Sedimentation of a Colloidal Monolayer Down an Inclined Plane
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Abstract

We study the driven collective dynamics of a colloidal monolayer sedimentating down an inclined plane.
The action of the gravity force parallel to the bottom wall creates a flow around each colloid, and the
hydrodynamic interactions among the colloids accelerate the sedimentation as the local density increases.
This leads to the creation of a universal “triangular” inhomogeneous density profile, with a traveling
density shock at the leading front moving in the downhill direction. Unlike density shocks in a colloidal
monolayer driven by applied torques rather than forces [Phys. Rev. Fluids, 2(9):092301, 2017], the den-
sity front during sedimentation remains stable over long periods of time even though it develops a rough-
ness on the order of tens of particle diameters. Through experimental measurements and particle-based
computer simulations, we find that the Burgers equation can model the density profile along the sedimen-
tation direction as a function of time remarkably well, with a modest improvement if the nonlinear con-
servation law accounts for the sub-linear dependence of the collective sedimentation velocity on density.
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I. INTRODUCTION

The dynamics of active and driven colloidal suspensions is interesting not only because of its
inherent out-of-equilibrium nature, but also because it is often dominated by collective effects
leading to the formation of large-scale structures and flows. In the Stokes (overdamped) limit rele-
vant to colloids, the hydrodynamic interactions between the particles are long-ranged and strongly
depend on the presence of nearby boundaries such as confining walls. While self-propelled col-
loids (microswimmers) are of great interest, externally-driven colloids present a simpler system to
analyze and study both analytically and via computer simulations. In particular the only many-
body and long-ranged interactions in driven suspensions are hydrodynamic interactions created
by the generated solvent flow. While confining walls generally screen hydrodynamic interactions
to be less long-ranged than in bulk suspensions, the nature of the hydrodynamic flows generated
by the activity or external driving mechanism crucially affects the resulting collective behavior.

In prior work [1-5], some of us studied the collective behavior of microrollers: magnetic
colloids sedimented above a bottom floor (wall) in an external magnetic field rotating around
an axis parallel to the wall. Each spinning particle propels itself parallel to the wall, but the
collective motion in a non-dilute suspension is much faster than that of an isolated colloid.
For microrollers, the driving mechanism is an applied torque, and the flow field created
by a single particle corresponds to a rotlet above a no-slip wall [6, 7]. This flow advects
other particles both in the vertical direction (away or toward the wall), as well as in the
transverse directions parallel to the wall. The resulting collective dynamics is surprisingly
rich even at moderate densities, for which in the absence of the external drive the colloids
would form a single monolayer with in-plane packing fractions ¢ < 0.5. Uniform microroller
suspensions develop a two-layer structure with a slow bottom layer and a fast top layer [5],
and non-uniform suspensions develop traveling-wave density shocks [4] that are unstable to
transverse perturbations (3|, leading to a fingering instability that can create stable motile
clusters of colloids (critters) held together entirely by hydrodynamic interactions [1].

For the case of a non-uniform suspension of microrollers, the formation and dynamics of a
density front can be described by a non-local conservation law, and the front has a finite width
that is proportional to the typical height of the particles above the wall [4]. Here we study
a similar system of colloids sedimented above a bottom wall but now apply a force, rather than
a torque, to drive collective dynamics. This can easily be accomplished in the lab simply by
tilting the bottom wall at an angle # and letting the colloids sediment down the inclined plane.
The flow field created by a single particle corresponds to a Stokeslet above a no-slip wall |6, 7],
and advects other particles primarily in the direction of the motion. As we demonstrate, the
resulting collective density dynamics can be modeled rather accurately by a local conservation
law that can be approximated by a Burgers equation. This leads to sharp density fronts in the
form of propagating shock solutions of the inviscid Burgers equation. Similar Burgers-like shocks
have been observed for driven and active suspensions confined in a narrow slit channel (top
and bottom walls) [8-11], but a crucial difference is that the local flow field around a particle in
these cases is quasi-two-dimensional and corresponds to the flow created by a potential dipole.
While colloidal diffusion in a flat monolayer [12] and sedimentation in a vertical channel [13]
have been studied both using simulations and experiments, to our knowledge the sedimentation
of colloids down an inclined plane has not been studied before. Carpen and Brady studied
theoretically the sedimentation of a colloidal suspension in a thicker slit channel and predicted a
transverse instability created by unstable stratification due to shear-induced particle migration
[14]. Here we study a monolayer sedimenting above a single wall and find different dynamics
that we study by a combination of experiments, computer simulations, and theory.

We begin by discussing the problem theoretically at a mean-field continuum level in Section
IT, and then present results from experiments and particle-based simulations and compare
them to the predictions of the theory in Section III.
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Figure 1: The left panel shows a frontal view of two snapshots from a typical simulation of a particle
suspension sedimenting down an inclined plane. We show the particles at two separate times: the first
(top) at a time ¢ = 10.3min shortly after the particles have begun to sediment down the plane, and
the second at ¢ = 171min when the triangular density profile is well formed (see text). The front of
the suspension is highlighted by magenta particles, visually emphasizing the coarsening of the density
front in time (see Section IIID 1). The right panel shows a side view of the suspension at ¢ = 10.3min
along with an inset zoom showing several particles near the front at their typical Brownian height
hg. An animated version of the left panel is available in the Supplementary Information.

II. BURGERS MODEL

We consider a monolayer of spherical colloids of radius a sedimented above a bottom
wall tilted at angle 6, as illustrated in Fig. 1. We take the x axis to be in the direction
of the gravitational acceleration gsinf, and the z axis to be in the direction perpendicular
to the wall and pointing away from the gravitational pull ~ gcosf. Here we consider the
quasi-one-dimensional problem where initially the colloids are uniformly distributed in the
unbounded (in the theory, bounded at millimeter scales in the experiments) or periodic (in
simulations) y direction, and in the x direction the colloids are initially contained in the finite
interval [z,(t = 0), z¢(t = 0)]. We wish to quantify the collective dynamics as the colloids
sediment downhill as time ¢ > 0 elapses. Specifically, we will average along the z direction
and consider the coarse-grained number density of colloids p(x,y,t) in the zy plane (parallel to

the bottom wall). Although estimates of the Péclet number Pe = aViy, (kpT'/ (67ma)) " ~ 10
(where Vi, € [0.1,0.3] is estimated based on Fig. 3) are not high, we will neglect in-plane
diffusion in our continuum models. Also, we will for now assume there is no transverse
instability and thus the density remains quasi-one-dimensional, p(x,y,t) ~ p(z,t), even though
the left panel in Fig. 1 shows that this is not exactly true at later times. We discuss the validity
of this assumption in more detail in Section IITD 1, and conclude that the roughness of the
front remains small compared to the extent of the density profile in the x direction for all times.

