
(given by the deterministic reaction-diffusion equation ), the central limit theorem (given by the
linearized FHD equations ), and large deviation theory for a collection of Brownian walkers. In
this sense, Eq. is a meaningful representation of the physical model that is useful in constructing
well-defined mesoscopic descriptions via spatial discretization of the formal SPDEs. Compared
to obtaining a mesoscopic model by directly coarse-graining the microscopic model, the spatial

discretization of the SPDE is easier in general, and can be done in a systematic manner [82].

2. Reaction

To see how the reaction part of Eq. is obtained, consider a well-mixed system with volume
AV. By assuming that the time evolution of n(t) follows the CME, we express the change over
the infinitesimal time interval dt as follows [30]:

Ny
dny = ny(t+ dt) — ng(t) = Tlv S v Plar(n)AV), (5)
r=1

where P(m) denotes a Poisson random variable having mean m. Note that Eq. is equivalent
to the CME if interpreted in the Ito sense. The specific form of the chemical rate function a,(n)
that we use in this work is described in Section |[III C| Henceforth, we will formally write Eq. in

the differential form,

N,
d S Vg Plar(m)AVdt)
= . 6
e Z:: AVdt (6)
For a more mathematically precise representation, see Refs. [83] [84].
The chemical Langevin equation (CLE) [85] is obtained under the assumption that the mean

number of reaction occurrences is large [30]. That is, the assumption enables one to replace P(m)

by a Gaussian random variable having the same mean and variance, to give the CLE

d ol ar(n)
= ; Ver [ar(n) + W, . (7)

AV
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Since reaction is assumed to be local, the reaction part of Eq. is obtained from spatial extension
of Eq. @

One of the important conclusions of our previous work [61] was that the Langevin description
(7) is not consistent with equilibrium statistical mechanics. Alternative formulations based on a
Langevin diffusion description [86l, 87] that are consistent at thermodynamic equilibrium fail to
correctly model relaxation toward equilibrium [61]. Instead, in order to correctly capture both
small fluctuations and large deviations in equilibrium and non-equilibrium contexts, one must
retain a description of chemical reactions as a Markov jump process. That is, one must describe

reactions using a stochastic differential equation driven by Poisson rather than Gaussian noise.

B. Structure Factor

The structure factor is the steady-state spectrum of the concentration fluctuations,

Ss(k) =V (ms,k&ﬁ;k) , (8)

i.e., the variance of the Fourier mode of the number density of species s,

hop(t) = % / na(a, e F T g ()

Here we have assumed a periodic domain of volume V', and defined 675, = 75 ), — (725 k), Where the
brackets ( ) denote the equilibrium average. Here we derive an analytic expression of the structure
factor from the linearized FHD equation. We assume that there is only one species, Ng = 1, and

drop the subscript s for species, to write Eq. as

gtn = DV*n+ V- (\/ 2DnZ(D)> +a(n) + /20 (n)Z2®), (10)

where

N; 1 Nr
a(n) = ZVTQT(n), I'(n) = 3 Zl/far(n), (11)
r=1 r=1

and we have expressed fluctuations arising from all reactions by a single GWN field Z(®). At
a spatially uniform stable steady state, n(x,t) fluctuates around mean number density n = (n),
where a(n) = 0 and a/(7) < 0. The linearization of Eq. around this equilibrium state is given

by the central limit theorem,

gtn = DV’ +v2DaV-Z®) —r(n — 7)) + Vorz®™), (12)

where 7 = —ad’(71) > 0 is the effective reaction rate near equilibrium and ' = I'(#).
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The Fourier transform of Eq. gives

d . —

0y, = — Dk, + V2D ik 2 1oy, + V2L ZWM (13)
Since Eq. has the form of the Ornstein—Uhlenbeck equation [32], the structure factor is easily

obtained as
Diak*+T #ak?+T/D
DE% +r k24 (2
where ¢ = \/D/r denotes the penetration depth. From Eq. , we observe that there are two

(14)

limiting cases. In the small wave number limit k¢ < 1, S(k) becomes I'/r and does not depend
on diffusion. In fact, the result S(0) = I['/r is also obtained from the CME assuming the whole
system is well-mixed. On the other hand, in the large wave number limit k¢ > 1, S(k) becomes
n, which is the result for the diffusion-only system. Hence, fluctuations are reaction-dominated at
a length scale larger than ¢ and are diffusion-dominated at a length scale smaller than ¢.

We also observe that if the system is in detailed balance at its steady state, i.e., it is in thermo-
dynamic equilibrium, then I' = f#r and S(k) = 7, consistent with a product Poisson distribution
with mean number density n. Therefore, in true thermodynamic equilibrium the statistics of the
fluctuations are independent of any kinetic parameters, as they must be according to equilibrium
statistical mechanics [88]. In particular, the presence of the reactions does not change the Poisson
statistics of the state of thermodynamic equilibrium. In Section[V'A] we use this property to judge

the quality of numerical schemes.

C. Schlogl Model

The Schlégl model [75] [76] is given by the chemical reactions for species X,

k k:
2X =3X, o=X. (15)
ko k4
Hence, we have Ny =1, Ny =4, v =v3 =1, vy = vy = —1, a(n) = kin? — kan® + k3 — kqn, and

I'(n) = § (kin? + kon® + k3 + kqn). Due to the cubic nonlinearity of a(n), the well-mixed system
exhibits several kinds of distributions depending on the values of the rate constants. If detailed
balance is satisfied, that is, klngq = kgngq and k3 = kyneq, the system is in thermodynamic equi-
librium and the distribution follows Poisson statistics with mean number density neq. Otherwise,
depending on the number of real roots of a(n) = 0, the system exhibits a monostable distribution
(for a single positive root) or a bistable distribution (for three positive roots) [76].

The structure factor of the spatially extended Schlogl model can be calculated from Eq. . As

expected from the fact that the equilibrium distribution of the system follows Poisson statistics,
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S(k) = neq in the case of thermodynamic equilibrium. Note, however, that having a monos-
table distribution does not imply thermodynamic equilibrium. The structure factor of the out-of-
equilibrium monostable case is not flat but exhibits a transition near k¢ ~ 1. For the bistable case
exhibiting metastability, the linearized theory is still applicable if one looks at fluctuations around
one of the two peaks. However, in this work we focus on the equilibrium and out-of-equilibrium

cases where a(n) has a single positive root.

III. SPATIAL DISCRETIZATION

In this section, we discuss spatial discretization of the FHD equation using a finite-volume ap-
proach [63], [64] that converts the SPDE into stochastic ordinary differential equations (SODEs) for
the cell number density n;;(t). We develop numerical schemes to solve these SODEs in Section
In Section we first discretize the diffusion-only SPDE . In Section we add reactions
and present the continuous-time discrete-space description of the reaction-diffusion system. In
Section [[ITC], we discuss techniques to handle a small number of molecules per cell.

For simplicity, in this paper we only consider periodic systems. However, our methods can be
straightforwardly generalized to standard types of physical boundary conditions (Dirichlet, Neu-
mann or Robin). In particular, since chemistry is local and does not require boundary conditions,
one can rely on methods we have developed in prior work without chemistry; see, for example, the

discussion in Ref. [89].

A. Diffusion-Only Case

Due to the lack of regularity of ZgD)(:r,t) in Eq. , pointwise values of ng(x,t) are not

physically meaningful. Hence, we consider instead the spatial average of ns(x,t) over a cell. We
partition the system domain Li X Ly X --- Ly into cells of volume AV = Az --- Azg and denote
the cell number density of species s in cell @ = (iy,...,iq) as

1
nes(t) = AV/H ny(w, t)da. (16)

We denote the face of a cell using the index f. If two contiguous cells have indices 2 and 7 + e;
(with e; being the unit vector along the j-axis), the face f shared by the cells is denoted by 7+ %ej.

To obtain a spatial discretization of Eq. that ensures discrete fluctuation-dissipation bal-
ance [63] 64], we use the standard second-order discrete Laplacian operator for the determinis-

tic diffusion part D,V?n, and introduce a staggered grid for the stochastic diffusive flux term
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% 43 %

FIG. 1. Finite-volume spatial discretization in two dimensions. The cell-averaged number density n ;(t)
is associated with the circles, and the face-averaged stochastic diffusive flux is associated with the crosses.
The stochastic diffusive flux between the two cells having the red circles at center is depicted by the blue

arrow.

