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We develop numerical schemes for solving the isothermal compressible and incompressible
equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a
second-order accurate spatial discretization of the diffusive, advective and stochastic fluxes
that satisfies a discrete fluctuation-dissipation balance, and construct temporal discretiza-
tions that are at least second-order accurate in time deterministically and in a weak sense.
Specifically, the methods reproduce the correct equilibrium covariances of the fluctuating
fields to third (compressible) and second (incompressible) order in the time step, as we ver-
ify numerically. We apply our techniques to model recent experimental measurements of
giant fluctuations in diffusively mixing fluids in a micro-gravity environment [A. Vailati et.
al., Nature Communications 2:290, 2011]. Numerical results for the static spectrum of non-
equilibrium concentration fluctuations are in excellent agreement between the compressible
and incompressible simulations, and in good agreement with experimental results for all

measured wavenumbers.

I. INTRODUCTION

At a molecular scale, fluids are not deterministic; the state of the fluid is constantly changing
and stochastic, even at thermodynamic equilibrium. Stochastic effects are important for flows
in new microfluidic, nanofluidic and microelectromechanical devices [I]; novel materials such as
nanofluids [2]; biological systems such as lipid membranes [3], Brownian molecular motors [4],

nanopores [5]; as well as processes where the effect of fluctuations is amplified by strong non-
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equilibrium effects, such as combustion of lean flames, capillary dynamics [6} [7], and hydrodynamic
instabilities [8H10], and others. Because they span the whole range of scales from the microscopic
to the macroscopic [11} [12], fluctuations need to be consistently included in all levels of description
[13]. Thermal fluctuations are included in the fluctuating Navier-Stokes (NS) equations and related
continuum Langevin models [I4} [I5] through stochastic forcing terms, as first proposed by Landau
and Lifshitz [16]. Numerically solving the continuum equations of fluctuating hydrodynamics [17]
is difficult because of the presence of non-trivial dynamics at all scales and the existence of a
nontrivial invariant measure (equilibrium distribution).

Several numerical approaches for fluctuating hydrodynamics have been proposed. The earli-
est work by Garcia et al. [I8] developed a simple scheme for the stochastic heat equation and
the linearized one-dimensional fluctuating NS equations. Ladd and others have included stress
fluctuations in (isothermal) Lattice Boltzmann methods for some time [19]. Moseler and Land-
man [§] included the stochastic stress tensor of Landau and Lifshitz in the lubrication equations
and obtain good agreement with their molecular dynamics simulation in modeling the breakup of
nanojets. Sharma and Patankar [20] developed a fluid-structure coupling between a fluctuating in-
compressible solver and suspended Brownian particles. Coveney, De Fabritiis, Delgado-Buscalioni
and co-workers have also used the fluctuating isothermal NS equations in a hybrid scheme, coupling
a continuum fluctuating solver to a molecular dynamics simulation of a liquid [2IH23]. Atzberger,
Kramer and Peskin have developed a version of the immersed boundary method that includes
fluctuations [24] 25]. Voulgarakis and Chu [26] developed a staggered scheme for the isothermal
compressible equations as part of a multiscale method for biological applications, and a similar
staggered scheme was also described in Ref. [27].

Some of us have recently developed techniques for analyzing the weak accuracy of finite-volume
methods for solving the types of stochastic partial differential equations that appear in fluctuat-
ing hydrodynamics [28]. The analysis emphasizes the necessity to maintain fluctuation-dissipation
balance in spatio-temporal discretizations [28], thus reproducing the Gibbs-Boltzmann distribution
dictated by equilibrium statistical mechanics. Based on previous work by Bell et al. [29, B0], a
collocated spatial discretization for the compressible equations of fluctuating hydrodynamics has
been developed and combined with a stochastic third-order Runge-Kutta (RK3) temporal integra-
tor [28]. The collocated spatial discretization has been used to construct a strictly conservative
particle-continuum hybrid method [I3] and to study the contribution of advection by thermal
velocities to diffusive transport [31].

A staggered spatial discretization is advantageous for incompressible flows because it leads to



a robust idempotent discrete projection operator [32, B3]. Staggered schemes have previously
been developed for isothermal compressible [26] and incompressible flow [20], without, however,
carefully assessing discrete fluctuation-dissipation balance. Here we present and test an explicit
compressible and a semi-implicit incompressible scheme for fluctuating hydrodynamics on uniform
staggered grids. Both methods use closely-related spatial discretizations, but very different tempo-
ral discretizations. In the spatial discretization, we ensure an accurate spectrum of the steady-state
fluctuations by combining a locally-conservative finite-volume formulation, a non-dissipative (skew-
symmetric) advection discretization, and discretely dual divergence and gradient operators. For
compressible flow, we employ an explicit RK3 scheme [28] since the time step is limited by the
speed of sound and the dissipative terms can be treated explicitly. For incompressible flow, we
use a semi-implicit unsplit method first proposed in Ref. [34], which allows us to take large time
steps that under-resolve the fast momentum diffusion at grid scales but still obtain the correct

steady-state covariances of fluctuations.

Figure 1: Snapshots of concentration showing the development of a rough diffusive interface between two
miscible fluids in zero gravity. We show three points in time (top to bottom), starting from an initially
perfectly flat interface (phase separated system). These figures were obtained using the incompressible code

described in Section [V Al

Thermal fluctuations in non-equilibrium systems in which a constant (temperature, concentra-
tion, velocity) gradient is imposed externally exhibit remarkable behavior compared to equilibrium
systems. Most notably, external gradients can lead to enhancement of thermal fluctuations and
to long-range correlations between fluctuations [I7), B5H38]. This phenomenon can be illustrated
by considering concentration fluctuations in an isothermal mixture of two miscible fluids in the

presence of a strong concentration gradient Ve, as in the early stages of diffusive mixing between



initially separated fluid components. As illustrated in Fig. the interface between the fluids,
instead of remaining flat, develops large-scale roughness that reaches a pronounced maximum until
gravity or boundary effects intervene. These giant fluctuations [39H41] during free diffusive mixing
have been observed using light scattering and shadowgraphy techniques [12), 42H45], finding good
but imperfect agreement between the predictions of a simplified fluctuating hydrodynamic theory
and experiments. Recent experiments have taken advantage of the enhancement of the nonequi-
librium fluctuations in a microgravity environment aboard the FOTON M3 spaceship [12] 44], and
demonstrated the appearance of fractal diffusive fronts like those illustrated in Fig. In the ab-
sence of gravity, the density mismatch between the two fluids does not change the qualitative nature
of the non-equilibrium fluctuations, and in this work we focus on mixtures of dynamically-identical
fluids.

Before discussing spatio-temporal discretizations, we review the continuum formulation of the
equations of fluctuating hydrodynamics and their crucial properties in Section [T} In particular, we
discuss the steady-state covariances of the fluctuating fields for systems in thermal equilibrium as
well as fluid mixtures with an imposed concentration gradient. In Section[[IT A]we focus on the tem-
poral discretization in the spirit of the method of lines. For the compressible equations, we employ
a previously-developed explicit three-stage Runge-Kutta scheme that is third order weakly accu-
rate [28]. For the incompressible equations we employ a second-order accurate predictor-corrector
approach, each stage of which is a semi-implicit (Crank-Nicolson) discretization of the unsteady
Stokes equations, solved effectively using a projection method as a preconditioner [34]. In Section
we describe a conservative staggered spatial discretization of the diffusive, stochastic and
advective fluxes. We maintain discrete fluctuation-dissipation balance [28, [46] by ensuring duality
between the discrete divergence and gradient operators, and by using a skew-adjoint discretization
of advection. We verify the weak order of accuracy for both the compressible and incompressible
algorithms in Section [V} In Section [V] we model the non-equilibrium concentration fluctuations
in a fluid mixture under an applied temperature gradient, and compare the numerical results to

recent experimental measurements [12] 44].

A. Deterministic Hydrodynamic Equations

Motivated by the microgavity experiments studying giant fluctuations [12] [44], we consider an
ideal solution of a macromolecule with molecular mass M in a solvent. At the macroscopic level, the

hydrodynamics of such a mixture can be modeled with an extended set of Navier-Stokes equations



for the mass density p = p1 + p2, where p; is the mass density of the solute, v is the center-of-mass
velocity, ¢ = p1/p is the mass concentration, and 7" is the temperature [I7, 30]. In many situations
of interest the temperature 7' (r,t) = T (r) can be taken as fixed [17, 39 45] since temperature
fluctuations do not couple to other variables. The fixed-temperature compressible NS equations

for an ideal mixture of two miscible fluids are

Dip=—p(V-v) (1)
p(Dw)=—=VP+V-[nVvo+((V-v)I]+f, (2)
p(Dic) =V - [px (Ve +c(1 =) SrVT)| + fe, (3)

supplemented with appropriate boundary conditions. Here D0 = 9,0+ v - V (O) is the advective
derivative, Vv = (Vv + Vol) — 2(V -v) I/3 is the symmetrized strain rate, P (p,c;T) is the
pressure as given by the equation of state, and f, and f. are external forcing (source) terms. The
shear viscosity 7, bulk viscosity ¢, mass diffusion coefficient x, and Soret coefficient St, can, in
general, depend on the state. We make several physically-motivated approximations, including
neglecting barodiffusion, as we describe and justify next.

We will assume that the two species in the mixture are almost identical, meaning that none of
the fluid properties are affected by concentration. In this sense the macromolecules are assumed to
be simple (passive) tracer particles. This is a reasonable approximation for small concentrations
¢ < 1, since the presence of small amounts of macromolecule causes small changes in the properties
of the solution. In the giant fluctuation experiments in microgravity conditions the concentration is
at most a few percent [12], 44], justifying the assumption that the equation of state is independent
of concentration, P (p,c;T) = P (p;T). This approximation also allows us to neglect barodiffu-
sion since the barodiffusion coefficient is a thermodynamic rather than a transport coefficient and
vanishes for such an equation of state.

Because the temperature varies by only a few percent across the sample in the giant fluctuation
experiments modeled in Section [V} we take the system to be isothermal and thus the temperature
T = Tp is constant. However, we retain the crucial Soret term by taking STVT to be a specified
constant. Note that the Soret term is a transport coefficient unlike the barodiffusion coefficient
and can be positive or negative.

For liquids, the equation of state is usually very stiff, which means that the (isothermal) sound
speed c% = OP/0p is very large. Density is therefore nearly constant, and an incompressible
approximation will be appropriate as a means to avoid the stiffness. An alternative, employed

for example in the Lattice-Boltzmann method, is to keep the simpler compressible equations (and



thus avoid elliptic constraints), but make the speed of sound much smaller than the actual speed
of sound, but still large enough that density variations are negligible. This is the sense in which
we will use the compressible equations ([1}23), although we emphasize that there are situations in
which it is actually important to solve these equations with the proper equation of state [26, [47].
Under the assumption that density variations are small, it is not important what precise depen-
dence of the transport coefficients and equation of state on the density is used. We will therefore
assume that P = P(p) = Py + (p — po) &, where cr is a spatially-constant isothermal speed of
sound. The value of ¢y can be a parameter that lets us tune the compressibility or the physical
speed of sound. Furthermore, we will assume that the viscosity and Soret coefficient are constants
independent of the density, and that the product px = poxo is constant. Recalling that in the
experiments ¢ < 1 so that ¢ (1 — ¢) = ¢, all of these approximations allows us to write the viscous

term in the momentum equation in the “Laplacian” form
V-[an%—C(V-v)I]—>nV2v+(C+g)V(V-v). (4)
Similarly, the diffusive term in the concentration equation can be written as
Vo lpx (Ve+ce(1—¢) SrVT)] = p [xVZe+ V- (cvy)] (5)

where the spatially-constant velocity difference between the two species is denoted with vy =
XSTVT.

With all of these simplifications, the equations we actually solve numerically are

Dip=—p(V-v) (6)
p(Dw) == cAVp+Viv+ (C+1) V(V-v)+ £, (7)
p(Dic) =p [xV?c+ V - (cvy)] + fe, (8)

where all model parameters are constants.

