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Introduction

Coarse-Graining for Fluids

Assume that we have a fluid (liquid or gas) composed of a collection
of interacting or colliding point particles, each having mass mi = m,
position ri (t), and velocity vi .

Because particle interactions/collisions conserve mass, momentum,
and energy, the field

Ũ(r, t) =

 ρ̃

j̃
ẽ

 =
∑
i

 mi

miυi

miυ
2
i /2

 δ [r − ri (t)]

captures the slowly-evolving hydrodynamic modes, and other modes
are assumed to be fast (molecular).

We want to describe the hydrodynamics at mesoscopic scales using
a stochastic continuum approach.
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Introduction

Continuum Models of Fluid Dynamics

Formally, we consider the continuum field of conserved quantities

U(r, t) =

 ρ
j
e

 =

 ρ
ρv

ρcV T + ρv 2/2

 ∼= Ũ(r, t),

where the symbol ∼= means something like approximates over long
length and time scales.

Formal coarse-graining of the microscopic dynamics has been
performed to derive an approximate closure for the macroscopic
dynamics.

This leads to SPDEs of Langevin type formed by postulating a
random flux term in the usual Navier-Stokes-Fourier equations with
magnitude determined from the fluctuation-dissipation balance
condition, following Landau and Lifshitz.
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Introduction

The SPDEs of Fluctuating Hydrodynamics

Due to the microscopic conservation of mass, momentum and
energy,

∂tU = −∇ · [F(U)−Z] = −∇ · [FH(U)− FD(∇U)− BW] ,

where the flux is broken into a hyperbolic, diffusive, and a
stochastic flux.

We assume that W can be modeled as spatio-temporal white noise,
i.e., a Gaussian random field with covariance

〈Wi (r, t)W?
j (r′, t ′)〉 = (δij) δ(t − t ′)δ(r − r′).

We will consider here binary fluid mixtures, ρ = ρ1 + ρ2, of two fluids
that are indistinguishable, i.e., have the same material properties.

We use the concentration c = ρ1/ρ as an additional primitive
variable.
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Introduction

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of compressible fluctuating
hydrodynamics are

Dtρ =− ρ (∇ · v)

ρ (Dtv) =−∇P + ∇ ·
(
η∇v + Σ

)
ρcv (DtT ) =− P (∇ · v) + ∇ · (κ∇T + Ξ)

ρ (Dtc) =∇ · [ρχ (∇c) + Ψ] ,

where Dt� = ∂t� + v ·∇ (�) is the advective derivative,

∇v = (∇v + ∇vT )− 2 (∇ · v) I/3,

the heat capacity cv = 3kB/2m, and the pressure is P = ρ (kBT/m).
The transport coefficients are the viscosity η, thermal conductivity κ, and
the mass diffusion coefficient χ.
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Introduction

Incompressible Fluctuating Navier-Stokes

Ignoring density and temperature fluctuations, equations of
incompressible isothermal fluctuating hydrodynamics are

∂tv =P
[
−v ·∇v + ν∇2v + ρ−1 (∇ ·Σ)

]
∇ · v =0

∂tc =− v ·∇c + χ∇2c + ρ−1 (∇ ·Ψ) ,

where the kinematic viscosity ν = η/ρ, and
v ·∇c = ∇ · (cv) and v ·∇v = ∇ ·

(
vvT

)
because of

incompressibility.

Here P is the orthogonal projection onto the space of divergence-free
velocity fields.
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Introduction

Stochastic Forcing

The capital Greek letters denote stochastic fluxes that are modeled as
white-noise random Gaussian tensor and vector fields, with
amplitudes determined from the fluctuation-dissipation balance
principle, notably,

Σ =
√

2ηkBT W(v)

Ψ =
√

2mχρ c(1− c)W(c),

where the W ’s denote white random tensor/vector fields.

Adding stochastic fluxes to the non-linear NS equations produces
ill-behaved stochastic PDEs (solution is too irregular).

For now, we will simply linearize the equations around a steady
mean state, to obtain equations for the fluctuations around the
mean,

U = 〈U〉+ δU = U0 + δU.
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Nonequilibrium Fluctuations

Nonequilibrium Fluctuations

When macroscopic gradients are present, steady-state thermal
fluctuations become long-range correlated.

Consider a binary mixture of fluids and consider concentration
fluctuations around a steady state c0(r):

c(r, t) = c0(r) + δc(r, t)

The concentration fluctuations are advected by the random
velocities v(r, t) = δv(r, t), approximately:

∂t (δc) + (δv) ·∇c0 = χ∇2 (δc) +
√

2χkBT (∇ ·Wc)

The velocity fluctuations drive and amplify the concentration
fluctuations leading to so-called giant fluctuations [1].
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Nonequilibrium Fluctuations

Fractal Fronts in Diffusive Mixing

Figure: Snapshots of concentration in a miscible mixture showing the
development of a rough diffusive interface between two miscible fluids in zero
gravity [2, 6, 1, 3].
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Nonequilibrium Fluctuations

Giant Fluctuations in Experiments

Figure: Experimental results by A. Vailati et al. from a microgravity environment
[1] showing the enhancement of concentration fluctuations in space (box scale is
macroscopic: 5mm on the side, 1mm thick).
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Fluctuation-Enhanced Diffusion Coefficient

Concentration-Velocity Correlations

The nonlinear concentration equation includes a contribution to the
mass flux due to advection by the fluctuating velocities,

∂t (δc) + (δv) ·∇c0 = ∇ · [− (δc) (δv) + χ∇ (δc)] + . . .

The linearized equations can be solved in the Fourier domain
(ignoring boundaries for now) for any wavenumber k, denoting
k⊥ = k sin θ and k‖ = k cos θ.