Let us assume that an unbounded uniform suspension with p(z,t) ~ py sediments down
the plane (in the positive z direction) with collective velocity v(¢dg), where ¢ = pma? is the
in-plane packing fraction and a is the radius of the colloids. We will use ¢(x,t) instead of
p(x,t) as a more physically-intuitive variable. The collective sedimentation velocity can be
estimated as a function of packing fraction experimentally or via computer simulations, as
we discuss in Section III C. Because particles interact hydrodynamically and advect other
particles via the flows they create, the function v(¢) is quite generally monotonically increasing.



For small ¢ < 1 we expect the linear approximation

0 (6) ~ o + §¢, (1)

to hold, where vy is the sedimentation velocity of an isolated particle, and S/2 is a constant
that measures the strength of the hydrodynamic interactions.
It is natural to expect that the density dynamics follows the local conservation law
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which at low densities is expected to be well-approximated by the Burgers equation
99 99 ¢ _

[t is important to note that for colloidal microrollers, the local mean-field approximation (2) is not
appropriate, and one must take into account the nonlocal nature of hydrodynamic interactions
[4]. However, for sedimentation, the hydrodynamic interactions are more local and we expect
that the local approximation (2) is suitable; we come back to this question in Section IV.

Adopting the Burgers approximation (2) we can obtain several analytical results. We will set
vp = 0 for convenience since a nonzero self velocity simply translates the solution to the right
by wot. Let us first consider an initial density profile that is a square wave, ¢(x,t = 0) = ¢y
for 0 < x < L, and zero otherwise. The Burgers equation (3) can be solved analytically,
showing that at the front of the square wave there is a propagating shock with position xf(t),
with z7(0) = L, and at the back of the square wave, which stays fixed at x,(t) = 0, there
is a rarefaction wave. The rarefaction and shock waves meet at time

L
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After this initial transient, there is a triangular density profile
_x _[2M __ =z < r <
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0 otherwise

where the total conserved “mass” is
M= / o(z, )dx = Léo, (6)
and the shock wave at the front of the triangle is located at

z4(t) = V2SI, (7)

This remarkably simple triangle-wave solution is, in fact, universal and independent of the
initial conditions. In particular, it was proven by Lax that any compactly-supported initial
condition will for long times asymptotically approach the triangle wave solution (5) [15]. It
was further shown by Goodman that shock solutions of the Burgers equation in two dimensions
are stable against perturbations in the transverse (i.e., the y) direction [16]. The reader should
note that while the equations of Stokes flow are time-reversible, once shocks form the Burgers



equation is no longer time reversible! because of the implicit dissipation at the front caused
by the neglected diffusion.

III. RESULTS: SIMULATIONS AND EXPERIMENTS

We now compare results from experimental measurements and computer simulations to the
predictions of the Burgers model. We begin by describing briefly the experimental setup and
simulation methodology, and then present results for the collective sedimentation velocity v (¢)
for uniform suspensions, before studying the formation and propagation of Burgers density
shocks. For the results presented here we incline the bottom floor at an angle 8 = 45°, though
we studied other angles as well and found that the Péclet number controls the layering of
the suspension. For larger angles (6 2 60°), at larger packing densities some of the particles
get lifted away from the floor and the colloids are not in a monolayer, while for smaller angles
the sedimentation velocity is low and diffusion becomes important. For 6 = 45° and the Péclet
numbers considered in this work we find that the suspension remains in a monolayer.

A. Experiments

We performed sedimentation experiments with colloidal monolayers sedimenting down
an inclined plane at angle 8 = 45° 4 3° placed inside of a custom-built tilting microscope
that sets the angle. The colloids are polystyrene spheres (Duke Scientific) of diameter
d=2a = (4.240.1) um suspended in mixtures of water (H,0O) and heavy water (D20) to
modify the gravitational height hy, = kgT/ (m.g), where g is the acceleration of gravity, m,
is the buoyant mass, and the temperature 7" is (22 £ 3) °C. Note that the normal distance
between the surface of the particles and the bottom wall is ~ kgT'/ (megcos#). We use
three mixtures with different mass fraction of heavy water: 0% heavy water (hy, = 0.250pm),
12.5% heavy water (hy, = 0.336pm), and 25% heavy water (h, = 0.500pm). The solution
also contains 50mM BIS-TRIS to stabilize the particles.

The sample chamber is a rectangular borosilicate capillary tube with dimensions 6 x 25 x(0.3mm.
The glass surface is coated with polyelectrolyte multilayers, specifically, three layers each of
PDADMAC(+) and PSS(-) to prevent particle sticking to the glass surface. The colloidal
suspensions are loaded into capillaries at a three-dimensional volume fraction 5.0 x 10~* and
the sample chamber is centrifuged first along the z-axis to rapidly drive particles to the bottom
surface, and then centrifuged along the z-axis “uphill" to create a densely-packed, partially
crystallized monolayer with area fraction of 0.740.1, extending over a distance of approximately
100 particle diameters at the bottom of the capillary. This is the initial condition of all sedimen-
tation instability experiments. Experiments to measure sedimentation velocity as a function of
density for uniform suspensions are prepared the same way without the z-axis centrifugation.

Sedimentation density profiles are imaged with a custom built tilting microscope. The
camera, objective, sample, and back lighting (530nm LED) are all mounted together and
rotated about a single axis so that prepared monolayers can be imaged while rotated from flat
0 = 0 (relative to gravity) to an incline at angle 6, while the whole monolayer remains in the
focal plane. A photograph of the microscope can be found in the Supplementary Information.
Sample snapshots from the evolution of the monolayer density observed in experiments are
shown in Fig. 2. For experiments with a uniform suspension we employ conventional particle
tracking techniques [17] to count particles and obtain an accurate estimate of ¢.