We note that none of the simplifying approximations we make above are necessary in principle.
At the same time, not making such approximations requires knowing a number of physical prop-
erties of the fluids, for example, the concentration dependence of the Soret coefficient Sp. Such
information is difficult to obtain experimentally, and in any case, the known dependence is very
weak and we believe it will not affect the results we present to within measurement or statistical
error bars. Furthermore, accounting for the concentration dependence of the equation of state in
the incompressible limit requires using variable-density low Mach number equations [48],[49] instead

of the incompressible equations, since in general V - v # 0 [50]. Extension of our algorithms to



these variable-density variable-coefficient low Mach equations is possible but nontrivial, and will

be considered in future work.

II. FLUCTUATING HYDRODYNAMICS

At mesoscopic scales the hydrodynamic behavior of fluids can be described with continuum
stochastic PDEs of the Langevin type [14] [15], as proposed by Landau and Lifshitz [16] and later
justified by formal coarse-graining procedures [51]. Such equations can formally be justified as
a central limit theorem for the Gaussian behavior of the thermal fluctuations around the mean,
at least in certain simpler systems [52, 53]. What emerges is that the (mesoscopic) thermal fluc-
tuations can be described by the very same hydrodynamic equations describing the macroscopic
behavior, linearized around the mean solution, and with added stochastic forcing terms that en-
sure a fluctuation-dissipation balance principle [54]. Solving these linearized equations numerically
requires first solving the deterministic equations for the mean, and then solving the fluctuating
equations linearized around the mean. The linearization typically contains many more terms than
the nonlinear deterministic terms due to the chain rule. Such a two step process is much more
cumbersome then solving the nonlinear equations. Furthermore, a linearization has no hope of
capturing any possible nonlinear feedback of the fluctuations on the mean flow, which is known to
have physical significance [31].

Therefore, we follow an alternative approach in which the stochastic forcing terms are directly
added to the nonlinear equations , but with an amplitude proportional to a parameter € that
controls how far from linearity the equations are. In fluctuating hydrodynamics, to ensure mass

and momentum conservation, the stochastic terms are the divergence of a stochastic flux,
1 1
fo,=€2V-X and f,=¢e2V -, (9)

where the capital Greek letters denote stochastic fluxes that are modeled as white-noise Gaussian
random fields. A detailed discussion of why there are no diffusive and stochastic fluxes in the density
equation is given in Ref. [55]. For the linearized equations, we can fix € = 1, and the covariances
of X and W can be derived from the fluctuation-dissipation balance principle, as explained well in
the book [I7]. The covariance of the stochastic stress tensor X is not a positive definite matrix
so there are many choices for how to express the stochastic stress, especially if additional bulk

viscosity is included [56]. We have based our implementation on a formulation that requires the



fewest possible random numbers [511 [57],

S=%,15, = V2ksT Wy + <\/ CkgT _ 2”"’BT> Tr (Vvv) I, (10)

3

VI (1= )W (1)

where W, = (Wo + W) /\/2 is a symmetric Gaussian random tensor field, and the v/2 in the

v

denominator accounts for the reduction in variance due to the averaging. Here W, and W,
are mutually-uncorrelated white-noise random Gaussian tensor and vector fields with uncorrelated

components,

<w.<?’> (r WO, t’)> = (Bikdj0) 6(t — )6 (r — 7') (12)

)

(W, 1)) = () 8t~ E)atr — ) (13)

Similar covariance expressions apply in the Fourier domain as well if position = (time ¢) is replaced
by wavevector k (wavefrequency w), and (W, Wp) is replaced by <17V\QV/\7§>, where star denotes
complex conjugate (more generally, we denote an adjoint of a matrix or linear operator with a
star). We recall that we take the temperature T' to be spatially-constant.

It is important to emphasize here that the non-linear fluctuating NS equations, with the white-
noise stochastic forcing terms @, are ill-defined because the solution should be a distribution
rather than a function and the nonlinear terms cannot be interpreted in the sense of distributions.
The nonlinear equations can be interpreted using a small-scale regularization (smoothing) of the
stochastic forcing, along with a suitable renormalization of the transport coefficients [I1], 58]. Such
a regularization is naturally provided by the discretization or coarse-graining [57] length scale. As
long as there are sufficiently many molecules per hydrodynamic cell the fluctuations will be small
and the behavior of the nonlinear equations will closely follow that of the linearized equations
of fluctuating hydrodynamics, which can be given a precise meaning [59]. This can be checked
by reducing e to the point where the observed spatio-temporal correlations of the fluctuations
begin to scale linearly with e, indicating nonlinear effects are negligible. In all of the simulations
reported here, we have used ¢ = 1 but have checked that using a very small ¢ and then rescaling
the covariance of the fluctuations by €' gives indistinguishable results to within statistical errors.

Note that for the linearized equations the noise is additive since the covariance of the stochastic
forcing terms is to be evaluated at the mean around which the linearization is performed. That
is, in the linearized equations (¢ — 0) one should read as U = /2xpM &(1 — ¢) W, where ¢

is the solution of the deterministic equations. Therefore, there is no Ito-Stratonovich difficulty in



interpreting the stochastic terms, and we use the (ambiguous) “Langevin” notation that is standard
in the physics literature, instead of the differential notation more common in the literature on
stochastic differential equations.

It is important to observe that even when linearized, is a very challenging system of
multiscale equations. Even a single stochastic advection-diffusion equation such as is inher-
ently multiscale because thermal fluctuations span the whole range of spatio-temporal scales from
the microscopic to the macroscopic, specifically, all modes of the spatial discretization have a
non-trivial stochastic dynamics that must be reproduced by the numerical method. Including the
density equation @ in the system of equations leads to fast sound wave modes that make the
compressible equations stiff even in the deterministic setting. Finally, in most applications of inter-
est the concentration diffusion is much slower than the momentum diffusion, leading to additional

stiffness and multiscale nature of the equations, as we discuss further in Section [V}

A. Incompressible Equations

If density variations are negligible, p = pg = const., we obtain the incompressible approximation

to the hydrodynamic equations (678 [17],

ov=—-Vr-V. (UUT) + vV +p1f, (14)
=P [—v Vv +vVie + p_lfv]

de=—V-lc(v—v,)]+xVc+pf, (15)

where v = n/p, and v- Ve = V - (cv) and v - Vv = V - (vv!) because of the incompressibility
constraint V-v = 0. Here P is the orthogonal projection onto the space of divergence-free velocity
fields, P=1—-G (’Dg)f1 D in real space, where D = V - [ denotes the divergence operator and
G = V the gradient operator. With periodic boundaries we can express all operators in Fourier
space and P=1I- k—2(kk*), where k is the wavenumber.

Fluctuations can be included in the incompressible equations via the stochastic forcing terms

p_lfv = p_leév . 28 = V . (\/WW’U)

o p*leév = V. |:\/26X,0_1M c(l—c) WC]

Note that it is not necessary to include the stochastic pressure fluctuations 33, in in the in-
compressible velocity equation since the projection eliminates any non-zero trace component

of the stress tensor. In our formulation, we use a strictly symmetric stochastic stress tensor X in
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the incompressible equations. This is based on physical arguments about local angular momentum
conservation [60} [6I]. At the same time, the only thing that matters in the Fokker-Planck descrip-
tion is the covariance of the stochastic forcing in the velocity equation PDX,. This covariance is

determined from the fluctuation dissipation balance principle,
(PDX;) (PDXy)") = PD (E,3%) DP = PLP, (16)

where L is the vector Laplacian operator. Because P and D have non-trivial null spaces,
does not uniquely determine the covariance of the stochastic stress. In fact, it can easily be shown
by going to the Fourier domain that one can have a nonsymmetric component to the stochastic
stress without violating . We believe that the stress tensor should be symmetric since we do
not include an additional equation for the intrinsic spin (angular momentum) density. This is ap-
propriate for fluids composed of “point” particles; however, recent molecular dynamics simulations
have shown that for molecular liquids there can be non-trivial coupling between the linear and spin
momentum densities [61]. While spin density has been included in the fluctuating hydrodynam-
ics equations [60] at the theoretical level, we are not aware of any numerical simulations of such

equations and do not consider an angular momentum equation in this work.

B. Steady-State Covariances

The means and spatio-temporal covariances of the fluctuating fields fully characterize the Gaus-
sian solution of the linearized equations [2§]. Of particular importance is the steady-state covariance
of the fluctuating fields, which can be obtained for periodic systems by linearizing the equations in
the fluctuations and using a spatial Fourier transform to decouple the different modes (wavevectors
k). This steady-state covariance in Fourier space is usually referred to as a static structure factor
in the physical literature, and represents the covariance matrix of the Fourier spectra of a typical
snapshot of the fluctuating fields. Note that it is in principle possible to calculate the covariance
of the fluctuations in non-periodic domains as well [62]; however, these tedious calculations offer
little additional physical insight over the simple results presented below. We will present numeri-
cal algorithms that can solve the fluctuating equations with non-periodic of boundary conditions;
however, periodic conditions will be used to test the accuracy of the spatio-temporal discretization
by comparing to the simple theory.

At thermodynamic equilibrium, the fluctuations of the different hydrodynamic variables are

uncorrelated and white in space, that is, the equilibrium variance is independent of the wavevector
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k 28], in agreement with equilibrium statistical mechanics |16, [63]. Consider first the fluctuating
isothermal compressible NS equations linearized around a uniform steady-state, (p,v,c) =
(po + dp, vo + dv, ¢ + dc), T' = Tp. Because of Galilean invariance, the advective terms vg -V (0)
due to the presence of a background flow do not affect the equilibrium covariances (structure

factors), which are found to be [17, 28]

S () () = bt
Svw = <@)(5§)*> = o3\ ks Ty I
See = ((¢) (5%)> = Mpg'eo(1 — co). (17)

At equilibrium, there are no cross-correlations between the different variables, for example, S, =
<(5Ac)(<§5)*> = 0. The equilibrium variance of the spatial average of a given variable over a cell of
volume AV can be obtained by dividing the corresponding structure factor by AV, for example, the
variance of the concentration is <(5p)2> = poksTo/ (c2TAV). In the incompressible limit, cp — oo,
the density fluctuations vanish and p = pg.

Out of thermodynamic equilibrium, there may appear long-ranged correlations between the
different hydrodynamic variables [I7]. As a prototypical example of such non-equilibrium fluctua-
tions, we focus on the incompressible equations in the presence of an imposed concentration
gradient V. The spatial non-uniformity of the mean concentration when there is a gradient breaks
the translational symmetry and the Fourier transform no longer diagonalizes the equations. We
focus our analysis and test our numerical schemes on a periodic approximation in which we linearize
around a uniform background state (v, c) = (dv, ¢p + dc), as suggested and justified in the physics
literature on long-range nonequilibrium correlations [17, 38, B39, 45]. In such a periodic approxima-
tion we cannot have a gradient in the steady-state average concentration cy but we can mimic the
effect of the advective term v - V¢ with an additional term v - (V¢) in the concentration equation.
This is justified if the concentration gradient is weak, and leads to the linearized equations in a

periodic domain,

o (6v) = P [yv2 (5v)+v.< QVpEIkBTOWUH

O (6c) = —(Ve) - (6v) +xV?%(6c)+ V- [\/2)(,061M co(1 —co) We| - (18)

In the Fourier domain is a collection of stochastic differential equations, one system of linear
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additive-noise equations per wavevector k, written in differential notation as

d(ov) = —vk? (3v) di + iy 2005 ks Ty Pl - (dBLY)

d (5%) = (V&) (55) dt — xk? (5}) dt + i\/2xpalMco(1 — o)k (ng’®) . (19

where we used that P (5;) = jv. Here B, () is a tensor, and B.(t) is a vector, whose components
are independent Wiener processes. Note that the velocity equation is not affected by the concen-
tration gradient. Given the model equations , the explicit solution for the matrix of static

structure factors (covariance matrix)

*
S'v,'v Sc,v
Sc,'v Sc,c

S:

can be obtained as the solution of a linear system resulting from the stationarity condition dS = 0.
For a derivation, see Eq. (30) in [28] or Eq. (3.10) in [64] and also Eq. (41)); below we simply quote

the results of these straightforward calculations.

