

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Aleksandar Donev¹

Courant Institute, New York University
&

Alejandro L. Garcia, San Jose State University
John B. Bell, Lawrence Berkeley National Laboratory

¹Work performed in part at LBNL

Dpto. de Fisica Fundamental, U.N.E.D.
October 2011

Outline

- 1 Introduction
- 2 Nonequilibrium Fluctuations
- 3 Fluctuation-Enhanced Diffusion Coefficient
- 4 Conclusions

Coarse-Graining for Fluids

- Assume that we have a **fluid** (liquid or gas) composed of a collection of interacting or colliding **point particles**, each having mass $m_i = m$, position $\mathbf{r}_i(t)$, and velocity \mathbf{v}_i .
- Because particle interactions/collisions conserve mass, momentum, and energy, the field

$$\tilde{\mathbf{U}}(\mathbf{r}, t) = \begin{bmatrix} \tilde{\rho} \\ \tilde{\mathbf{j}} \\ \tilde{\mathbf{e}} \end{bmatrix} = \sum_i \begin{bmatrix} m_i \\ m_i \mathbf{v}_i \\ m_i \mathbf{v}_i^2 / 2 \end{bmatrix} \delta [\mathbf{r} - \mathbf{r}_i(t)]$$

captures the slowly-evolving **hydrodynamic modes**, and other modes are assumed to be fast (molecular).

- We want to describe the hydrodynamics at **mesoscopic scales** using a **stochastic continuum approach**.

Continuum Models of Fluid Dynamics

- Formally, we consider the continuum field of **conserved quantities**

$$\mathbf{U}(\mathbf{r}, t) = \begin{bmatrix} \rho \\ \mathbf{j} \\ e \end{bmatrix} = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ \rho c_V T + \rho v^2/2 \end{bmatrix} \cong \tilde{\mathbf{U}}(\mathbf{r}, t),$$

where the symbol \cong means something like approximates over **long length and time scales**.

- Formal coarse-graining of the microscopic dynamics has been performed to derive an **approximate closure** for the macroscopic dynamics.
- This leads to **SPDEs of Langevin type** formed by postulating a random flux term in the usual Navier-Stokes-Fourier equations with magnitude determined from the **fluctuation-dissipation balance** condition, following Landau and Lifshitz.

The SPDEs of Fluctuating Hydrodynamics

- Due to the **microscopic conservation** of mass, momentum and energy,

$$\partial_t \mathbf{U} = -\nabla \cdot [\mathbf{F}(\mathbf{U}) - \mathcal{Z}] = -\nabla \cdot [\mathbf{F}_H(\mathbf{U}) - \mathbf{F}_D(\nabla \mathbf{U}) - \mathbf{B}\mathcal{W}],$$

where the flux is broken into a **hyperbolic**, **diffusive**, and a **stochastic flux**.

- We assume that \mathcal{W} can be modeled as spatio-temporal **white noise**, i.e., a Gaussian random field with covariance

$$\langle \mathcal{W}_i(\mathbf{r}, t) \mathcal{W}_j^*(\mathbf{r}', t') \rangle = (\delta_{ij}) \delta(t - t') \delta(\mathbf{r} - \mathbf{r}').$$

- We will consider here binary fluid mixtures, $\rho = \rho_1 + \rho_2$, of two fluids that are **indistinguishable**, i.e., have the same material properties.
- We use the **concentration** $c = \rho_1/\rho$ as an additional primitive variable.

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of **compressible fluctuating hydrodynamics** are

$$\begin{aligned} D_t \rho &= -\rho (\nabla \cdot \mathbf{v}) \\ \rho (D_t \mathbf{v}) &= -\nabla P + \nabla \cdot (\eta \bar{\nabla} \mathbf{v} + \boldsymbol{\Sigma}) \\ \rho c_v (D_t T) &= -P (\nabla \cdot \mathbf{v}) + \nabla \cdot (\kappa \nabla T + \boldsymbol{\Xi}) \\ \rho (D_t c) &= \nabla \cdot [\rho \chi (\nabla c) + \boldsymbol{\Psi}], \end{aligned}$$

where $D_t \square = \partial_t \square + \mathbf{v} \cdot \nabla (\square)$ is the advective derivative,

$$\bar{\nabla} \mathbf{v} = (\nabla \mathbf{v} + \nabla \mathbf{v}^T) - 2(\nabla \cdot \mathbf{v}) \mathbf{I}/3,$$

the heat capacity $c_v = 3k_B/2m$, and the pressure is $P = \rho (k_B T/m)$. The transport coefficients are the **viscosity** η , thermal conductivity κ , and the **mass diffusion coefficient** χ .