Large fields of view were needed to accurately measure the density evolution over long periods
of time, limiting the accuracy of particle tracking techniques, especially at the highest packing

! For example, many initial conditions can reach the same triangle solution (5) after some finite time [15].
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Figure 2: Microscope images of the density profile for experiment #2 at hy, = 0.336 um at several times.
The scattered light intensity is roughly proportional to the density. As time progresses an inhomogeneous
(triangular) density profile develops (higher density on the right, the direction of motion of the front).
See Fig. 8 for averages along the y axis, and the middle panel in Fig. 4 for images of the front extracted
from this data. An animated version of this figure is available in the Supplementary Information.

fractions. We therefore we use scattered intensity as a proxy for particle density in the xy
plane, see Fig. 2. This is not sufficiently accurate to obtain precise measurements of ¢ (x,y,t)
since the intensity is not strictly linear in the density, and also because of imaging artifacts; this
is evidenced in the fact that the total intensity is not conserved and fluctuates by ~ 10 — 20%
especially when the packing fraction is larger than ¢ 2 0.4 (see top of Fig. 8). Near the end of
the experiments, when the density is lower, ¢ < 0.2—0.3, we are able to locate particles reliably,
as confirmed by the fact that the total number of particles is conserved to a few percent. For such
low densities we confirm that the scattered light intensity is a good proxy for packing fraction.
The total number of particles is approximately conserved among all Burgers shock experiments
since we start with the same amount of stock colloidal solution in each capillary and then
add water and DO to change hy. The total number of particles Ny, ~ 78500 in the viewing
area was estimated using particle tracking at later times, with the length of the frame being
L, = 3344um, giving the total (conserved) “mass”’ (6) to be Moy, = Nexpma®/L, = 325 pm.
Knowing the total number of particles (total mass) allows us to rescale the scattered intensity
to a packing density, which can then be compared to theoretical and computational predictions.

B. Simulations

The numerical methods used in our simulations are described in detail in recent work by some
of us [5] on the collective dynamics in uniform suspensions of microrollers. Briefly, our lubrication-
corrected Brownian Dynamics method simulates the translational and rotational dynamics of all
particles in the suspension in three dimensions. The method is based on the method of Stokesian
Dynamics and includes both far-field hydrodynamics (at the Rotne-Prager level [18] without
stresslets) as well as semi-analytical lubrication corrections due to particles coming close to other
particles or the bottom wall. We consistently and efficiently account for Brownian motion, which
is essential in the particle simulations in order to set the gravitational height of the particles.

In the simulations we take the radius of the particles a = 2.1um and the density of the



D20% 0 12.5 25
hg =1 0.25pum | 0.336um 0.5pm
pr = |998kg/m?|1009kg/m*|1020kg,/m”
n = 10.95mPas| 0.98mPas | 1.01mPas
y = | 116pm 106pm 77pum
= 2759 2592 1811
T, = | 5.3min. | 10.2min. 38min.

Table I: Parameters (rows) used in the simulations for different gravitational heights (columns)
hg = kBT /meg of the colloidal monolayer.

particles is set to p, = 1041kg/m3, and we fix the temperature at 22°C. We compute the
density of the solvent p; from the concentration of D,O from standard tables [19]; the values
are indicated in Table I. Adding D,O to water also changes the viscosity of the solution 7
[20], as indicated in Table I. The steric repulsion potential between the particles and between
the particles and the wall is approximated by [5]

1+% r<d
CD(T) _ (I)(){ 2adcut/ In(10)

des 7 (8)
exXp m r Z d

where 7 is the distance from a particle to another particle or to the wall, d = a(1 — dcyt)
for particle-wall repulsion and d = 2a(1 — d.y;) for particle-particle repulsion 2. We set the
strength of the repulsion to ®g = 4kgT and take 6.y = 1072 to mimic approximately hard
sphere interactions through a “firm potential” (see section 3c of [5]). To accurately resolve
the suspension dynamics we set the time step size to At = 4.88 x 1073(67na®)/ (kgT) = 0.2s.
Given this comparatively small At¢, on the order of hundreds of thousands of time steps are
needed to simulate the long timescales observed in our sedimentation experiments, which
limits the number of particles we can include in our simulations relative to the experiments.

Our simulations are unbounded in the positive z direction, which is a good approximation
to the experiments where L,/a ~ 150 > 1. For uniform suspensions, we use a domain that
is periodic with period L,, in both the x and y directions; we controlled the packing fraction
by varying L, while keeping the number of particles fixed. For Burgers shocks the simulation
domain is infinite in the = direction (the direction of motion) and periodic in the y (the
spanwise) direction with period L, indicated in Table I; the smallest L,/a ~ 37, which we
have confirmed is sufficiently large to make periodic artifacts in the hydrodynamics negligible.

To generate an initial configuration of particles at time ¢y confined to a region of the xy plane of
area L, x L,,, we perform Markov Chain Monte Carlo equilibrium runs at a constant in-plane pack-
ing fraction ¢y with Ny particles. For uniform suspensions, ¢y = ¢ and we keep all N = Ny =
1024 particles. For Burgers shock simulations, we need to generate an inhomogeneous density
profile. Therefore, we first generate a uniform one at the maximum density and then randomly re-
move particles to reduce the density where needed. Specifically, we take the initial density profile
extracted from experiments ¢ey, (7,%0) , set 2 ¢g = 1.1 max gexp (7, t9) and Ny = 4000, and in-
dependently and uniformly randomly remove each particle with probability (1 — ¢exp(2,t0)/¢0)-
The final number of particles N after this rejection step is indicated in Table 1.