One finds that concentration and velocity fluctuations develop
long-ranged correlations:

∆Sc,v‖ = 〈(δ̂c)(δ̂v
?

‖)〉 = − kBT

ρ(ν + χ)k2

(
sin2 θ

)
.

A quasi-linear (perturbative) approximation gives the extra flux [4, 5]:

∆j = −〈(δc) (δv)〉 ≈ −〈(δc) (δv)〉linear =,

= − (2π)−3
∫

k
Sc,v (k) dk = (∆χ)∇c0,
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Fluctuation-Enhanced Diffusion Coefficient

Fluctuation-Enhanced Diffusion Coefficient

The fluctuation-renormalized diffusion coefficient is χ+ ∆χ
(think of eddy diffusivity in turbulent transport), and we call χ the
bare diffusion coefficient [6].

The enhancement ∆χ due to thermal velocity fluctuations is

∆χ = − (2π)−3
∫

k
∆Sc,v‖ (k) dk =

kBT

(2π)3ρ (χ+ ν)

∫
k

(
sin2 θ

)
k−2 dk.

Because of the k−2-like divergence, the integral over all k above
diverges unless one imposes a lower bound kmin ∼ 2π/L and a
phenomenological cutoff kmax ∼ π/Lmol [5] for the upper bound,
where Lmol is a “molecular” length scale.

More importantly, the fluctuation enhancement ∆χ depends on the
small wavenumber cutoff kmin ∼ 2π/L, where L is the system size.
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Fluctuation-Enhanced Diffusion Coefficient

System-Size Dependence

Consider the effective diffusion coefficient in a system of dimensions
Lx × Ly × Lz with a concentration gradient imposed along the y axis.

In two dimensions, Lz � Lx � Ly , linearized fluctuating
hydrodynamics predicts a logarithmic divergence

χ
(2D)
eff ≈ χ+

kBT

4πρ(χ+ ν)Lz
ln

Lx

L0

In three dimensions, Lx = Lz = L� Ly , χeff converges as L→∞
to the macroscopic diffusion coefficient,

χ
(3D)
eff ≈ χ+

α kBT

ρ(χ+ ν)

(
1

L0
− 1

L

)
We have verified these predictions using particle (DSMC) simulations
at hydrodynamic scales [2].
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Fluctuation-Enhanced Diffusion Coefficient

Spectra from Particle Simulations
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Fluctuation-Enhanced Diffusion Coefficient

Two Dimensions

4 8 16 32 64 128 256 512 1024

L
x
 / λ

3.65

3.675

3.7

3.725

3.75

χ
Kinetic theory

χ
eff

 (System A)

χ
0
 (System A)

χ
eff

 (System B)

χ
0
 (System B)

χ
eff

  (SPDE, A)

Theory χ
0
  (A)

Theory χ
0
  (B)

Theory χ
eff

(a)

Figure:
A. Donev (CIMS) Diffusion 10/2011 19 / 25



Fluctuation-Enhanced Diffusion Coefficient

Three Dimensions

4 8 16 32 64 128 256
L / λ

3.65

3.66

3.67

3.68

3.69

χ

Kinetic theory
χ

eff

χ
0

χ
eff

 (SPDE)

Theory χ
eff

Theory χ
0 0 0.05 0.1λ / L

3.675

3.68

3.685

3.69

(b)

Figure:A. Donev (CIMS) Diffusion 10/2011 20 / 25



Conclusions

Microscopic, Mesoscopic and Macroscopic Fluid Dynamics

Instead of an ill-defined “molecular” or “bare” diffusivity, one should
define a locally renormalized diffusion coefficient χ0 that depends
on the length-scale of observation Lmeso, mesoscopic volume
∆V ∼ Ld

meso.

This coefficient accounts for the arbitrary division between continuum
and particle levels inherent to fluctuating hydrodynamics and
eliminates the divergence in the quasi-linearized setting.

The actual (effective) diffusion coefficient χeff includes contributions
from from all wavenumbers present in the system, while χ0 only
includes “sub-grid” contributions.

χeff = χ0 (∆V)− (2π)−3
∫

k
F∆V (k)

[
∆Sc,v‖ (k)

]
dk,

since F∆V (k) is a low pass filter with cutoff 2π/Lmeso.
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Conclusions

Relations to VACF

In the literature there is a lot of discussion about the effect of the
long-time hydrodynamic tail on the transport coefficients [7],

C (t) = 〈v(0) · v(t)〉 ≈ kBT

12ρ [π (D + ν) t]3/2
for

L2
mol

(χ+ ν)
� t � L2

(χ+ ν)

This is in fact the same effect as the one we studied! Ignoring prefactors,

∆χVACF ∼
∫ t=L2/(χ+ν)

t=L2
mol/(χ+ν)

kBT

ρ [(χ+ ν) t]3/2
dt ∼ kBT

ρ (χ+ ν)

(
1

Lmol
− 1

L

)
,

which is like what we found (all the prefactors are in fact identical also).
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Conclusions

Conclusions and Future Directions

A deterministic continuum limit does not exist in two dimensions, and
is not applicable to small-scale finite systems in three dimensions.

Fluctuating hydrodynamics is applicable at a broad range of scales
if the transport coefficient are renormalized based on the cutoff scale
for the random forcing terms.

Can we write a nonlinear equation that is well-behaved and correctly
captures the flow at scales above some chosen “coarse-graining” scale?

Other types of nonlinearities in the LLNS equations (transport
coefficients, multiplicative noise).

Transport of other quantities, like momentum and heat.

Implications to finite-volume solvers for fluctuating hydrodynamics.
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Conclusions
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