V.(\/2DsnsZgD)), see Fig. [1} For d = 1, a formally second-order spatial discretization of Eq.

is written as

d N it1 — 2Msi + N i1 2D, ) it Wainrh = (M-t Wsint
KPR L T e Y o
The spatial average of ns(x,t) over the interval of length Az around face i + % is approximated by
ﬁs,ii%(t), whereas that of Z(x,t) is modeled by \/%Ws,ii%(t). To close the equation, ﬁs,ii%(t)
is approximated by an average of n,;(t) and ng;+(t), that is, ﬁs’ii% = 1 (ns,i, Ns,i+1). Natural
candidates for the averaging function n(n1,n2) would be the Pythagorean means: the arithmetic,
geometric, and harmonic means. We choose a modified arithmetic average for n(ny,ns) described

in Section [[ILC] for reasons detailed in Appendix

Generalization of the spatial discretization to higher dimensions is straightforward. For
each face, a GWN process W ¢ is defined and 7 £(t) is calculated from the cell number densities of
the two cells sharing the face by using the averaging function n(n1,n2), see Fig. [l By introducing
notations ns(t) = {nsi(t)}, Ws(t) = (W #(t)}, and ns(t) = n(ns(t)), we express the resulting
SODE:s for {n,;(t)} as

d 2D —
s = D Vin, + \/;Vd‘ (\/TTSWS> ) (18)

with the understanding that V(zi denotes the standard (2d 4 1)-point discrete Laplacian operator,

and V- denotes a discrete divergence operator.
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B. Reaction-Diffusion System

By combining Egs. @ and we obtain the spatial discretization of the reaction-diffusion
FHD equations as a system of Ito SODEs,
N,
d 9 2D, = S Ve P (ar(m) AV dt)
s = DVing + 1/ 22V <w /nSWS) + Tzl N . (19)
In Eq. fluctuations in the reaction rate are modeled as GWN, while in Eq. we assume

Poisson fluctuations. Since the latter fluctuations are consistent with discrete nature of reactions
based on the CME, the description in Eq. is physically more accurate. In fact, it has been
shown that the CLE description can give physically incorrect results since it is not consistent with
a Gibbs-Boltzmann or Einstein equilibrium distribution, even for the case of a single well-mixed
cell [61]. As shown above, the inclusion of Poisson fluctuations for reaction, however, requires the
notion of a mesoscopic cell and thus can be realized only after the SPDE is spatially discretized.
The choice of appropriate cell size is a delicate issue for the RDME and FHD descriptions. An
upper bound on the cell size is given by the penetration depth due to the underlying assumption
that each cell is homogeneous and reactions occur within a cell. In fact, there is not only an
upper bound of the cell size for a valid description but also a lower bound. This can be seen by
considering the fact that bimolecular reactions would become increasingly infrequent as the cell size
decreases [90), 91]. Several criteria for choosing the cell size have been proposed based on physical
arguments [90, 92, 93] and mathematical analysis [94]. For a small value of the cell size, corrections
in the rate constants of bimolecular reactions have been proposed [90] 05, 96]. However, these
corrections do not fix the underlying problem which comes from the fact that reactions are treated
as a purely local process with no associated spatial length scale. In microscopic (particle) models of
reaction-diffusion such as the Smoluchowski [17] model or the Doi model [90], a microscopic reactive
distance appears and controls the reaction rate for diffusion-limited reactions. By introducing a
reactive distance into the model, and relaxing the restriction that a reaction should occur among the
molecules in the same cell, a modified convergent RDME having well-defined limiting behavior for
small cell size can be developed [97], and could be combined with our FHD description of diffusion.

The dependence of stochastic Turing patterns on the grid size has been also investigated [98].

C. Maintaining Nonnegative Densities

The spatially discretized FHD equations or are well defined but suffer from two

issues that we now address. First, the number of molecules in a cell (i.e., ng;AV) is not an
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integer. Second, the cell number density can become negative. When there are a small number of
molecules per cell in the system, the behavior of the FHD description depends sensitively on
the averaging function n and the propensity functions a,, that appear in the multiplicative noise
terms. Hence, we carefully modify the form of 7 and a, for negative or very small densities in
order to greatly reduce the chances of producing future negative densities.

In Section [VA] we demonstrate that the arithmetic mean produces more accurate results for
the equilibrium distribution than the other Pythagorean means. Based on the analysis given in

Appendix [B] we use the following modification to the arithmetic mean:

i(n1, n2) = wﬂo(mawﬂo(nﬁw (20)
where
0 (z<0)
Ho(r)=qz (0<z<1) (21)
1 (z>1)

is a smoothed Heaviside function. The smoothed Heaviside function Hj is introduced to ensure
the continuity of 7 at nqy = 0 or no = 0. As explained in Appendix this averaging function
guarantees nonnegativity for the diffusion-only system in the continuous-time description. In
our simulations, we find this modification greatly reduces the occurrence of negative density while
closely matching the true equilibrium distribution, noting that in our formulation the stochastic
diffusive flux is continuously turned off at n; < 0 or ny < 0. We also note that the smoothing is
based on the number of molecules in a cell and if both cells have at least one molecule (i.e., n;AV >
1), n becomes exactly the arithmetic mean. As shown in Appendix the local modification
near n = 0 does not cause any noticeable unphysical behavior for n;AV > 1. In Section [V} we
demonstrate that our numerical schemes based on Eq. work very well even for a small number
of molecules per cell.

For the propensity functions a,(n), we use the following correction to the law of mass ac-
tion, which is usually included in the RDME description: if the deterministic rate expression
contains n? (or n3, ---), replace it by ns(ns — 5t) (or ns(ns — z5)(ns — ), +-+). With this
correction, at thermodynamic equilibrium, the mean reaction rate becomes equal to the one cal-
culated from the deterministic rate expression with the mean number density. This can be seen
from the fact that if nsdAV follows Poisson statistics with mean nsAV, <ns (ns — A—lv)> = ﬁg and
(malng — ) — ) = .

When reactions are combined with an FHD treatment of diffusion, number densities are no
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longer restricted to nonnegative integers and special treatment is required to make reaction rates
nonnegative and physically sensible for small numbers of molecules. In this work, we evaluate the
rate a,(n) by using continuous-range number densities n (i.e., without trying to round nAV to
integers) and ensure that each term in the rate of each reaction is nonnegative. For example, we

take the rate expression of the Schlégl model (see Section [IIC|) to be
a(n) = kin™ (n— A—IV)Jr — kon™ (n — A—IV)Jr (n— ﬁ)+ + kg — kan™, (22)

where n™ = max(n,0). We note that more mathematically justified algorithms have been proposed
to handle reactions in regards to negative densities using operator splitting and exact solutions of
reaction subproblems [99, [100]; these methods cannot be used to address negative densities due to

stochastic diffusive fluxes.

IV. TEMPORAL INTEGRATORS

In this section, we develop temporal integrators for the spatially discretized FHD equation .
Our goal is twofold. First, we construct numerical methods that allow for a large time step size
even in the presence of fast diffusion. By treating diffusion implicitly, the severe restriction on
time step size can be bypassed. Second, we construct methods that maintain accuracy even if
the time step size is much larger than the diffusive hopping time. Since it is quite difficult to
achieve second-order weak accuracy for general multiplicative noise [I01], our goal here is to ensure
second-order accuracy where possible. In the limit in which the number of molecules per cell is
very large and one can replace random numbers by their means, our schemes reduce to standard
second-order schemes for deterministic reaction-diffusion PDEs. For linearized FHD, our midpoint
tau leaping-based schemes are second-order weakly accurate, and all midpoint schemes reproduce
at least second-order accurate static correlations, i.e., structure factors.

We build on previous work by some of us [63] 64, [74] and propose two (semi-) implicit schemes
as an alternative numerical method to conventional RDME methods. We mainly consider the
case where diffusion is much faster than reaction and molecules on average diffuse more than
a cell length per time step (i.e., 2dDAt > Axz?). We focus here on unsplit schemes that do
not rely on operator splitting. This is because we found that unsplit schemes give notably more
accurate structure factors than corresponding split schemes in our case. In addition, including
other transport processes (e.g., advection) and handling boundary conditions [102] to second order

is not straightforward for split schemes.
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It is convenient to introduce dimensionless numbers, o and 8, which measure how fast diffu-

sion and reaction are relative to the given time step size At, respectively. For the single-species

equation ([12)), assuming Ax; = -+ = Azy = Ax, we define
DAt

=rAt = — 23

« r ) IB A$2 ) ( )

where r is the chemical relaxation rate appearing in the linearized equations . Hence, we can
express the well-mixed condition (i.e., the penetration depth ¢ = \/Di/r > Azx) as a < 3. In
addition, the numerical stability condition of a scheme can also be given in terms of o and 5. That
is, if reaction and/or diffusion are treated explicitly in a scheme, values of o and/or § larger than a
stability threshold cause numerical instability. For @ < 3, the stability limit is mainly determined
by fast diffusion:

1 Az
<= = A< At = ——.
f< 2d - 2dD

(24)
Note that the stability limit becomes severe for large diffusion coefficients and small grid spacing
and worsens with increasing dimension.

In Section we present several numerical schemes for the FHD equation , including two
implicit schemes, and analyze the temporal orders of accuracy for the structure factors using the
linearized analysis described in Appendix [C] In Section [VB]| we analyze the stochastic accuracy
of the numerical schemes for large At by investigating the structure factor of the one-dimensional

Schlogl model at different wavenumbers. Since analysis for the nonlinear equations is lacking at

present, we numerically justify the handling of multiplicative noise in Section [V A]

A. Schemes

The simplest method for integrating Eq. in time is the Fuler—Maruyama tau leaping (EM-

Tau) scheme,

N,
2D At _ S vgP(akF AV AL)
k+1 k 2.k s _ ETk sr /Gy
ng ' =ng + DsAtVgng + % Va (x/ns WS) + ;:1 , (25)

where superscripts denote the point in time at which quantities are evaluated, e.g., n’j = ns(kAt)
and a¥ = a,(n(kAt)), and we have used the compact notation for spatial discretization introduced
in Section Here, [, k(ngl)At W(t')dt' has been replaced by vAtW*, where W* denotes a collec-
tion of standard random Gaussian variables sampled independently for each species on each grid
face at each time step. That is, the stochastic diffusive flux of species s on face f at time step k

is proportional to Wsk £
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We also construct numerical schemes where reactions are treated by SSA, which is an exact
(exponential) integrator for reactions. We denote by fR4(n, 7) the (random) change in the number
density of species s for a cell with initial state n obtained from SSA over at time interval 7 (in the

absence of diffusion). We can then write the Euler-Maruyama SSA (EM-SSA) scheme as

n’;Jrl = TL]; + DsAtV?lTL]sC + 2ZS$t Vd' (\/fT];W5{€> + ms(nk7 At) (26)

The EMTau scheme is explicit in the sense that all terms on the right-hand side of Eq. can
be evaluated without knowing nk+1 However, a simple analysis shows that the time step size is

constrained by a stability condition (for derivation, see Eq. (C7))

1
5+ﬂ—2d

(27)

which reduces to condition for « < (. Since the EM-SSA scheme treats reactions using an

exponential integrator, it is only subject to the stability limit without a restriction on c.
The stability limit imposed by fast diffusion can be overcome by using standard implicit methods

such as the second-order implicit midpoint or Crank—Nicolson method, which gives a system of

linear equations for n*+1:

k1 2D At P A At
nk = nk 4 D AEV2 (” +2” ) Va (\/ Wk)+z” (@ AVAY g

The linear system can be solved efficiently iteratively using multigrid relaxation [103]; for
B < 1, solving the linear system is not much more expensive than a step of a second-order explicit
time stepping scheme. Note, however, that scheme is only first order accurate overall for
reaction-diffusion systems. Hence, in addition to improved stability, it is important to develop
higher-order schemes to improve accuracy. Note that this is not as simple as replacing tau leaping
in Eq. with SSA as in Eq. ; this would still be only first-order accurate even in the
deterministic limit.

