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Reaction-Diffusion Systems

Chemical Reactions in Solution

Many chemical reactions occur in a viscous solvent and are affected
by diffusion, making a mean-field or “well-mixed” deterministic
reaction-diffusion PDE approximation inappropriate.

Classical examples where the Law of Mass Action (LMA)
reaction-diffusion equations fails spectacularly is annihilation
A + B → 0
But even in A + B � C there are power-law tail signatures in the
dynamics even at chemical equilibrium.

Spatial fluctuations play a key role and spatial diffusion must be
accounted for; this is different from (in addition to) fluctuations
coming from there being very few reactants of certain species.

Primarily interested in the case when fluctuations are weak, i.e., lots
of molecules are involved, but fluctuations still make a difference.
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Reaction-Diffusion Systems

Grid-Based Methods

The traditional approach to simulation of reaction-diffusion problems
is to solve the Reaction-Diffusion Master Equation (RDME),
which has the following issues:

Diffusion events/hops dominate when cells are “well-mixed” (they must
be!) making solving the RDME exactly expensive (but one can do
multinomial diffusion and/or tau leaping to speed things up).
Diffusion is modeled by a jump process instead of the more physical
continuous random walk leading to a fluctuating Fick’s law
(fluctuating hydrodynamics [1]).
LMA is postulated instead of following from the model; this requires
effective macroscopic rates instead of microscopic ones.
LMA is missing a length scale (reactive distance).
The results depend strongly on the cell size and are thus not
grid-independent: binary reactions lost as cell size shrinks [2]
See Sam Isaacson’s Convergent RDME (CRDME) [3] for one
grid-based fix (reactions between neighboring cells).

A. Donev (CIMS) SRBD 6/2016 4 / 33



Reaction-Diffusion Systems

Particle-Based Methods

Particles are modeled as species-labeled spheres that diffuse as
independent Brownian walkers (but note importance of
hydrodynamic interactions) and react based on a microscopic
reaction rule.

Particle methods are grid-free and closure-free (they take reactive
length scale as input).

Key problem is lack of efficiency. This is what I address in this talk.

To handle reactions two models are commonly used:

In the surface-reactivity / Smoluchowski model particles react
upon touching.
This automatically includes steric repulsion but lacks a mechanism to
control reaction rate (but one can introduce unbinding).
In the volume-reactivity / Doi model particles react with a certain
Poisson reaction rate while they overlap.
This allows to separately and independently control the reactive
distance and the effective reaction rate [2].
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Reaction-Diffusion Systems

Particle Algorithms

The Smoluchowski model can be simulated exactly by the
event-driven First Passage Kinetic Monte Carlo method (FPKMC)
[4], called eGFRD in the biochemical community.

FPKMC becomes inefficient at larger densities, it is hard to
generalize, and it is quite complicated to implement.

Approximate reactive Brownian Dynamics exist (e.g., Smoldyn) but
they make uncontrolled approximations in diffusion and reactions.

The Doi model is much simpler and more flexible so we use it here.
Consider A + B → ...
Particles are spheres of a given reactive radius RA and RB . They
diffuse as independent Brownian walkers, and while two particles
overlap (rAB ≤ RA + RB) they react as a Poisson process with a
given rate λ. Only binary reactions are allowed.

Use our Split Reactive Brownian Dynamics (SRBD) to simulate
Doi model efficiently with controlled accuracy!
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SRBD

Time Splitting

SRBD is a combination of ideas taken from the Isotropic Direct
Simulation Monte Carlo (IDSMC) algorithm (used for simulating binary
collisions in low-density gases) and the next subvolume method for
solving the RDME:

Strang time splitting is used to separate diffusion from reaction
(D/2+R+D/2). This is the only error introduced so error is
controlled by reducing the time step size ∆t.

Simulating the diffusion exactly without reactions is trivial and
inexpensive for independent Brownian walkers:

qk(t + ∆t) = qk(t) +
√

2Dk∆tN (0, 1)

One can include hydrodynamic interactions (expensive!).