1. Incompressible Velocity Fluctuations

By considering the stationarity condition dS, . = 0 it can easily be seen that the equilibrium

covariance of the velocities is proportional to the projection operator,
Sww = py ' ksToP = py  kpTo [I — k2(kk)], (20)

independent of the concentration gradient. In particular, the amplitude of the velocity fluctuations

at each wavenumber is constant and reduced by one in comparison to the compressible equations,
Trace Sy p = <@)*(35)> = (d—1) pg *kpTh, (21)

where d is the spatial dimension. This is a reflection of the fact that one degree of freedom (i.e.,
one kpT/2) is subtracted from the kinetic energy due to the incompressibility constraint, which

eliminates the sound mode. In Appendix [B| we generalize to non-periodic systems, to obtain
((0v) (60)*) = py kT (AVTIP). (22)

An alternative way of expressing the result is that all divergence-free modes have the
same spectral power at equilibrium. That is, if the fluctuating velocities are expressed in any

orthonormal basis for the space of velocities that satisfy V - v = 0, at equilibrium the resulting
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random coefficients should be uncorrelated and have unit variance. This will be useful in Section
[V A] for examining the weak accuracy of the spatio-temporal discretizations of the incompressible
equations. For periodic boundary conditions, such an orthonormal basis is simple to construct in
the Fourier domain and a Fourier transform can be used project the velocity field onto this basis.
In particular, for all wavevectors the projection of the velocity fluctuations onto the longitudinal

mode
oW = k7 kg, by, k2], (23)

where k = (k?c + k:; + k:g)l/ 2, should be identically zero,

U T T A
o1 = () (Bv) = “Zov, + ~L3v, + Zov. = k 1<k-6v>:0.

A basis for the incompressible periodic velocity fields can be constructed from the two wvortical

modes

8@ = (k2 +k2) 7 [ky, ks, 0], (24)

. _ —-1/2
8@ = k(2 +82) 7 [k, kyks, — (B2 +E2)] (25)
and the projection of the fluctuating velocities onto these modes has the equilibrium covariance
(D9035) = (030%) = pg ‘kpTo, while (993) = 0. (26)

In two dimensions only oM and 9@ are present, and k9@ is the z component of the vorticity and
spans the subspace of diverence-free velocities. The fact that the (d — 1) vortical modes have equal

power leads to the velocity variance .

2. Nonequilibrium Fluctuations

When a macroscopic concentration gradient is present, the velocity fluctuations affect the con-
centration via the linearized advective term (V¢) - v. Solving shows an enhancement of the
concentration fluctuations [65] proportional to the square of the applied gradient,

kpT
px (v + x)k*

where 6 is the angle between k and V¢, sin?6 = kf_ /k?. Furthermore, there appear long-range

Sc,c = Mpal CO(l - CO) + (Sin2 9) (VE)Q ) (27)

correlations between the concentration fluctuations and the fluctuations of velocity parallel to the
concentration gradient, proportional to the applied gradient [111 [65],

kgT

R (sin® @) Ve. (28)

Soy = {(B0)(6v]) ) = -
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The power-law divergence for small k£ indicates long-range correlations between dc and dv and is

the cause of the giant fluctuation phenomenon studied in Section [V]

III. SPATIO-TEMPORAL DISCRETIZATION

Designing temporal discretizations for fluid dynamics is challenging even without including ther-
mal fluctuations. When there is no stochastic forcing, our schemes revert to standard second-order
discretizations and can be analyzed with existing numerical analysis techniques. Here we tackle
the additional goal of constructing discretizations that, in a weak sense, accurately reproduce the
statistics of the continuum fluctuations for the linearized equations. Note that achieving second-
order weak accuracy is much simpler for linear additive-noise equations since in the linear case the
solution is fully characterized by the means and the correlation functions (time-dependent covari-
ances). In fact, one can use any method that is second-order in time in the deterministic setting
and also reproduces the correct static (equal-time) covariance to second order, as explained in more
detail in Ref. [28]. The deterministic order of accuracy can be analyzed using standard techniques,
and the accuracy of the static covariances can be analyzed using the techniques described in Ref.
[28]. We emphasize that the temporal integrators are only higher-order accurate in a weak sense
for the linearized equations of fluctuating hydrodynamics [28, [46].

Thermal fluctuations are added to a deterministic scheme as an additional forcing term that
represents the temporal average of a stochastic forcing term over the time interval At and over the
spatial cells of volume AV [28]. Because W is white in space and time, the averaging adds an addi-
tional prefactor of (AV At)_l/ % in front of the stochastic forcing. In the actual numerical schemes,
a “realization” of a white-noise field W is represented by a collection W of normally-distributed

random numbers with mean zero and covariance given by or , with the identification
W (AV A V2w,
Specifically, the stochastic fluxes are discretized as

2nkpT — 2xpM ¢(1 — ¢
= Vava Wy amd ¥ = \/ AV At hw (29)

A realization of W is sampled using a pseudo-random number stream. The temporal dis-

cretization of the stochastic forcing corresponds to the choice of how many realizations of W are
generated per time step, and how each realization is associated to specific points in time inside a

time step (e.g., the beginning, mid-point, or end-point of a time step). The spatial discretization
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corresponds to the choice of how many normal variates to generate per spatial cell, and how to
associate them with elements of the spatial discretization (e.g., cell centers, nodes, faces, edges).
Once these choices are made, it is simple to add the stochastic forcing to an existing deterministic
algorithm or code, while still accounting for the fact that white-noise is not like a classical smooth

forcing and cannot be evaluated pointwise.

A. Temporal Discretization

As a first step in designing a spatio-temporal discretization for the compressible and incompress-
ible equations of fluctuating hydrodynamics, we focus on the temporal discretization. We assume
that the time step is fixed at A¢. The time step index is denoted with a superscript, for example,
c” denotes concentration at time nAt and W™ denotes a realization of W generated at time step
n.

In the next section, we will describe our staggered spatial discretization of the crucial differential
operators, denoted here rather generically with a letter symbol in order to distinguish them from
the corresponding continuum operators. Specifically, let G be the gradient (scalar—vector), D
the divergence (vector—scalar), and L = DG the Laplacian (scalar—scalar) operator. When the
divergence operator acts on a tensor field F' such as a stress tensor o, it is understood to act
component-wise on the x, y and z components of the tensor. Similarly, the gradient and Laplacian
act component-wise on a vector. An important property of the discrete operators that we require
to hold is that the divergence operator is the negative adjoint of the gradient, D = —G*. This

ensures that the scheme satisfies a discrete version of the continuous property,
/w[V-v] dr:—/v-der if v-mnyo =0 or v is periodic
Q Q

for any scalar field w(r).

We define the weak order of accuracy of a temporal discretization in terms of the mismatch
between the steady-state covariance of the continuum and the discrete formulations. With peri-
odic boundary conditions this would be the mismatch between the Fourier spectrum of a typical
snapshot of the true solution and the steady-state discrete spectrum of the numerical solution [28].
This mismatch is typically of the form O(At*) for some integer k > 1, implying that for sufficiently
small time steps the discrete formulation reproduces the steady-state covariance of the continuum
formulation. Note that for the linearized equations a certain order of deterministic temporal accu-

racy, combined with equal or higher order of accuracy of the steady-state covariances, implies the
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same order of accuracy for all temporal correlations. A theoretical analysis of the weak accuracy of
the temporal discretizations used in this work can be performed using the tools described in Ref.
[28] with some straightforward extensions [46]; here we simply state the main results and verify

the order of weak accuracy numerically.

1. Compressible Equations

Denoting the fluctuating field with @ = (p,v,c), the fluctuating compressible NS equations
(6U7US]) can be written as a general stochastic conservation law,

Q= -D[F(Q;t) - Z(Q,W)], (30)
where D is the divergence operator (acting component-wise on each flux), F(Q;t) is the deter-
ministic flux and Z = [0, 3, ¥] is the discretization of the stochastic flux (29). We recall that
the stochastic forcing amplitude is written as multiplicative in the state; however, in the linearized
limit of weak fluctuations the strength of the stochastic forcing only depends on the mean state,
which is well-approximated by the instantaneous state, Q(t) ~ Q(t). Following [29], we base our
temporal discretization of on the (optimal) three-stage low-storage strong stability preserving
[66] (originally called total variation diminishing [67]) Runge-Kutta (RK3) scheme of Gottlieb and
Shu, ensuring stability in the inviscid limit without requiring slope-limiting. The stochastic terms
are discretized using two random fluxes per time step, as proposed in Ref. [28]. This discretization
achieves third-order weak accuracy [46] for linear additive-noise equations, while only requiring the
generation of two Gaussian random fields per time step.

For each stage of our third-order Runge-Kutta scheme, a conservative increment is calculated

as
AQ(Q,W:t) = —At DF(Q; t) + At DZ(Q,W).

Each time step of the RK3 algorithm is composed of three stages, the first one estimating Q at time
t = (n+ 1)At, the second at t = (n + 3)At, and the final stage obtaining a third-order accurate
estimate at t = (n 4+ 1)At. Each stage consists of an Euler-Maruyama step followed by a weighted

averaging with the value from the previous stage,

Q" =@+ AQ(Q", W ; nAY)

~n+l 3 1 r~n ~"n
Q" =2Q"+ [Q T LAQ (Q L owe, (n+1)At>]
@ =l ? [én+;+AQ <én+;’ . (n+;)At)}, (31)
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where the stochastic fluxes between different stages are related to each other via

T =W"+w W
5 =W +w, W'y

and W' and W' are two independent realizations of W that are generated independently at each
RK3 step. In this work we used the weights derived in Ref. [28] based on a linearized analysis,
w1 = —/3, wy = v/3 and w3 = 0. More recent analysis based on the work in [68] shows that second-
order weak accuracy is achieved for additive-noise nonlinear stochastic differential equations using
the weights [46]

(2v2FV3) (—4v2F3V3) (V2+2V3)

wlzf, wy = 5 , an wng.

For the types of problems studied here nonlinearities play a minimal role and either choice of the

weights is appropriate.

2. Incompressible Equations

The spatially-discretized equations (L4}f15)) can be written in the form

Ow+Grn = Ay(v,¢) +vLv+p Lf,,
oc = Ac(v,c)+ xLe+ p_lfc,
Dv = 0,
where A(v,c) represent the non-diffusive deterministic terms, such as the advective and Soret

forcing terms , as well as any additional terms arising from gravity or other effects. Fluctuations

are accounted for via the stochastic forcing terms

_ —~ 2evp kT ~—
U () - o |2

We base our temporal discretization on the second-order semi-implicit deterministic scheme of

2exp~IM ¢(1 —¢)
AV At

and p~'f. (e, W.) =D [\/ Wc] .

Griffith [34], a predictor-corrector method in which the predictor step combines the Crank-Nicolson

method for the diffusive terms with the Euler method for the remaining terms,

,l~Jn+1 — " ~ ,l~Jn+1 4 o™ .
T + G7Tn+% — 14,0(1]”7 Cn) + vL <2> + p_lf,u (WZ) s
én—&-l —cn én—&-l +cn B
T = Ak (T ) e

D" = 0. (33)
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The corrector stage combines Crank-Nicolson for the diffusive terms with an explicit second-order

approximation for the remaining deterministic terms,

AT Grt: = AR 4L <2> o,
ol e L1 el + " _ +1
— A =A2‘2+xL(2 >+p1?2
Dy = 0. (34)

Unlike a fractional-step scheme that splits the velocity and pressure updates [69, [70], this approach
simultaneously solves for the velocity and pressure and avoids the need to determine appropriate
“intermediate” boundary conditions. Importantly, no spurious boundary modes [71] [72] arise due
to the implicit velocity treatment even in the presence of physical boundaries, which is especially
important for fluctuating hydrodynamics since all of the modes are stochastically forced [46].