Here we construct numerical schemes based on the second-order temporal integrators for the lin-
earized equations of FHD developed in Refs. [64] [74]. Those temporal integrators are second-order
accurate in the weak sense for additive noise, and are used here as the basis for handling diffusion.
In order to add reactions into diffusion-only schemes, we consider two types of sampling methods,
tau leaping and SSA. For tau leaping, we use the weakly second-order tau leaping method [65, 66];
a similar two-stage scheme has been originally proposed for the CLE [104] to achieve second-order
weak accuracy. Here we combine predictor-corrector midpoint schemes proposed in Ref. [64] (for

diffusion) and the second-order tau leaping method (for reaction). Owing to similar two-stage
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structures of those schemes, they fit together in a rather natural manner. In addition, since the
resulting schemes still fit the framework of the implicit-explicit algorithms analyzed in Ref. [64],
they are second-order weakly accurate for additive noise and an additional order of accuracy (i.e.,
third order) is gained for the structure factor.

We also develop midpoint schemes that use SSA instead of tau leaping for reactions. Unlike tau
leaping-based schemes, the SSA-based schemes do not suffer from instability even in the presence
of rapid reactions. The use of SSA may also help to prevent the development of negative densities,
which is one of the main numerical issues for large fluctuations. Hence, while SSA-based numerical
schemes are computationally more expensive, they work better than tau leaping-based schemes
when reactions are fast or when the number of molecules is small. The SSA-based schemes we
propose here belong to a class of exponential Runge—Kutta schemes, and we construct them to
ensure second-order deterministic accuracy, as well as second-order accuracy for the structure

factor; a detailed analysis of their weak accuracy is at present missing even for linearized FHD.

1. Explicit Midpoint Schemes

As a prelude to constructing two-stage implicit methods, we first consider improving the accu-
racy of the explicit EMTau scheme by using an explicit two-stage Runge-Kutta (predictor-
corrector) approach. By combining the explicit midpoint predictor-corrector scheme from Refs. [64]
74] (for diffusion) and the midpoint tau leaping scheme from Refs. [65] [66] (for reaction), we obtain

the explicit midpoint tau leaping (ExMidTau) scheme:

. D At D At vg P ’“AVAt 2
ns=nk+ D2l Vo (VWD) + Z: - /2 (290)
kit = pk —I—DsAtV(21n§ + D At Vo (VREWS) + D At v (Vi) (29b)
Ver P mvm/g) Nr v P@ ((2ar — ar)+AVAt/2)
* Z 2 AV ’
r=1

where the superscripts (1) and (2) indicate that the terms correspond to the first and second half

of the time step, respectively. That is, P() (and similarly for W) and other random increments)
denotes the same random number in both predictor and corrector stages, and is only sampled once

per time step. Following Refs. [65] [66], the mean reaction rate for the second half step is corrected
o (2a* — a¥)T, where a* = max(a,0).

For the magnitude of the stochastic diffusive fluxes over the second half of the time step, we
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consider the following three options for the face average value ng:

A =7 (nk) , (30a)
7% = fi(nk), (30b)
7 =7 ((2n; - n’;)+) . (30c)

While all options are consistent with the Ito interpretation, the effect of this choice on accu-
racy requires a nonlinear analysis that is not available at present. The option is used in
Ref. [74] and shown to lead to second-order weak accuracy for FHD equations linearized around
a time-dependent macroscopic state. The option is inspired by the midpoint tau leaping
scheme [65], [66]. However, it does not actually lead to second-order weak accuracy for multiplica-
tive noise because the fluctuating diffusion equation does not have the simple noise structure that
the CLE has [104]. For all our simulations, we use option , as justified by numerical results
in Section VAl

The reactions can also be treated using SSA, to give the explicit midpoint SSA (ExMidSSA)

scheme
DAt D At
ng = nf + == Vink + v (ViatwdY), (31a)
nt =n® 4+ RWY <n°, A;) : (31b)
D At D At
nk 1 = k4 D AEV2n® + (\/ Ry Y ) <w/ W32)> (31c)

+9%£1)< AQ >+£R( )< A;).
Here the predictor stage —|— is a split reaction-diffusion step, but the corrector is not split.
Note that two |() appearing in Egs. and are the same random increment computed
using SSA. In other words, the SSA algorithm is called once for each half of the time step; this
has the same computational cost as calling SSA once to compute R (nk,At) in the EM-SSA
scheme .

Since both ExMidTau and ExMidSSA schemes treat diffusion explicitly, they are subject to
stability limits. The ExMidTau scheme has the same stability limit as the EMTau scheme,
whereas the ExMidSSA scheme is subject to the same limit as the EM-SSA scheme. The
ExMidTau scheme with the option is an instance of the explicit midpoint scheme analyzed in
Ref. [74] for weak noise (i.e., linearized FHD), and therefore achieves second-order weak accuracy
for linearized FHD and gives third-order accurate equilibrium structure factors. On the other hand,

the ExMidSSA scheme gives only second-order accurate structure factors.
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2. Implicit Midpoint Schemes

Here we present two implicit midpoint schemes, where diffusion is treated implicitly based on
the implicit midpoint predictor-corrector scheme [64) [74]. By treating reactions using the second-
order midpoint tau leaping scheme [65], 66], we obtain the implicit midpoint tau leaping scheme

(ImMidTau) scheme:

. D, At D At 1) v, PO (aF AV AL/2)
nt =nk + Vin Vd (fW ) + Z AV , (32a)

nkt =k 4 D AEV? <n+2”k+1> + DN (\FW ) D At (\FW@)

N, N,
S vy PW(afAVAL2) usm@)(@az — af)PAVAL/2)
+ A + AV 7 (32b)
r=1 r=1

where the three options for ng are given in Eq. . When SSA is used for the reactions, we obtain
the implicit midpoint SSA scheme (ImMidSSA) scheme,

nt = nk + Atv %étvd- (JfT';WSF”) , (33a)
k+1
Wi+ = nf 4 D, ANV (g) 22t (VAEWE) Dl ()
+ R, (n*, At). (33b)

In the corrector stage, both schemes treat diffusion using the Crank—Nicolson method since this
gives the most accurate structure factors for diffusion-only systems [64]. For the predictor step to
the midpoint, we have chosen to use backward Euler for diffusion because this was found to be
optimal using the structure factor analysis discussed in more detail in Section [[VB]

We point out again that the difference in how reactions are included in the ImMidTau and
ImMidSSA schemes stems from the fact that SSA is an exponential integrator whereas the midpoint
tau leaping method is only a second-order integrator. This difference must be taken into account
when analyzing the accuracy of SSA-based schemes both in the deterministic limit and in structure
factor analysis. Like the explicit midpoint schemes in Section [VAT] for linearized FHD, the
ImMidTau scheme is second-order weakly accurate and gives a third-order accurate structure factor,
whereas the ImMidSSA scheme gives only a second-order accurate structure factor. Since diffusion
is treated implicitly in both schemes, they are not subject to a stability limit depending on /.
However, due to the explicit treatment of reactions, the ImMidTau is subject to the stability
condition a < 2. The ImMidSSA scheme is unconditionally linearly stable and has no stability
restrictions on « and 8 but can be considerably more expensive for systems with large numbers of

molecules.
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A key element of this work that distinguishes it from our previous work based on CLE [61]
is that here we replaced the GWN in the chemical noise with Poisson noise, and used a weakly
second-order tau leaping method [65] 66] to account for the non-Gaussian nature of the chemical
fluctuations. It is important to note that Poisson noise does not have a continuous range limit, i.e.,
the Poisson distribution remains integer-valued even as the number of molecules per cell becomes
very large. Although it is tempting to replace the Poisson distribution with a Gaussian distribution,
this changes the large deviation functional and therefore we recommend using tau leaping even in
the case of weak fluctuations; we note that sampling from a Poisson distribution can be done with
a cost essentially independent of the mean using well-designed rejection Monte Carlo methods.
Because of the use of Poisson variates, which cannot be split into a mean and a fluctuation like a
Gaussian variate can, there is no strict “deterministic limit” for our FHD discretizations. While the
handling of diffusion degenerates to a standard second-order deterministic scheme in the absence
of the noise, the chemical noise is always present and increments or decrements the number of

molecules by integer numbers.