Incompressible Fluctuating Navier-Stokes

- Ignoring density and temperature fluctuations, equations of **incompressible isothermal fluctuating hydrodynamics** are

$$\partial_t \mathbf{v} = \mathcal{P} \left[-\mathbf{v} \cdot \nabla \mathbf{v} + \nu \nabla^2 \mathbf{v} + \rho^{-1} (\nabla \cdot \boldsymbol{\Sigma}) \right]$$

$$\nabla \cdot \mathbf{v} = 0$$

$$\partial_t c = -\mathbf{v} \cdot \nabla c + \chi \nabla^2 c + \rho^{-1} (\nabla \cdot \boldsymbol{\Psi}),$$

where the **kinematic viscosity** $\nu = \eta/\rho$, and $\mathbf{v} \cdot \nabla c = \nabla \cdot (c\mathbf{v})$ and $\mathbf{v} \cdot \nabla \mathbf{v} = \nabla \cdot (\mathbf{v}\mathbf{v}^T)$ because of incompressibility.

- Here \mathcal{P} is the orthogonal projection onto the space of divergence-free velocity fields.

Stochastic Forcing

- The capital Greek letters denote stochastic fluxes that are modeled as **white-noise** random Gaussian tensor and vector fields, with amplitudes determined from the **fluctuation-dissipation balance principle**, notably,

$$\boldsymbol{\Sigma} = \sqrt{2\eta k_B T} \mathcal{W}^{(v)}$$

$$\boldsymbol{\Psi} = \sqrt{2m\chi\rho c(1-c)} \mathcal{W}^{(c)},$$

where the \mathcal{W} 's denote white random tensor/vector fields.

- Adding stochastic fluxes to the **non-linear** NS equations produces **ill-behaved stochastic PDEs** (solution is too irregular).
- For now, we will simply **linearize** the equations around a **steady mean state**, to obtain equations for the fluctuations around the mean,

$$\mathbf{U} = \langle \mathbf{U} \rangle + \delta \mathbf{U} = \mathbf{U}_0 + \delta \mathbf{U}.$$

Nonequilibrium Fluctuations

- When macroscopic gradients are present, steady-state thermal fluctuations become **long-range correlated**.
- Consider a **binary mixture** of fluids and consider **concentration fluctuations** around a steady state $c_0(\mathbf{r})$:

$$c(\mathbf{r}, t) = c_0(\mathbf{r}) + \delta c(\mathbf{r}, t)$$

- The concentration fluctuations are **advected by the random velocities** $\mathbf{v}(\mathbf{r}, t) = \delta \mathbf{v}(\mathbf{r}, t)$, approximately:

$$\partial_t (\delta c) + (\delta \mathbf{v}) \cdot \nabla c_0 = \chi \nabla^2 (\delta c) + \sqrt{2\chi k_B T} (\nabla \cdot \mathcal{W}_c)$$

- The velocity fluctuations drive and amplify the concentration fluctuations leading to so-called **giant fluctuations** [1].