The concentration equation in (34]) [and similarly in (33)] is a linear system for ¢"*! that ap-
pears in standard semi-implicit discretizations of diffusion and is solved using a standard multigrid
method. The velocity equation in [and similarly in ] is a much harder “saddle-point”
systems of linear equations to be solved for the variables v"! and 7+3 . This time-dependent
Stokes problem is solved using a Krylov iterative solver as described in detail in Ref. [34]. The
ill-conditioning of the Stokes system is mitigated by using a projection method (an inhomogeneous
Helmholtz solve for velocity followed by a Poisson solve for the pressure) as a preconditioner. With
periodic boundary conditions solving the Stokes system is equivalent to a projection method, that
is, to an unconstrained step for the velocities followed by an application of the projection operator.
If physical boundaries are present, then the projection method is only an approximate solver for
the incompressible Stokes equations; however, the "splitting error” incurred by the approximations

inherent in the projection method is corrected by the Krylov solver.

The nonlinear terms are approximated in the corrector stage using an explicit trapezoidal rule,

[SIE

Ay = [Ay (0", ) + Ay (@ @), (35)

N |

which is the (optimal) two-stage strong stability preserving Runge-Kutta method [66], and is thus
generally preferable for hyperbolic conservation laws. For the stochastic forcing terms, we employ

a temporal discretization that uses one random flux per time step,
n+i —~n n+i 1
v 2:f'u (W'v) and fC 2:fc<6n+2,W?>,

1
where @3 = (c” + E"+1) /2 but we again emphasize that the dependence of f? ™2 on the instan-

taneous state &2 is not important in the weak-noise (linearized) setting. It can be shown that
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this temporal discretization is second-order weakly accurate for additive-noise nonlinear stochastic
differential equations [46]. More importantly, the Crank-Nicolson method balances the numerical
dissipation with the stochastic forcing identically in the linear setting. This important property
allows our time stepping to under-resolve the fast dynamics of the small-wavelength fluctuations
while still maintaining the correct spectrum for the fluctuations at all scales. While this surprising
fact has already been verified (in a simplified setting) in the Appendix of Ref. [28] and also in Ref.
[73], we give a different derivation in Appendix [Al A more detailed analysis will be presented in a
forthcoming paper [46].

The linearized equations have additional structure that enables us to simplify the predictor-
algorithm. Firstly, the momentum equation is independent of the concentration equation(s),
A, (v,c) = 0, and the corrector step of the velocity equation is redundant since it simply re-
peats the predictor step, 9"1! = ™!, Therefore, we only need to do one Stokes solve per time
step. Furthermore, only velocity enters in the linearized concentration equation, A.(v,c) = Av,

and therefore

~ (v + Un-i—l)

AR — Apmti = A 5 — Av"ts

can be calculated without performing a predictor step for the concentration. This variation of the
time stepping is twice as efficient and can be thought of a split algorithm in which we first do a
Crank-Nicolson step for the velocity equation,

,Un-i-l —_ "

At 2

,vn—‘rl o" .
LGt L <+) £ (W), (36)
and then a Crank-Nicolson step for the concentration equation using the midpoint velocity to
calculate advective fluxes,

cn+1 —c" - ,vn+1 4 " cn+1 4 3

Because of the special structure of the equations, the split algorithm is equivalent to the tradi-
tional Crank-Nicolson method applied to the coupled velocity-concentration system in which both
advection and diffusion are treated semi-implicitly. This observation, together with the derivation
in Appendix [A] shows that the split scheme gives the correct steady-state covariances for any time
step size At, although it does not reproduce the correct dynamics for large At. This property will

prove very useful for the simulations of giant fluctuations reported in Section [V]



20

B. Spatial Discretization

We now consider spatial discretization of the equations of fluctuating hydrodynamics on a regu-
lar Cartesian grid, focusing on two dimensions for notational simplicity. The spatial discretization
is to be interpreted in the finite-volume sense, that is, the value of a fluctuating field at the center
of a spatial cell of volume AV represents the average value of the fluctuating field over the cell. We
explicitly enforce strict local conservation by using a conservative discretization of the divergence.
Specifically, the change of the average value inside a cell can always be expressed as a sum of fluxes
through each of the faces of the cell, even if we do not explicitly write it in that form.

Consider at first a simplified form of the stochastic advection-diffusion equation for a scalar

concentration field
0ic =V - |—cv+ xVec+4/2x Wc} , (38)

where v(r,t) is a given advection velocity. We note that for incompressible flow, we can split the
stochastic stress tensor W, into a vector W, corresponding to the flux for v,, and a vector W,
corresponding to v,. We can then view the velocity equation as a constrained pair of stochastic
advection-diffusion equations of the form , one equation for v, and another for v,. We will
discuss the generalization to compressible flow in Section

The spatial discretization described in this section is to be combined with a suitable stable
temporal discretization, specifically, the temporal discretization that we employ was described in
Section [[ITA] We consider here the limit of small time steps, At — 0, corresponding formally to a

semi-discrete “method of lines” spatial discretization of the form

% =D |(-Uc+ xGe) + \/mwc} ; (39)

where ¢ = {¢; j} is a finite-volume representation of the random field ¢(r,t). Here, D is a con-
servative discrete divergence, G is a discrete gradient, and U = U (v) denotes a discretization of
advection by the spatially-discrete velocity field v, and W, denotes a vector of normal variates

with specifed covariance Cywy = (W W7).

1. Discrete Fluctuation-Dissipation Balance

We judge the weak accuracy of the spatial discretization by comparing the steady-state co-
variance of the spatially-discrete fields to the theoretical covariance of the continuum fields in the

limit At — 0 [28]. Ignoring for a moment constraints such as incompressibility, at thermodynamic
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equilibrium the variance of the discrete fields should be inversely proportional to AV and values

in distinct cells should be uncorrelated
C.=(cc*) = Se. (AVT). (40)

For periodic systems this means that the spectral power of each discrete Fourier mode be equal to
the continuum structure factor, S.. = 1 for the model equation [see also (17)], independent
of the wavenumber.

A spatial discretization that gives the correct equilibrium discrete covariance is said to satisfy
the discrete fluctuation-dissipation balance (DFDB) condition [28, 46]. The condition guarantees
that for sufficiently small time steps the statistics of the discrete fluctuations are consistent with the
continuum formulation. For larger time steps, the difference between the discrete and continuum
covariance will depend on the order of weak accuracy of the temporal discretization [74]. A simple
way to obtain the DFDB condition is from the time stationarity of the covariance. For the model

equation we obtain the linear system of equations for the matrix Cl¢,

dgc =D (U +xG)Cc+ C.[D(-U + xG)|" + 2xAV 'DCwD* = 0, (41)

whose solution we would like to be given by , specifically, C. = AV ~'I. Considering first the

case of no advection, U = 0, we obtain the DFDB condition
DG + (DG)* = -2DCw D™. (42)

Consider first the case of periodic boundary conditions. A straightforward way to ensure the
condition (42) is to take the components of the random flux W, to be uncorrelated normal variates
with mean zero and unit variance, Cw = I, and also choose the discrete divergence and gradient
operators to be negative adjoints of each other, G = —D*, just as the continuum operators are
[25] 28, 64] (see Eq. [43). Alternative approaches and the advantages of the above “random flux”
approach are discussed in Ref. [64]. As we will demonstrate numerically in Section the staggered
discretization of the dissipative and stochastic terms described below satisfies the DFDB condition
for both compressible and incompressible flow.

In the continuum equation , the advective term does not affect the fluctuation-dissipation
balance at equilibrium; advection simply transports fluctuations without dissipating or amplifying

them. This follows from the skew-adjoint property

/ w [V - (cv)]dr = —/ c[V - (wv)]drif V-v=0and v-ngg =0 or v is periodic,  (43)
Q Q
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which holds for any scalar field w(r). In particular, choosing w = ¢ shows that for an advection
equation d;c = —V - (cv) the “energy” [ ¢*dr/2 is a conserved quantity. To ensure that the- DFDB
condition (41)) is satisfied, the matrix DUC., or more precisely, the discrete advection operator
S = DU should be skew-adjoint, §* = —S. Specifically, denoting with ¢-w = 3, . ¢; jw;; the

discrete dot product, we require that for all w
w-[(DU)d] = —c- [(DU) w)] (44)

if the advection velocities are discretely-divergence free, (DU)1 = 0, where 1 denotes a vector
of all ones. Note that this last condition, S1 = 0, ensures the desirable property that the advec-
tion is constant-preserving, that is, advection by the random velocities does not affect a constant
concentration field.

For incompressible flow, the additional constraint on the velocity Dv = 0 needs to be taken
into account when considering discrete fluctuation-dissipation balance. In agreement with , we

require that the equilibrium covariance of the discrete velocities be
(vv*) = py tkpTy (AV'P), (45)
where P is the discrete projection operator
P=I-G(DG)'D=I-D"(DD*)'D.

With periodic boundary conditions, implies that the discrete structure factor for velocity is
Svw = po lkBTO P. In particular, the variance of the velocity in each cell is in agreement with
the continuum result, since TtP=TtP =d— 1. More generally, for non-periodic or non-uniform
systems, we require that for sufficiently small time steps all discretely-incompressible velocity modes
have equal amplitude at equilibrium [46]. In Appendix[B|we generalize the DFDB condition (42)) to
the incompressible (constrained) velocity equation, and show that there are no additional conditions
required from the discrete operators other than the duality condition on the divergence and gradient

operators, G = —D*.

2. Staggered Grid

A cell-centered discretization that is of the form and satisfies the discrete fluctuation-
dissipation balance (DFDB) condition was developed for compressible flow in Ref. [2§8]. Extending

this scheme to incompressible flow is, however, nontrivial. In particular, imposing a strict discrete
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divergence-free condition on collocated velocities has proven to be difficult and is often enforced only
approximately [75], which is inconsistent with (4F]), as we explain in Appendix [B] An alternative
is to use a staggered grid or “MAC” discretization, as first employed in projection algorithms for
incompressible flow [76]. In this discretization, scalars are discretized at cell centers, i.e., placed
at points (¢, 7), while vectors (notably velocities) are discretized on faces of the grid, placing the
component at points (i4+1/2, j), and the y component at (i, 74+1/2). Such a staggered discretization
is used for the fluxes in Ref. [28], the main difference here being that velocities are also staggered.

In the staggered discretization, the divergence operator maps from vectors to scalars in a locally-

conservative manner,

V-v— (Dv),; = Azt <v(x) — U(w)l j> + Ayt (v(y) — W > .

L1 . L1 ..
1/+§7] 7/_2 1/7]+§ 7/7]_%

The discrete gradient maps from scalars to vectors, for example, for the £ component:

(Ve), = (Gc)gj?;j — Az (e — cij) -

It is not hard to show that with periodic boundary conditions G = —D* as desired. The resulting
Laplacian L = DG is the usual 5-point Laplacian,

Ve = (Le); = [Aa™2 (cim1y = 2615 + civrg) + By~ (eijm1 — 260 + cij)]

which is negative definite except for the expected trivial translational zero modes. The velocities
v, and v, can be handled analogously. For example, v, is represented on its own finite-volume
grid, shifted from the concentration (scalar) grid by one half cell along the x axis. The divergence
D@ gradient G and Laplacian L®) are the same MAC operators as for concentration, but
shifted to the z-velocity grid.

For the compressible equations, there is an additional dissipative term in that involves
V (V -v). This term is discretized as written, GDwv, which can alternatively be expressed in
conservative form. When viscosity is spatially-dependent, the term V- (nV'v) should be discretized
by calculating a viscous flux on each face of the staggered grids, interpolating viscosity as needed
and using the obvious second-order centered differences for each of the terms 9,v,., 0,vy, dyv, and
Oyv,. For a collocated velocity grid the mixed derivatives d,v, and dyv;, and the corresponding
stochastic forcing terms, do not have an obvious face-centered discretization and require a separate

treatment [28]. The staggered grid avoids these difficulties.
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3. Stochastic Fluzes

The stochastic flux W, like other vectors, is represented on the faces of the grid, that is, W is
a vector of i.i.d. numbers, one number for each face of the grid. To calculate the state-dependent
factor \/m that appears in on the faces of the grid, concentration is interpolated from
the cell centers to the faces of the grid. At present, lacking any theoretical analysis, we use a simple
arithmetic average for this purpose.