B. Structure Factor Analysis

Analyzing the accuracy of temporal integrators for stochastic differential equations is notably
nontrivial, especially if driven by multiplicative noise. As mentioned above, because of the multi-
plicative noise, all of our midpoint schemes are formally only first-order weakly accurate. However,
traditional weak-order accuracy is not the most important goal in FHD simulations. As first argued
in Ref. [63] and then elaborated in Refs. [64] [74], for FHD it is more important to attain discrete
fluctuation-dissipation balance and higher-order accuracy for the spectrum of the equilibrium fluc-
tuations.

Here, we analyze the accuracy of our numerical schemes by investigating the structure factor
S(k) for the one-dimensional linearized FHD equation (12]). The analytic expression for S(k)
produced by a given scheme can be obtained as a function of Ax and At following the procedure
described in Appendix[C] Of specific interest to us is how accurately the implicit schemes reproduce
S(k) at large wavenumbers corresponding to length scales comparable to Az (i.e., k > (DAt)~1/?)
when diffusion is the fastest process, 5 > 1 > «. This is because incorrect diffusive dynamics at
grid scales for At > Ax?/D can lead to gross errors in the magnitude of the fluctuations at large
wavenumbers.

Errors in the structure factor arise from two sources: spatial and temporal discretization. As
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FIG. 2. Discrete structure factors S (I;:) for the ExMidTau, ImMidTau, ExMidSSA, and ImMidSSA schemes
for the one-dimensional linearized FHD equation with I'/fir = 2 (e.g., an out-of-equilibrium monostable
Schlogl model). Note that different values of 5 are chosen for the explicit schemes (5 = 0.25) and the implicit
schemes (8 = 5) and « is chosen as a = 0.15. The exact continuum result is depicted by the dotted

line.

explained in Appendix [C], the predominant contribution of spatial discretization is to replace —k?
with the symbol of the standard discrete Laplacian. In one dimension, this simply amounts to

replacing k in the continuum expressions with the modified wavenumber k defined by
sin (45%)
Az
2

k= (34)

Note that exactly the same expression applies to the RDME, where diffusion is simulated by lattice
hops. In order to focus our attention on temporal integration errors, we will plot discrete structure
factors as a function of k instead of k, which effectively removes the spatial errors.

Figure [2] illustrates how S(k) deviates from the exact result at different wavenumbers
for large At. We compare S(k) obtained from the four schemes by using values o = 0.025,
B8 = 10a = 0.25 for the explicit schemes, and @ = 0.5 and 8 = 10a = 5 for the implicit schemes.
Note that these values correspond to a case where the time step size is chosen as half of the stability
limit Atpax for the explicit schemes and, it is increased by factor of 20 (At = 10Atyax) for the
implicit schemes. As described below, the accuracy at diffusion-dominated scales k¢ > 1 and
reaction-dominated scales k¢ < 1 largely depend on how diffusion (i.e., explicit or implicit) and
reaction (i.e., tau leaping or SSA) are treated, respectively.

As the time step size approaches the diffusive stability limit, § — 1/2 in one dimension, the

explicit schemes become inaccurate and eventually numerically unstable at the largest wavenum-
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bers, as seen in the figure for § = 1/4. Due to the small values of «, both schemes give accurate
results for reaction-dominated scales. Note, however, that the SSA-based schemes give exact S(0)
and they are in general more accurate at reaction-dominated scales than the corresponding tau
leaping-based schemes. Hence, we see that, for 5 > «a, the accuracy of the explicit schemes is
largely affected by numerical instability arising from diffusion.

On the other hand, both implicit schemes give fairly good S(k) in the overall range of k even
though At is twenty times larger and § = 5. As expected, the ImMidSSA scheme is more accurate
for reaction-dominated scales k¢ < 1, for which the ImMidTau scheme shows some errors because
of the relatively large value of a = 0.5. However, for intermediate scales k¢ ~ 1, the ImMidTau
scheme is more accurate because it attains third-order accuracy for static covariances.

At diffusion-dominated scales k¢ > 1, both implicit schemes give accurate results. This is
not accidental, for we have selected these schemes from a family of schemes parameterized in
Ref. [64] exactly for this reason. Specifically, the treatment of diffusion in both schemes is based
on the implicit midpoint scheme (Crank—Nicolson), which gives the exact S(k) in the absence of
reactions [64]. In addition, reaction is incorporated in a way that maintains fluctuation-dissipation
balance for k¢ > 1 even for relatively large values of «. For small «, the time integration error of
the ImMidTau scheme for the structure factor at the maximum wavenumber kpyaxf = 71’\//3/704 is

estimated as
S(kmax) - SD(kmax) ~ B O42
So(kmax) 2(1+28)%2 7

(35)

where Sy(k) = limas—0 S(k) is the structure factor in the absence of temporal integration errors
(see Appendix . Hence, for a given value of «, S(k) gives accurate results at k¢ > 1 for large
B. For the ImMidSSA scheme, [ in the numerator is replaced by 8 + (1 + 26)(% — 1) and a
similar stable behavior for large 8 is observed. By expanding S(kmax) — So(kmax) for small At,
we also see that the error is O(a?f) = O(A#3) for the ImMidTau scheme, whereas it is O(At?)
for the ImMidSSA except at thermodynamic equilibrium (i.e., except when I' = fr), where it is

third-order accurate.

V. NUMERICAL RESULTS

We perform numerical simulations for the following three stochastic reaction-diffusion systems.
In Section [V-A] we use the equilibrium Schlogl model in one, two, and three dimensions to val-
idate our numerical methods. The analysis in Section [V B| assumed additive noise, reflecting a

large number of molecules per cell. Here we present numerical results demonstrating that the
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methodology continues to work when there are a small number of molecules per cell and the ef-
fects of multiplicative noise are significant. In particular, we show that our numerical methods,
including the modified arithmetic-mean averaging function discussed in Section [[ILC] accurately
reproduce the Poisson statistics that characterize the thermodynamic equilibrium distribution. In
Sections [VB] and [V C| we study the effects of fluctuations on chemical pattern formation. In Sec-
tion[VB] we test our numerical methods on a time-dependent problem: two-dimensional Turing-like
pattern formation in the three-species BPM model [77, [78]. We investigate how accurately both
time-transient and steady state behavior are captured for the ImMidTau and ImMidSSA schemes
when a large time step size is used. We consider the case where the populations of chemical species
have different orders of magnitude, which is a frequently encountered situation where a conven-
tional RDME-based method may not work efficiently. We demonstrate that the ImMidTau scheme
scales very well with an increasing number of molecules per cell so that even the deterministic
limit of vanishing fluctuations can be explored. In Section [V C| we demonstrate the scalability to
large systems and computational efficiency of our FHD approach by presenting a three-dimensional

numerical simulation of chemical front propagation in a two-species model [7].

As a reference method for comparison, we use an RDME-based method, as proposed in Ap-
pendix [A] which is constructed via a standard operator splitting technique by combining multi-
nomial diffusion sampling [71] and SSA. Such a split scheme is notably more efficient than ISSA
when there are a large number of molecules per cell, and becomes an exact sampling method for
the RDME in the limit At — 0. This RDME-based scheme works with nonnegative integer pop-
ulations and reproduces correct fluctuations at thermodynamic equilibrium. However, diffusion
imposes the same restriction on At, and the split scheme produces only a first-order accurate

structure factor in general.

In order to set a desired magnitude of fluctuations without changing any parameters for the
macroscopic limit (e.g., penetration depth), we introduce a factor A, which scales the cell volume
AV = AAzxy---Axg. It can be interpreted as the surface cross section in one dimension and
the thickness of a system in two dimensions, and as a rescaling of the number density in three
dimensions. Since the number of molecules in a cell is ng ; AV, the larger A is, the more molecules
in a cell there are and the weaker the fluctuations become. However, the corresponding macroscopic

system is unaffected by the value of A.
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FIG. 3. Static fluctuations of the spatially discretized FHD equation at thermodynamic equilibrium.

(Left) Structure factors S(k) calculated by using different averaging functions 7. The solid lines depict the
results from the equilibrium Schlégl model (neqAV = 10), whereas the dotted lines are from the corre-
sponding diffusion-only system. Note that the exact result for both systems is S (l;) = Neq independent of k,
which corresponds to Poisson equilibrium fluctuations. (Right) Empirical histograms P(N) of the number of
molecules per cell for the Schlégl model (red circles) and the diffusion-only system (blue crosses), computed
using the arithmetic mean averaging function. For comparison, we show the correct Poisson distribution
Ppoisson (V) and its Gaussian approximation Pgauss(IN). The inset shows the errors P(IN') — Ppoisson (IN) with

error bars corresponding to two standard deviations.

A. Schlégl Model at Thermodynamic Equilibrium

In this section, we test the numerical schemes constructed in Sections [[TI] and [[V] on the Schlogl
reaction-diffusion model, first introduced in Section [IC] Simulation parameters are chosen to
correspond to a system in thermodynamic equilibrium, so that the equilibrium fluctuations are
Poisson and the structure factor S(k) = neq is constant, both with and without (i.e., diffusion
only) chemical reactions. Specifically, we set the rate constants as k1 = ko = k3 = k4 = 0.1 (see
Eq. ), which gives neq = 1 and o = 0.2A¢. We set the diffusion coefficient D = 1 and the grid
spacing to unity for d = 1,2, 3, and thus g = At. We consider the case where the mean number of

molecules per cell is 10 by setting A = 10.