Fractal Fronts in Diffusive Mixing

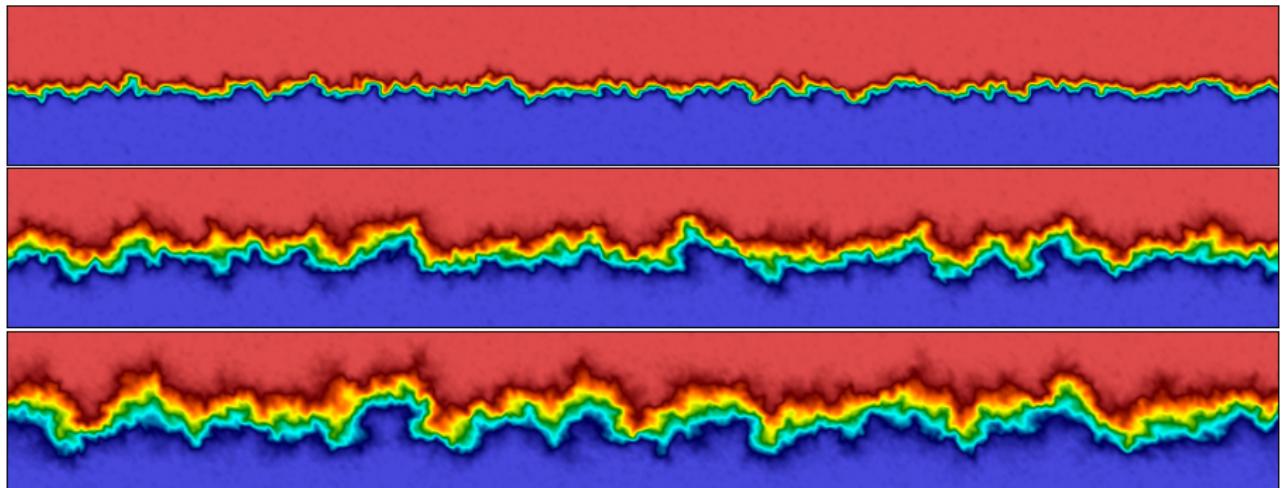


Figure: Snapshots of concentration in a miscible mixture showing the development of a *rough* diffusive interface between two miscible fluids in zero gravity [2, 6, 1, 3].

Giant Fluctuations in Experiments

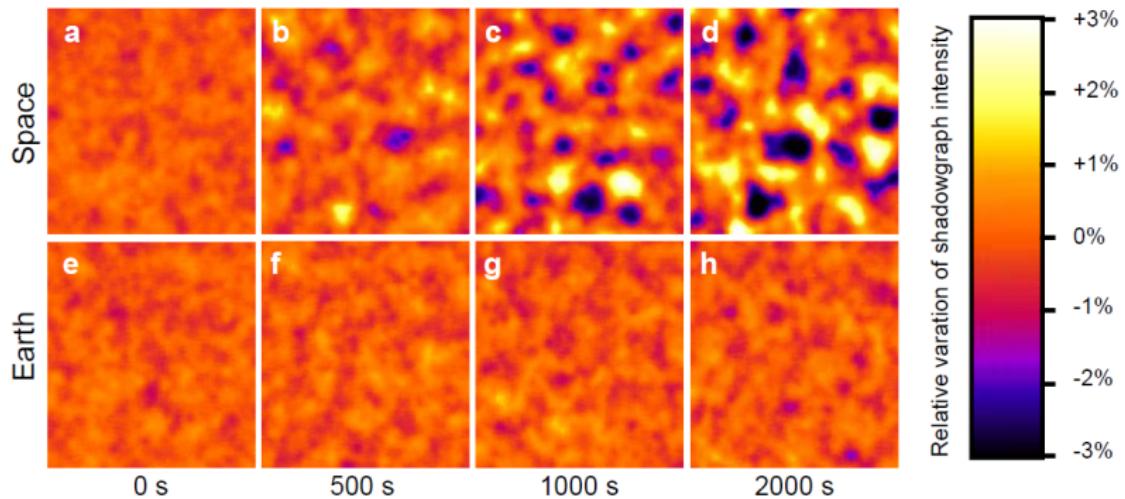


Figure: Experimental results by A. Vailati *et al.* from a microgravity environment [1] showing the enhancement of concentration fluctuations in space (box scale is **macroscopic**: 5mm on the side, 1mm thick).

