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Giant Fluctuations
Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

Orc =V - [x(r)Vc],

where x = 0 is a diffusion tensor.

But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role.

The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity 7)),

_ keT

= 6mwon’

where o is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [1].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations
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Experimental results by A. Vailati et al. from a microgravity environment
[1] showing the enhancement of concentration fluctuations in space (box
scale is bmm on the side, 1Imm thick).

Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations
Hydrodynamic Correlations

@ The mesoscopic model we develop here applies, to a certain degree of
accuracy, to two seemingly very different situations:

© Molecular diffusion in binary fluid mixtures, notably, diffusion of tagged
particles (e.g., fluorescently-labeled molecules in a FRAP experiment).
@ Diffusion of colloidal particles at low concentrations.

@ The microscopic mechanism of molecular diffusion in liquids is
different from that in either gases or solids due to the effects of
caging;:

@ The Schmidt number is very large (unlike gases) and particles
remain trapped in their cage while fast molecular collisions
(interactions) diffuse momentum and energy.

@ The breaking and movement of cages requires collective
(hydrodynamic) rearrangement and thus the assumption of
independent Brownian walkers is not appropriate.

This is well-appreciated in the colloidal literature and is described as
hydrodynamic “interactions” (really, hydrodynamic correlations), but
we will see that the same applies to molecular diffusion.
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Fluctuating Hydrodynamics Model
Fluctuating Hydrodynamics

@ The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

PO + Vo =nV2v+/2nkgTV - W, and V-v=0. (1)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

<W,-j(r, t)W,f,(r’, t/)> = ((5,‘;(51'/ + 5il5jk) 5(t — tl)(;(l’ — I‘/).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

@ Define a smooth advection velocity field, V - u = 0,

u(r,t) = /a(r,r’)v(r’,t) dr' = o * v,

where the smoothing kernel o filters out features at scales below a
molecular cutoff scale o.
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Fluctuating Hydrodynamics Model

Resolved (Full) Dynamics

e Lagrangian description of a passive tracer diffusing in the fluid,

q=u(q,t) +/2x0 Wa, ()

where Wq(t) is a collection of white-noise processes (independent
among tracers).
In this case o is the typical size of the tracers.

@ Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

drc = —u- Ve + xoVc, (3)

where Yo is the bare diffusion coefficient.

@ The two descriptions are equivalent. When yo = 0,
c(q(t),t) = c(q(0),0) or, due to reversibility,
¢ (a(0), t) = c(a(t),0).

A. Donev (CIMS) Diffusion 2/2014 8 /31



Fluctuating Hydrodynamics Model

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations
[2]. These giant fluctuations have been studied experimentally [1] and
with hard-disk molecular dynamics [3].

Our Goal: Computational modeling of diffusive mixing in liquids in

the presence of thermal fluctuations.
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Overdamped Limit
Separation of Time Scales

@ In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

@ This means that y < v, leading to a Schmidt number

5. =2 103 — 10%.
X

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

@ There exists a limiting (overdamped) dynamics for c in the limit
Sc — o0 in the scaling [4]

XV = const.
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Overdamped Limit
Eulerian Overdamped Dynamics

@ Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan's model
in turbulence),

drc = —w o Ve + xo Ve, (4)
where ® denotes a Stratonovich dot product.

@ The advection velocity w (r, t) is white in time, with covariance

proportional to a Green-Kubo integral of the velocity auto-correlation
function,

(w(r,t)ow(rt)) =20(t—t) /Ooc<u(r, ty@u(r, t+t'))dt,

@ In the lto interpretation, there is enhanced diffusion,
Orc=—w-Vc+xoV2c+ V- [x(r)Vc] (5)

where x (r) is an analog of eddy diffusivity in turbulence.
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Overdamped Limit
Enhanced Diffusivity

@ Let us factorize the integral of the velocity correlation function in
some (infinite dimensional) set of basis functions ¢, (r),

2/Oo<u(r, Heu(r, t+t)dt = ¢ (1)@ ¢ (r).
0 k

For periodic boundaries ¢, can be Fourier modes but in general they
depend on the boundary conditions for the velocity.