1. Continuous-Time FHD FEquation

Prior to evaluating the different temporal integration strategies, we first focus our attention

on the continuous-time discrete-space FHD equation ([19) to establish a baseline for comparison

30
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and to evaluate the effectiveness of the choice of averaging function . To eliminate temporal
integration errors we use the EMTau scheme with a very small time step size At = 1073; results
from the other FHD schemes are similar for sufficiently small At. The left panel of Fig. [3| shows
the structure factors S(k) computed for N, = 512 grid cells in one dimension for the arithmetic,
geometric, and harmonic mean (AM, GM, HM) averaging functions n(ni,n2). The correct flat
spectrum is accurately reproduced by the modified AM averaging function . On the other
hand, the GM and HM averaging functions give smaller S(k) at diffusion-dominated scales k¢ > 1.
This can be also observed from the diffusion-only system for all wavenumbers, as theoretically
explained in Appendix [B| Henceforth, we use the modified AM averaging function .

The right panel of Fig. [3] shows that using the AM averaging function, the correct Poisson
distribution for the number N of molecules in a cell is accurately reproduced for both reaction-
diffusion and diffusion-only systems at thermodynamic equilibrium. From the equilibrium number
density distribution p(n), we construct a discrete distribution for integer number of molecules N

per cell,

(N+1)/AvV
P(N) = / p(n)dn, (36)
(N—1)/AV

and compare it with a Poisson distribution Ppoisson(/N) with mean neqAV, as well as a Gaussian
distribution Pgauss(/V) having the same mean and variance as Ppgisson (/N ). The agreement of P(N)
and Ppoigson (V) is remarkable in the sense that FHD was originally proposed to account for only
second moments of (small) Gaussian fluctuations. Since Ppoisson(IN) is significantly different from
Pgauss(N) for n® AV = 10, we confirm that our spatially discretized FHD equation describes

(large) Poisson fluctuations faithfully.

2. Time Integration Errors

In order to investigate time integration errors of our numerical schemes, we compare the nu-
merical equilibrium distribution for a given time step size At with the target Poisson distribution
Ppoisson(N) by using the following measures. First, we compute the Kullback—Leibler (KL) diver-

gence (distance),

P Poisson(N )

DKL — Z PPoisson(N) log P(N)

N=0

(37)
Second, we compute the probability of negative number densities,

0
Pus = [ plu)an. (38)
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FIG. 4.  Deviations from the correct equilibrium distribution Ppeisson(IN) as At increases for the four

midpoint schemes applied to the one-dimensional Schlogl model at thermodynamic equilibrium. The left
panel shows the KL divergence , the middle panel shows the probability of negative density , and
the right panel shows the correlation coefficient between neighboring cells. The red and green solid
lines denote the ImMidTau and ExMidTau schemes, respectively, whereas the blue and purple dotted lines
denote the ImMidSSA and ExMidSSA schemes, respectively. The arrows denote the stability limit Aty ax

of the explicit schemes, see Eq. . The error bars correspond to two standard deviations.

Third, we compute the correlation coefficient ¢ between neighboring cells,

(= COV\[/Z’[Z?RJ'] (39)
Note that all three measures should be zero at thermodynamic equilibrium, as they would be for
RDME.

We considered the three options for the stochastic flux amplitude n? in Eq. . For ¢, the three
options give similar values within standard errors of estimation. For Dki, and Ppeg, option (30a)
gives the largest values (i.e., least accurate) and option the smallest (not shown). Based on
this result, we will adopt and use it for all of the simulations. Figure |4 shows how these
measures deviate from zero as At increases for N. = 64 cells in one dimension for the different
schemes. As expected, for small values of At, all schemes give similar values. Dxkr, converges to a
small value, which is consistent with the good agreement between P(N) and Ppoisson(/V) seen in
the right panel of Fig. [3| P,es is observed to converge to zero as At — 0, which demonstrates the
effectiveness of the approach described in Section [[TI C|and agrees with the analysis in Appendix [B]

Also, no correlation between neighboring cells is observed for small At within statistical errors,

which is consistent with the flat spectrum S(k) shown in the left panel of Fig. |3l As At approaches
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the explicit stability limit Atpax, rapid worsening is observed in both explicit schemes in all three
measures. While P,¢; and ¢ behave similarly for both schemes, Dy, remains small for larger values
of At for the ExMidSSA scheme compared to the ExMidTau scheme.

For both implicit schemes, it can be clearly seen that not only is the diffusion instability bypassed
but also the accuracy is well maintained for large At. For comparable accuracy, an order of
magnitude larger time step size than the explicit schemes can be chosen. The ImMidTau scheme
gives smaller Dk, than the ImMidSSA scheme if At is smaller than a certain value. This is
consistent with the observation that the former scheme has a higher temporal order of accuracy in
S (k). However, due to inaccurate handling of reactions by tau leaping for large A¢, the ImMidTau
scheme eventually gives larger Dyy,. For P, and ¢, similar behavior is observed.

Similar behavior is observed for higher spatial dimensions d = 2 and d = 3 (not shown).
However, for a given target accuracy tolerance, we find that a smaller time step size should be
chosen, which is inversely proportional to the dimensionality d. This should not come as a surprise
since the explicit stability limit Atmax ~ 1/d, see Eq. . Therefore, we conclude that At can
be chosen an order of magnitude larger for the implicit schemes than for the explicit schemes
independent of the spatial dimension. As mentioned, the computational overhead for solving linear
systems can be reduced by an efficient iterative solver. Using multigrid relaxation [103], the overall
computational efficiency gain was roughly estimated to be a factor of 3. However, this factor largely

depends on the problem as well as the implementation, especially on the linear solver used.

B. Turing-like Pattern Formation

In this section, we investigate pattern formation in the three-species Baras—Pearson—-Mansour

(BPM) model [77, [7§],

k
U+WHB VLW, 2vaw,

. i:’j (40)
U=g, V=
k5 k7

We choose the rate constants so that the deterministic reaction-only system attains a limit cycle as
its stable attractor, and we choose the diffusion coefficients so that a Turing-like pattern forms in the
reaction-diffusion system [61]. Specifically, we set k; = ko = 2 x 1074, k3 = 1, ky = 3.33 x 1073,
ks = 16.7, k¢ = 3.67 x 1072, k; = 4.44 and Dy = 0.1, Dy = Dw = 0.01. We note that on
the limit cycle, number densities of the three species oscillate in significantly different ranges:

ny € (999,2024), ny € (302,645), and nw € (18.2,83.2). For a physical domain with side lengths
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(c) RDME ~ (d) RDM

FIG. 5. Two types of steady-state Turing-like patterns observed in the two-dimensional BPM model with
642 cells and A = 1. Snapshots of ny are obtained at t = 5 x 10* from FHD (left two panels) and RDME
(right two panels) simulations with a small time step size. Panels (a) and (c¢) show a hexagonal structure

(with 12 dots), whereas panels (b) and (d) exhibit a monoclinic structure (with 11 dots).

L, = L, = 32, we use three spatial resolutions with grid sizes N, = 642, 1282, and 2562 cells. For
the initial number densities, we choose a point on the limit cycle (n%, n%, n%;) = (1686, 534, 56.4)
and generate the initial number of molecules of each species s in each cell from a Poisson distribution
with mean n?AV = n?AAzAy. We use our implicit schemes in order to bypass the stiff stability
limit imposed by the fast diffusion of U molecules. To obtain reference FHD results having minimal
time integration errors, we use the ImMidTau scheme with At = 0.1. To test the importance of
fluctuations, a deterministic version of the ImMidTau scheme is used with At = 0.1, with random

initial conditions generated from a Poisson distribution corresponding to thickness A = 10.

Figure 5| shows snapshots of a final Turing pattern formed for A = 1 and 642 cells. While
the pattern is qualitatively correct, the quantitative behavior of our FHD formulation may be
questioned since the mean number of W molecules in a cell can be as low as 4.5 at small ¢ in this
case. To confirm the FHD description applies even for relatively small numbers of molecules per cell,
we compare the FHD results to reference RDME results obtained using the SSA/2+MN+SSA /2
scheme with At = 0.01. We find that the FHD reference simulations are qualitatively very
similar to the RDME reference simulations over a wide range of thicknesses A, as we illustrate
in Fig. For our setup, after the initial formation of a disordered pattern of dots with low
concentration of U molecules (blue dots in Fig, the dots split and merge and diffuse to eventually
form a stable regular pattern; note that the final patterns are nearly periodic lattice structures
but their geometry is affected to some extent by the finite size of the domain. For A = 1, by

t = 5 x 10%, almost all samples had formed a steady pattern. Most samples formed a hexagonal
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FIG. 6. Turing-like pattern formation in the two-dimensional BPM model with 642 cells. (Left) Spatially-
averaged density iy (¢) of species U for domain thickness A =1 and A = 10 (RDME results), as well as de-
terministic reaction-diffusion started from random initial conditions corresponding to A = 10. (Right) Snap-
shots of ny for A = 10 at four different times ¢ at which 7y (¢) attains a local minimum, indicated by circles

in the left panel.