The stochastic momentum flux W, is represented on the faces of the shifted velocity grids, which
for a uniform grid corresponds to the cell centers (i,7) and the nodes (i + %,j + %) of the grid [20].
Two random numbers need to be generated for each cell center, VVZ(? and Wég), corresponding to
the diagonal of the stochastic stress tensor. Two additional random numbers need to be generated
for each node of the grid, Wi(f);ﬂ 1 and Wl(}i)% FERE
In three dimensions, the three diagonal components of the stochastic stress are represented at the

corresponding to the off-diagonal components.

cell centers, while the six off-diagonal components are represented at the edges of the grid, two

random numbers per edge, for example, T/V(I)1 and W.(y)1

i+g.0+5.k it dtgk

For the incompressible equations one can simply generate the different components of W, as
uncorrelated normal variates with mean zero and unit variance, and obtain the correct equilibrium
covariances. Alternatively, each realization of the stochastic stress can be made strictly symmetric
and traceless as for compressible flow, as specified in . Because of the symmetry, in practice
for each node or edge of the grid we generate only a single unit normal variate representing the two
diagonally-symmetric components. For each cell center, we represent the diagonal components by
generating d independent normal random numbers of variance 2 and then subtracting their average
from each number. Note that for collocated velocities a different approach is required because the

diagonal and diagonally-symmetric components of the stress tensor are not discretized on the same

grid [28].

4. Advection

We now consider skew-adjoint discretizations of the advection operator S = DU on a staggered
grid. This problem has been considered in a more general context for the purpose of constructing
stable methods for turbulent flow in Ref. [77, [78]; here we focus on a simple second-order cen-
tered discretization. The importance of the skew-adjoint condition in turbulent flow simulation

is that it leads to strict discrete energy conservation for inviscid flow, which not only endows the
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schemes with long-time stability properties, but also removes undesirable numerical dissipation.
Conservation of the discrete kinetic energy Ejx = p (v -wv) /2 is also one of the crucial ingredients
for fluctuation-dissipation balance, i.e., the requirement that the Gibbs-Boltzmann distribution
Z~Yexp[—FE}y/ (kgT)] be the invariant distribution of the stochastic velocity dynamics [19, 25| [79].
Consider first the spatial discretization of the advective term DU ¢ in the concentration equa-
tion. Since divergence acts on vectors, which are represented on the faces of the grid, U e should be
represented on the faces as well, that is, U is a linear operator that maps from cell centers to faces,
and is a consistent discretization of the advective flux cv. If we define an advection velocity w on
the faces of the grid, and also define a concentration on each face of the grid, then the advective

flux can directly be calculated on each face. For example, for the x faces:
(cv), = U™, =ul e (46)

i+3.,j i+, it5

For concentration we can take u = v, since the velocity is already represented on the faces of the

scalar grid. Simple averaging can be used to interpolate scalars from cells to faces, for example,

Ciplj= % (Cit1,5 + i) s (47)
although higher-order centered interpolations can also be used [2§].

As discussed in Section [[ITB 1] we require that the advection operator be skew adjoint if DU1 =
Du = 0. Our temporal discretization of the incompressible equations ensures that a
discretely divergence-free velocity is used for advecting all variables. The case of compressible flow
will be discussed further in Section In the incompressible case, S = DU can be viewed as

a second-order discretization of the “skew-symmetric” form of advection [77]

v-Vc:'v'Vc—i—gV-v: [V (cv)+v- V(.

N

Namely, using we obtain

(DUc), ; = Az~ (uz(,i)§7jci+é7j —u® ch‘—;,j) + Ayt <u(y) 1Ci il — W e 1> ,

1 .
15 L,j+5

and rewrite the = term using as
(@) @ I O G R C R (@ @
(“w;ﬁwén “i—;,jcz’%ﬂ‘) =3 K“H;ﬁm Uiyt | e Vi T ) |
and similarly for the y term, to obtain

(DUe),; = (Se),, = (Se) + %% (Du), , (48)

Y
i,j ]
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where S is a centered discretization of [V - (cv) + v - V] /2,

<§C>i,j = [Ax_l < (+) N uii);jci—l,j) + Ay~! <u(j’)+1cm+1 z(',yj)—éci’j_1>:| . (49)

Since the advection velocity is discretely divergence free, S = S.
It is not hard to show that S is skew-adjoint. Consider the x term in [S’ c} -w, and, assuming
periodic boundary conditions, shift the indexing from ¢ to ¢ — 1 in the first sum and from 7 to i 41

in the second sum, to obtain
(z) (@)
wz,g u 1 Cz—l—l,] U, "y Cz 1,7 ) = Cz,] u 1 wz+1,j u 1 Wi—1,5
+3.J =325 +3.J —5:J

Therefore, ,§ is skew-adjoint, (,g'(:) cw=—c- <§w> A similar transformation can be performed
with slip or stick boundary conditions as well. These calculations show that holds and thus
the discrete advection operator is skew-adjoint, as desired. Note that the additional terms in
due to the Soret effect can be included by advecting concentration with the effective velocity
u=v—xSrVT.

The same approach we outlined above for concentration can be used to advect the velocities as
well. Each velocity component lives on its own staggered grid and advection velocities are needed
on the faces of the shifted grid, which in two dimensions corresponds to the cell centers and the
nodes of the grid. The velocity v, is advected using an advection velocity field w(®) that is obtained

via a second-order interpolation of v,

(us(cx)>ij -

(@) _ (y) (v)
(uy >i+§,j+§ B (Ui,j+§+vz‘+1,j+§ )

and similarly for the other components. It is not hard to verify that the advection velocity u(® is

N — N

discretely divergence-free if v is:

(D(x)u(a:)>i+;7j _ % [(Dv),; + (D),

showing that D®w4(*) = 0 if Dv = 0. Therefore, the shifted advection operator @) = D@ U®)
is also skew-adjoint, as desired. Identical considerations apply for the other components of the

velocity.

5. Compressible Equations

It is instructive at this point to summarize our spatial discretization of the incompressible

equations ([14415)), before turning to the compressible equations. The concentration equation
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is discretized as

d
CTE — —DUc+ xDGc + DV, (50)

where U is given by with advection velocity u = v — xS V7. For the x component of the
velocity we use the spatial discretization

dv,
dt

+ (Gm), = —D@U®y, + nDPGWy, + p~ D@ B,

and similarly for the other components, and the pressure ensures that Dv = 0.

Our staggered spatial discretization of the compressible equations is closely based on
the discretization described above for the incompressible equations. An important difference is
that for compressible flow we use the conservative form of the equations, that is, we use the mass
density p, the momentum density j = pv and the partial mass density p; = cp as variables. The
momentum densities are staggered with respect to the mass densities. Staggered velocities are

defined by interpolating density from the cell centers to the faces of the grid, for example,

(@ _ @ _ 9:(@) o .
vi‘i‘%J - ]Z-i-%,]/pz"'%v] - 2.714_%7]/ (p2+1,] + pl,]) )

which implies that D3 = DU p.

The density equation @ is discretized spatially as

dp
— =-DU 51
g P (51)
while for the concentration equation we use
dpy _
ﬁ - —DUpl + pOXODGC + D‘Il, (52)

where we assume that py = pgxo is constant. For the x component of the momentum density we
use

dj .

Y — DUV, - & (Gp), + 1DV v, + (c+ g) (GDv), + DO, (53)
and similarly for the other components. The spatio-temporal discretization ensures strict local
conservation of p, 7 and p;.

The discretization (H152l53)) satisfies discrete-fluctuation dissipation balance at equilibrium,
specifically, the equilibrium covariances of velocity and density are (vv*) = py YepTy I and (pp*) =

poksTy/ c% I, in agreement with the continuum spectra given in . Linearizing the semi-discrete

density equation around an equilibrium state (p,v) = (py + dp, vo + 6v) with Dvg = 0 gives

d(ép) n

It S0 (8p) = —po [D (6v)] .
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Recall that the operator g'o, defined by with u = vg, is skew-adjoint, and the fluctuations in
density are thus controlled by the coupling with the velocity fluctuations. For simplicity, consider
this coupling for the case of a fluid at rest, v9 = 0 and thus §j = pg (év). Linearizing the momentum

update and focusing on the coupling with the density fluctuations, we obtain

d(é

(dtv) + advection = —p; ' ¢F [G (p)] + dissipation and forcing.
Fluctuation-dissipation balance requires the skew-symmetry property L, (vv*) = —(pp*) Ly, ,,
where L,, = —poD the operator in front of Jv in the density equation, and L, , = —C%G is

the operator in front of dp in the velocity equation. This skew-symmetry requirement is satisfied
because of the key duality property D = —G*. This demonstrates the importance of the duality
between the discrete divergence and gradient operators, not just for a single advection-diffusion
equation, but also for coupling between the different fluid variables. In future work, we will explore
generalizations of the concept of skew-adjoint discrete advection to the nonlinear compressible

equations [56), [78].

6. Boundary Conditions

Non-periodic boundary conditions, specifically, Neumann or Dirichlet physical boundaries, can
be incorporated into the spatial discretization by modifying the discrete divergence, gradient and
Laplacian operators near a boundary. This needs to be done in a way that not only produces an
accurate and robust deterministic scheme, but also ensures fluctuation-dissipation balance even in
the presence of boundaries. Here we extend the approach first suggested in an Appendix in Ref.
[13] to the staggered grid. It can be shown that the inclusion of the (discrete) incompressibility
constraint does not affect the fluctuation-dissipation balance when an unsplit Stokes solver is
employed in the temporal integrator [46].

We assume that the physical boundary is comprised of faces of the grid. Since only the direction
perpendicular to the wall is affected, we focus on a one-dimensional system in which there is a
physical boundary between cells 1 and 0. For the component of velocity perpendicular to the wall,
some of the grid points are on the physical boundary itself and those values are held fixed and
not included as independent degrees of freedom. For the second-order spatial discretization that
we employ no values in cells outside of the physical domain are required. Therefore, no special
handling at the boundary is needed.

For cell-centered quantities, such as concentration and components of the velocity parallel to
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the wall, the boundary is half a cell away from the cell center, that is, the boundary is staggered.
In this case we use the same discrete operators near the boundaries as in the interior of the domain,
using ghost cells extending beyond the boundaries to implement the finite-difference stencils near
the boundaries. One can think of this as a modification of the stencil of the Laplacian operator
L near boundaries, specifically, when boundaries are present the dissipative operator L #* DG
but rather L = Dé’, where G is a modified gradient. Repeating the calculation in for the

spatially-discretized model equation

% = xLc++/2x/ (AV At)DW.
leads to a generalization of the DFDB condition , assuming L* = L,
xLC¢+ xC.L* = 2xAV 'L = —2yAV'DCwD* = L =-DCwD". (54)

Consider first a Neumann condition on concentration, dc¢(0)/dz = 0. This means that a no-flux
condition is imposed on the boundary, and therefore for consistency with physical conservation the
stochastic flux on the boundary should also be set to zero, W1 = 0. The ghost cell value is set

2

equal to the value in the neighboring interior cell (reflection), ¢ = ¢1, leading to

(DW), = Az~ ! W%, (é’c) =0, (Le), = Az 2 (c2 — 1) (55)

If we exclude points on the boundary from the domain of the divergence operator, which is also
the range (image) of the gradient operator, then it is not hard to see that the duality condition
D* = —G continues to hold. We can therefore continue to use uncorrelated unit normal variates
for the stochastic fluxes not on the boundary, Cw = I in (54)).

If a Dirichlet condition ¢(0) = 0 is imposed, then the ghost cell value is obtained by a linear

extrapolation of the value in the neighboring interior cell (inverse reflection), ¢p = —¢q, leading to

(DW), = Az~ (W% - W%> : (E:c)l = Az (2¢1), (Le);=Ax2(cz—3c1).  (56)

The duality condition is no longer satisfied, D* # —é, but it is not hard to show that the
fluctuation-dissipation balance condition can be satisfied by simply doubling the variance of
the stochastic flux on the boundary, <W% WI> = 2. Note that the Laplacian is not formally
second-order accurate at the boundary, hOW€2V€I‘, its normal modes (eigenvectors) can be shown to
correspond exactly to the normal modes of the continuum Laplacian and have decay rates (eigen-
modes) that are second-order accurate in Ax?, and in practice pointwise second-order accuracy is

observed even next to the boundary. Formal second-order local accuracy can be obtained by using
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a quadratic extrapolation for the ghost cell, cg = —2c¢; + c2/3 and (Le); = Az~2 (4ea/3 — 4cy);
however, this requires a more complicated handling of the stochastic fluxes near the boundary as
well.