2 Note that while the case r < d should not happen for hard particles, slight overlaps do occur in numerical

simulations.
3 The factor of 1.1 gives us a small buffer above the maximum.
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Figure 3: Collective sedimentation velocity as a function of in-plane packing fraction for each of
the three gravitational heights, for both simulations and experiments. Experimental measurements
of v(¢) are shown as markers with error bars of one standard deviation. The solid curve shows data
from simulations at # = 45°; the boundaries of the shaded region around the simulation data are
from simulations with § = 42° (smaller velocity) and 6 = 48° (larger velocity), in order to account
for the experimental uncertainty in the sedimentation angle 8 = 45° + 3°. In the simulations the
colloids remained in a monolayer only for ¢ < 0.6.

C. Uniform suspensions

Our computational and experimental results for the collective sedimentation velocity v (¢)
at the three different gravitational heights are shown in Fig. 3. The apparent x velocity of the
particles is computed over intervals of 1s (but the results are not sensitive to this choice), using
particle tracking in the experiments, and the average velocity is computed for each packing
fraction. We see a good agreement between the measured and predicted collective velocities,
to within experimental uncertainty. The relationship is roughly linear as in (1). To obtain a
more accurate functional form of v (¢) to use in (2), we fit the simulation data with a rational
function (typically with degrees 3/2 but no larger than 5/2, not shown). Since the simulation
results for v(¢) shown in Fig. 3 are sub-linear over the range of densities of interest (¢ < 0.6),
we refer to (2) as the sub-Burgers equation.

D. Burgers shock waves

In the remainder of this section we focus our attention to comparing our experimental and
simulation results to the prediction of the mean-field sub-Burgers model (2) and its Burgers
approximation (3).



1. Transverse (in)stability

Before we discuss results for the one-dimensional density profiles ¢(z,t) modeled by Egs.
(2) and (3), we must understand whether the two-dimensional density profiles ¢(z,y,t) are
actually effectively one-dimensional, that is, whether the density front remains stable to
transverse perturbations.

To do this, from the experimental images and binned simulation densities, we extract the
position of the density front xs (y;t) such that the density is essentially zero for z > z(y); see
the left panel of Fig. 1 for an illustration of the particles determined to be at the density front at
two different times. The extracted fronts x; (y;t) are shown in Fig. 4. For a rough comparison,
we also perform a simulation at h, = 0.336pm with N = 8000 particles and a wider domain with
periodic length L, = 1260um, and a uniform initial packing density of ¢(0 < x < L,,y,t) = 0.6
where L, = L,/8.6. We show the simulated density front profiles overlayed on top of the
experimental ones in the middle panel of Fig. 4, but it should be noted that a direct comparison
is not possible because at present we cannot simulate a system of the same dimensions as
the experiments due to the very large number of particles in the experiments. Due to the
unmatched conditions between the simulation and experiment, the shift in the mean position of
the front in the simulations has been scaled by an empirical factor of 2.6 to align the fronts with
the experiments for easier visual comparison. This factor is consistent with a rough estimate
based on the Burgers time scale (4) assuming the initial condition in experiments is a square

wave, t&®) m) (L<6XP>¢(§S“>) / (L<Sim>¢§f"p)) ~ (500um - 0.6) / (147pm - 0.65) ~ 3.1.
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The results in Fig. 4 show that the density front becomes rough over time, however, they
do not show the formation of a transverse instability at a precise wavelength, as is the case for
microrollers [2, 3]. Instead, the roughness has a broad range of characteristic length scales (as
determined from the correlation function of x; (y;¢)) and pin-pointing a precise “wavelength”
of the roughness is not possible due to the large statistical uncertainty, as discussed in the
supplementary information.

Importantly, the relative roughness of the density shock appears to reach an approximately con-
stant magnitude, with the front position fluctuating over a range of about 100um at the final time.
To verify this, in Fig. 5 we show the width of the rough profile o4(¢), as measured from the stan-
dard deviation of z s (y;t). We normalize the roughness by the length of the density profile z ¢(¢)—

1(t) (predicted to grow like v/t by the Burgers model (7)), where henceforth we denote the
mean position of the density front with = (¢) = (xs (y;t)). To estimate the position of the back
of the front x,(t), we fit a line to the section of the density profile corresponding to the first fifth
of it’s extent in the x direction, and calculate x; as the intercept of this line. This is reasonably
robust except in the initial stages of the experiment when the density profile is far from linear.
We see in Fig. 5 that in all experiments the roughness of the front remains quite small
(~ 1%) compared to the length of the density profile, at all times after an initial transient
(predicted to be tiiang by the Burgers model, see (4)) during which the triangular density
profile predicted by (5) is reached. Therefore, even though the front roughness is large
compared to the particle size (as much as 50a), it is still reasonable to approximate the density
profiles as effectively one-dimensional, ¢(z,y,t) =~ ¢(z,t). Thus, unless otherwise stated, we
focus on analyzing the density ¢(x,t) computed by averaging ¢(z,y,t) along the y direction.

2. Sub-Burgers model

In this section, we compare the predictions of the sub-Burgers model (2), using the estimated
collective sedimentation velocity v(¢) shown in Fig. 3, to the Burgers approximation (3).
Because particle tracking over the length and time scales of interest was not possible in the
experimental studies of sedimenting Burgers fronts, we cannot do this comparison for the



hy =0.25 pm hy =0.336 pm hy = 0.5 pm

4000 p o e |
000 o
8
1000 -
—Exp.
— Sim.
0:

O0 1000 2000 3000 O 1000 2000 3000 O 1000 2000 3000

\\Jr\ f\ f{

0 500 1000 1500 2000 2500 3000
y (pm)

Figure 4: Position of the density front ¢ (y;t) in one of the experiments at each gravitational height.
In panels (a-c), we overlay snapshots of the experimental density front in time increments of 1000s,
where the opacity of the curves increases with time. Panel (b) also shows the results of a particle
simulation (magenta line) we ran for hy = 0.336 using N = 8000 particles with initial density ¢¢ = 0.6,
where the time is scaled by a factor of 2.6 to account for the different total number of particles and
domain geometry. Panel (d) overlays the shifted fronts Az (y;t) = x¢ (y;t) — (xf (y;t)) at the final
time for each gravitational height, as well as the simulation results for hy = 0.336. We see that the
scale of the roughness and characteristic “wavelength” of the front are roughly independent of A, and
are comparable in experiments and simulations. Further discussion of the characteristic wavelength
can be found in the supplementary information.

experiments since we cannot accurately measure ¢(x,t) in the experiments over the whole range
of time. Instead, we use computer simulations to evaluate the accuracy of the models (2) and (3).