(12 dots, see panels (a) and (c) in Fig[5)), and a few formed a monoclinic (11 dots, see panels (b) and
(d) in Fig. |5) lattice of dots, for both FHD and RDME. Note that while FHD simulations using the
ImMidTau scheme are equally efficient independent of A, RDME simulations become prohibitively
expensive for large A > 100 due to the very large number of U molecules (as many as 2 x 106A)
in the system. For weaker fluctuations, A = 1000, FHD simulations reveal that the annealing of
the lattice defects takes much longer and we see several disordered or defective patterns even at
t =5 x 10* (not shown). Therefore, not only do fluctuations accelerate the formation of the initial

(disordered) pattern, but they also appear to accelerate the annealing of the defects.

Since the formation of the pattern is driven by an instability, it is itself a random process
and a proper quantitative comparison between the different methods requires a careful statistical
analysis of an ensemble of trajectories. In order to capture the time transient behavior of pattern
formation, illustrated in the right panel of Fig. [ we calculate the spatially-averaged density
ny(t) = NLC > ;nu,i(t). In the left panel, we compare sample trajectories of ny(t) for A = 1 and
A =10 for RDME (similar results are obtained for FHD) and for deterministic reaction-diffusion.

While 7y (¢) initially oscillates as in the limit cycle, as the Turing-like pattern begins to form, the
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FIG. 7. (Left) Scatter plots of the decay onset time a; and the steady spatial average density a for several
values of the cell thickness A and two grid resolutions. RDME and FHD results are compared for A = 1 and
A =10, whereas only the FHD results (using the ImMidTau scheme) are shown for A = 100 and A = 1000
since RDME simulations are prohibitively expensive. (Right) Average values a; of ay over 16 samples for
the ImMidTau and ImMidSSA schemes with 642 cells as a function of time step size At, for cell thicknesses
A of 0.1, 1, and 10. For comparison, the RDME results for At = 0.01 are shown on the left with error
bars corresponding to two standard deviations. Error bars are omitted for the implicit schemes; they are
comparable to the RDME results. Note that a; are normalized by the average values a{°* for deterministic

reaction-diffusion started with random initial conditions corresponding to A = 10.

oscillation amplitude decays and ny(t) eventually attains a steady value. By comparing A = 1
and 10, we see that larger fluctuations facilitate faster pattern formation, as observed in prior
work [61] by us and others. By comparing RDME results for thickness A = 10 with deterministic
reaction-diffusion started from the same initial condition, we see that the effect of fluctuations on
pattern formation is not just due to random initial conditions.

We generate 16 sample trajectories for each set of parameter values, fit each realization of ny()

using seven fitting parameters a,--- , a7 to
t— al
a2

ny(t) = <1 — tanh > (ag sin(aqt + as) + aﬁ) +ar, (41)

and compare the distributions of the fitting parameters. Note that a; and a7 correspond to the
decay onset time and the steady spatial average density, respectively. In the left panel of Fig. [7]
we compare the empirical distributions of (a1, a7) from the RDME and FHD results for different
values of the thickness A and spatial resolutions. For each value of A, we observe that distributions
obtained from different methods and/or resolutions coincide. For A = 1 and A = 10, we reconfirm

that the RDME approach produces statistically very similar results for three resolutions and the
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FHD results are statistically indistinguishable from the RDME results. It is quite remarkable that
FHD works even for A = 1 and 2562 cells, which can have as low as 0.3 molecules per cell at small
t, and this demonstrates the robustness of our treatment for a small number of molecules per cell.
As the magnitude of the fluctuations increases (i.e., as A decreases), the pattern begins to form
earlier (i.e., a1 decreases), as already seen in Fig. @, while the steady spatial average density ar;
becomes smaller. In addition, while the variance of a; does not change significantly as A varies,
the variance of a7 becomes larger for smaller A.

Finally, we investigate time integration errors of our implicit schemes for the Turing-like pattern
formation. For the ImMidTau scheme, we increase At up to the stability limit arising from reactions
Atg@x ~ 1.3. The right panel of Fig. El shows the mean values a7 of the steady spatial average
density a7 over 16 samples versus At for 642 cells. While both schemes give similar values to the
RDME results for small At, they show different behavior for large At, which also depends on A.
As expected, in the ImMidTau scheme, the value of a7 rapidly deviates from the RDME result as

At approaches Atg?x, especially if there are few molecules per cell, A = 0.1 or A = 1. On the

other hand, in the ImMidSSA scheme, At can be increased beyond At](ri)x, and deviations from the
RDME results remain small even for the smallest value of A. Hence, handling reactions by SSA not
only removes the reaction stability constraint but also improves the accuracy for a small number
of molecules per cell. However, it should be noted that this improvement comes at a significant
computational cost, since the SSA scheme is much more expensive than tau leaping especially as
the number of molecules per cell increases. Therefore, the SSA-based schemes are impractical in

the regime of weak fluctuations due to poor scaling. We discuss some alternatives to SSA that may

significantly improve the computational cost for weaker fluctuations in the Conclusions.

C. Front Propagation

As a final example, we simulate three-dimensional front propagation in a two-species stochastic
reaction-diffusion system having the following reaction network:

AMa 2Aa1BR3A, BEo (42)

ka
This model has been proposed to reproduce axial segmentation in Ref. [7], where ISSA simulations
have been performed for the one-dimensional case. Following Ref. [7], we set k; = 0.4, ko = 0.137,
k3 = 0.1, ky = 1 and Dy = 1, Dg = 10. For a physical domain with side lengths L, = L, =

L, = 512, we use 2563 cells. To initiate front propagation, we generate initial number densities as
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Stochastic reaction-diffusion

FIG. 8. Three-dimensional FHD simulation of front propagation in a two-species stochastic reaction-diffusion
model using the ImMidTau scheme. The number density of species A is shown at four different times
t for the stochastic reaction-diffusion system (in the top row) and the corresponding deterministic case (in

the bottom row). The same initial conditions with Poisson fluctuations are used in both simulations.

follows. We first assign to each cell ¢ and species s a mean number density

1 ri— R
0 — 04 = v 2) _ M
Ngi =MNg’ + 5 (1 + tanh ¢ > (ns ng ) , (43)

where 7; is the distance from the cell center to the center of the domain. This initializes a spherical
region of radius R in the first uniform equilibrium state of the model, (ng),ng)) = (2.16,1.35),
while the rest of the domain is initialized in the second uniform equilibrium state, (ng),ng )) =
(0,10), with a smooth transition region between the two states of width ~ 2¢. Then, as in
Section [V B] we generate the initial number of molecules of each species in each cell from a Poisson
distribution with mean ngdAV = ngdAAxAyAz. We simulate the system for parameters A =
1000, R = 16, and £ = 4 = 2Ax using the ImMidTau scheme with At = 0.25. For comparison, we
also simulate the corresponding deterministic system using a deterministic version of the ImMidTau
scheme with the same time step size and (random) initial conditions. Simulations are performed

using a parallel implementation of the algorithm using the BoxLib software framework [105]. We

emphasize that a corresponding RDME system is too large to simulate with conventional RDME-
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based methods; while the total number of molecules in the system varies as the front propagates,
it is of the order of 10'? for A = 1000.

Figure [§] shows the growth of the spherical region as the more stable phase propagates into the
less stable phase via a spherical traveling wave. While the phase boundary having a peak population
of species A propagates, a Turing-like pattern develops behind the wave front; in one dimension
this pattern is periodic and more pronounced in the presence of fluctuations [7]. In two and three
dimensions, fluctuations not only enhance the pattern but they also make it disordered, as seen in
the figure by comparing the stochastic and deterministic cases. In addition, the phase boundary
becomes more irregular under fluctuations. Note that the numerical results for the deterministic
case are not perfectly radially symmetric not only due to the noisy initial conditions but also due to
grid artifacts introduced by the standard discrete Laplacian, which is not perfectly isotropic [106]
on length scales compared to the front width (i.e., the penetration depth); one would require an

even finer grid to correct for this spatial discretization artifact.

VI. CONCLUSIONS

In this work, we have formulated a fluctuating hydrodynamics (FHD) model for reaction-
diffusion systems and developed numerical schemes to solve the resulting stochastic ordinary dif-
ferential equations (SODEs) for the number densities n, ;(t) of chemical species in each cell.
We obtained the diffusion part of the SODEs from an FHD description of a microscopic system
consisting of molecules undergoing independent Brownian motions, and added reactions in an
equivalent manner to the reaction-diffusion master equation (RDME). We presented two implicit
predictor-corrector schemes, the ImMidTau and ImMidSSA schemes, that treat reactions
using tau leaping and SSA, respectively. In these schemes, diffusion is treated implicitly so that
the stability limit imposed by fast diffusion can be bypassed and the time step size can be chosen
to be significantly larger than the hopping time scale of diffusing molecules. In addition, two-
stage Runge-Kutta temporal integrators are employed to improve the accuracy. To confirm the
validity of our FHD formulation and demonstrate the performance of our numerical schemes, we
numerically investigated not only a system at steady state (Schlogl reaction-diffusion model), but
also time-dependent two-dimensional Turing-like pattern formation and three-dimensional front
propagation.

Based on our analytical and numerical investigation, we conclude that the ImMidTau scheme is

an efficient and robust alternative numerical method for reaction-diffusion simulations. The reason
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is threefold. First, the cost of the scheme does not increase for increasing number of molecules
per cell (weaker fluctuations). For small numbers of molecules per cell (large fluctuations), the
integer-valued RDME description is more appropriate than the continuous-range FHD description.
However, by using the approach proposed in Section [[ITC| we ensured that the FHD description
remains robust and gives accurate results even for a small number of molecules per cell, as shown
in Section [V'A] Hence, as shown in Section [VB]| our numerical methods can efficiently simulate
reaction-diffusion systems over a broad range of relative magnitude of the fluctuations. Second,
the scheme allows a significantly larger time step size without degrading accuracy compared to
existing RDME-based numerical methods [42H47], which use a fixed time step size for diffusion
that is comparable to the hopping time scale. In particular, we found that the time step size
could be chosen an order of magnitude larger for the implicit schemes than for explicit methods,
independent of the spatial dimension. Lastly, FHD can take advantage of development of efficient
parallel algorithms developed for computational fluid dynamics (CFD) that enable effective use of
high-performance parallel architectures while providing the framework for treating more complex
problems with additional physical phenomena. This enabled us to perform three-dimensional
simulations of chemical front propagation involving as many as 10'2 molecules using the BoxLib
CFD software framework [105].

