

Finite-Volume Schemes for Fluctuating Hydrodynamics

Aleksandar Donev¹

Courant Institute, *New York University*

&

Alejandro L. Garcia, *San Jose State University*

John B. Bell, *Lawrence Berkeley National Laboratory*
and *Courant* collaborators:

Eric Vanden-Eijnden, Jonathan Goodman,

Thomas Fai, Florencio Balboa, Boyce Griffith and Charlie Peskin

¹This work performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

CIMS Numerical Analysis Seminar
March 4, 2011

Outline

- 1 Fluctuating Hydrodynamics
- 2 Continuum Fluctuation-Dissipation Balance
- 3 Discrete Fluctuation-Dissipation Balance
- 4 Temporal Integrators
- 5 Velocity Equation
- 6 Incompressible Fluctuating Hydrodynamics
- 7 Future Work

Micro- and nano-hydrodynamics

- Flows of fluids (gases and liquids) through micro- (μm) and nano-scale (nm) structures has become technologically important, e.g., **microfluidics, microelectromechanical systems (MEMS)**.
- **Biologically-relevant** flows also occur at micro- and nano- scales.
- Essential distinguishing feature from “ordinary” CFD: **thermal fluctuations!**
- Another important feature of small-scale flows, not discussed here, is **surface/boundary effects** (e.g., slip in the contact line problem).

Stochastic Conservation Laws

- Formally, we consider the continuum field of **conserved quantities** for a two-fluid mixture,

$$\mathbf{U}(\mathbf{r}, t) = \begin{bmatrix} \rho \\ \mathbf{j} \\ e \\ \rho_1 \end{bmatrix} = \begin{bmatrix} \rho \\ \rho \mathbf{v} \\ c_v \rho T + \rho v^2 / 2 \\ \rho c \end{bmatrix},$$

where the primitive variables are density ρ , velocity \mathbf{v} , temperature T , and concentration c .

- Here we consider **Langevin-type models**, following Landau and Lifshitz:
Postulate a **white-noise stochastic flux** term in the usual Navier-Stokes-Fourier equations with magnitude determined from the **fluctuation-dissipation balance** condition.

The SPDEs of Fluctuating Hydrodynamics

- Due to the **microscopic conservation** of mass, momentum and energy,

$$\partial_t \mathbf{U} = -\nabla \cdot [\mathbf{F}(\mathbf{U}) - \mathcal{Z}] = -\nabla \cdot [\mathbf{F}_H(\mathbf{U}) - \mathbf{F}_D(\nabla \mathbf{U}) - \mathbf{B}\mathcal{W}],$$

where the flux is broken into a **hyperbolic**, **diffusive**, and a **stochastic flux**.

- Here \mathcal{W} is spatio-temporal **white noise**, i.e., a Gaussian random field with covariance

$$\langle \mathcal{W}(\mathbf{r}, t) \mathcal{W}^*(\mathbf{r}', t') \rangle = \mathbf{I} \delta(t - t') \delta(\mathbf{r} - \mathbf{r}').$$

- A simple example is the one-dimensional **stochastic Burgers equation**

$$u_t = -c [u(1-u)]_x + \mu u_{xx} + \sqrt{2\mu u(1-u)} \mathcal{W}_x.$$

Compressible Fluctuating Navier-Stokes

Neglecting viscous heating, the equations of **compressible fluctuating hydrodynamics** in primitive variables are

$$\begin{aligned}
 D_t \rho &= -\rho (\nabla \cdot \mathbf{v}) \\
 \rho (D_t \mathbf{v}) &= -\nabla P + \nabla \cdot (\eta \bar{\nabla} \mathbf{v} + \boldsymbol{\Sigma}) \\
 \rho c_v (D_t T) &= -P (\nabla \cdot \mathbf{v}) + \nabla \cdot (\kappa \nabla T + \boldsymbol{\Xi}) \\
 \rho (D_t c) &= \nabla \cdot [\rho \chi (\nabla c) + \boldsymbol{\Psi}],
 \end{aligned} \tag{1}$$

where $D_t \square = \partial_t \square + \mathbf{v} \cdot \nabla (\square)$ is the advective derivative,

$$\bar{\nabla} \mathbf{v} = (\nabla \mathbf{v} + \nabla \mathbf{v}^T) - 2(\nabla \cdot \mathbf{v}) \mathbf{I}/3,$$

the heat capacity c_v , and the pressure is $P = \rho (k_B T/m)$.

The transport coefficients are the **viscosity** η , $\nu = \eta/\rho$, **thermal conductivity** κ , and the **mass diffusion coefficient** χ .

Incompressible Fluctuating Navier-Stokes

- Ignoring density and temperature fluctuations, equations of **incompressible isothermal fluctuating hydrodynamics** are

$$\partial_t \mathbf{v} = -\mathbf{v} \cdot \nabla \mathbf{v} - \nabla \pi + \nu \nabla^2 \mathbf{v} + \rho^{-1} (\nabla \cdot \boldsymbol{\Sigma}) \quad (2)$$

$$\nabla \cdot \mathbf{v} = 0$$

$$\partial_t c = -\mathbf{v} \cdot \nabla c + \chi \nabla^2 c + \rho^{-1} (\nabla \cdot \boldsymbol{\Psi}), \quad (3)$$

- Note that because of incompressibility:

$$\mathbf{v} \cdot \nabla c = \nabla \cdot (c \mathbf{v}) \text{ and } \mathbf{v} \cdot \nabla \mathbf{v} = \nabla \cdot (\mathbf{v} \mathbf{v}^T).$$

Stochastic Forcing

- The **fluctuation-dissipation balance principle** determines

$$\boldsymbol{\Sigma} = \sqrt{2\eta k_B T} \mathcal{W}^{(v)}$$

$$\boldsymbol{\Psi} = \sqrt{2m\chi\rho c(1-c)} \mathcal{W}^{(c)},$$

where the \mathcal{W} 's denote white random tensor/vector fields.

