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Giant Fluctuations

Diffusion in Liquids

There is a common belief that diffusion in all sorts of materials,
including gases, liquids and solids, is described by random walks and
Fick’s law for the concentration of labeled (tracer) particles c (r, t),

∂tc = ∇ · [χ (r)∇c] ,

where χ � 0 is a diffusion tensor.
But there is well-known hints that the microscopic origin of Fickian
diffusion is different in liquids from that in gases or solids, and that
thermal velocity fluctuations play a key role [1, 2].
The Stokes-Einstein relation connects mass diffusion to
momentum diffusion (viscosity η),

χ ≈ kBT

6πση
,

where σ is a molecular diameter.
Macroscopic diffusive fluxes in liquids are known to be accompanied
by long-ranged nonequilibrium giant concentration fluctuations [3].
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Giant Fluctuations

Giant Nonequilibrium Fluctuations

Experimental results by A. Vailati et al. from a microgravity environment
[3] showing the enhancement of concentration fluctuations in space (box
scale is 5mm on the side, 1mm thick).
Fluctuations become macrosopically large at macroscopic scales!
They cannot be neglected as a microscopic phenomenon.
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Giant Fluctuations

Hydrodynamic Correlations

The mesoscopic model we develop here applies, to a certain degree of
accuracy, to two seemingly very different situations:

1 Molecular diffusion in binary fluid mixtures, notably, diffusion of tagged
particles (e.g., fluorescently-labeled molecules in a FRAP experiment).

2 Diffusion of colloidal particles at low concentrations.

The microscopic mechanism of molecular diffusion in liquids is
different from that in either gases or solids due to the effects of
caging:

1 The Schmidt number is very large (unlike gases) and particles
remain trapped in their cage while fast molecular collisions
(interactions) diffuse momentum and energy.

2 The breaking and movement of cages requires collective
(hydrodynamic) rearrangement and thus the assumption of
independent Brownian walkers is not appropriate.
This is well-appreciated in the colloidal literature and is described as
hydrodynamic “interactions” (really, hydrodynamic correlations), but
we will see that the same applies to molecular diffusion.
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Fluctuating Hydrodynamics Model

Fluctuating Hydrodynamics

The thermal velocity fluctuations are described by the (unsteady)
fluctuating Stokes equation,

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0. (1)

where the thermal (stochastic) momentum flux is spatio-temporal
white noise,

〈Wij(r, t)W?
kl(r′, t ′)〉 = (δikδjl + δilδjk) δ(t − t ′)δ(r − r′).

The solution of this SPDE is a white-in-space distribution (very far
from smooth!).

Define a smooth advection velocity field, ∇ · u = 0,

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v,

where the smoothing kernel σ filters out features at scales below a
molecular cutoff scale σ.
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Fluctuating Hydrodynamics Model

Resolved (Full) Dynamics

Lagrangian description of a passive tracer diffusing in the fluid,

q̇ = u (q, t) +
√

2χ0 Wq, (2)

where Wq(t) is a collection of white-noise processes (independent
among tracers).
In this case σ is the typical size of the tracers.

Eulerian description of the concentration c (r, t) with an (additive
noise) fluctuating advection-diffusion equation,

∂tc = −u ·∇c + χ0∇2c, (3)

where χ0 is the bare diffusion coefficient.

The two descriptions are equivalent. When χ0 = 0,
c (q(t), t) = c (q(0), 0) or, due to reversibility,
c (q(0), t) = c (q(t), 0).
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Fluctuating Hydrodynamics Model

Fractal Fronts in Diffusive Mixing

Snapshots of concentration in a miscible mixture showing the development
of a rough diffusive interface due to the effect of thermal fluctuations.
These giant fluctuations have been studied experimentally [3] and with
hard-disk molecular dynamics [4].

A. Donev (CIMS) Diffusion 10/2015 9 / 34



Microscopic Justification

Coarse Graining Brownian Motion

The proper way to interpret fluctuating hydrodynamics is via the
theory of coarse-graining (here I follow Pep Espanol) [5].

The first step is to define a discrete set of relevant variables, which
are mesoscopic observables that evolve slowly

Classical Mechanics Fluct Hydrodynamics

Brownian Dynamics Fick
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Microscopic Justification

Fluctuating Hydrodynamics Level

Relevant variables for subgrid (nanoscopic) particles associated to
a grid node µ are:

discrete mass ρµ(t) and momentum density gµ(t) (including the
suspended particle!)
position of the particle (since momentum of particle is not slow!)

r
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Microscopic Justification

Relevant Variables

How to assign the molecules to the coarse-grained nodes?

If one uses a nearest-node assignment, i.e., Voronoi cells, one gets
divergent Green-Kubo transport coefficients.

Instead, one can use the dual Delaunay cells to construct
coarse-grained variables.

gµ =
∑N

i=0 miv0δµ(qi ) follows a conservation law
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Microscopic Justification

Mori-Zwanzig Formalism

One can use the (Mori-)Zwanzig formalism with a Markovian
assumption (due to separation of timescales) to derive a system of
SDEs for the (discrete) coarse-grained variables.