@ The notation w ® V¢ is a short-hand for >, (¢, - Vc) o dBy/dt,
where By (t) are independent Brownian motions (Wiener processes).

e Similarly, w - V¢ is shorthand notation for ), (¢, - V) dBy/dt.
@ The enhanced or fluctuation-induced diffusion is

X(r)(/:c<u(r,t)®u( t+t) Zd)k r) ¢ (r

kk/
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Overdamped Limit
Stokes-Einstein Relation

@ An explicit calculation for Stokes flow gives the explicit result
ks T
x (r) = BT o ()G (7)o’ (r,¢")drdr’, (6)

where G is the Green's function for steady Stokes flow.
e For an appropriate filter o, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

kpT [(47)tint if d =2
YT (6 (1-24) ifd=3

@ The limiting dynamics is a good approximation if the effective
Schmidt number Sc = v/xef = v/ (X0 + x) > 1.

@ The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that xo < x:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in

turbulence than to standard Fickian diffusion.
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Overdamped Limit
Lagrangian Overdamped Dynamics

@ In the Lagrangian description, the overdamped limit in the
Stratonovich interpretation is

da =) ¢y () o dBx + /2x0 dBq, (7)
k

where Bg(t) are independent Brownian motions (one per tracer).

@ The single realization of the random field ), ¢, o dBy affects all of
the walkers and induces correlations between the tracers.

@ In the Ito interpretation the Lagrangian description reverts to the
well-known Brownian dynamics for the positions of the N tracers
(Brownian walkers) Q = {qy,...,qy},

dQ = (2ks TM(Q))2 dB + (9 - M (Q)) dt + \/2x0 dBq,  (8)
where the mobility matrix has the form

M (a;,9;) = 77_1/0 (a;,¥) G (F,r") o7 (aj,r") dr'dr”.

A. Donev (CIMS) Diffusion 2/2014 15 /31



Overdamped Limit
The Truth is in the Hydrodynamic Correlations

@ In fact, we could have started from the equations of Brownian
dynamics with the assumption

R (q;,q;
2(:,31 7(']J) - 2le7- Z ok (a;) i (qj') ; (9)
K

M; (a;,q;) =

where R (r,¢') is a symmetric positive-definite kernel that is
divergence-free, V - R (r,r') = 0.

@ The Rotne-Prager-Yamakawa tensor widely used for dilute colloidal
suspensions satisfies these properties; in the far field it is the Oseen
tensor

o\3

R (¥ ¢") = ) > where r =+ —r". (10)

r

(1+f®fy+o<<
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Overdamped Limit
The Truth contd.

@ From (8,9) one can derive a closed linear equation for the empirical
concentration ¢ (r,t) = Z,N:l 9 (q; (t) — r) which is exactly the same
as the one we derived taking the overdamped limit of our Eulerian
description (fluctuating hydrodynamics).

@ Strangely, if one assumes uncorrelated walkers the equation for
c(r, t) is seemingly closed but nonlinear!

@ In both cases (hydrodynamically correlated and uncorrelated walkers)
the mean obeys Fick's law but the fluctuations are completely
different.

@ This shows the subtle but crucial importance of the incompressible
hydrodynamic correlations among the trajectories of the tracers.
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Numerics
Multiscale Numerical Algorithm

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm (implemented on GPUs):

@ Generate a random advection velocity by solving steady Stokes [5]
with random forcing,

Vit =y (Vzv") +AtIV. (\/21/p*1 kg TW”)
V.-v'=0.
using a staggered finite-volume fluctuating hydrodynamics solver [2],
and compute u” = o x v” by filtering.
@ Do a predictor advection-diffusion solve for concentration,
En—l—l o ch &+ E”"‘l)
— )

Cn

At

© Take a corrector step for concentration,

Cn+1_cn , V<Cn+€.n+1) N V2 <Cn+cn+1>
_— = —u - _— XO I — .

= —u"-Vc"+ o V? (

At 2 2
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Numerics
Lagrangian Algorithm

The tracer Lagrangian dynamics can be efficiently simulated without
artificial dissipation (implemented on GPUs):

@ Generate a random advection velocity by solving steady Stokes [5]
with random forcing

VAT =y (VA) + ARV - (Vaup Tk T W)
V.-v"'=0.
using a spectral (FFT-based) algorithm.

@ Filter the velocity with a Gaussian filter (in Fourier space),

w'=0oxv".

@ Use a non-uniform FFT [6] to evaluate u” = w”(q"”), and move the
tracers,
q"! = q+ u"At.