The difficult part is to simulate reactions exactly while particles are
stationary (fixed). This is our key contribution.
It is possible to make some approximations and speed this up greatly
but we want to control the error by a single parameter ∆t.
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SRBD

Selecting Reactions

An obvious but very slow method is to first make a list of all
overlapping pairs of particles, and then use a Gillespie-like / SSA /
KMC algorithm to select pairs to react in sequence.

The key idea is to accomplish the same (in law) without making a list
of all overlapping pairs, by using an event-driven algorithm not on
particle pairs but on grid cells!

Introduce back a computational grid which is not part of model
(think of neighbor search in MD) with spacing larger than all
potential reactive distances:
Particles can only overlap/react with a particle in their own cell or
neighboring cells.

For each cell i , schedule the next potential binary reaction between a
particle in cell i and a particle in the neighborhood of cell i (9 cells in
2D or 27 cells in 3D).

Make an event queue (heap) of all cells, and then process reactions
by choosing the next cell (next subvolume) in which to try a reaction.

A. Donev (CIMS) SRBD 6/2016 9 / 33



SRBD

Basic Time Stepping Algorithm

1 Diffuse for half a time step

q
n+ 1

2
k = qn

k +
√
Dk∆tN (0, 1)

2 Prepare: Build linked-list cells (LLCs) and schedule next reaction for
each cell (if before time ∆t) and build an event queue.

3 Event Loop: Until the event queue is empty, do:
1 Select cell i on top of queue with time stamp tn ≤ t ≤ tn + ∆t.
2 Select next reaction to happen in cell i using usual KMC/SSA method.
3 Process the reaction (if particles overlap for binary),

creating/destroying/updating particles+LLCs as necessary.
4 For each cell i (potentially) affected by reaction, compute the total

reaction rate α, sample an exponentially-distributed δt with mean α−1.
If ti = t + δt < t + ∆t schedule next event at time ti and update event
queue, otherwise delete cell i from queue.

4 Diffuse remaining/new particles for half a time step

qn+1
k = q

n+ 1
2

k +
√
Dk∆tN (0, 1)
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SRBD

Scheduling Reactions

For reactions with different reactants A + B → ... with rate λ, we
schedule separately A + B → ... and B + A→ ...

For binary reaction r of form A + B → ... (order matters!), the
propensity function (rate) for cell i is

αr =
λ

2
NAN

′
B

where NA is the number of A particles in cell i , and
N ′B is the total number of B particles in the neighborhood of i .
For A + A→ 0, the rate is αr = λ

2 NAN
′
A since pairs are counted twice

(we reject self-reactions later).

We add all the rates in each cell, α =
∑Nr

r=1 αr (as in ordinary SSA).

Note that this over-estimates the actual rate since it does not account
for whether the particles actually overlap; we correct for this using
rejection: If a pair is selected to react does not overlap (or the same
particle A is selected twice) we reject the pair.
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SRBD

Processing Reactions

Once we select the next cell i to potentially have a reaction using the
event queue, we need to:

Select a particle at random from cell i of the first reactant species,
and another particle of the second reactant species from the
neighborhood of i (can be the same particle twice!).

Test if the two particles are within their reactive distance, and if not,
do nothing.

Otherwise, process the reaction by deleting and adding particles (see
next slide) depending on the reaction.

While doing this, keep track of whether any event is processed that
changes the population of cell i (number of particles of each species),
and also whether the population of a neighboring cell j changes.

Recompute reaction rates and schedule a new event for cell i .

If population of i changed, update the event prediction for all
neighbor cells of i , and, if population of j changed, update the event
prediction for all cell neighbors of j that are not neighbors of i .
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SRBD

Reversible Reaction Rules

We have made a set of rules that obey microscopic reversibility (detailed
balance) that dictate how reactions are processed, e.g.,

1 Annihilation: A + B → ∅ if within distance RAB = RA + RB .

2 Birth: ∅ → A + B. The A is born uniformly in the system, and B is
born with position uniformly chosen within a reactive sphere of radius
RAB around the A.

3 Merge: A + A→ B or A + B → C . One of the reactants changes
species and the others disappears.

4 Replication: A→ B + C , where B/C can be equal to A:
A becomes a B or a C or remains as is, and another particle is born
uniformly in a sphere centered at the A with radius RBC .