We do our best to make the initial conditions in the simulations mimic the experiments
by using the experimental scattered light intensity, scaled using the total number of particles
estimated by particle tracking, as a proxy for ¢(z,t). Since this is a particularly bad
approximation at the very high packing densities in the initial configuration in the experiments,
we skip an amount of time Ty in the beginning of each experiment so that the maximum
packing density falls to around 0.4; the times T are indicated in Table I. For the particle-based
simulations, we generate initial conditions from the experimentally measured ¢(x,T}). For
comparison, we also numerically solve the sub-Burgers equation (2) using a high-resolution
Godunov method? |21] starting with ¢(z,T}) as the initial condition.

The results of our computations are summarized in Fig. 6. We see that the initial condition
quickly evolves into an approximately triangular density profile, after which the sub-Burgers
model (2) and the Burgers approximation (3) (see Section III D 3) both agree quite well with
the results from the particle simulations. At early times, when the density profile is not yet

4 We thank Wenjun Zhao for implementing this method in one dimension and improving the handling of limiting.
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Figure 5: The scale of the roughness of the density front o (t) = std (x (y;t)), normalized by the
length of the density profile xf(t) — xp(t), for two experiments at each of the three gravitational
heights. Time is scaled by a rough estimate of the time it takes for the density profile to become
(approximately) triangular, ¢ iang = 20min (see also (4)). In the supplementary information we show
the temporal evolution of the characteristic wavelength of the fronts.

triangular, the sub-Burgers equation shows reasonable agreement with the particle simulations,
but the Burgers approximation does not, as expected. This is particularly evident in the
bottom panel of the figure for h, = 0.5um; similar behavior is seen at earlier times (not shown)
for the other values of hg

We compare the predictions from our simulations to the experimental measurements in Fig. 7.
While we cannot measure the density profile accurately in the first part of the experiments due to
the inability to track particles, x;(t) can be determined accurately from the experimental images
at all times. In Fig. 7 we compare predictions for the mean front position x;(t) between the
experiments, particle simulations, the sub-Burgers model (2), and the Burgers approximation
(3). The sub-Burgers model is once again seen to agree with the particle simulations rather
well over the whole time interval, for all gravitational heights. At the same time, we observe
a moderate (~ 10 — 15%) difference between the particle simulations and experiments for
the smallest gravitational height h, = 0.25um, with the agreement becoming much better for
the largest hy = 0.5pum. The systematic difference persists even if we start simulations from
snapshots of the experiments at later times, when the density is lower and the scattered intensity
is a better proxy for the true density. This suggests that there is a (yet unidentified) discrepancy
in either the particle interactions (e.g., electrostatics), or the hydrodynamics, between the
simulations and experiments °. At the largest h,, the particles are furthest from each other and
the floor, and we expect the direct and hydrodynamic interactions between particles to have less

® It should also be noted that a one-to-one comparison is difficult to make because the width L, is much smaller
in the simulations to reduce the overall number of particles and thus control the computational effort (e.g.,

L, ~ 3.35mm is the width of the viewing frame in the experiments, while L, ~ 100xm in the simulations).

11



0.6 - IC: t = 5.3min hy = 0.25um —Particle Sim.|/
— -sub-Burgers

t = 110min B
_ P urgers
t = 209min ¢ = 308min
M N
‘ ‘ ‘ ‘¢ .
0.6 - IC: t = 10.2min hy = 0.336pm ——Particle Sim.||

t = 110min — -sub-Burgers

t = 209min oo Burgers

I I I I I L
0 - h, = 0.5 Particle Sim.||
0.6 IC: t = 38min sub-Burgers

N 0.4+ t = 210min ¢t —308min == Burgers
0.2+
0 : e | Y ! |
0 1000 2000 3000 4000 5000 6000
x (pm)

Figure 6: Evolution of the density profile ¢(z, t) for each gravitational height (Increasing from top to bot-
tom). The filled density profile shows the initial condition used in each case, taken from our experimental
data after an initial relaxation period (indicated in the figure). Each panel shows the evolution of the den-
sity profile in a particle simulation (solid lines, results are reproducible in statistically independent simula-
tions), the sub-Burgers model (2) (dashed lines), and the Burgers approximation (3) (dotted lines). Evo-
lution of the density profiles in each case is shown using decreasing transparency with increasing time (in-
dicated in the figure). An animated version of this figure is available in the Supplementary Information.

of an impact. We further compare experiments and simulations quantitatively in Section IIID 3.

3. Burgers model

In Section III D 2 and, in particular, in Fig. 6, we compared the predictions of the Burgers
equation (3) as an approzimation to the sub-Burgers equation (2) at late times (when density is
low). The sub-Burgers model requires estimating/approximating the collective velocity function
v(¢), and the Burgers approximation further requires estimating the self-velocity vy = v(¢ = 0)
and the slope S = 2dv (¢ = 0) /d¢, which can be difficult to do accurately especially with
experimental data. Therefore, in this section we see how well the Burgers equation (3) serves
as a model for the simulation and experimental results, without going through v(¢).

In order to compare our simulation results to the predictions of the Burgers model (3),
we fit the mean position of the front x;(¢) and the back of the front z,(t) to the theoretical
prediction (7), accounting also for the fact that v(¢ = 0) is nonzero,

:Eb(t) = Uot + xg (9>
4(t) — m(t) = \/2SM (t — to), (10)

where vy = v(¢ = 0) is the numerically-estimated self velocity of an isolated particle (see Table
I1), S =2dv (¢ =0) /d¢ is estimated from the slope of the rational fit to the simulation data
shown in Fig. 3 (see Table II), and the total mass M = N wa?/L,. To account for the fact
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Figure 7: Mean position of the density front x ¢(t) for each of the three gravitational heights (increasing
from left to right). The experimental results (experiment #2) are shown with symbols (circles), and
the Burgers fit to the experimental data (see Section IIID 3 for details) is shown with a dotted line.
We only show one of the experiments but the difference between experiments is smaller than the
symbol size. The results of particle simulations are shown with a solid line along with corresponding
shaded regions bounded by the results obtained when the angle 6§ was changed by +3 degrees, which
is roughly the experimental uncertainty in setting the microscope orientation. The predictions of
the sub-Burgers model (2) are shown with a thick dashed line of the same color as the particle results.