In summary, the only change required to accommodate physical boundaries is to set the variance
of stochastic fluxes on a physical boundary to zero (at Neumann boundaries), or to twice that used
for the interior faces (at Dirichlet boundaries). For density in compressible flows, the ghost cell
values are generated so that the pressure in the ghost cells is equal to the pressure in the neigh-
boring interior cell, which ensures that there is no unphysical pressure gradient in the momentum
equation across the interface. There is also no stochastic mass flux through faces on the boundary
independent of the type of boundary condition at the wall. For incompressible flow the gradient of
pressure is discretized as Gr = —D*7 even in the presence of stick or slip boundary conditions for
velocity; more complicated velocity-stress or open [27] boundary conditions are simple to handle-

with the projection-preconditioner solvers, at least in the deterministic setting.

IV. IMPLEMENTATION AND NUMERICAL TESTS

We now describe in more detail our implementations of the spatio-temporal discretizations
described in Section and provide numerical evidence of their ability to reproduce the correct
fluctuation spectrum in uniform flows with periodic boundary conditions. A less trivial application
with non-periodic boundaries is studied in Section [V]

We consider here a uniform periodic system in which there is a steady background (mean)
flow of velocity vg. Unlike the continuum formulation, the discrete formulation is not Galilean-
invariant under such uniform motion and the covariance of the discrete fluctuations is affected by
the magnitude of vg. The stability and accuracy of the spatio-temporal discretization is controlled

by the dimensionless CFL numbers

o= U0 gt =200

where V' = c¢r (isothermal speed of sound) for low Mach number compressible flow, and V' = [Jvg||
for incompressible flow, and typically x < v. The explicit handling of the advective terms places
a stability condition @ < 1, and the explicit handling of diffusion in the compressible flow case
requires max (3, 5.) < 1/(2d), where d is the dimensionality. The strength of advection relative to
dissipation is measured by the cell Reynolds number r = /8 = VAx/v.

To characterize the weak accuracy of our methods we examine the discrete Fourier spectra
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of the fluctuating fields at equilibrium, and compare them to the continuum theory discussed in
Section [[TB] for all discrete wavenumbers k. We use subscripts to denote which pair of variables is
considered, and normalize each covariance so that for self-correlations we report the relative error
in the variance, and for cross-correlations we report the correlation coefficient between the two

variables. For example, the non-dimensionalized static structure factor for concentration is
g (eery AV
YT AVIIS.e Mpyteo(1 - o)

where ¢(k) is the discrete Fourier transform of the concentration. Note that an additional factor

<éé*> )

equal to the total number of cells may be needed in the numerator depending on the exact definition
used for the discrete Fourier transform [28]. Similarly, the cross-correlations between different

variables need to be examined as well, such as for example,

AV

Sc,'u = <é’lA]*> .

\/[MPEI co(1 = co)] (py 'kBTo)

For staggered variables the shift between the corresponding grids should be taken into account as

a phase shift in Fourier space, for example, exp (k;Ax/2) for v,. For a perfect scheme, S”QC =1
and S'C,U = 0 for all wavenumbers, and discrete fluctuation-dissipation balance in our discretization
ensures this in the limit At — 0. Our goal will be to quantify the deviations from “perfect” for

several methods, as a function of the dimensionless numbers o and (.

A. Incompressible Solver

We have implemented the incompressible scheme described in Sections[[TI A 2| and [[TT B using the

IBAMR software framework [80], an open-source library for developing fluid-structure interaction
models that use the immersed boundary method. The IBAMR framework uses SAMRAI [81] to
manage Cartesian grids in parallel, and it uses PETSc [82] to provide iterative Krylov solvers. The
majority of the computational effort in the incompressible solver is spent in the linear solver for
the Stokes system; in particular, in the projection-based preconditioner, the application of which
requires solving a linear Poisson system for the pressure, and a modified linear Helmoltz system
for the velocities and the concentrations [34]. For small viscous CFL numbers § < 1 the Poisson
solver dominates the cost, however, for 8 > 1 the Helmoltz linear systems become similarly ill-
conditioned and require a good preconditioner themselves. We employ the hypre library [83] to
solve the linear systems efficiently using geometric multigrid solvers.

For incompressible flow, one could directly compare the spectrum of the velocities (09*) to

the spectrum of the discrete projection operator P (see Section [IIIB1). It is, however, simpler
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Figure 2: Spectral power of the first solenoidal mode for an incompressible fluid, 5’1(,2) (ky,ky, k), as a
function of the wavenumber (ranging from 0 to 7/Ax along each axes), for a periodic system with 323 cells.
A uniform background flow along the z axis is imposed. The left panel is for a time step @ = 0.5, and the
right for a = 0.25. Though not shown, we find that 5”1(,3) and 5}70 are essentially identical, and both the real

and imaginary parts of the cross-correlation 5,(,2’3) vanish to within statistical accuracy.

and more general to instead examine the equilibrium covariance of the discrete modes forming
an orthonormal basis for the space of discretely divergence free modes. The amplitude of all
modes should be unity, even if there are physical boundaries present, making it easy to judge the
accuracy at different wavenumbers. For periodic boundary conditions a discretely-orthogonal basis
is obtained by replacing the wavenumber k = (k;, ky, k) in by the effective wavenumber

k that takes into account the centered discretization of the projection operator, for example,

§ _ exp (ikeAx/2) — exp (—ik,Ax/2) . sin(k,Ax/2)
v iAx " (kyAx/2)

(57)

Our temporal discretization ensures that the discrete velocities are discretely divergence free, that
is, (0107) = 0 to within the tolerance of the linear solvers used for the Stokes system. For a perfect

scheme, the dimensionless structure factor

s AV

and analogously S8 (in three dimensions) would be unity for all wavenumbers, while S (0203)
would be zero.

Note that for a system at equilibrium, Vé = 0, the linearized velocity equation and the concen-
tration equation are uncoupled and thus S’C,v = 0. Observe that the same temporal discretiza-

tion is used for the velocity equation, projected onto the space of discretely divergence-free vector
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Figure 3: (Left) Relative error in the equilibrium variance of velocity (or, equivalently, concentration) for
several time steps, as obtained using our incompressible code with a background flow velocity vy = (\/g7 2) /2
corresponding to cell Reynolds number 7 = 4/3/2 in two dimensions, and vy = (1,1/3,1/3) corresponding
to r = 1 in three dimensions, for a grid of size 322 and 322 cells, respectively. The theoretical order
of convergence O(At?) is shown for comparison. Error bars are on the order of the symbol size. (Right)
Normalized covariance of the discrete velocities and densities compared to the theoretical expectations, using
the parameters reported in the caption of Fig. [l The value reported is the relative error of the variance
of a variable or the correlation coefficient between pairs of variables, see legend. The theoretical order of
convergence O(At3) is shown for comparison. Error bars are indicated but are smaller than the symbol size

except for the smallest time step.

fields consistent with the boundary conditions, and for the concentration equation. Therefore, it is
sufficient to present here numerical results for only one of the self-correlations S”z(?), 5’1(,3) and S’QC.
In Fig. we show 5'1()2) as a function of the wavenumber k in three dimensions for a cell Reynolds
number » = 1 and an advective CFL number a = 0.5 and o = 0.25. Even for the relatively large
time step, the deviation from unity is less than 5%, and as a — 0 it can be shown theoretically
and observed numerically that the correct covariance is obtained at all wavenumbers.

Theoretical analysis suggests that the error in the discrete covariance vanishes with time step
and the background velocity as O(a?) ~ O (V2At?) for both velocity and concentration [46]. In
the left panel of Fig. [3|we show the observed relative error in the variance of the discrete velocity as
a function of «, confirming the predicted quadratic convergence. As expected, identical results are

obtained for concentration as well. These numerical results confirm that our spatial discretization

satisfies the DFDB condition and the temporal discretization is weakly second-order accurate.



34

B. Compressible Solver

Unlike the incompressible method, which requires complex linear solvers and preconditioners,
the explicit compressible scheme is very simple and easy to parallelize on Graphics Processing
Units (GPUs). Our implementation is written in the CUDA programming environment, and is
three-dimensional with the special case of N, = 1 cell along the z axes corresponding to a quasi
two-dimensional system. In our implementation we create one thread per cell, and each thread only
writes to the memory address associated with its cell and only accesses the memory associated with
its own and neighboring cells. This avoids concurrent writes and costly synchronizations between
threads, facilitating efficient execution on the GPU. Further efficiency is gained by using the GPU
texture unit to perform some of the simple computations such as evaluating the equation of state.
Our GPU code running in a NVIDIA GeForce GTX 480 is about 4 times faster (using double
precision) than a compressible CPU-based code [28] running on 32 AMD cores using MPI. Note that
with periodic boundary conditions the velocity and the pressure linear systems in the incompressible
formulation decouple and Fast Fourier Transforms could be used to solve them efficiently. We have
used this to also implement the incompressible algorithm on a GPU by using the NVIDIA FFT
library as a Poisson/Helmholtz solver. We emphasize, however, that this approach is applicable
only to the case of periodic boundary conditions.

We first examine the equilibrium discrete Fourier spectra of the density and velocity fluctuations
for a uniform periodic system with an imposed background flow, with similar results observed for
concentration fluctuations. In Fig. [4] we show the correlations of density and velocity fluctuations
as a function of the wavenumber k in three dimensions for a CFL number of o = 0.25. We see that
self-correlations are close to unity while cross-correlations nearly vanish, as required, with density
fluctuations having the largest relative error of 5% for the largest wavenumbers.

Calculating cross-correlations in real space is complicated by the staggering of the different

grids. We arbitrarily associate the “upward” cell faces with the cell center, defining ((dp) (0v,)) =
<(5pi7j) <(5vﬁ)1 J>> and ((dvg) (dvy)) = <<5v(x)1 ) <5v(y.)+1 . Theoretical analysis suggests
27 2

7‘+§’j [2¥}
that the error in the discrete covariance vanishes with time step as O(a®) ~ O (¢ At?) [46]. In the
right panel of Fig. [3| we show the relative error in the discrete covariances as a function of « in the
presence of a background flow, confirming the predicted cubic convergence. These numerical results

verify that our spatial discretization satisfies the DFDB condition and the temporal discretization

is weakly third-order accurate.
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Figure 4: Normalized static structure factors S, , (top left), S, ., (top right), S, ., (bottom left) and 5’%7%
(bottom right) for a compressible fluid with physical properties similar to water, for a periodic system with
303 cells. A uniform background flow with velocity vg = (0.2,0.1,0.05)cr is imposed and the time step
corresponds to an acoustic CFL number o = 0.25 and viscous CFL number 3, = 0.017 for shear viscosity

and B¢ = 0.041 for bulk viscosity.
1. Dynamic Correlations

For compressible flow, the dynamics of the fluctuations is affected by the presence of sound
waves and it is important to verify that the numerical scheme is able to reproduce the temporal
correlations between the fluctuations of the different pairs of variables. In particular, a good method
should reproduce the dynamic correlations at small wavenumbers and wave-frequencies correctly
[28]. Theoretical predictions for the equilibrium covariances of the spatio-temporal specta of the
fluctuating fields, usually referred to as dynamic structure factors, are easily obtained by solving

the equations (6}f7) in the Fourier wavevector-frequency (k,w) domain and averaging over the



36

30— L : :
: b o 1
;ﬁ; —-v.andy | 3 [
: i ° ] ' .
200F I Ey 1 - 0 \
S Lol 3
& f . 3 ) S 50 « ¢ ]
M 5 i i y b
100F 1 i L. pv, i
- ] -100F |y Ly 1# ]
r r 7 @
: [ %
: -150F ' .
0t 4 LA B R N T T T
-0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2
o o

Figure 5: Numerical data (symbols) and theory (lines) for the real part of several dynamic structure factors
for wavenumber k = (2,2,2)-2r/L in a cubic periodic box of 30% cells and volume L3. Self correlations are
shown in the left panel, and cross-correlations are shown in the right panel. The imaginary part vanishes
to within statistical accuracy for the off-diagonal terms. The physical parameters are as reported in the

caption of Fig. [4

fluctuations of the stochastic forcing [I7]. The density-density dynamic structure factor S, ,(k,w)
is accessible experimentally via light scattering measurements, and for isothermal flow it exhibits
two symmetric Brilloin peaks at w &~ tecpk. The velocity components exhibit an additional central
Rayleigh peak at w = 0 due to the viscous dissipation. As the fluid becomes less compressible (i.e.,
the speed of sound increases), there is an increasing separation of time-scales between the side and
central spectral peaks, showing the familiar numerical stiffness of the compressible Navier-Stokes
equations.