5 Transform: A + B → C + D or A + B → A + C (catalysis):
No particle changes position or new particles are created, only species
are changed (e.g., B becomes a C or D).
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Results

From microscopic to macroscopic rates

For a single reaction A + B → . . . , Erban and Chapman [2] derive
that in 3D the macroscopic reaction rate k (units m3/s) is related
to the microscopic rate λ (units s−1),

k = 4πDABRAB

1−

√
DAB

λR2
AB

tanh

√λR2
AB

DAB

 , (1)

where DAB = DA + DB is the mutual diffusion coefficient and
RAB = RA + RB is the reactive radius.

For A + A→ one just divides the rate by two, and using DAA = 2DA

gives

kAA = 4πDARAA

1−

√
2DA

λR2
AA

tanh

√λR2
AA

2DA

 , (2)

A. Donev (CIMS) SRBD 6/2016 15 / 33



Results

Diffusion-Limited vs Reaction-Limited?

This shows that the important parameter is the dimensionless number

r =
λR2

AB

DAB
and k < 4πDABRAB .

If r � 1 (diffusion-limited), then k → 4πDABRAB , which is the
Smoluchowski rate, i.e., particles react upon first touching.

For r � 1 (reaction-limited), then we get the result expected if the
particle positions are uncorrelated, i.e., the system is “uniformly
mixed” at microscopic scales:

k ≈ 4π

3
R3
ABλ for A+B

k ≈ 2π

3
R3
ABλ for A+A
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Results

Diffusion-Limited RDME

Similarly, for RDME in 3D for A + B → . . . , the effective
macroscopic rate is related to input (microscopic) rate kRDME via
[2, 5]

1

k
=

1

kRDME
+
β = 0.25273

hD
,

where D = DAB for A + B and D = DA for A + A.

This explains the loss of bimolecular reactions as h→ 0 (more
precisely, in 3D, when h� k/DAB).

Renormalization theory suggests that for A + A→ A the law of
mass action at finite densities is non-analytic [5]

k

k0
= 1 + α

(
k0

DA

) 3
2

n
1
2
A = 1 + βf 3/2φ

1
2 ,

where k0 = limφ→0 k, f = k0/ (4πDARAA), φ = nA ·
(
4πR3

AA/3
)

for

Doi or φ = nAh
3 for RDME, and for RDME α = 1/2π

√
2 [5].
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Results Diffusion-Limited Reactions

Many-Body Effects (3D): A + A→ A

Coagulation A + A→ A, 0→ A.
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Results Diffusion-Limited Reactions

Many-Body Effects (3D): A + B → B

We find that (1) holds only for very dilute many-body systems with
A + B → B, 0→ A (B is conserved).
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Results Diffusion-Limited Reactions

Long-Time Tail: A + B ↔ C

Obeys detailed balance: k = 4π
3 R3

ABλ independent of kinetics!
For diffusion-limited there are long-time tails in the ACF [6].
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Results Turing Patterns

BPM Model

We have studied the Baras-Pearson-Mansour (BPM) reaction network
(3 species, 7 reactions):

U + W → V + W

V + V �W

V � 0

U � 0.

This system has only binary reactions but can exhibit bimodal states
(bistability) and also limit cycles.

We use parameters giving a limit cycle together with
DV = DW = DU/10 to get a Turing-like pattern.

We want to understand the role fluctuations play in the formation of
the Turing pattern.

We do simulations in 2D to make them more feasible and to simplify
visualization, but the code works in 3D as well.
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Results Turing Patterns

Turing-like Patterns

Top (grid only): (Left) Deterministic reaction-diffusion.
(Right) RDME using multinomial diffusion [7] + SSA.
Bottom (particle+grid): (Left) S-BD-RME [8]. (Right) SRBD
Periodic 256× 256 grid in all cases coarsened to 64× 64
RU = RV = RW = h/2 for SRBD
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Results Turing Patterns

Diffusion-Limited or Reaction-Limited?

Define the chemical penetration depth, related to the typical
distance a molecule travels between successive reactions,

L =

√
DAB

knAB
, where nAB = nA + nB .

Define also the packing fraction

φ =
4π

3
nABR

3
AB & 0.1.

If φ� 1 use FPKMC-style algorithms and not SRBD!