Table II: Fitted or computed values of the parameters S and vg in units of um/s in the Burger’s
model (3). For the particle simulations, the values are computed from the simulation data shown in
Fig. 3 (see text). For two independent experiments, the value of S is obtained from the experimental
data shown in Fig. 7 over the time period where ¢(z,t) < 0.4 (see text). We also show estimates
of vy obtained by fitting the experimental z(t) to (9).
| hg (pm) | 0.25 \ 0.336 \ 0.5 |

Particle Sim.|S = 1.33, vg = 0.144|S = 1.11, vg = 0.108| S = 0.85, vg = 0.07

Exp. #1 |S =1.61,v9=0.154] S =1.24, vy = 0.12 |S = 0.732, vg = 0.0723

Exp. #2 |S =1.67, v9 = 0.167|.5 = 1.29, vg = 0.112|.S = 0.766, vy = 0.0653

that the initial condition is not a square wave, we obtain the time shift ¢, and the position
shift x¢ from x; (t;) and x, (t5) at the final time ¢;. We remind the reader that the Burgers
equation predicts that any compactly supported initial condition will asymptotically approach
a triangle wave (5) with a time and space shift that depends on the initial conditions.

In Table IT we compare the parameter S and the self velocity vy in the Burger’s model (3)
between experiments and simulations. In the experiments, we can unambiguously and accurately
track the mean front position z¢(t) over all times, while the estimates for the end of the profile
xp(t) are less reliable and more noisy, especially at early times. Nevertheless, we estimate vg
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Figure 8: The top panel shows the total mass of the density profile M = / ¢(x,t)dz for experiment

#2 at hy = 0.336, as measured by scattered intensity re-scaled to be in units of particle density based
on the estimated total number of particles Nexp. The mass remains constant to within 5% after about
t; = 70.8min, so we compare the experiment data to the Burgers model for ¢ > ¢;. The bottom panel
compares snapshots in time of the Burgers model (5) along with the experimental measurements of the
density profile. The curves have been colored to increase in opacity as time increases, and the times
of each snapshot are indicated by vertical bars in the top panel using a corresponding transparency.
The experimental measurements of the density profile have been averaged along the y direction either
without (labeled “unaligned”) or with alignment (labeled “aligned”) of the front z (y;t) (see text).
An animated version of this figure is available in the Supplementary Information.

by fitting the experimental x;(t) to (9). The results, shown in Table II, demonstrate that vy is
quite consistent between experiments and simulations. To obtain S, ¢y, and xg, we match the
experimental data to Eqgs. (9,10) at later times, when the triangular density profile is well formed,
by restricting the analysis to the time interval ¢; < ¢ < t; after the maximum of the estimated
density is sufficiently low for the Burgers approximation to be apply, max ¢(x,t;) < 0.4. We first
determine z( from x;, (), since the scattered intensity is the best proxy for the density at the final
time, using the self velocity vy estimated from simulations (see Table II) in order to avoid using
the less reliable x;, (t;). Then, we compute S and ¢, from z (¢;) and = (¢f). The resulting Burg-
ers prediction (10) with the estimated parameters is shown in Fig. 7, and is in excellent agreement
with the experimental data over nearly the whole time interval. The experimental estimates of
the parameter S in Table IT show the same qualitative trends with gravitational height, but an im-
perfect quantitative agreement, between simulations and experiments, as already seen in Fig. 7.

Finally, in Fig. 8 we compare the Burgers prediction (5,7) for the density profile to experimental
data. For this comparison, we focus on experiment #2 at h, = 0.336, for which the total
scattered intensity (proportional to the total mass M) was constant for £y >t > t; = 70.8min
to within 5%, suggesting that the scattered intensity was a good proxy for ¢(z,t > t;). The
scattered intensity has a small (at most couple of percent of max intensity) constant background
intensity (varying slowly over time) both in front of and behind the support of ¢. To compute
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the mass of the density profiles we offset ¢(z,t) to remove the estimated background intensity,
and match M = M.y, at the final time ¢;. We estimate the position of the back w; (t;) by first
estimating the position of the front xf (¢;) and then finding the value of ; (t¢) that minimizes
the L, error between ¢(z,tr) and a triangle of area M extending from xy (t5) to x; (t7). Using
the experimental data for © z;, (t7), s (t;), and z; (¢;) and Egs. (9,10), we estimate ¢ty = 6.8min
and S = 1.24 (compare to data in Table II). In Fig. 8 we compare the theoretical prediction for
the triangular density profile (5) with the extracted parameters to the experimental density profile
¢(z,t) obtained by averaging the experimentally measured ¢(x,y,t) along y, and subtracting
the offset due to the nonzero background intensity. We also compute the average density along
y by first shifting the profile ¢ (x,y,t) for each y in the x direction by xs (y;t) — (zy (y;t)). By
construction, this shifting preserves the mean and therefore the aligned density profile has the
same mean front position x;(t). The alignment does however allow us to examine the variation
in density along the x direction at scales comparable to the particle size, which is not possible
with the un-aligned profiles because of the smearing caused by the roughness of the front.

We observe in Fig. 8 that both the aligned and un-aligned density profiles exhibit the
expected triangular shape, and are in reasonable agreement with the Burgers prediction. The
aligned data shows a sharp density front, but also exhibits a small peak at the front. Numerical
simulations suggest that right at the front, the particles get lifted above the floor to heights
larger than hg, and can therefore reach higher in-plane packing densities. The height of the
particles at the front depends on the balance between the self-induced motion due to gravity
(pulling them toward the wall) and the upward flow away from the wall, induced by the force
acting on the particles behind the front. This effect is more pronounced for larger incline
angles 0, and for sufficiently large 6 we find that the particles do not remain in a monolayer,
especially near the density maximum at the front.