- Adding stochastic fluxes to the **non-linear** NS equations produces **ill-behaved stochastic PDEs** (solution is too irregular).
- For now, we will simply **linearize** the equations around a **steady state** \mathbf{U}_0 that is in **thermodynamic equilibrium** (no dissipative fluxes),

$$\mathbf{U} = \langle \mathbf{U} \rangle + \delta \mathbf{U} = \mathbf{U}_0 + \delta \mathbf{U}.$$

Linear Additive-Noise SPDEs

- Consider the **stochastic advection-diffusion equation** for a scalar field, e.g., concentration, at **equilibrium**:

$$c_t = -\mathbf{v} \cdot \nabla c + \chi \nabla^2 c + \nabla \cdot (\sqrt{2\chi} \mathcal{W}) = \nabla \cdot [-c\mathbf{v} + \chi \nabla c + \sqrt{2\chi} \mathcal{W}]$$

$$c_t = \mathcal{D} [-c\mathbf{v} + \chi \mathcal{G} c + \sqrt{2\chi} \mathcal{W}],$$

where \mathbf{v} denotes the mean (reference) **background flow field**,
 $\nabla \cdot \mathbf{v} = 0$.

- In a more general setting, we want to solve:

$$\partial_t \mathcal{U} = \mathcal{A}\mathcal{U} - \mathcal{L}\mathcal{U} + \sqrt{2\mathcal{L}} \cdot \mathcal{W},$$

where the **advection** \mathcal{A} and the **viscous friction operator** \mathcal{L} are constant linear operators.

Structure factor

- The solution is a *generalized process*, whose **equilibrium distribution** (long-time limit, invariant measure) is a *stationary Gaussian process*.
- This Gaussian process is fully characterized by the covariance

$$\mathcal{C}(t) = \langle \mathcal{U}(t') \mathcal{U}^*(t' + t) \rangle.$$

- Of particular importance is the **covariance of a snapshot** of the fluctuating field,

$$\mathcal{S}(\mathbf{r}, \mathbf{r}') = \mathcal{C}(t = 0) = \langle \mathcal{U} \mathcal{U}^* \rangle \succeq \mathbf{0},$$

which depends on the basis used to represent \mathcal{U} .

- In **Fourier space** the equilibrium distribution is characterized by the **static spectrum** or **static structure factor**,

$$\mathcal{S}(\mathbf{k}, \mathbf{k}') = \langle \widehat{\mathcal{U}}(\mathbf{k}) \widehat{\mathcal{U}}^*(\mathbf{k}') \rangle.$$

Fluctuation-Dissipation Balance

$$\partial_t \mathcal{U} = \mathcal{A}\mathcal{U} - \mathcal{L}\mathcal{U} + \sqrt{2\mathcal{L}} \cdot \mathcal{W}$$

- It is important that **advection** by an incompressible velocity field **is skew-adjoint**

$$\mathcal{A}^* = -\mathcal{A},$$

while the **viscous dissipation is self-adjoint**,

$$\mathcal{L} = -\mathcal{D}\mathcal{G} = \mathcal{D}\mathcal{D}^* \succeq 0.$$

- Using Ito calculus it is easy to write an equation for $d\mathcal{S} = 0$:

$$\mathcal{L}\mathcal{S} + \mathcal{S}\mathcal{L}^* = \mathcal{L}\mathcal{S} + \mathcal{S}\mathcal{L} = 2\mathcal{L}\delta(\mathbf{r} - \mathbf{r}')$$

leading to the continuum **fluctuation-dissipation balance** condition

$$\mathcal{S}(\mathbf{r}, \mathbf{r}') = \mathbf{I}\delta(\mathbf{r} - \mathbf{r}') \text{ and } \mathcal{S}(\mathbf{k}, \mathbf{k}') = \mathbf{I}\delta(\mathbf{k} - \mathbf{k}').$$

Dynamics of Fluctuations

- A snapshot of the fluctuating field \mathcal{U} looks like white noise in space.
- We consider the **fluctuation-dissipation balance** the **most important** property of the continuum equations:

$$\text{The equations of fluctuating hydrodynamics preserve the Gibbs-Boltzmann distribution.}$$
- The temporal evolution is, however, not white in time.
- In the Fourier domain, the **dynamic structure factor** is

$$\begin{aligned} \mathcal{S}(\mathbf{k}, \omega) &= \left\langle \widehat{\mathcal{U}}(\mathbf{k}', \omega') \widehat{\mathcal{U}}^*(\mathbf{k}, \omega) \right\rangle = \delta(\mathbf{k} - \mathbf{k}') \delta(\omega - \omega') \\ &\quad \left[2 \left(\widehat{\mathcal{A}} - \widehat{\mathcal{L}} - i\omega \right)^{-1} \left(\widehat{\mathcal{L}} \right) \left(-\widehat{\mathcal{A}} - \widehat{\mathcal{L}} + i\omega \right)^{-1} \right], \end{aligned}$$

which follows directly from the space-time (\mathbf{k}, ω) Fourier transform of the SPDE.