Concentration-Velocity Correlations

- The **nonlinear** concentration equation includes a contribution to the mass flux due to **advection by the fluctuating velocities**,

$$\partial_t (\delta c) + (\delta \mathbf{v}) \cdot \nabla c_0 = \nabla \cdot [-(\delta c) (\delta \mathbf{v}) + \chi \nabla (\delta c)] + \dots$$

- The **linearized equations** can be solved in the Fourier domain (ignoring boundaries for now) for any wavenumber \mathbf{k} , denoting $k_{\perp} = k \sin \theta$ and $k_{\parallel} = k \cos \theta$.
- One finds that **concentration and velocity fluctuations develop long-ranged correlations**:

$$\Delta \mathcal{S}_{c,v_{\parallel}} = \langle (\widehat{\delta c})(\widehat{\delta v}_{\parallel}^*) \rangle = -\frac{k_B T}{\rho(\nu + \chi)k^2} (\sin^2 \theta).$$

- A quasi-linear (perturbative) approximation gives the extra flux [4, 5]:

$$\begin{aligned} \Delta \mathbf{j} &= -\langle (\delta c) (\delta \mathbf{v}) \rangle \approx -\langle (\delta c) (\delta \mathbf{v}) \rangle_{\text{linear}} =, \\ &= -(2\pi)^{-3} \int_{\mathbf{k}} \mathcal{S}_{c,v}(\mathbf{k}) d\mathbf{k} = (\Delta \chi) \nabla c_0, \end{aligned}$$

Fluctuation-Enhanced Diffusion Coefficient

- The **fluctuation-renormalized diffusion coefficient** is $\chi + \Delta\chi$ (think of **eddy diffusivity** in turbulent transport), and we call χ the **bare diffusion coefficient** [6].
- The *enhancement* $\Delta\chi$ due to thermal velocity fluctuations is

$$\Delta\chi = -(2\pi)^{-3} \int_{\mathbf{k}} \Delta\mathcal{S}_{c,v_{\parallel}}(\mathbf{k}) d\mathbf{k} = \frac{k_B T}{(2\pi)^3 \rho (\chi + \nu)} \int_{\mathbf{k}} (\sin^2 \theta) k^{-2} d\mathbf{k}.$$

- Because of the k^{-2} -like divergence, the integral over all \mathbf{k} above diverges unless one imposes a lower bound $k_{min} \sim 2\pi/L$ and a **phenomenological cutoff** $k_{max} \sim \pi/L_{mol}$ [5] for the upper bound, where L_{mol} is a “**molecular**” **length scale**.
- More importantly, the fluctuation enhancement $\Delta\chi$ **depends on** the small wavenumber cutoff $k_{min} \sim 2\pi/L$, where L is the **system size**.

System-Size Dependence

- Consider the effective diffusion coefficient in a system of dimensions $L_x \times L_y \times L_z$ with a concentration gradient imposed along the y axis.
- In **two dimensions**, $L_z \ll L_x \ll L_y$, linearized fluctuating hydrodynamics predicts a **logarithmic divergence**