In Fig. [5| we compare the theoretical to the numerical dynamic structure factors for one of
the smallest resolved wavenumbers, and observe very good agreement. Note that unlike static
correlations, dynamic correlations are subject to discretization artifacts for larger wavenumbers,
even as At — 0 [28]. Specifically, the positions and widths of the various peaks are set by the
effective wavevector k rather than the true wavevector k, as given for the standard second-order

discretization of diffusion in (57)).

V. GIANT FLUCTUATIONS

As a non-trivial application of our staggered schemes for fluctuating hydrodynamics, we perform
the first incompressible computer simulations of diffusive mixing in microgravity, recently studied

experimentally aboard a satellite in orbit around the Earth [I2]. The experimental data presented in
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Parameter Value Notes
P 0.86 gr/ cm® On average only if compressible
xv+x) | 1.2-1078 cm*/s? Kept constant in all runs
v Variable S, = v/x |Physical value v = 6.07 - 1073 cm?/s
X Variable S. = v/x |Physical value y = 1.97- 1076 cm? /s
¢ 0 None for incompressible

kT  |4.18 .10~ gr cm?/s Corresponds to T' = 303 K

M 1.51-10729 gr Not important for results

St 0.0649 K~! Enters only via Sp VT

co 0.018 On average only if nonperiodic
cr 1.11 cm/s Physical value ¢z ~ 1.3 - 10° cm/s

Table I: Summary of parameters used in the simulations of giant fluctuations in zero gravity.

Ref. [12] shows good agreement with theoretical predictions, however, various over-simplifications
are made in the theory, notably, only the solenoidal velocity mode with the largest wavelength
is considered. Numerical simulations allow for a more detailed comparison of experimental data
with fluctuating hydrodynamics, at least within the applicability of the physical approximations
discussed in Section [[Al

The experimental configuration consists of a dilute solution of polystyrene in toluene, confined
between two parallel transparent plates that are a distance h = lmm apart. A steady temperature
gradient VT' = AT /h is imposed along the y axes via the plates. The weak temperature gradient
leads to a strong concentration gradient Vé = ¢S VT due to the Soret effect, giving rise to an
exponential steady-state concentration profile ¢(y). Quantitative shadowgraphy is used to observe
and measure the strength of the fluctuations in the concentration around ¢ via the change in the
refraction index. The observed light intensity, once corrected for the optical transfer function of
the equipment, is proportional to the intensity of the fluctuations in the concentration averaged

along the gradient,
h
cule2) =07 [ clay. )y
y=0
The main physical parameters we employed in our simulations are summarized in Table [l Addi-
tional details of the experimental setup and parameters are given in Ref. [12].
The large speed of sound in toluene makes the compressible equations very stiff at the length

scales of the experimental system. It is usually argued that compressibility does not affect the

concentration fluctuations [I7]. Solving the compressible equations in the presence of a concen-
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tration gradient confirms that, as long as there is a large separation of time scales between the
acoustic and diffusive dynamics, the presence of sound waves does not affect the concentration
fluctuations. In our compressible simulations, we artificially decrease the speed of sound many-
fold and set the cell Reynolds number to » = c¢yAx/v > 10. Numerical results show that this
is sufficient to approach the limit r — oo to within the statistical accuracy of our results. This
decrease in c¢p corresponds to making the mass of the toluene molecules much larger than the
mass of the polystyrene macromolecules themselves, which is of course physically very unrealistic.
One can think of our compressible simulations of giant fluctuations in microgravity as an artificial
compressibility method for solving the incompressible equations.

In the actual experiments reported in Ref. [I2], concentration diffusion is much slower than
momentum diffusion, corresponding to Schmidt number S. = v/x ~ 3 - 103. This level of stiffness
makes direct simulation of the temporal dynamics of the fluctuations infeasible, as long averaging is
needed to obtain accurate steady-state spectra, especially for small wavenumbers. However, as far
as the nonequilibrium static correlations are concerned, we see from that the crucial quantity
is x(v + x) = (s + 1)x?, rather than y and v individually. Therefore, we can artificially increase
x and decrease v to reduce s, keeping s > 1 and (s + 1)x? fixed. In the linearized case, it can be
proven more formally that there exists a limiting stochastic process for the concentration as s — oo
so long as sx? is kept constant (E. Vanden-Eijnden, private communication). In fact, artificially
decreasing the Schmidt number while keeping sy? fixed can be seen as an instance of the seamless

multiscale method presented in Ref. [84].

A. Approximate Theory

For large wavenumbers the influence of the boundaries can be neglected and the periodic theory
presented in Section applied. In order to demonstrate the importance of the boundaries,
and also to test the code by comparing to the periodic theory, we have implemented a model in
which qualitatively similar giant concentration fluctuations appear even though the macroscopic
concentration profile is uniform, ¢(y) = ¢p. Numerically, this sort of quasi-periodic model is
implemented by using periodic boundary conditions but adding an additional source term —wv - Ve
in the concentration equation, as in . This term mimics our skew-adjoint discretization of the
advection by the fluctuating velocities

. Ve
v-Ve— (DUe), ; = 5 <vfi)+; * vi?%) ’
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and is conservative when integrated over the whole domain. Note that in this quasi-periodic setup
V¢ is simply an externally-imposed quantity unrelated to the actual mean concentration profile. We
emphasize that these quasi-periodic simulations are used only for testing and theoretical analysis of
the problem, and not for comparison with the experimental results. In the simulations with physical
boundaries and in the experiments the concentration profile is exponential rather than linear. For
the purposes of constructing a quasi-periodic approximation we take the effective concentration
gradient to be Vé ~ Ac/h, where Ac is the difference in concentration near the two boundaries.
For periodic systems, the spectrum of the fluctuations of ¢ | can be obtained from the full three-
dimensional spectrum by setting ky = kj = 0. For the specific parameters in question the
equilibrium fluctuations in concentration are negligible even at the largest resolved wavenumbers.
When discretization artifacts are taken into account, the quasi-periodic theoretical prediction for

the experimentally-observed spectrum becomes
~ ~ * kBT N
St (ky, k) = <<5CL) (5@) >= BT (ve) (58)
QP \vz, vz )
pIx(v +x)] k]
- - N

where k% = (k% + kg) and tilde denotes the effective wavenumber 1) Imposing no-slip condi-
tions for the fluctuating velocities makes the theory substantially more complicated. A single-mode
approximation for the velocities is made in Ref. [62] in order to obtain a closed-form expression

for the spectrum of concentration fluctuations in a non-periodic system SI#P. For a small Lewis

number and without gravity it is found that

Sip (K 4
OnelkL) o ) = 0L : (59)

where ¢ = hk,| is a non-dimensionalized wavenumber.

The Galerkin function G given by reflects the physical intuition that the no-slip condition
suppresses fluctuations at scales larger than the distance between the physical boundaries [12].
After the concentration gradient is established, “giant” [42] concentration fluctuations evolve with
a typical time scale of 79 = h%/(w2x) ~ 1000s, until a steady state is reached in which the typical
length scale of the concentration fluctuations is set by the finite extent of the domain. This is
illustrated in Fig. |§| via snapshots of ¢, (x, z; t) taken at several points in time after starting with

no concentration fluctuations at time ¢ = 0.

B. Simulations and Results

In our simulations, the plates are represented by no-slip boundaries at y = 0 and y = h, and

periodic boundaries are imposed along the z and z axis to mimic the large extents of the system in
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Figure 6: Snapshots of the concentration ¢, in the plane perpendicular to the gradient V¢, at times 0.17,
70, and 57 after the gradient is established. The thickness of the sample (perpendicular to the page) is
one quarter of the lateral extents of the system, h = L, = L,/4, and sets the scale of the steady-state

fluctuations. Compare to the experimental snapshots shown in Fig. 1 of Ref. [12].

the directions perpendicular to the gradient. A Robin boundary condition is used for concentration

at the physical boundary,

oc
— =—c(n-v,),
on ( s)
ensuring that the normal component of the concentration flux vanishes at a physical boundary.
The stochastic concentration flux also vanishes at the boundary as for Dirichlet boundaries, since

the Soret term does not affect fluctuation-dissipation balance. In the codes the boundary condition

is imposed by setting the concentration in a ghost cell to

2+ vAy
=y,
2 FusAy

Cq
where ¢, is the value in the neighboring cell in the interior of the computational domain, and the
sign depends on whether the ghost cell is at the low or high end of the y axis. The boundary
condition is imposed explicitly, which leads to non-conservation of the total concentration when
a semi-implicit method is used for the diffusive terms in the concentration equation. This can
be corrected by implementing the boundary condition implicitly or using an explicit method for
concentration; however, we do not do either since the observed change in the average concentration
is small for the specific parameters we use.

Using the incompressible formulation allows for a much larger time step, not only because of
the lack of acoustics, but also because of the implicit temporal discretization of the viscous terms
in the momentum equations. However, it is important to remember that a time step of our GPU-

parallelized compressible code takes much less computing than a time step of the incompressible
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code. Nevertheless, we are able to study larger system sizes in three dimensions using the in-
compressible algorithm. In the incompressible sijmulations, we used for the velocity equation
in order to avoid unnecessary projections. Because of the explicit handling of the concentration
boundary conditions, we employed a predictor-corrector algorithm for the concentration equation,
in which both the predictor and the corrector stages have the form .

In Fig. [7] we show numerical results for the steady-state spectrum of the discrete concentration
field averaged along the y-axes, in two (left panel) and in three dimensions (right panel), for both
bulk (quasi-periodic) and finite (non-periodic) systems. In order to compare with the theoretical
predictions and (p9) most directly, we plot the ratio of the observed to the predicted spectrum.
This choice of normalization not only emphasizes any mismatch with the theory, but also eliminates
the power-law (k14) divergence and makes it easier to average over nearby wavenumbers k. and

also estimate error bars!

. For the runs reported in Fig. |7 we applied the largest concentration
(temperature) gradient (AT = 17.4K) used in the experiments [I2]; we have verified that the
non-equilibrium concentration fluctuations scale as the square of the gradient.

Both panels in Fig. [7| show an excellent agreement between the theory and the numerical
results for quasi-periodic systems. This shows that correcting for the spatial discretization artifacts
by replacing k; with k| accounts for most of the discretization error. For the compressible runs, we
use a relatively small time step, a = 0.2, leading to temporal discretization errors that are smaller
than the statistical accuracy except at the largest wavenumbers. Our semi-implicit discretization
of the incompressible equations gives the correct static covariance of the concentration for all time
step sizes. Based on the analysis presented in Appendix [A] the majority of the incompressible
simulations employ a time step corresponding to a viscous CFL number § = 1 or g = 2, with a
few of the largest systems run at 8 = 5 to resolve the smaller wavenumbers better.

In the left panel of Fig. we compare results from two-dimensional compressible and in-
compressible simulations and find excellent agreement. For non-periodic systems the single-mode
Galerkin theory is not exact and the theory visibly over-predicts the concentration fluctuations
for smaller wavenumbers in both two and three dimensions. We observe only a partial overlap of
the data for different Schmidt numbers S, = v/x for smaller wavenumbers, although the difference
between S, = 10 and S, = 20 is relatively small.