Let the number of molecules in a penetration volume be
NL = nABL

3 � 1 (if this were not true then fluctuations would be too
large to see a Turing pattern).
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Results Turing Patterns

Order-of-Magnitude Estimates

Then for SRDB we have

k

RABDAB
=

1

NL

(
L

RAB

)
=

(
4π

3φN2
L

) 1
3

� 1 ⇒

r =
3

4π

k

RABDAB
� 1

And for RDME we would have k ≈ kRDME since

k

hDAB
� k

RABDAB
� 1 for RDME since h > RAB .
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Results Turing Patterns

From (macroscopic) RDME to (microscopic) SRBD rates

The relation

k ≈ 4π

3
R3
ABλ for A+B

k ≈ 2π

3
R3
ABλ for A+A

has an obvious generalization in 1D and 2D as well and we will use it
to determine λ given k in order to compare different methods.

Note that for our Turing test to see any corrections from
diffusion-limited effects we would need grids larger than 1024× 1024,
so assuming r � 1 is well justified.

We have studied grids 642, 1282 and 2562, keeping the physical
parameters (diffusion, macroscopic reaction rates, domain size) fixed.
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Results Turing Patterns

Comparison of methods

We compare to a deterministic/fluctuating hydrodynamics solver
developed with the group of Bell/Garcia at LBNL [1].

We implement RDME using splitting with multinomial diffusion
(Tartakovsky [7]) + SSA for reactions – much simpler and much more
efficient than next-reaction method.

We also implement a particle algorithm that we call Split-Brownian
Dynamics-Reaction Master Equation (S-BD-RME) where
diffusion is done using a continuum Brownian walk as in SRBD but
reactions are done on a grid using SSA (see Tartakovsky [8]).

Before carrying out SSA in S-BD-RME, we randomly shift the
reaction grid to improve Galilean invariance.

In SRBD we use RU = RV = RW = h/2 where h is the grid spacing
used in the RME-based methods.

Time step in all methods is limited by fast diffusion;
we set Courant number DU∆t/h2 ≈ 0.3.
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Results Turing Patterns

Changing Resolution
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Figure: For 2562 resolution, total running time is 4.5h for RDME, 12h for
S-BD-RME, and 19h for SRBD. For 5122 resolution, 54h for S-BD-RME and 48h
for SRBD (but 43h for 2562 reaction grid).
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Results Turing Patterns

Walk versus Hops (coarse grid)
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Figure: Importance of microscopic details of diffusion (hops versus continuum
walk) and reactions (reaction grid randomly shifted or not) for under-resolved
simulations (cells not uniformly mixed).
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Results Turing Patterns

Walk versus Hops (finer grid)
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Figure: Importance of microscopic details of diffusion (hops versus continuum
walk) and reactions (reaction grid randomly shifted or not) for
marginally-resolved simulations (cells not uniformly mixed).
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Results Turing Patterns

Fine Resolutions (Resolved)
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Figure: If the resolution is sufficiently high (resolved) we get matching between
the fluctuating methods (including fluctuating hydrodynamics, not shown).
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Results Turing Patterns

Quantitative Comparison
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Figure: Fit NU(t) = (1− tanh ((t − a0)/a2)) (a1 sin(a3x + a4) + a5) + a6.
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Results Turing Patterns

Conclusions

Our Split Reactive Brownian Dynamics (SRBD) introduces a time
splitting error but handles diffusion and reaction exactly.

Efficiency was gained by never computing neighbor lists for particles,
instead, scheduling potential reactions and only looking for
neighbors when a reaction actually happens.

The algorithm is best at higher densities and slow reactions
(otherwise use FPKMC).

How one handles diffusion (hops vs walk) and reactions (fixed grids,
shifting grids, grid-free) microscopically affects the macroscopic
behavior strongly if the cells are not sufficiently well-mixed (i.e., much
smaller than chemical penetration depth).

For resolved simulations we were able to match the macroscopic
behavior between RDME, S-BD-RME, SRBD and FHD.

Under what conditions can one use coarse-grained models like
RDME/FHD and avoid tracking particles? Do the rates need to be
renormalized and how?
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Results Turing Patterns
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