IV. CONCLUSIONS

We examined the driven evolution of the planar density profile of a colloidal monolayer
sedimenting down an inclined plane, using experiments and simulations. We found that,
starting from an approximately constant density in a stripe of finite width, the monolayer
develops an inhomogeneous triangular density profile with a shock front at the front edge.
At the same time, the front becomes rough, but the relative roughness saturates to an
approximately constant amplitude and remains stable. We found that a simple one-dimensional
sub-Burgers equation predicts the shape of the density profile well over all times, and a Burgers
approximation is accurate at later times when the density is sufficiently low. These simple
models only require as input the collective sedimentation velocity of a uniform suspension
at a given density, which can be obtained easily in either experiments or simulations. The
Burgers equation can be solved analytically and only requires a single input, the slope of the
collective velocity as a function of density. We found a modest but systematic difference in the
Burgers parameters estimated from fitting experimental data and from simulations, perhaps
attributable to unaccounted interactions between the particles and the particles and the floor.

There are many avenues for improving the simple Burgers model we focused on in this work,
to try to improve the match between theory, simulations, and experiments. For example, since
the roughness of the density front is large compared to the particle size, a natural step would
be to consider a two-dimensional conservation law instead of a one-dimensional one. However,
the two-dimensional Burgers equation is stable to transverse perturbations [16] and would
not develop the roughness we observe.

6 We note that the experimental z(t > t;) was in excellent agreement with the theoretical prediction (9)

and the value of vy extracted from the simulations (see Table II).
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For colloidal microrollers, the local mean-field approximation (2) is not appropriate.
Assuming the colloids lie approximately in a plane at height h above the bottom floor, it
was shown in [4] that one should instead use a nonlocal conservation equation

o ol (f;ff)l*f))], "

where star denotes convolution with a translationally-invariant kernel

M

roll

(z) ~ ha*/ (2 + 4h2)2

that describes the flow field created by a unit rotlet above a no-slip plane [6, 7|. The kernel

Kr((z)l(m) is zero at the origin, which shows that the collective motion arises due to non-local
hydrodynamic interactions of particles at distances O(h) rather than neighboring particles.
However, the Blake solution for a Stokeslet above a no-slip plane [6, 7| can be used to show

that the corresponding kernel for sedimentation

322 + 4h? 4h?
Ks(ég(l') ~ 4h2(:§++T2)2 +In (1 + ?)
X

is singular at and peaked around the origin, which suggests that collective motion arises
primarily due to local hydrodynamic interactions among neighboring particles. It is therefore
reasonable to expect that the local approximation (2) is reasonable for sedimentation .

Since we know that the hydrodynamic interactions driving the collective dynamics are
non-local and the front is rough, it is natural to consider (two-dimensional) non-local
conservation laws. However, we find that steric repulsion has to be accounted for in such
models because otherwise the density develops unphysically-large peaks near the front. This is
not straightforward to do and would lead to nonlinear nonlocal conservation laws which could
not be solved numerically using standard methods (in fact, performing the particle simulations
is likely just as fast and simpler!), nor would they lead to the physical insight that the simple
Burgers model does. In the end, the success of the Burgers equation in describing the collective
density dynamics is unexpected but in large part owed to its simplicity and to the universal
nature of Burgers shocks at long times [15].

Our work naturally leads to a number of directions for future explorations Here we
considered the sedimentation of a monodisperse colloidal monolayer. Introducing polydispersity
(either continuous or a binary mixture) may lead to a number of phenomena not captured
by the simple Burgers equation. For example, it is an open question whether there will be
some form of segregation of the particles by size along the density profile, or phase separation
or clumping (as predicted by certain lattice models of sedimenting crystals [22]). Nonspherical
colloids such as rods would introduce a novel dimension to the problem coupling orientation
and density fields, and may also lead to different dynamics than the one studied in this work.

8

" In fact, our attempts to solve the nonlocal equation (11) with the kernel Ks(:(i (z) (or the corresponding

two-dimensional generalization) numerically indicate that the nonlocal equation develops singular solutions
where all the particles clump together at the shock front reaching unphysically high densities in finite time.
This unphysical behavior arises because steric repulsion is not accounted for in the simple model (11); it

is not straightforward to add particle repulsion in continuum models.
8 We thank the anonymous reviewers for some of these suggestions.

16



Acknowledgments

We thank Wenjun Zhao for sharing with us her code for a high-resolution advection solver
in one dimension. We also thank Jonathan Goodman for helpful discussions regarding the
Burgers equation. This work was supported primarily by the MRSEC Program under award
DMR-1420073. Additional funding was provided by the National Science Foundation under
award number CBET-1706562. B.S. and A.D. were supported by the National Science
Foundation via the Research Training Group in Modeling and Simulation under award
RTG/DMS-1646339. B.S. and A.D. also thank the NVIDIA Academic Partnership program
for providing GPU hardware for performing the simulations reported here. P. Chaikin was
partially supported by NASA under Grant Number NNX13AR67G.

[1]

2]

3]
[4]
[5]
[6]
7]

8]
19]
[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]

Michelle Driscoll, Blaise Delmotte, Mena Youssef, Stefano Sacanna, Aleksandar Donev, and
Paul Chaikin. Unstable fronts and motile structures formed by microrollers. Nature Physics,
13:375-379, 2017.

Florencio Balboa Usabiaga, Blaise Delmotte, and Aleksandar Donev. Brownian dynamics of
confined suspensions of active microrollers. J. Chem. Phys., 146(13):134104, 2017. Software
available at https://github.com/stochasticHydroTools/RigidMultiblobsWall.

Blaise Delmotte, Aleksandar Donev, Michelle Driscoll, and Paul Chaikin. Minimal model for a
hydrodynamic fingering instability in microroller suspensions. Phys. Rev. Fluids, 2:114301, 2017.
Blaise Delmotte, Michelle Driscoll, Paul Chaikin, and Aleksandar Donev. Hydrodynamic shocks
in microroller suspensions. Phys. Rev. Fluids, 2:092301, 2017.

Brennan Sprinkle, Ernest B. van der Wee, Yixiang Luo, Michelle Driscoll, and Aleksandar Donev.
Driven dynamics in dense suspensions of microrollers. Soft Matter, 16:7982 — 8001, 2020.