Stochastic Advection-Diffusion Equation

- Consider the prototype **stochastic advection-diffusion equation** in one dimension

$$c_t = -vc_x + \chi c_{xx} + \sqrt{2\chi} \mathcal{W}_x.$$

- Simple **conservative (finite-volume) scheme**:

$$c_j^{n+1} = c_j^n - \alpha (c_{j+1}^n - c_{j-1}^n) + \beta (c_{j-1}^n - 2c_j^n + c_{j+1}^n) + \sqrt{2\beta} \Delta x^{-1/2} (W_{j+\frac{1}{2}}^n - W_{j-\frac{1}{2}}^n)$$

- Dimensionless (CFL) time steps control the stability and the accuracy

$$\alpha = \frac{v\Delta t}{\Delta x} \text{ and } \beta = \frac{\chi\Delta t}{\Delta x^2} = \frac{\alpha}{r}.$$

Finite-Volume Scheme

$$c_t = \mathcal{D} \left[-c\mathbf{v} + \chi \mathcal{G}c + \sqrt{2\chi} \mathcal{W} \right]$$

- Generic **explicit** step of a **finite-volume scheme**

$$\mathbf{c}^{n+1} = \mathbf{c}^n + \mathbf{D} \left[(-\mathbf{V}\mathbf{c}^n + \mathbf{G}\mathbf{c}^n) \Delta t + \sqrt{2\Delta t} \mathbf{W}^n \right],$$

where \mathbf{D} is a discrete vector divergence, \mathbf{G} is a discrete scalar gradient.

- Here \mathbf{W}^n is a vector of random normal variates generated independently at each time step.
- The advection operator $\mathbf{V} \equiv \mathbf{V}(\mathbf{v})$ denotes a discretization of the advective fluxes.
- Note that for **implicit schemes** the discrete operators will themselves be functions of Δt , but not to leading order.

Discrete Fluctuation-Dissipation Balance

- The classical PDE concepts of consistency and stability *continue to apply* for the mean solution of the SPDE, i.e., the **first moment** of the solution.
- For these SPDEs, it is natural to define **weak convergence** based on the **second moments** and focus on the equilibrium distribution.
- Consider a uniform grid. Grid spacing Δx is an artificial length scale: all modes are equally strong at equilibrium.
- We want the discrete solution to satisfy **discrete fluctuation-dissipation balance** [1]

$$\mathbf{S}^{(0)} = \lim_{\Delta t \rightarrow 0} \mathbf{S} = \lim_{\Delta t \rightarrow 0} \langle \mathbf{c} \mathbf{c}^* \rangle = \mathbf{I}.$$

"On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics", by A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell, **CAMCOS, 5(2):149-197, 2010** [arXiv:0906.2425]

Discrete Diffusion

- **Strict local conservation** should be maintained, that is,
 \mathbf{D} : faces \rightarrow cells:

$$\nabla \cdot \mathbf{v} \rightarrow (\mathbf{D}\mathbf{v})_{i,j} = \Delta x^{-1} \left(\mathbf{v}_{i+\frac{1}{2},j}^{(x)} - \mathbf{v}_{i-\frac{1}{2},j}^{(x)} \right) + \Delta y^{-1} \left(\mathbf{v}_{i,j+\frac{1}{2}}^{(y)} - \mathbf{v}_{i,j-\frac{1}{2}}^{(y)} \right).$$

- This means that the stochastic fluxes (white noise) \mathbf{W} must be generated on the **faces of the grid**.
- The **discrete divergence** and **gradient** operators should be **duals**,
 $\mathbf{D}^* = -\mathbf{G}$, giving \mathbf{G} : cells \rightarrow faces:

$$(\nabla c)_x \rightarrow (\mathbf{G}c)_{i+\frac{1}{2},j}^{(x)} = \Delta x^{-1} (c_{i+1,j} - c_{i,j}).$$

- This gives the standard discretization for the negative Laplacian
 $\mathbf{L} = -\mathbf{D}\mathbf{G}$, \mathbf{L} : cells \rightarrow cells:

$$(\mathbf{L}\mathbf{c})_{i,j} = - [\Delta x^{-2} (c_{i-1,j} - 2c_{i,j} + c_{i+1,j}) + \Delta y^{-2} (c_{i,j-1} - 2c_{i,j} + c_{i,j+1})]$$

Discrete Advection

- We assume that the background flow is **discretely-divergence free**, $\mathbf{D}\mathbf{v} = \mathbf{0}$. Otherwise it cannot be in equilibrium!
- The advection should be **constant-preserving**,

$$(\mathbf{D}\mathbf{V}) \mathbf{1} = \mathbf{0}.$$

- The mapping $\mathbf{V}(\mathbf{v})$: cells \rightarrow faces should be such that advection is **skew-adjoint**,

$$[(\mathbf{D}\mathbf{V}) \mathbf{c}] \cdot \mathbf{w} = -\mathbf{c} \cdot [(\mathbf{D}\mathbf{V}) \mathbf{w}],$$

since advection does not dissipate but only transports fluctuations.

- Note that artificial viscosity, upwinding, Godunov methods, limiters, and the like, are all out of consideration!

