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Giant Fluctuations

Diffusion in Liquids

There is a common belief that diffusion in gases, liquids and solids is
described by Fick’s law for the concentration c (r, t),

∂tc = ∇ · [χ (r)∇c] .

But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [1, 2].
Berni Alder’s discovery of the long-time VACF tail was the first
indication Brownian motion in liquids is a bit more subtle than
Einstein thought!
The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η) and the molecular diameter σ,

χ ≈ kBT

6πση
.

Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant fluctuations [3].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
[3] showing the enhancement of concentration fluctuations in space (box
scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally [3] and with
hard-disk molecular dynamics [4].
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Fluctuating Hydrodynamics Model

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0. (1)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!), so we cannot advect with it in a non-linear setting.
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Fluctuating Hydrodynamics Model

Resolved (Full) Dynamics

Define a smooth advection velocity field, ∇ · u = 0,

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v,

where the smoothing kernel σ filters out features at scales below a
molecular cutoff scale σ.

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

∂tc + u ·∇c = χ0∇2c, (2)

where χ0 is the bare diffusion coefficient.
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Fluctuating Hydrodynamics Model

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling

χν = const.
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Fluctuating Hydrodynamics Model

Eulerian Overdamped Dynamics

Adiabatic mode elimination gives the following limiting Ito stochastic
advection-diffusion equation,

∂tc + w ·∇c = χ0∇2c + ∇ · [χ (r)∇c] . (3)

The enhanced or fluctuation-induced diffusion is

χ (r) =

∫ ∞
0
〈u (r, t)⊗ u

(
r, t + t ′

)
〉dt ′.

The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′.
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Fluctuating Hydrodynamics Model

Stokes-Einstein Relation

An explicit calculation for Stokes flow gives the explicit result

χ (r) =
kBT

η

∫
σ
(
r, r′
)

G
(
r′, r′′

)
σT
(
r, r′′

)
dr′dr′′, (4)

where G is the Green’s function for steady Stokes flow.
For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

The limiting dynamics is a good approximation if the effective
Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1.
The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that χ0 � χ:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.
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The Physics of Diffusion

Importance of Hydrodynamics

∂tc = χ∇2c −w ·∇c

For hydrodynamically uncorrelated walkers, Dean derived a different
(formal) SPDE [5],

∂tc = χ∇2c + ∇ ·
(√

2χcWc

)
.

In both cases (correlated and uncorrelated walkers) the mean obeys
Fick’s law but the fluctuations are completely different.
For uncorrelated walkers, out of equilibrium the fluctuations develop
very weak long-ranged correlations.
For hydrodynamically correlated walkers, out of equilibrium the
fluctuations exhibit very strong “giant” fluctuations with a power-law
spectrum truncated only by gravity or finite-size effects. These giant
fluctuations have been confirmed experimentally and in MD.
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The Physics of Diffusion

Is Diffusion Irreversible?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion

Effective Dissipation

The ensemble mean of concentration follows Fick’s deterministic
law,

∂t〈c〉 = ∇ · (χeff∇〈c〉) = ∇ · [(χ0 + χ)∇〈c〉] , (5)

which is well-known from stochastic homogenization theory.

The physical behavior of diffusion by thermal velocity fluctuations is
very different from classical Fickian diffusion:
Standard diffusion (χ0) is irreversible and dissipative, but
diffusion by advection (χ) is reversible and conservative.

Spectral power is not decaying as in simple diffusion but is transferred
to smaller scales, like in the turbulent energy cascade.
This gives rise to giant fluctuations.
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The Physics of Diffusion

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics describes these effects.

Due to large separation of time scales between mass and
momentum diffusion we need to find the limiting dynamics to
eliminate the stiffness.

Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

This kind of “eddy” diffusion is very different from Fickian diffusion: it
is reversible (conservative) rather than irreversible (dissipative)!

At macroscopic scales, however, one expects to recover Fick’s
deterministic law, in three, but not in two dimensions.
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