JR Blake. A note on the image system for a stokeslet in a no-slip boundary. In Proc. Camb.
Phil. Soc, volume 70, pages 303-310. Cambridge Univ Press, 1971.

Z. Gimbutas, L. Greengard, and S. Veerapaneni. Simple and efficient representations for the
fundamental solutions of Stokes flow in a half-space. Journal of Fluid Mechanics, 776:R1, 2015.
Code available at http://www.cims.nyu.edu/cmcl/fmm3d1lib/fmm3d1lib.html.

Nicolas Champagne, Eric Lauga, and Denis Bartolo. Stability and non-linear response of 1d
microfluidic-particle streams. Soft Matter, 7(23):11082-11085, 2011.

Tsevi Beatus, Tsvi Tlusty, and Roy Bar-Ziv. Burgers shock waves and sound in a 2d microfluidic
droplets ensemble. Physical review letters, 103(11):114502, 2009.

Alan Cheng Hou Tsang and Eva Kanso. Density shock waves in confined microswimmers.
Physical review letters, 116(4):048101, 2016.

Adrien Lefauve and David Saintillan. Globally aligned states and hydrodynamic traffic jams
in confined suspensions of active asymmetric particles. Physical Review E, 89(2):021002, 2014.
Samartha G Anekal and Michael A Bevan. Self-diffusion in submonolayer colloidal fluids near
a wall. The Journal of chemical physics, 125(3):034906, 2006.

Adam Wysocki, C Patrick Royall, Roland G Winkler, Gerhard Gompper, Hajime Tanaka, Alfons
van Blaaderen, and Hartmut Lowen. Direct observation of hydrodynamic instabilities in a driven
non-uniform colloidal dispersion. Soft Matter, 5(7):1340-1344, 2009.

I C Carpen and J.F. Brady. Gravitational instability in suspension flow. Journal of Fluid
Mechanics, 472:201-210, 2002.

Peter D Lax. Hyperbolic systems of conservation laws and the mathematical theory of shock
waves. STAM, 1973.

Jonathan Goodman. Stability of viscous scalar shock fronts in several dimensions. Transactions
of the American Mathematical Society, 311(2):683-695, 1989.

John C Crocker and David G Grier. Methods of digital video microscopy for colloidal studies.

17



Journal of colloid and interface science, 179(1):298-310, 1996.

[18] James W. Swan and John F. Brady. Simulation of hydrodynamically interacting particles near
a no-slip boundary. Physics of Fluids, 19(11):113306, 2007.

[19] Elijah Swift. The densities of DoO — H20O mixtures at 5 and 25°. Journal of the American
Chemical Society, 61(1):198-200, 1939.

[20] Grinnell Jones and Holmes J Fornwalt. The viscosity of deuterium oxide and its mixtures with
water at 25 c. The Journal of Chemical Physics, 4(1):30-33, 1936.

[21] Sandra May, Andrew Nonaka, Ann Almgren, and John Bell. An unsplit, higher-order godunov
method using quadratic reconstruction for advection in two dimensions. Communications in
Applied Mathematics and Computational Science, 6(1):27-61, 2011.

[22] Rangan Lahiri, Mustansir Barma, and Sriram Ramaswamy. Strong phase separation in a model
of sedimenting lattices. Physical Review E, 61(2):1648, 2000.

18



Supplementary Information
Sedimentation of a Colloidal Monolayer Down an Inclined Plane

B. Sprinkle, S. Wilken, S. Karapetyan, M. Tanaka, Z. Chen, J. R. Cruise,
B. Delmotte, M. M. Driscoll, P. Chaikin, and A. Donev

A. Experimental Setup

Figure 1: An image of the experimental apparatus: a rotating microscope built in-house
to image sedimenting colloidal monolayers.

B. Dominant Wavelength in the Rough Fronts

Figure 4 in the main text shows that the growth in the roughness of the density front x; (y;t)
is approximately in step with the growth of the whole density profile. However, it is difficult
to quantitatively describe the evolution in a characteristic or dominant wavelength for the front
with statistical confidence. This is because we only have a few experiments for each gravitational
height, and once the front fluctuations get set via the initial conditions they persists for the
duration of the experiment (while growing slowly in amplitude) so there is no temporal averaging.
At the same time, the width of the experimental view frame is not sufficiently larger compared
to the typical wavelength to obtain sufficient spatial averaging. Nevertheless, in this SI we
give some quantitative characterizations of the roughness of the fronts from the experiments
(recall that the simulations use a notably smaller simulation box, especially in the y direction).

The Fourier spectrum of the density front ¢ (y;t) is too noisy to pick out a clearly dominant
wave length for the front; instead we use the correlation length o (t) (xs (y;t) xs (y + Ay; t)),
where Ay is a lag distance and o(t) = std (xs (y;t)). The normalization af(tg is chosen to
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Figure 2: For each gravitational height, panel (a) shows an overlay of the shifted fronts
Ax(y;t) = x5 (y;t) — (zf (y;t)) + ¢ 150 at the final time. The constant ¢ = —1,0,1 is simply
used to visually separate the curves and the shifted mean is shown as a thin dashed line in
each case. Panel (b) shows the correlation length plotted against Ay for the fronts displayed
in panel (a). The Peak Correlation Length (PCL) measures the characteristic wavelength
of the front and is highlighted using a pentagram shaped marker in panel (b). Panel (c) shows
the PCL vs. time for two experiments at each of the three gravitational heights. Jumps in the
peak correlation length indicate a failure to identify a clear, dominant wavelength in the front.

make the strength of the correlations relative to the roughness of the front, and representative
plots of the correlation length are shown in Fig. 2b. The first maximum of the correlation
length, which we term the Peak Correlation Length (PCL), gives us a notion of the average
peak-to-peak distance. However, as the front evolves in time the first maximum can sometimes
degenerate to an inflection point, causing the PCL to jump significantly to what was formerly
the second peak. This behavior is clear in Fig. 2c, where the temporal evolution of the peak
correlation length is plotted against time for two experiments at each of the three gravitational
heights. The jumps in the peak correlation length seen in Fig. 2c indicate that over some
time scales, a single characteristic wavelength in the front cannot be clearly identified.