Skew-Adjoint Advection

- The skew-adjointness property has proven useful in **turbulence modeling** since skew-symmetric advection conserves kinetic energy [2].
- For uniform grids a very simple construction works:

$$(c\mathbf{v})_x \rightarrow (\mathbf{Vc})_{i+\frac{1}{2},j}^{(x)} = v_{i+\frac{1}{2},j}^{(x)} \bar{c}_{i+\frac{1}{2},j}.$$

- Simple averaging can be used to interpolate scalars from cells to faces, for example,

$$\bar{c}_{i+\frac{1}{2},j} = \frac{1}{2} (c_{i+1,j} + c_{i,j}).$$

- If $\mathbf{c} = \mathbf{1}$ is constant, then $\bar{\mathbf{c}} = \mathbf{1}$ as well, and thus this advection is constant preserving:

$$\mathbf{DV1} = \mathbf{Dv} = \mathbf{0}$$

Skew-Adjointness

- The advection discretization simplifies because $\mathbf{D}\mathbf{v} = \mathbf{0}$,

$$(\mathbf{D}\mathbf{V}\mathbf{c})_{i,j} = \Delta x^{-1} \left(v_{i+\frac{1}{2},j}^{(x)} c_{i+1,j} - v_{i-\frac{1}{2},j}^{(x)} c_{i-1,j} \right) + \Delta y^{-1} \left(v_{i,j+\frac{1}{2}}^{(y)} c_{i,j+\frac{1}{2}} - v_{i,j-\frac{1}{2}}^{(y)} c_{i,j-\frac{1}{2}} \right) + c_{i,j} (\mathbf{D}\mathbf{v})_{i,j}.$$

- In one dimension, it is easy to show that this form of advection is skew-adjoint,

$$(\mathbf{V}\mathbf{c})_i = \Delta x^{-1} \left(v_{i+\frac{1}{2}} c_{i+1} - v_{i-\frac{1}{2}} c_{i-1} \right).$$

- All that is needed is to discretize the **advection flow field** on the **faces** of the **c** grid.
- One can use a **staggered** grid (**v** lives on faces), or a **collocated** (cell-centered) grid (**v** lives at cell centers).

Compressible Isothermal Equations

$$\rho_t = -\nabla \cdot (\rho \mathbf{v})$$

$$(\rho c)_t = \rho c_t + c \rho_t = \nabla \cdot \left[-c(\rho \mathbf{v}) + \rho \chi (\nabla c) + \sqrt{2\chi} \widetilde{\mathcal{W}} \right]$$

$$\text{Or the usual } \rho c_t = -(\rho \mathbf{v}) \nabla c + \nabla \cdot \left[\rho \chi (\nabla c) + \sqrt{2\chi} \widetilde{\mathcal{W}} \right]$$

- All scalar fields are discretized in the same manner, let's just call it **cell-centered**.
- It is important to use the same advection discretization for all scalars, since the term $c \rho_t$ ought to cancel $-c [\nabla \cdot (\rho \mathbf{v})]$.
- Notice that the “advection field” is now the background (mean) momentum field, $\mathbf{j} = \rho \mathbf{v}$, and it has to be discretely divergence-free

$$\langle \nabla \cdot (\rho \mathbf{v}) \rangle = \nabla \cdot \langle \rho \mathbf{v} \rangle = \langle \rho \rangle_t = 0.$$

Boundary Conditions

- Consider Dirichlet or von-Neumann conditions for c at the wall $x = 0$,

$$c(x = 0) = 0 \text{ or } \frac{\partial c}{\partial x}|_{x=0} = 0.$$

- Advection velocity must be parallel to a wall, so we do not need to worry about it:

$$\mathbf{c}^{n+1} = \mathbf{c}^n + \mathbf{D} \left[\mathbf{G} \mathbf{c}^n \Delta t + \sqrt{2 \Delta t} \mathbf{W}^n \right].$$

- We want to keep \mathbf{D} the usual **conservative difference** of facial fluxes.

Staggered Boundary Conditions

- The main issue is when the faces of the grid are on the wall, that is, when $\mathbf{W}_{1/2,j}$ is on the boundary itself.
- The gradient \mathbf{G} is chosen to be consistent with boundary conditions, for example,

$$(\mathbf{G}\mathbf{c})_{1/2,j} = \begin{cases} 0 & \text{for von-Neumann} \\ 2c_{1,j}/\Delta x & \text{for Dirichlet } (c_{-1,j} = -c_{1,j}) \end{cases}$$

- Note that the Laplacian $\mathbf{L} = -\mathbf{D}\mathbf{G}$ is formally only first-order accurate for Dirichlet, but this is OK.
- For Dirichlet conditions $\mathbf{D}^* \neq -\mathbf{G}$, so the DFDB condition is violated near the walls, $\mathbf{S}^{(0)} \neq \mathbf{I}$.

Boundary Stochastic Stresses

- We have to add some correlations between stochastic fluxes on the faces near the wall.
- The generalized discrete fluctuation-dissipation balance condition is

$$\mathbf{L} + \mathbf{L}^* = 2\mathbf{D}\langle \mathbf{W}\mathbf{W}^* \rangle \mathbf{D}^* = 2\mathbf{D}\mathbf{C}_W\mathbf{D}^*,$$

and for periodic systems $\mathbf{C}_W = \mathbf{I}$ worked.

- An explicit 1D calculation gives the simple **fix for boundaries**:
 - For von Neumann just set $\mathbf{W}_{1/2,j} = 0$ (gives desired conservation!).
 - For Dirichlet set $\mathbf{W}_{1/2,j} = \sqrt{2}r$, where r is a unit normal variate.