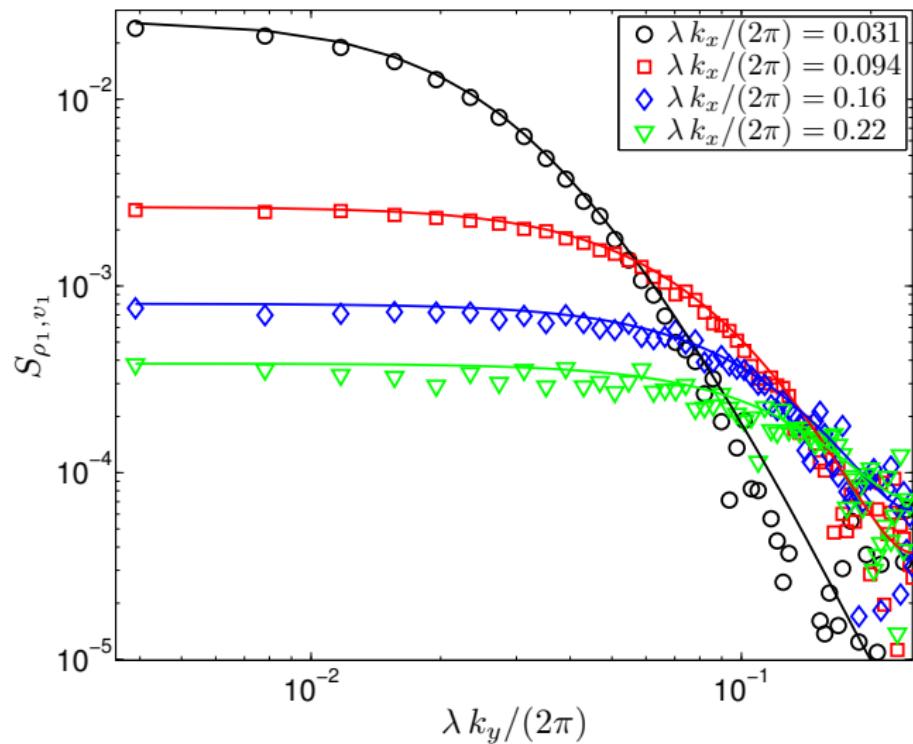
$$\chi_{\text{eff}}^{(2D)} \approx \chi + \frac{k_B T}{4\pi\rho(\chi + \nu)L_z} \ln \frac{L_x}{L_0}$$

- In **three dimensions**, $L_x = L_z = L \ll L_y$, χ_{eff} converges as $L \rightarrow \infty$ to the **macroscopic diffusion coefficient**,

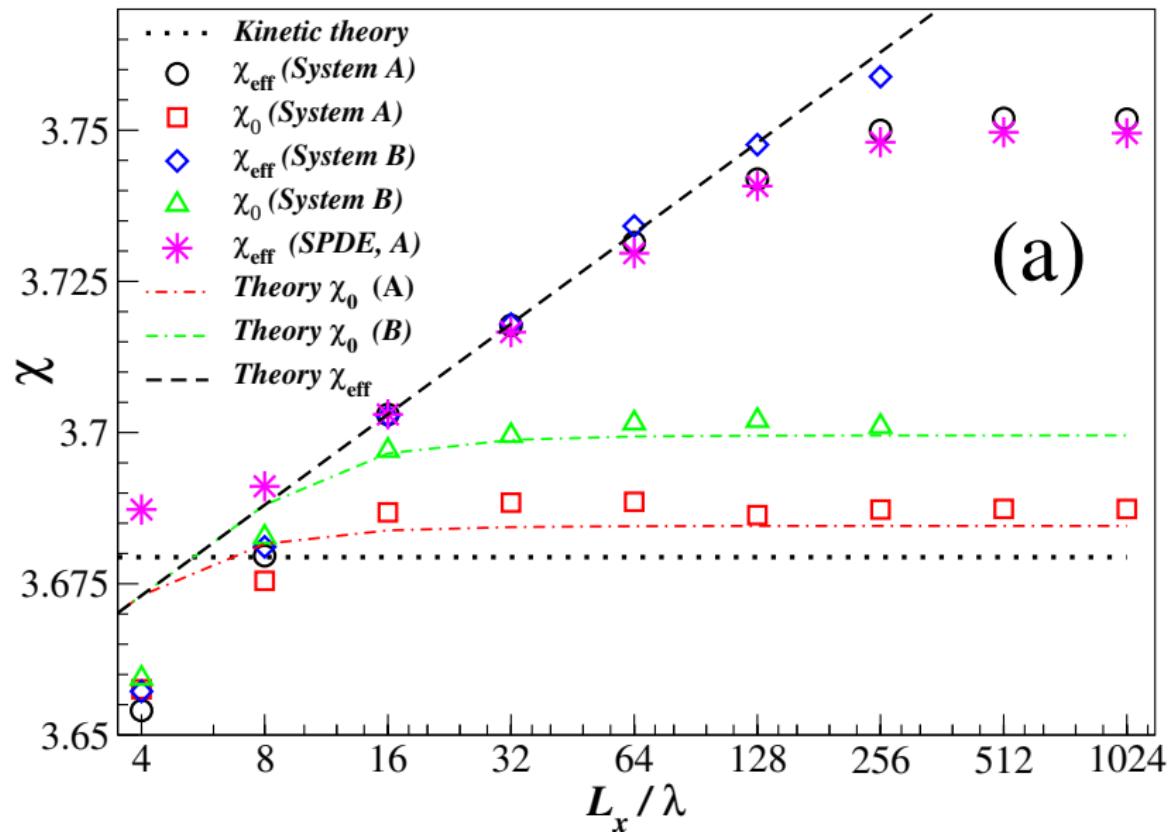
$$\chi_{\text{eff}}^{(3D)} \approx \chi + \frac{\alpha k_B T}{\rho(\chi + \nu)} \left(\frac{1}{L_0} - \frac{1}{L} \right)$$