The explicit tau leaping methods used here are quite simple to implement but are subject to
a stability limit for fast reactions, and can lead to negative densities when fluctuations are large.
While some implicit tau leaping methods have been developed, as an alternative we developed
methods that use SSA for reactions. The ExMidSSA and ImMidSSA methods, however, do not
scale as the fluctuations become weaker. This deficiency can be corrected by replacing SSA by
a recently-developed hybrid algorithm termed asynchronous tau leaping [I07] that combines SSA
and tau leaping in a dynamic manner by simulating multiple events with asynchronous time steps.
Future work should develop FHD-based numerical schemes that are accurate and robust even for
a small number of molecules per cell and also scale to the deterministic limit efficiently.

One of the advantages of the FHD approach for reaction-diffusion systems is its natural gen-
eralization to more complicated and realistic applications. Chemical reactions of interest usually
occur in liquid solution, and often in a dense crowded environment such as the cytoplasm [108-
110]. It is well-known that Brownian motion of liquid molecules or suspended macromolecules in
liquids is dominated by hydrodynamic effects related to viscous dissipation [81], 110 [IT1]. This
means that the diffusion model commonly used in reaction-diffusion models, including this work,

which assumes that reactants are independent non-interacting Brownian walkers diffusing with
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a constant diffusion coefficient, does not apply in the majority of practical problems of inter-
est. Notably, crowding or steric interactions affect the local hydrodynamic mobility of individual
reactants, and hydrodynamic interactions (HI) among the diffusing reactants introduce strong
correlations among the diffusive motions of the reacting particles (and also among reactants and
passive crowding agents) [110]. Excluded volume due to steric repulsion introduces cross-diffusion
effects, i.e., coupling between the diffusive fluxes for different species [112], as well as concentration-
dependent diffusion coefficients. Furthermore, it has been observed that cross-diffusion may lead
to qualitatively different Turing instabilities [I13H115]. Long-ranged contributions of hydrody-
namic interactions can be captured by accounting for the advection of concentration fluctuations
by the thermal velocity fluctuations, which follow a fluctuating Stokes equation [T} 111]. Addi-
tional thermodynamic contributions to the diffusive fluxes such as cross-diffusion, barodiffusion
and thermodiffusion do not seem straightforward in the RDME but are easily included in our
FHD formulation [61]. In future work, we will investigate these hydrodynamic effects on stochastic

reaction-diffusion phenomena.
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Appendix A: RDME-Based Split Scheme

As a reference algorithm for stochastic reaction-diffusion simulation, we construct a numerical
scheme for the RDME through a standard operator splitting technique, as done in a number of prior
works [25, 44, 45], [47]. This technique allows one to obtain a numerical scheme for the reaction-
diffusion system by combining numerical methods for the diffusion-only and reaction-only systems.
Here we combine multinomial diffusion sampling [43], [71] for diffusion and SSA for reaction via
Strang splitting [70].

One distinguishing feature of the resulting scheme, compared to exact sampling methods such
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as ISSA, is the use of a fixed time step size At for diffusion, which facilitates an efficient numerical
simulation if diffusion is fast. As shown below, while there are several advantages of this scheme
over ISSA | the choice of At is constrained as it is for explicit FHD schemes.

In Section after reviewing the multinomial diffusion sampling method, we present an
RDME-based split scheme and discuss its advantages and disadvantages. In Section[A2] we present

a stochastic accuracy analysis for this scheme.

1. Split Scheme

In the multinomial diffusion (MN) sampling method, the numbers of molecules in each cell after
time At are calculated by sampling how many molecules have moved from a cell to a neighboring
cell. Here we follow the simple algorithm described by Balter and Tartakovsky [71] and only allow
particles to move to nearest-neighbor cells. More complicated but also more accurate algorithms
that allow particles to jump to further than nearest-neighbor cells are described by Lampoudi et
al. [43]. We use the notation introduced in the body of the paper.

By denoting the number of molecules of species s diffusing from cell ¢ to cell ¢’ over the time
interval At as N ;_,4, the change in the number density ny; can be expressed in terms of the sum

of the inward and outward fluxes,
d
ns,i(t + At) = ng z A Z siitej—i T Nsi e;j—i Ns,i—>i+ej - Ns,i—)'i—ej) (Ala)

= ns,z( ) +9; ( ( )7At)7 (Alb)

where n,(t) = {ns;(t)}. For each cell ¢, the outward fluxes (Ns;site;> Nsisi—err > Nsjisiteqs
N i—si—eys Nsi—ss) are random variables sampled from the multinomial distribution with > ., Ny ;4
nsi(t)AV total trials and probabilities (ps,ps,- -+ ,Ds, Ps, 1 — 2dps) where p; = D;At/Ax?, where
we have assumed Az = --- = Axy = Ax.

For fast diffusion, this method becomes more efficient than treating hoping events one by one (as
in ISSA). However, it is an approximate method since the actual distribution of the outward fluxes
deviates from the multinomial distribution as At increases. In fact, At cannot be arbitrarily large
and is limited by condition because of the requirement 1 — 2dps; > 0. We also note that the
number of molecules in a cell never becomes negative due to the constraint ), Ny ;i = ng;(t)AV.
Hence, the fluxes on disjoint faces are correlated, which is different from the FHD description ((18]).
In the deterministic limit this scheme converges to a standard forward Euler scheme for the diffusion

equation, and is therefore only first-order accurate in time. In the stochastic setting, this scheme
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adds correlations between the fluxes through different faces of a given cell in such a way as to ensure
discrete fluctuation-dissipation balance for any allowable time step size. In fact, for a system with
diffusion only, this method ensures that the equilibrium fluctuations are strictly Poisson, as desired
for independent Brownian walkers.

In order to handle chemical reactions, we use the SSA algorithm locally and independently in
each cell, without any diffusive events. Let i5(n,7) denote the (random) change in the number
density of species s when a cell with initial state n is simulated using SSA over a time interval .

In the absence of diffusion, the SSA-based reaction scheme can be written as
nsi(t + At) = ng i (t) + Rs(ni(t), At). (A2)

If we combine the diffusion-only (Al]) and reaction-only (A2)) schemes using a Strang splitting
approach [70], we obtain the SSA/2+MN+SSA /2 scheme

n:,i = nl;,i + %s(ni?v At/2)7 (A3a)
nys =g +Di(ng, At), (A3D)
nk = nl% + Ro(nf*, At)2), (A3c)

where superscripts denote time step or intermediate stage. (We note that a number of different
splitting variants are possible; the version presented here gave the most accurate structure factor.)
This split scheme has a number of advantages. It becomes an exact sampler (solver) for the
RDME in the limit At — 0, just like ISSA. It is notably more efficient than ISSA if there are many
events per time interval At, and it can be parallelized in a straightforward manner using domain
decomposition. Since the number of molecules is always a nonnegative integer both in multinomial
diffusion sampling and in SSA, this property is also preserved for this scheme. Moreover, since
both sampling methods preserve the thermodynamic equilibrium distribution (i.e., the Poisson
statistics), the split scheme also preserves it for any allowable time step size.

However, this scheme has some disadvantages. First, the time step size restriction for
diffusion becomes severe for fast diffusion. Second, SSA exhibits poor scalability with respect to
the number of molecules in a cell. This can be resolved by replacing SSA with the tau leaping
method, but the nonnegativity is no longer guaranteed. Third, since the multinomial diffusion
method used here is only first-order accurate, the accuracy of the scheme is first order even though
Strang splitting is used. Constructing RDME-based diffusion methods that are more accurate is

possible [43] [46] but nontrivial and is not the focus of our work.
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FIG. 9. Structure factors S(k) obtained from the SSA /2+MN+SSA /2 scheme for the one-dimensional
linearized FHD equation with I'/ar = 2 (e.g., an out-of-equilibrium monostable Schlégl model). Differ-
ent values of § are compared, with o = 0.15, see Eq. . The exact result is depicted by the dotted
line. Note that the modified wavenumber & is used, see Eq. .

2. Structure Factor Analysis

In this section, we investigate the stochastic accuracy of the SSA /2+MN+SSA /2 scheme .
To this end, we consider the structure factor S(k) of an out-of-equilibrium monostable Schlogl
model in one dimension (see Sections and . In the limit of many molecules per cell, an
asymptotic expression of S(k) can be obtained for the scheme as a function of Az and At. The
multinomial fluxes can be approximated by correlated Gaussian ones and the type of analysis
summarized in Appendix [C] can be applied; we do not give the details here for brevity. Note that
we present a similar structure factor analysis for our FHD-based schemes with some background
and details in Section [V Bl

Figure |§| illustrates how S(k) deviates from the exact result as At is increased to Atmax
(equivalently, to = 0.5), for a = 0.13, see Eq. . While S(k) is accurately reproduced
at the reaction-dominated scales k¢ < 1 for all values of 3, it becomes inaccurate for smaller
scales as At approaches Aty.x. We recall that for a system at thermodynamic equilibrium, the
split scheme exactly preserves the correct equilibrium distribution for any At < Atpax. This
property ensures that, for a < 3, good structure factors are obtained even for systems outside of
thermodynamic equilibrium, which exhibit a nonzero correlation length. For example, for g = 0.25,
the SSA/2+MN+SSA /2 scheme in Fig. [J gives a notably more accurate S(k) than the FHD-based

explicit schemes in Fig. Hence, even though this split scheme is found to give only first-order
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accurate S(k), the resulting structure factor is relatively insusceptible to increasing At until the

stability limit is approached.