It turns out that these equations are exactly the same as obtained
from a Petrov-Galerkin finite-element discretization of the
fluctuating hydrodynamic SPDEs I wrote earlier, using the same
dual set of basis functions as used for coarse graining.
This provides a link between continuum->discrete and
discrete->continuum approaches.

The TCG gives generalized Green-Kubo formulas for the diffusion
coefficients.

A key difference with the phenomenological equations is that the
discrete delta function or kernel is attached to the grid (artificial!)
rather than to the particle cage (physical),

σ
(
r, r′
)
→ ∆

(
r, r′
)

= δµ (r) δ−1
µ

(
r′
)
.
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Microscopic Justification

Renormalization of Diffusion

The bare diffusion coefficient concerns near-field hydrodynamics
and can be computed using MD from

χ0 =
1

d

∫ τMD

0
dt 〈δV̂ · δV̂〉eq,

where the particle peculiar velocity δV̂ = V̂ − v(R̂) is the velocity
relative to the locally-interpolated fluid velocity.
The bare diffusion coefficient depends on the grid resolution as
is not a material constant.
Observe that χ0 is different from the macroscopic or renormalized
diffusion coefficient

χ =
1

d

∫ τ�τMD

0
dt 〈V̂ · V̂〉eq,

which is independent of the grid resolution but is essentially
impossible to compute using MD since it includes far-field
hydrodynamics.
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Overdamped Limit

Fluctuating Hydrodynamics SPDEs

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , and ∇ · v = 0.

u (r, t) =

∫
σ
(
r, r′
)

v
(
r′, t
)
dr′ ≡ σ ? v

∂tc = −u ·∇c + χ0∇2c
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Overdamped Limit

Separation of Time Scales

In liquids molecules are caged (trapped) for long periods of time as
they collide with neighbors:
Momentum and heat diffuse much faster than does mass.

This means that χ� ν, leading to a Schmidt number

Sc =
ν

χ
∼ 103 − 104.

This extreme stiffness solving the concentration/tracer equation
numerically challenging.

There exists a limiting (overdamped) dynamics for c in the limit
Sc →∞ in the scaling

χν = const.
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Overdamped Limit

Eulerian Overdamped Dynamics

Adiabatic mode elimination gives the following limiting stochastic
advection-diffusion equation (reminiscent of the Kraichnan’s model
in turbulence),

∂tc = −w �∇c + χ0∇2c, (4)

where � denotes a Stratonovich dot product.

The advection velocity w (r, t) is white in time, with covariance
proportional to a Green-Kubo integral of the velocity auto-correlation
function,

〈w (r, t)⊗w
(
r′, t ′

)
〉 = 2 δ

(
t − t ′

) ∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′,

In the Ito interpretation, there is enhanced diffusion,

∂tc = −w ·∇c + χ0∇2c + ∇ · [χ (r)∇c] (5)

where χ (r) is an analog of eddy diffusivity in turbulence.
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Overdamped Limit

Enhanced Diffusivity

Let us factorize the integral of the velocity correlation function in
some (infinite dimensional) set of basis functions φk (r),

2

∫ ∞
0
〈u (r, t)⊗ u

(
r′, t + t ′

)
〉dt ′ =

∑
k

φk (r)⊗ φk

(
r′
)
.

For periodic boundaries φk can be Fourier modes but in general they
depend on the boundary conditions for the velocity.

The notation w �∇c is a short-hand for
∑

k (φk ·∇c) ◦ dBk/dt,
where Bk (t) are independent Brownian motions (Wiener processes).

Similarly, w ·∇c is shorthand notation for
∑

k (φk ·∇c) dBk/dt.

The enhanced or fluctuation-induced diffusion is

χ (r) =

∫ ∞
0
〈u (r, t)⊗ u

(
r, t + t ′

)
〉dt ′ =

1

2

∑
k,k′

φk (r)φk′ (r) .
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Overdamped Limit

Stokes-Einstein Relation

An explicit calculation for Stokes flow gives the explicit result

χ (r) =
kBT

η

∫
σ
(
r, r′
)

G
(
r′, r′′

)
σT
(
r, r′′

)
dr′dr′′, (6)

where G is the Green’s function for steady Stokes flow.
For an appropriate filter σ, this gives Stokes-Einstein formula for
the diffusion coefficient in a finite domain of length L,

χ =
kBT

η

{
(4π)−1 ln L

σ if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

The limiting dynamics is a good approximation if the effective
Schmidt number Sc = ν/χeff = ν/ (χ0 + χ)� 1.
The fact that for many liquids Stokes-Einstein holds as a good
approximation implies that χ0 � χ:
Diffusion in liquids is dominated by advection by thermal
velocity fluctuations, and is more similar to eddy diffusion in
turbulence than to standard Fickian diffusion.
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Overdamped Limit

Relation to Brownian Dynamics

If we take an overdamped limit of the Lagrangian equation we get
the previous equation plus bare diffusion,

dq =
∑
k

φk (q) ◦ dBk +
√

2χ0 dBq, (7)

where Bq(t) are independent Brownian motions (one per tracer).