- We have verified these predictions using particle (DSMC) simulations at hydrodynamic scales [2].

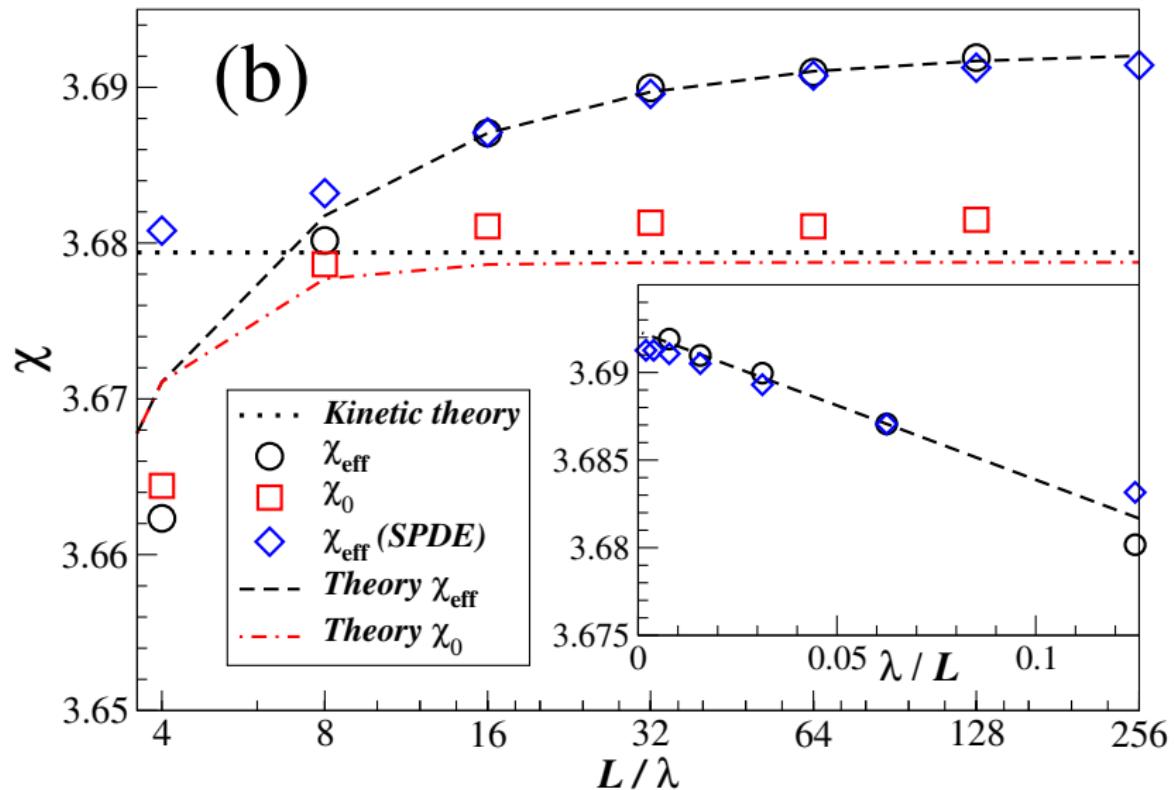
Spectra from Particle Simulations



Two Dimensions



Three Dimensions



Microscopic, Mesoscopic and Macroscopic Fluid Dynamics

- Instead of an ill-defined “molecular” or “bare” diffusivity, one should define a **locally renormalized diffusion coefficient** χ_0 that depends on the length-scale of observation L_{meso} , mesoscopic volume $\Delta\mathcal{V} \sim L_{\text{meso}}^d$.
- This coefficient accounts for the arbitrary division between continuum and particle levels inherent to fluctuating hydrodynamics and eliminates the divergence in the quasi-linearized setting.
- The actual (effective) diffusion coefficient χ_{eff} includes contributions from all wavenumbers present in the system, while χ_0 only includes “sub-grid” contributions.