Finite Time Steps

$$\partial_t \mathcal{U} = -\mathcal{L}\mathcal{U} + \sqrt{2\mathcal{L}} \cdot \mathcal{W}$$

- In the linear setting, any temporal discretization is a **linear iteration** of the form:

$$\mathbf{U}^{n+1} = [\mathbf{M}(\Delta t)] \mathbf{U}^n + [\mathbf{N}(\Delta t)] \mathbf{W}^n.$$

- A simple calculation shows that the **discrete covariance**

$$\mathbf{S} = \langle \mathbf{U} \mathbf{U}^* \rangle = \mathbf{S}^{(0)} + (\Delta t) \Delta \mathbf{S} + O(\Delta t^2)$$

satisfies the linear system of equations

$$\mathbf{M} \mathbf{S} \mathbf{M}^* - \mathbf{S} = -\mathbf{N} \mathbf{N}^*.$$

Stochastic Accuracy

- The analysis can be done explicitly in **Fourier space for periodic BCs**:

One small linear system per wavenumber:

$$\widehat{\mathbf{M}}\widehat{\mathbf{S}}\widehat{\mathbf{M}}^* - \widehat{\mathbf{S}} = -\widehat{\mathbf{N}}\widehat{\mathbf{N}}^*.$$

- We want $\widehat{\mathbf{S}}(\mathbf{k}, \omega)$ to converge to the continuum one for **large wavelengths** ($k\Delta x \ll 1$) and **small frequencies** ($\omega\Delta t \ll 1$).
- Of course we want to preserve second-order temporal accuracy for the deterministic case.
- But we also want to achieve $\mathbf{S}^{(0)} = \mathbf{I}$ and $\Delta\mathbf{S} = \mathbf{0}$, i.e., **second-order accurate static covariance**:

$$\mathbf{S} = \mathbf{I} + O(\Delta t^2).$$

Predictor-Corrector Method

- The usual **predictor-corrector** method works:

$$\mathbf{U}^* = \mathbf{U}^n + \left[(\mathbf{L}\mathbf{U}^n) \Delta t + \sqrt{2\Delta t} \mathbf{W}_1 \right],$$

$$\mathbf{U}^{n+1} = \frac{1}{2} \left\{ \mathbf{U}^n + \mathbf{U}^* + \left[(\mathbf{L}\mathbf{U}^*) \Delta t + \sqrt{2\Delta t} \mathbf{W}_2 \right] \right\}.$$

- We have a choice whether to take $\mathbf{W}_1 = \mathbf{W}_2$ or use two independent random numbers per time step.
- Formally it is better to take \mathbf{W}_1 and \mathbf{W}_2 independent, but in practice it seems to depend on the equation and method.
- In any Runge-Kutta integrator one has choices with the how to modify the random numbers from stage to stage.
- To get **stability for small viscosity** we need at least three-stage Runge-Kutta.

Runge-Kutta (RK3) Method

- Adapted a standard TVD **three-stage Runge-Kutta** temporal integrator and **optimized the stochastic accuracy**:

$$\mathbf{U}^{n+\frac{1}{3}} = \mathbf{U}^n + \left[(\mathbf{L}\mathbf{U}^n) \Delta t + \sqrt{2\Delta t} \mathbf{L}\mathbf{W}_1 \right]$$

$$\mathbf{U}^{n+\frac{2}{3}} = \frac{3}{4}\mathbf{U}^n + \frac{1}{4}\mathbf{U}^{n+\frac{1}{3}} + \left[\left(\mathbf{L}\mathbf{U}^{n+\frac{1}{3}} \right) \Delta t + \sqrt{2\Delta t} \mathbf{L}\mathbf{W}_2 \right]$$

$$\mathbf{U}^{n+\frac{2}{3}} = \frac{1}{3}\mathbf{U}^n + \frac{2}{3}\mathbf{U}^{n+\frac{2}{3}} + \left[\left(\mathbf{L}\mathbf{U}^{n+\frac{2}{3}} \right) \Delta t + \sqrt{2\Delta t} \mathbf{L}\mathbf{W}_3 \right]$$

- Two random numbers per cell per time step works best for the stochastic advection-diffusion equation:

$$\mathbf{W}_1 = \mathbf{W}_A - \sqrt{3}\mathbf{W}_B$$

$$\mathbf{W}_2 = \mathbf{W}_A + \sqrt{3}\mathbf{W}_B$$

$$\mathbf{W}_3 = \mathbf{W}_B.$$

Crank-Nicolson

- It turns out that **Crank-Nicolson** gives perfect covariances for **any time step**, $\mathbf{S} = \mathbf{I}$:

$$\mathbf{L}_1 \mathbf{U}^{n+1} = \mathbf{U}^n + \left[(\mathbf{L}_2 \mathbf{U}^n) + \sqrt{2\Delta t} \mathbf{L} \mathbf{W} \right],$$

$$\mathbf{L}_1 = \mathbf{I} - \frac{\Delta t}{2} \mathbf{L} \text{ and } \mathbf{L}_2 = \mathbf{I} + \frac{\Delta t}{2} \mathbf{L}.$$

- This is because of the special property:

$$\mathbf{L}_2^2 - \mathbf{L}_1^2 = 2\Delta t \mathbf{L}.$$

- Of course, doing **advection semi-implicitly** may lead to numerical difficulties.

Collocated Grid

- First consider the simplified velocity equation

$$\mathbf{v}_t = -\mathbf{v} \cdot \nabla \mathbf{v} + \nu \nabla^2 \mathbf{v} + \nabla \cdot (\sqrt{2\nu} \mathcal{W})$$

- Observe that each of the velocity components follows the usual stochastic advection-diffusion equation:

$$\begin{aligned} v_t^{(x)} &= \mathcal{D} \left[-v^{(x)} \mathbf{v} + \nu \mathcal{G} v^{(x)} + \sqrt{2\nu} \mathcal{W}^{(x)} \right], \\ v_t^{(y)} &= \mathcal{D} \left[-v^{(y)} \mathbf{v} + \nu \mathcal{G} v^{(y)} + \sqrt{2\nu} \mathcal{W}^{(y)} \right]. \end{aligned}$$

- In a **collocated** spatial discretization the velocities (or momenta densities) are discretized on the same grid as the scalars (density, concentration), and are advected/diffused in exactly the same way.