In non-periodic domains one would need to do a corrector step for tracers
(Euler-Heun method for the Stratonovich SDE).
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Numerics
Numerical Issues

@ All algorithms implemented on GPUs for periodic boundaries using
FFTs. We do large simulations in 2D here to study physics, 3D is
implemented but largest grid is O(5123).

@ Eulerian algorithm also implemented in IBAMR library by Boyce
Griffith, to be used for studying the effect of boundary conditions in
experiments on giant fluctuations.

© For Eulerian algorithm the difficulty is in the advection: we need
essentially non-dissipative advection that is also good with
monotonicity preserving.

@ Right now we use a strictly non-dissipative centered advection, for
which we can calculate discrete diffusion enhancement operator
exactly.

@ Also trying more sophisticated minimally-dissipative semi-Lagrangian
advection schemes of John Bell implemented by Sandra May
(unfinished).
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The Physics of Diffusion

Is Diffusion lrreversible?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion
Effective Dissipation

@ The ensemble mean of concentration follows Fick’'s deterministic
law,

9e(c) = V- (xerV(c)) = V - [(x0 + x) V()] (11)
which is well-known from stochastic homogenization theory.

@ The physical behavior of diffusion by thermal velocity fluctuations is
very different from classical Fickian diffusion:
Standard diffusion (o) is irreversible and dissipative, but
diffusion by advection (x) is reversible and conservative.

@ Spectral power is not decaying as in simple diffusion but is transferred
to smaller scales, like in the turbulent energy cascade.

@ This transfer of power is effectively irreversible because power
“disappears”. Can we make this more precise?
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The Physics of Diffusion

Virtual FREP Experiment (xo = 0)

The contour lines become very rough, and eventually fill the whole plane,
unless we put some bare diffusion to smooth things out.

But this generates sub-molecular scale features, compare to hard-disk
molecular dynamics (1M disks):

We should perform spatial coarse-graining to study cs = & * ¢, where
d > o is a mesoscopic measurement (observation) scale.
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The Physics of Diffusion
Lagrangian Tracking of Interfaces
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The Physics of Diffusion
Spatial Coarse-Graining

@ Split the velocity w into a large-scale component wgs and a small-scale
component w,

wW=30%wW+W=ws+ W in law,

where 9 is a filter of mesoscopic width § > o.

o Define ¢s = (c)w as the conditional ensemble average over the
unresolved w keeping the resolved wy fixed.

@ For the Ito equation (5), without any approximations, we obtain,
0:6s = —ws - Vs + xo V28 + V- [x (r) V5], (12)

with an identical effective diffusion coefficient yef = x0 + X-

@ We postulate that this gives a physically reasonable coarse-grained
model for c¢5 = d x c.

A. Donev (CIMS) Diffusion 2/2014 27 /31



The Physics of Diffusion
Coarse-Grained Equations

@ In the Stratonovich interpretation the coarse-grained equation is
Orcs =~ —w5 ® Vs + V- [(xo + Axs) Ves] s (13)
where the diffusion renormalization Ax; (r) [7, 8] is
Axs;=x—0+x*x0". (14)

@ The coarse-grained equation has true dissipation (irreversibility)
since Ay > 0.

@ For § > o in three dimensions we get Axs ~ x and so the
coarse-grained equation becomes Fick's law with Stokes-Einstein's
form for the diffusion coefficient. This hints that
In three dimensions (but not in two dimensions!) at
macroscopic scales Fick’s law applies. At mesoscopic scales
fluctuating hydrodynamics with renormalized transport
coefficients is a good model.
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The Physics of Diffusion

Irreversible vs. Reversible Dynamics

Figure: (Top panel) Diffusive mixing studied using the Lagrangian tracer
algorithm. (Bottom) The spatially-coarse grained concentration cs obtained by
blurring with a Gaussian filter of two different widths.
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The Physics of Diffusion
Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

@ Fluctuating hydrodynamics describes these effects.

Due to large separation of time scales between mass and
momentum diffusion we need to find the limiting dynamics to
eliminate the stiffness.

The overdamped equation is a stochastic advection-diffusion
equation with a white-in-time velocity.

Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

This kind of “eddy" diffusion is very different from Fickian diffusion: it
is reversible (conservative) rather than irreversible (dissipative)!
At macroscopic scales, however, one expects to recover Fick’s
deterministic law, in three, but not in two dimensions.
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The Physics of Diffusion
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