In three dimensions, we rely on the incompressible code in order to reach time scales necessary

! Note, however, that the most reliable error bars are obtained by averaging over many uncorrelated runs started
with different random number seeds.
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Figure 7: Ratio between the numerical and theoretical discrete spectrum of concentration projected along
the y axes, as a function of the normalized wavenumber ¢, = &k h. For all runs IV, = 32 cubic hydrodynamic
cells along the y axes were used, and all systems have aspect ratio N, /N, = N,/N, = 4. Error bars are
indicated for some of the curves to indicate the typical level of statistical uncertainty. (Left) Two dimensions,
for both compressible and incompressible fluids (see legend), with either periodic boundary conditions (empty
symbols) or physical boundaries (solid symbols) imposed at the y-boundaries, for several Schmidt numbers
Se = v/x. (Right) Three dimensions, with same symbols as left panel), along with arbitrarily normalized
experimental data [12] (see legend) corresponding to S. ~ 3 - 10% (experimental measurements courtesy of

A. Vailati).

to obtain sufficiently accurate steady-state averages for large Schmidt numbers. In the right panel
of Fig. [7] we compare numerical results for quasi-periodic and non-periodic compressible and
incompressible systems to the theoretical predictions and also to experimental data from Ref.
[12] (A. Vailati, private communication). While the numerical data do not match the experiments
precisely at the smallest wavenumbers, a more careful comparison is at present not possible. Firstly,
the boundary conditions affect the small wavenumbers strongly, and our use of periodic boundary
conditions in x and z directions does not match the experimental setup. The experimental data
has substantial measurement uncertainties, and is presently normalized by an arbitrary pre-factor.
Within this arbitrary normalization, our numerical results seem to be in good agreement with
the experimental observations over the whole range of experimentally-accessible wavenumbers,
and the agreement at small wavenumbers improves as the Schmidt number of the simulations
increases. The actual magnitude of the macroscopic non-equilibrium fluctuations in ¢, is given
by the integral of the structure factor SCL’C over all wavenumbers k. Numerically we observe
fluctuations <(5c J_)2> /c® ~ 31077, which is consistent with experimental estimates (A. Vailati,

private communication).
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VI. CONCLUSIONS

We have presented spatio-temporal discretizations of the equations of fluctuating hydrodynam-
ics for both compressible and incompressible mixtures of dynamically-identical isothermal fluids.
As proposed by some of us in Ref. [28], we judge the weak accuracy of the schemes by their ability
to reproduce the equilibrium covariances of the fluctuating variables. In particular, for small time
steps the spatial discretization ensures that each mode is equally forced and dissipated in agree-
ment with the fluctuation-dissipation balance principle satisfied by the continuum equations. A
crucial ingredient of this discrete fluctuation-dissipation balance is the use of a discrete Laplacian
L = — DD for the dissipative fluxes, where D is a conservative discrete divergence, with a suitable
correction to both the Laplacian stencil and the stochastic fluxes at physical boundaries. Further-
more, we utilize a centered skew-adjoint discretization of advection which does not additionally
dissipate or force the fluctuations, as previously employed in long-time simulations of turbulent
flow, where it is also crucial to ensure conservation and avoid artificial dissipation [77].

For the compressible equations, our spatio-temporal discretization is closely based on the col-
located scheme proposed by some of us in Ref. [28], except that here we employ a staggered
velocity grid. It is important to point that out the difference between a collocated scheme, in which
the fluid variables are cell-centered but the stochastic fluxes are face-centered (staggered), as de-
scribed in Ref. [28], and a centered scheme where all quantities are cell-centered. Several authors
[26] 27] have already noted that centered schemes lead to a Laplacian that decouples neighboring
cells, which is problematic in the context of fluctuating hydrodynamics. We emphasize however
that these problems are not shared by collocated schemes for compressible fluids, for which the
Laplacian L = —D D™ has the usual compact 2d+ 1 stencil, where d is the dimensionality [2§]. Dis-
cretizations in which all conserved quantities are collocated may be preferred over staggered ones in
particle-continuum hybrids [I3], or more generally, in conservative discretizations for non-uniform
grids.

A staggered grid arrangement, however, has a distinct advantage for incompressible flow.
Namely, the use of a staggered grid simplifies the construction of a robust idempotent discrete
projection P = I + D*L~'D that maintains discrete fluctuation-dissipation at all wavenumbers.
In the temporal discretization employed here, based on prior work by one of us [34], this projection
is used as a preconditioner for solving the Stokes equations for the pressure and velocities at the
next time step. For periodic systems the method becomes equivalent to a classical Crank-Nicolson-

based projection method, while at the same time avoiding the appearance of artificial pressure
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modes in the presence of physical boundaries [71l [72].

The numerical results presented in Section [V] verify that our numerical simulations model ex-
perimental measurements of giant fluctuations [12] during diffusive mixing of fluids faithfully. The
numerical simulations give access to a lot more data than experimentally measurable. For example,
the spectrum of concentration fluctuations in the x — z plane can be computed for planes (slices) as
the distance from the boundaries is varied, giving a more complete picture of the three dimensional
spatial correlations of the nonequilibrium fluctuations. We defer a more detailed analysis, including
a study of temporal correlations, to future work.

The compressible solver we developed utilizes modern GPUs for accelerating the computations.
In the future we will investigate the use of GPUs for the incompressible equations for non-periodic
systems. For grid sizes that are much larger than molecular scales, the stability restriction of
explicit compressible solvers becomes severe and it becomes necessary to eliminate sound waves
from the equations by employing the low Mach number limit. A challenge that remains to be
addressed in future work is the design of zero Mach number methods [48] for solving the variable-
density equations of fluctuating hydrodynamics, as necessary when modeling mixtures of miscible
fluids with different densities. This would enable computational modeling of the effects of buoyancy
(gravity) in experimental studies of the giant fluctuation phenomenon performed on Earth [39, [42]

13).
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Appendix A: IMPLICIT MIDPOINT RULE AS A GIBBS SAMPLER

We consider here numerical methods for the general additive-noise linear SDE

‘Cle — Az + KW (), (A1)

where W(t) denotes white noise. If the eigenvalues of A have negative real parts, the long-time

dynamics tends to a Gaussian equilibrium distribution

*S—l
Py (@) = Z ' exp <‘”2m) , (A2)
where the covariance matrix S is the solution to the linear system [see, for example, Eq. (30) in

[28] or Eq. (3.10) in [64]]
AS+SA*=-KK"*. (A3)

If one is only interested in calculating steady-state observables (expectation values), then a numer-
ical method for solving (A1) needs to only sample the equilibrium Gibbs distribution (A2)), without
having to approximate the correct dynamics.

The implicit midpoint rule or Crank-Nicolson discretization that we employed in Section

x" + anrl >

"t ="+ A < At + At'2PKW™, (A4)

can be seen as a Markov Chain Monte Carlo (MCMC) chain
At N\ At At N\
"t = <I — 2A> (I + 2A> z" + At'/? (I — 2A> KW" = Rx" + QW™.

for sampling from the distribution . This sampling is exact, that is the equilibrium distribution
of the chain (A4) is exactly . This important fact can be shown using the techniques described
in Ref. [28], but here we present an alternative derivation.

A well-known MCMC algorithm for sampling the Gibbs distribution is the Metropolis-Hastings
algorithm. In this algorithm, one treats ™t as a trial or proposal move that is then to be accepted
with probability

Peq (m"“) Pioy (:1:”“ — a:”)

U7 TPy (@) Propw (2" — z11)
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where Py, is the transition probability for the chain (A4]) and P,y is the transition probability
for the time-reversed chain (this important distinction ensures strict time reversibility of the chain

with respect to the equilibrium distribution). Explicitly,
Prey (:B"'H — x”) = (C exp [— 5

Prorw (" — ac”“) = C exp (‘7‘7>2(ﬁ7) ’

(W) (W”)] ’

where the reverse step noise W' is the solution to the equation (here the adjoint of A appears

because of time reversal)

At + AtV 2KW".

o' — 't 4 A <$" + *’B"H>

Note that the case of non-invertible K can be easily handled by working not with the random flux
W™, but rather, working with the stochastic increments KW™", whose covariance K K* can be
assumed to be invertible without loss of generality.

A tedious but straightforward matrix calculation shows that the acceptance probability o =1,
that is, no rejection is necessary for the implicit midpoint rule to sample the correct equilibrium
distribution, regardless of the time step At. The calculation of « is simple to do if a Fourier
transform is used to diagonalize the hydrodynamic equations [see Eq. ] to obtain a system of
scalar SDEs with complex coefficients. For the stochastic advection-diffusion equation with

v = vy, which is a good model for more general hydrodynamic equations,
A=A=—-a+bi, K=K=+2a, and S=5=1, (A5)

with a = yk? and b = —kvg, where k is the wavenumber.

While the time step At can be chosen arbitrarily without biasing the sampling, the optimal
choice is the one that minimizes the variance of the Monte Carlo estimate of the observable of
interest. In the simulations of giant fluctuation experiments, the observable of interest is the
covariance (spectrum) of the fluctuations S = (xx*) . The variance of the Monte Carlo estimate of
S is proportional to the autocorrelation time 7 of ™ = x" (™), which is itself proportional to
the sum of the autocorrelation function of S™ [85]. Focusing on the scalar SODE we get the

autocorrelation time
o0

ng[<SkSk+n>_<Sk>2:|:Z(RR*)n:mlAt—i_;—’_agt—l-?‘

n=0
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For the purely diffusive equation, vg = 0, the statistical accuracy for a fixed number of time steps

is proportional to

o 8K ’
44 4k + kB2

where 8 = vAt/Az? is the viscous CFL number and k = kAz is the dimensionless wavenumber.
Note that 771 ~ 612:2 for small /;’, so increasing the time step improves the sampling. However, for
large k increasing the time step reduces the statistical accuracy (this is related to the fact that the
Crank-Nicolson algorithm is A-stable but it is not L-stable), 77! ~ (51232) 71. The wavenumber
with highest statistical accuracy Izzopt depends on the time step, Bl;:gpt = 2, or, alternatively, the
optimal choice of time step depends on the wavenumber of most interest. For the type of problems
we studied in this work the spectrum of the fluctuations has power-law tails ~ k=% and therefore

all wavenumbers are important. Using § ~ 2 produces a good coverage of all of the wavenumbers.

Appendix B: FLUCTUATION-DISSIPATION BALANCE FOR INCOMPRESSIBLE FLOW

Discrete fluctuation-dissipation balance is affected by the presence of an incompressibility con-
straint. The spatially discretized velocity equation linearized around a stationary equilibrium state

has the form, omitting unimportant constants in the noise amplitude,
Oov="P [I/L’U +V 2VDW'U} , (B1)

where we used a non-symmetric stochastic stress tensor since the symmetry does not affect the
results presented here. The steady-state covariance of the velocities S, = (vv*) is determined from

the fluctuation-dissipation balance condition with A = vPL and K = v2vPD, giving
PLS, + S, L*P* = —2PDD*P*. (B2)
The fluctuation-dissipation balance condition for the simple advection-diffusion equation,
L+ L*=DG+ (DG)" = -2DD*,

implies that S, = P is the solution to (B2) if P is self-adjoint, P* = P, as stated in with all of
the constants included.
The above analysis was does not account for the temporal discretization. For small timesteps,

our temporal discretization of (B1]) behaves like a projected Euler-Maruyama method,

ot =P [fu" 4 vLvAt+ \/QVAtDWv] .
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An important difference with the continuum equation (B1]) is that the velocity in the previous
time step is also projected, i.e., the increment of O (At) is added to Pv™ and not to v™. If P is
idempotent, P? = P, just as the continuum projection operator is, then subsequent applications of

" In

the projection operator do not matter since v™ is already discretely divergence free, Pv"™ = v
the literature on projection methods idempotent projections are called exact projections.
The above considerations lead to the conclusion that S, = P if P* = P and P? = P. Both of these
conditions are met by the MAC discrete projection operator P = I — D* (DD*)f1 D, which shows
that our spatio-temporal discretization gives velocity fluctuations that have the correct covariance
. A straightforward extension of the analysis in Appendix @ shows that the Crank-Nicolson

temporal discretization (36]) gives the correct equilibrium velocity covariance for any timestep size,

not just for small time steps. Further details will be presented in future publications [46].
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