Staggered Grid

- For a **staggered** spatial discretization, $v^{(x)}$ lives on its own grid, shifted from the scalar grid by $\Delta x/2$ along the x axis (work with Florencio Balboa).
- The stresses (fluxes) live on the faces of the shifted grid:
 - The **diagonal components** of the stresses live at the **cell centers** (i, j) .
 - The **off-diagonal components** of the stresses live at the **nodes** of the grid $(i + \frac{1}{2}, j + \frac{1}{2})$.
- This applies to the stochastic stress as well:
 Generate two random numbers for each cell center, $W_{i,j}^{(x)}$ and $W_{i,j}^{(y)}$, as well as two random numbers for each node of the grid, $W_{i+\frac{1}{2},j+\frac{1}{2}}^{(x)}$ and $W_{i+\frac{1}{2},j+\frac{1}{2}}^{(y)}$.

Advection for Staggered Grid

- The skew-adjoint advection scheme relies on defining **face-centered** advection velocities what are discretely divergence-free.
- We can obtain these by faces → (cells,nodes) **interpolation**, for example, to advect $\mathbf{v}^{(x)}$ we use averaging:

$$\begin{aligned} \left(v_x^{(x)} \right)_{i,j} &= \frac{1}{2} \left(v_{i-\frac{1}{2},j}^{(x)} + v_{i+\frac{1}{2},j}^{(x)} \right) \\ \left(v_y^{(x)} \right)_{i+\frac{1}{2},j+\frac{1}{2}} &= \frac{1}{2} \left(v_{i,j+\frac{1}{2}}^{(y)} + v_{i+1,j+\frac{1}{2}}^{(y)} \right). \end{aligned}$$

- It is not hard to verify that this advection field is discretely divergence-free if \mathbf{v} is:

$$\left(\mathbf{D}^{(x)} \mathbf{v}^{(x)} \right)_{i+\frac{1}{2},j} = \frac{1}{2} \left[(\mathbf{D}\mathbf{v})_{i,j} + (\mathbf{D}\mathbf{v})_{i+1,j} \right] = \mathbf{0}.$$

Compressible Equations

- For **compressible flows**, the diffusive part of the velocity equation is:

$$\rho \mathbf{v}_t = \nabla \cdot \left[\eta (\nabla \mathbf{v} + \nabla \mathbf{v}^T - \frac{2}{3} (\nabla \cdot \mathbf{v}) \mathbf{I}) + \sqrt{2\eta k_B T} \mathcal{W} \right].$$

- The original formulation by Landau-Lifshitz constructed \mathcal{W} to be a **traceless symmetric tensor**:

$$\langle \mathcal{W}_{ij}(\mathbf{r}, t) \mathcal{W}_{kl}^*(\mathbf{r}', t') \rangle = \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} - \frac{2}{3} \delta_{ij} \delta_{kl} / 3 \right) \delta(t - t') \delta(\mathbf{r} - \mathbf{r}').$$

- This implies that there are correlations between the diagonal components, and also correlations between the off-diagonal components.
- For a **staggered grid**, this poses no problem:
 - The diagonal \mathcal{W}_{ii} lives at cell centers, and can be generated to add to zero (traceless).
 - The off-diagonal part of \mathcal{W} lives at the nodes, and can be generated to be symmetric.

Collocated Compressible Equations

- For a **collocated grid**, however, there are diagonal and off-diagonal components on each face of the grid. But we cannot put correlations between **random numbers on different faces!**
- Instead, we can rewrite the equations as follows:

$$\begin{aligned}\mathbf{v}_t &= \nu \left[\nabla^2 \mathbf{v} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{v}) \right] + \sqrt{2\nu} \left[(\nabla \cdot \mathcal{W}_T) + \sqrt{\frac{1}{3}} \nabla \mathcal{W}_V \right] \\ &= \nu \left(\mathbf{D}_T \mathbf{G}_T + \frac{1}{3} \mathbf{G}_V \mathbf{D}_V \right) \mathbf{v} + \sqrt{2\nu} \left(\mathbf{D}_T \mathcal{W}_T + \sqrt{\frac{1}{3}} \mathbf{G}_V \mathcal{W}_V \right).\end{aligned}$$

- We need discrete **tensorial** divergence and gradient operators $\mathbf{G}_T = -\mathbf{D}_T^*$, and **vectorial** divergence and gradient $\mathbf{G}_V = -\mathbf{D}_V^*$.
- Use the same **MAC** discretization as before for \mathbf{G}_T : cells \rightarrow faces, giving the usual discrete Laplacian.
- Use **Fortin** discretization for \mathbf{D}_V : cells \rightarrow corners, as in approximate projection methods.

Collocated Compressible Code

- We have designed a numerical scheme for the LLNS equations that satisfies discrete fluctuation-dissipation balance and has good temporal accuracy.
- We have developed a parallel three dimensional two species **compressible fluctuating hydrodynamics code** (LBL).

Spontaneous Rayleigh-Taylor mixing of two gases

Incompressible Flows

- For **isothermal incompressible flows**, ignoring advection, the fluctuating velocities follow

$$\partial_t \mathbf{v} = \mathcal{P} \mathbf{w} = \mathcal{P} \left[\nu \nabla^2 \mathbf{v} + \nabla \cdot \left(\sqrt{2\nu} \mathcal{W} \right) \right] = -\mathcal{P} \left[\mathcal{L} \mathbf{v} + \sqrt{2\mathcal{L}} \mathcal{W} \right]$$

$$\langle \mathcal{W}(\mathbf{r}, t) \mathcal{W}^*(\mathbf{r}', t') \rangle = \mathbf{I} \delta(t - t') \delta(\mathbf{r} - \mathbf{r}').$$