$$\chi_{\text{eff}} = \chi_0(\Delta\mathcal{V}) - (2\pi)^{-3} \int_{\mathbf{k}} F_{\Delta\mathcal{V}}(\mathbf{k}) \left[\Delta\mathcal{S}_{c, v_{\parallel}}(\mathbf{k}) \right] d\mathbf{k},$$

since $F_{\Delta\mathcal{V}}(\mathbf{k})$ is a low pass filter with cutoff $2\pi/L_{\text{meso}}$.

Relations to VACF

In the literature there is a lot of discussion about the effect of the **long-time hydrodynamic tail** on the transport coefficients [7],

$$C(t) = \langle \mathbf{v}(0) \cdot \mathbf{v}(t) \rangle \approx \frac{k_B T}{12\rho [\pi (D + \nu) t]^{3/2}} \text{ for } \frac{L_{mol}^2}{(\chi + \nu)} \ll t \ll \frac{L^2}{(\chi + \nu)}$$

*This is in fact **the same effect** as the one we studied! Ignoring prefactors,*

$$\Delta \chi_{VACF} \sim \int_{t=L_{mol}^2/(\chi+\nu)}^{t=L^2/(\chi+\nu)} \frac{k_B T}{\rho [(\chi + \nu) t]^{3/2}} dt \sim \frac{k_B T}{\rho (\chi + \nu)} \left(\frac{1}{L_{mol}} - \frac{1}{L} \right),$$

which is like what we found (all the prefactors are in fact identical also).

Conclusions and Future Directions

- A deterministic continuum limit does not exist in two dimensions, and is not applicable to small-scale finite systems in three dimensions.
- **Fluctuating hydrodynamics** is applicable at a broad range of scales if the transport coefficient are renormalized based on the cutoff scale for the random forcing terms.
- *Can we write a nonlinear equation that is well-behaved and correctly captures the flow at scales above some chosen “coarse-graining” scale?*
- Other types of nonlinearities in the LLNS equations (transport coefficients, multiplicative noise).
- Transport of other quantities, like momentum and heat.
- Implications to **finite-volume solvers** for fluctuating hydrodynamics.

References

A. Vailati, R. Cerbino, S. Mazzoni, C. J. Takacs, D. S. Cannell, and M. Giglio.
Fractal fronts of diffusion in microgravity.
Nature Communications, 2:290, 2011.

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.
Diffusive Transport Enhanced by Thermal Velocity Fluctuations.
Phys. Rev. Lett., 106(20):204501, 2011.

F. Balboa Usabiaga, J. Bell, R. Delgado-Buscalioni, A. Donev, T. Fai, B. E. Griffith, and C. S. Peskin.
Staggered Schemes for Incompressible Fluctuating Hydrodynamics.
Submitted, 2011.

D. Bedeaux and P. Mazur.
Renormalization of the diffusion coefficient in a fluctuating fluid I.
Physica, 73:431–458, 1974.

D. Brogioli and A. Vailati.
Diffusive mass transfer by nonequilibrium fluctuations: Fick's law revisited.
Phys. Rev. E, 63(1):12105, 2000.

A. Donev, A. L. Garcia, Anton de la Fuente, and J. B. Bell.
Enhancement of Diffusive Transport by Nonequilibrium Thermal Fluctuations.
J. of Statistical Mechanics: Theory and Experiment, 2011:P06014, 2011.

Y. Pomeau and P. Résibois.
Time dependent correlation functions and mode-mode coupling theories.
Phys. Rep., 19:63–139, June 1975.