Appendix B: Averaging Function 7

In this appendix we show that the arithmetic mean should be chosen as the averaging func-
tion 7i(n1,n2). Here we consider the diffusion-only case for a single species and investigate the
equilibrium distribution of the spatially discretized FHD equation . Since the true equilib-
rium distribution for a bulk (infinite) system is known to be a product Poisson distribution from
the corresponding microscopic system consisting of molecules undergoing independent Brownian
motions, we choose n so that the resulting equilibrium distribution is as close as possible to the
true distribution. In addition, since the prevention of negative cell number densities is one of the
essential issues for the development of a robust FHD numerical scheme, special care is taken to
modify the form of n(n1,n2) for small values of n; and ny. Here we focus on the continuous-time
case and do not assume any specific temporal integrator.

The corresponding microscopic system has N.iaAV molecules, where 7 is the mean number den-
sity and N, is the number of cells. The equilibrium distribution of the numbers of molecules in each
cell follows the multinomial distribution with equal probabilities 1/N.. Hence, it is straightforward
to obtain the following second-order statistics of cell number density nj;:

N.—1 n

Var [nz] = NC TV, (B].)
1 n . .
Cov [ng,,n4,| = “N.AV for i1 # io. (B2)
Equivalently, from Eqs. (B1) and (B2), the structure factor is also obtained as
S(k) =n for nonzero k. (B3)

If the FHD system attains an equilibrium state, it can be shown that its second-order
statistics are completely characterized by (n), which is the equilibrium average of 1 over all faces:

Ne—1 (i)

Var [n;] = N. AV’ (B4)
1 (A) .

Cov [ng,,n4,| = NG for i1 # 1o, (B5)

S(k) = (n) for nonzero k. (B6)

Comparing Egs. 1’ to the correct result Eqgs. (B1)—(B3|) suggests that one needs to

choose 7 so that (n) is as close as possible to n. It is easy to see that the arithmetic mean



42

0.3 -t T oI
0.2F

0.1F

0
-0.5

FIG. 10. The equilibrium cell number density distributions p(n) near n = 0 obtained from the arithmetic
mean averaging function (depicted by the red solid line), which uses the discontinuous Heaviside
function H, and Eq. (depicted by the blue dotted line), which uses the smoothed Heaviside functions Hy.
The results are obtained from the one-dimensional diffusion-only FHD system having D =n= Az =1,
A =5, and N, = 512 by using the EMTau scheme with At =1073.

(AM) would give the right answer: <ﬁAM> = <%(n1 + ng)> = n. On the other hand, to calculate
(n) for the geometric mean 7M™ = ,/niny or the harmonic mean ™ = 2/(n;! 4+ ny'), one
needs to know the equilibrium distribution p(ni,n2) of two neighboring cells. However, under
the reasonable assumption that all three averaging functions give similar distributions p(ni,ng)
allowing only nonnegative number densities, it can be easily shown that <ﬁHM> < <fLGM> < <fLAM>
from the well-known inequalities among the Pythagorean means. In fact, in Fig. 3] this ordering is
observed from the structure factor of the diffusion-only system, see Eq. . Hence, we conclude

that the arithmetic mean is the right choice for 7.

However, if the arithmetic mean is employed without modification, Eq. does not attain an
equilibrium state. This is because almost surely at some point on some grid face we will have 1 < 0
so that the stochastic diffusive flux becomes undefined. The nonnegativity of cell number densities
is guaranteed if the stochastic diffusive flux through a face is turned off when the number density
of either cell sharing the face becomes zero. Specifically, under some technical assumptions, it can

be proven that if n(n,n2) is a nonnegative function that satisfies
n(ni,n2) =0 for ng <0 or ng <0, (B7)

then the number density of each cell never becomes negative. The nonnegative arithmetic mean
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averaging function

B %(nl—i—ng) if ng > 0 and no > 0,
n(niy,ng) = (B8)

otherwise,

o

does not allow negative density (i.e., p(n) = 0 for n < 0). However, due to the discontinuity of n
at n1 = 0 or ng =0, p(n) does not decrease to zero as n becomes zero (i.e., lim,_,q+ p(n) > 0) and

a delta function is formed at n = 0, see Fig.

To understand this behavior, we consider numerically integrating Eq. with a small time
step size At > 0. Even if the density in a given cell ny(¢) has a small positive value, 7 can be large
if the density in the neighboring cell no(t) is large. In this case, ny(t+ At) can become negative due
to the stochastic diffusive flux. But, once ni has become negative, the stochastic diffusive flux is
turned off, and due to the deterministic diffusion, n; increases and becomes positive again. Hence,
as shown in Fig. p(n) attains a peak in the negative density region near n = 0. The width

1/2

and height of the peak are proportional to At'/2 and At~'/2, respectively, and the peak becomes

a delta function in the limit At — 0.

We note that the averaging in Eq. can be expressed as it = §(nq1 +n2)H(n AV)H (noAV)
where H is the Heaviside function. To avoid a discontinuity in 7 we can use a smoothed Heaviside
function to arrive at Eq. . Note that the smoothing is based on the number of molecules in a
cell (N =nAV) and the smoothing region 0 < N < 1 is chosen so that the stochastic diffusive flux
is modified only when there is less than one molecule in a cell. In Fig. we show the distribution
p(n) near n = 0 obtained by the averaging function , for a rather small mean number of
molecules per cell, nAV = 5. With the use of a smoothed Heaviside function, the spurious delta
function at n = 0 as At — 0 is removed, and the probability of negative density is greatly reduced

for small At.

Appendix C: Linearized Equation Analysis

In this appendix we summarize how the discrete structure factor is obtained as a function of Ax
and At when a given spatiotemporal discretization is applied to the linearized FHD equation ,
following the Fourier-space analysis developed in Ref. [63]. For simplicity, we consider here the

one-dimensional case.

Applying the spatial discretization given in Section [I11|to Eq. and taking a discrete Fourier
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transform, we obtain an Ornstein—Uhlenbeck equation for the Fourier coefficient d7(t),

d - 2Dnk? oT
b = —DId + ; W®) _ iy, + VW,ER), (C1)

where the modified wavenumber k is defined in Eq. (34), and W,ED) (t) and W,gR) (t) are independent

standard GWN processes. Compared to the continuous-space case (see Eq. ), k is replaced
by k due to the discrete Laplacian and divergence operators. Note that in this linearized analysis
Poisson processes have been replaced by Gaussian ones with the mean evaluated at the ensemble
average (i.e., macroscopic) values of the density. For convenience, we have replaced complex-valued
GWN noise processes by real-valued ones having the same noise intensities.

When the EMTau scheme is used to solve Eq. ., we have the recursion

2
Sin(t + At) = [1—(Dk2+r)At 20 \/QD”’“ Aty 2FNWQ, (C2)

where W7 and W5 are independent standard normal random variables. We write this as
Siue(t + At) L Mypbig(t) + NoW, (C3)

where £ denotes being equal in distribution. For any given temporal integrator we can straight-

forwardly obtain analytic expressions for M} and NpN;. For example, for the EMTau scheme,

M, =1— (Dk* +r)At, (C4a)
2 - _
NpNj = V(Dﬁst +T)At. (C4b)

The covariance of the noise Ny N;; for multinomial diffusion can most easily be obtained from
Eq. from the observation that, in the absence of reactions, the exact structure factor S(k) = n
is obtained for any stable time step.

A similar procedure is applicable to numerical schemes having SSA for reactions. Since SSA is

an exact integrator, the linearized reaction part in Eq. (C1)) is exactly solved. For example, for the

EM-SSA scheme (26]), we have (cf. Eq. (C2))

- 2Dk AL (1 —e2rat
Sh(t + At) = [—Dszt + e*m} Sk (t) + 1/ ”Twl +/ (:V)Wg. (C5)

While the expressions of M and N N;' become complicated for the predictor-corrector midpoint
schemes, a theoretical analysis is still tractable with the help of symbolic algebra tools.

By calculating M}, and NN} for a given numerical scheme, the stability condition and the
structure factor can be obtained as follows. From the condition that the amplification factor Mj
should satisfy

|My| <1 for all k, (C6)
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the stability condition is obtained. For the EMTau scheme, we obtain

DAt  rAt

1
it g
Az? + 4 — 2 (C7)

The analytic expression for S(k) =V (én,dn;) can be calculated from

_ VNpN;;

(C8)

which is obtained from the time invariance relation (67 (t)0n)(t)) = (6n(t + At)ony (t + At)) and
Eq. (C3) [63]. From the analytical expressions of S(k) and Sp(k) = limas—o S(k), [S(kmax) —

So(kmax)]/So(kmax) s easily obtained, the series expansion of which for small o (and fixed 3) gives

Eq. for the ImMidTau scheme. Similarly, series expansions for small At (i.e., fixed ratio a/3)

reveals the temporal order of accuracy of S(k).
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