- Here \mathcal{P} is the **orthogonal projection** onto the space of divergence-free velocity fields, and it **self-adjoint** and **idempotent**, $\mathcal{P}^2 = \mathcal{P}$,

$$\mathcal{P} = \mathcal{P}^* = \mathbf{I} - \mathcal{G} (\mathcal{D} \mathcal{G})^{-1} \mathcal{D}.$$

- This requires solving a **Poisson problem**

$$\nabla^2 \phi = (\mathcal{D} \mathcal{G}) \phi = \nabla \cdot \mathbf{w},$$

with von-Neumann conditions at stick walls, where $\mathbf{v} = 0$,

$$\nabla \phi \cdot \mathbf{n} = \mathbf{w} \cdot \mathbf{n}.$$

Continuum Fluctuation-Dissipation Balance

- The static covariance at equilibrium is determined from

$$\mathcal{P} \mathcal{L} \mathcal{S} + \mathcal{S} \mathcal{L} \mathcal{P}^* = 2 \mathcal{P} \mathcal{L} \mathcal{P}^* \quad \Rightarrow \quad \mathcal{S} = \mathcal{P}$$

- For **periodic BCs**, in Fourier space,

$$\hat{\mathcal{S}} = \hat{\mathcal{P}} = \mathbf{I} - \hat{\mathbf{k}} \hat{\mathbf{k}}^T$$

showing that the velocity variance is reduced by one degree of freedom due to the incompressibility constraint:

$$\text{Trace } \hat{\mathcal{S}} = \text{Trace } \hat{\mathcal{P}} = d - 1.$$

- For non-periodic conditions, one must **diagonalize the operators** in a suitable basis set (following E and Liu).

Projection Methods

- Consider a stochastic **projection scheme**,

$$\mathbf{v}^{n+1} = \mathbb{P} \left\{ [\mathbf{I} + \mathbf{L} \Delta t] \mathbf{v}^n + \sqrt{2\Delta t} \mathbf{L} \mathbf{W} \right\}.$$

- Here the iteration matrices are

$$\mathbf{M} = \mathbb{P} [\mathbf{I} + \mathbf{L} \Delta t] \text{ and } \mathbf{N} = \mathbb{P} \sqrt{2\Delta t} \mathbf{L}.$$

- Recall that **S** is the solution to the **DFDB condition**:

$$\mathbf{M} \mathbf{S} \mathbf{M}^* - \mathbf{S} = -\mathbf{N} \mathbf{N}^*,$$

which can be expanded in powers of Δt .

Spatial Discretization

- The difficulty is the discretization of the projection operator \mathbb{P} :

Exact (idempotent): $\mathbb{P}_0 = \mathbf{I} - \mathbf{G}(\mathbf{D}\mathbf{G})^{-1}\mathbf{D}$ or

Approximate (non-idempotent): $\tilde{\mathbb{P}} = \mathbf{I} - \mathbf{G}\mathbf{L}^{-1}\mathbf{D}$

- For cell-centered discretizations, there are significant **disadvantages** to using exact projection due to **subgrid decoupling** (multigrid, mesh refinement, Low Mach).
- We define **discrete fluctuation-dissipation balance** to be

$$\mathbf{S} = \mathbb{P}_0 + O(\Delta t),$$

which at least gives the right velocity variance,

$$\text{Trace } \widehat{\mathbb{P}}_0 = \text{Trace } \widehat{\mathcal{P}} = d - 1$$

Approximate Projection

- Observe that $\mathbb{P}_0 \widetilde{\mathbb{P}} = \widetilde{\mathbb{P}} \mathbb{P}_0 = \mathbb{P}_0$ for the Almgren projection [3].
- It turns out that one has to use **exact projections** at least once:

$$\mathbf{v}^{n+1} = \widetilde{\mathbb{P}} [\mathbf{I} + \mathbf{L} \Delta t] \mathbf{v}^n + \mathbb{P}_0 \left(\sqrt{2\Delta t} \mathbf{L} \mathbf{W} \right).$$

- To see this, plug $\mathbf{S} = \mathbb{P}_0 + O(\Delta t)$ into DFDB condition:

$$O(\Delta t^0) : \quad \widetilde{\mathbb{P}} \mathbb{P}_0 \widetilde{\mathbb{P}} - \mathbb{P}_0 = \mathbb{P}_0 - \mathbb{P}_0 = \mathbf{0}$$

$$O(\Delta t^1) : \quad \mathbb{P}_0 \mathbf{L}^* \widetilde{\mathbb{P}} + \widetilde{\mathbb{P}} \mathbf{L} \mathbb{P}_0 = 2\mathbb{P}_0 \mathbf{L} \mathbb{P}_0$$

- For periodic systems, all operators commute, and the $O(\Delta t)$ terms work out, but not obvious for non-periodic systems.

Exact Projection on Staggered Grid

- For exact projections, there is no problem, and in fact simple predictor-corrector (with two projections per step) would give the desired $\mathbf{S} = \mathbb{P}_0 + O(\Delta t^2)$.
- Exact **MAC projection** is easy to do on a **staggered grid**.
- We (with Thomas Fai, Boyce Griffith, Charles Peskin) are now implementing **staggered** grid schemes for incompressible fluctuating hydrodynamics.
- For **non-periodic** systems there are well-known problems with boundary conditions for projection methods in the deterministic context.
- Getting **second-order** deterministic accuracy with one (exact) projection per time step, without messing up DFDB, seems harder.

Stokes Solver on Staggered Grid

- One can avoid projection entirely and directly do a **Stokes solver**, as implemented in IBAMR code.
- The method of Boyce Griffith [4], neglecting advection, solves the semi-implicit problem:

$$\begin{bmatrix} \left(\mathbf{I} - \frac{\Delta t}{2} \mathbf{L}\right) & \mathbf{G}\Delta t \\ -\mathbf{D}\Delta t & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{n+1} \\ \phi \end{bmatrix} = \begin{bmatrix} \left(\mathbf{I} + \frac{\Delta t}{2} \mathbf{L}\right) \mathbf{v}^n + \sqrt{2\Delta t} \mathbf{L} \mathbf{W} \\ \phi \end{bmatrix}$$

- A standard projection method is used as a **preconditioner** for this solver.
- To get second order accuracy for (weak) advection, one can use two iterations ala **predictor-corrector**, or perhaps **Adams-Bashforth**.

Low-Mach Number Equations

- Eliminate acoustics from the full LLNS system using low Mach number asymptotics [5], $P = P_0 + \pi$,

$$P_{EOS}(\rho, c, T) = P_0 = \text{const.}$$

- **Formally** treating the white noise as a regular forcing gives the **low Mach fluctuating hydrodynamics** equations:

$$D_t \rho = -\rho \nabla \cdot \mathbf{v}$$

$$\rho (D_t \mathbf{v}) = -\nabla \pi + \eta \nabla^2 \mathbf{v} + \nabla \cdot \boldsymbol{\Sigma}$$

$$\rho c_p (D_t T) = \mu \nabla^2 T + \nabla \cdot \boldsymbol{\Xi},$$

$$\nabla \cdot \mathbf{v} = \alpha (\rho c_p)^{-1} (\mu \nabla^2 T + \nabla \cdot \boldsymbol{\Xi}),$$

where α is the thermal expansion coefficient, and π is the *non-thermodynamic pressure* π .

- One ought to do derive this more carefully though since there may be **missing terms**.

Isothermal Low-Mach Equations

- For an *isothermal miscible mixture* of two fluids, the low Mach approximation leads to a **non-homogeneous constraint** on the velocity divergence,

$$\rho \nabla \cdot \mathbf{v} = -\beta \nabla \cdot [\rho \chi \nabla c + \Psi],$$

where $\beta = \rho^{-1} (\partial \rho / \partial c)_{P_0, T_0}$ is the solutal expansion coefficient.

- The **incompressible approximation** $\nabla \cdot \mathbf{v} = 0$ is only applicable to isothermal mixtures of **nearly identical** ($\beta \approx 0$) or **immiscible fluids** ($\chi = 0$).
- To model some experiments on **giant fluctuations** we need to handle this case.
- John Bell et al. have developed **collocated low Mach projection**-type schemes.
- There seem to be few **low Mach staggered** schemes out there...

Stochastic Accuracy Out of Equilibrium

- Consider the simplest non-equilibrium model, where there is an imposed concentration gradient:

$$(\delta c)_t + \mathbf{v} \cdot \nabla c_0 = -\chi \nabla^2 (\delta c) + \sqrt{2\chi k_B T} (\nabla \cdot \mathcal{W}_c)$$

$$\rho \mathbf{v}_t = \eta \nabla^2 \mathbf{v} - \nabla \pi + \sqrt{2\eta k_B T} (\nabla \cdot \mathcal{W}_v) \text{ and } \nabla \cdot \mathbf{v} = 0$$

- Solve in Fourier space to obtain the **static structure factors** between velocity and concentration fluctuations:

$$\hat{S}_{c,v_{\parallel}}(\mathbf{k}) = \langle (\widehat{\delta c})(\widehat{v}_{\parallel}^*) \rangle \sim - (k_{\perp}^2 k^{-4}) \|\nabla c_0\|,$$

which is a **power-law of the wavenumber** k .

- At equilibrium we wanted the discrete spectra to be white, i.e., independent of k , to mimic the continuum. What about non-white spectra?

Future Directions

- Develop **staggered** schemes for **compressible** fluctuating hydrodynamics.
- Develop numerical schemes for **incompressible** and **Low-Mach Number** fluctuating hydrodynamics.
- **AMR**: DFDB balance at **coarse-fine mesh interfaces** for compressible and incompressible collocated and staggered schemes.
- (Discrete) fluctuation-dissipation in systems **out of equilibrium**.
- **Direct fluid-structure coupling** between fluctuating hydrodynamics and microstructure (**stochastic immersed boundary method** [6]).
- Ultimately we desire an **Adaptive Mesh and Algorithm Refinement** (AMAR) framework that couples a particle model (**micro**), with compressible fluctuating Navier-Stokes (**meso**), and incompressible or low Mach fluctuating hydro (**macro**).

References/Questions?

A. Donev, E. Vanden-Eijnden, A. L. Garcia, and J. B. Bell.

On the Accuracy of Explicit Finite-Volume Schemes for Fluctuating Hydrodynamics.
Communications in Applied Mathematics and Computational Science, 5(2):149–197, 2010.

Y. Morinishi, TS Lund, OV Vasilyev, and P. Moin.

Fully conservative higher order finite difference schemes for incompressible flow.
J. Comp. Phys., 143(1):90–124, 1998.

A. S. Almgren, J. B. Bell, and W. G. Szymczak.

A numerical method for the incompressible Navier-Stokes equations based on an approximate projection.
SIAM J. Sci. Comput., 17(2):358–369, March 1996.

B.E. Griffith.

An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner.

J. Comp. Phys., 228(20):7565–7595, 2009.

A. Majda and J. Sethian.

The derivation and numerical solution of the equations for zero Mach number combustion.
Combustion science and technology, 42(3):185–205, 1985.

P. J. Atzberger.

Stochastic Eulerian-Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations.
Preprint, [arXiv:1009.5648](https://arxiv.org/abs/1009.5648), 2010.