This is equivalent to the well-known Brownian dynamics where the
mobility matrix has the form

Mij

(
qi ,qj

)
= η−1

∫
σ
(
qi , r

′)G
(
r′, r′′

)
σT
(
qj , r

′′) dr′dr′′.

Note that for r � σ an isotropic+translationally-invariant
Mij

(
qi ,qj

)
= Mij

(
qi − qj ≡ r

)
reverts to the Oseen tensor.

The next-order corrections look exactly like the RPY tensor, but the
behavior at short distances depends on the choice of the kernel σ.
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Numerics

Multiscale Numerical Algorithm

The limiting dynamics can be efficiently simulated using the following
predictor-corrector algorithm (implemented on GPUs):

1 Generate a random advection velocity by solving steady Stokes with
random forcing,

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0.

using a staggered finite-volume fluctuating hydrodynamics solver [6],
and compute un = σ ? vn by filtering.

2 Do a predictor advection-diffusion solve for concentration,

c̃n+1 − cn

∆t
= −un ·∇cn + χ0∇2

(
cn + c̃n+1

2

)
.

3 Take a corrector step for concentration,

cn+1 − cn

∆t
= −un ·∇

(
cn + c̃n+1

2

)
+ χ0∇2

(
cn + cn+1

2

)
.

A. Donev (CIMS) Diffusion 10/2015 24 / 34



Numerics

Lagrangian Algorithm

The tracer Lagrangian dynamics can be efficiently simulated without
artificial dissipation (implemented on GPUs):

1 Generate a random advection velocity by solving steady Stokes with
random forcing

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0.

using a spectral (FFT-based) algorithm.
2 Filter the velocity with a Gaussian filter (in Fourier space),

wn = σ ? vn.

3 Use a non-uniform FFT to evaluate un = wn(qn), and move the
tracers,

qn+1 = q + un∆t.

In non-periodic domains one would need to do a corrector step for tracers
(Euler-Heun method for the Stratonovich SDE).
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Numerics

Numerical Issues

1 All algorithms implemented on GPUs for periodic boundaries using
FFTs. We do large simulations in 2D here to study physics, 3D is
implemented but largest grid is O(5123).

2 Eulerian algorithm also implemented in IBAMR library by Boyce
Griffith, to be used for studying the effect of boundary conditions in
experiments on giant fluctuations.

3 For Eulerian algorithm the difficulty is in the advection: we need
essentially non-dissipative advection that is also good with
monotonicity preserving.

4 Right now we use a strictly non-dissipative centered advection, for
which we can calculate discrete diffusion enhancement operator
exactly.

5 Also trying more sophisticated minimally-dissipative semi-Lagrangian
advection schemes of John Bell implemented by Sandra May
(unfinished).
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The Physics of Diffusion

Is Diffusion Dissipative?
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Figure: The decay of a single-mode initial condition, as obtained from a
Lagrangian simulation with 20482 tracers.
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The Physics of Diffusion

Effective Dissipation

The ensemble mean of concentration follows Fick’s deterministic
law,

∂t〈c〉 = ∇ · (χeff∇〈c〉) = ∇ · [(χ0 + χ)∇〈c〉] , (8)

which is well-known from stochastic homogenization theory.

The physical behavior of diffusion by thermal velocity fluctuations is
very different from classical Fickian diffusion:
Standard diffusion (χ0) is dissipative, but diffusion by advection
(χ) is conservative.

Spectral power is not decaying as in simple diffusion but is transferred
to smaller scales, like in the turbulent energy cascade.

This transfer of power is effectively irreversible because power
“disappears”. Can we make this more precise?
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The Physics of Diffusion

Dissipation as Loss of Information

Figure: (Top panel) Diffusive mixing studied using the Lagrangian tracer
algorithm. (Bottom) The spatially-coarse grained concentration cδ obtained by
blurring with a Gaussian filter of two different widths.
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The Physics of Diffusion

Spatial Coarse-Graining

Split the velocity w into a large-scale component wδ and a small-scale
component w̃,

w = δ ?w + w̃ = wδ + w̃ in law,

where δ is a filter of mesoscopic width δ > σ.

Define c̄δ = 〈c〉w̃ as the conditional ensemble average over the
unresolved w̃ keeping the resolved wδ fixed.

For the Ito equation (5), without any approximations, we obtain,

∂t c̄δ = −wδ ·∇c̄δ + χ0∇2c̄δ + ∇ · [χ (r)∇c̄δ] , (9)

with an identical effective diffusion coefficient χeff = χ0 + χ.

We postulate that this gives a physically reasonable coarse-grained
model for cδ = δ ? c.
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The Physics of Diffusion

Coarse-Grained Equations

In the Stratonovich interpretation the coarse-grained equation is

∂tcδ ≈ −wδ �∇cδ + ∇ · [(χ0 + ∆χδ)∇cδ] , (10)

where the diffusion renormalization ∆χδ (r) is

∆χδ = χ− δ ? χ ? δT . (11)

The coarse-grained equation has true dissipation (irreversibility)
since ∆χδ > 0.

For δ � σ in three dimensions we get ∆χδ ≈ χ and so the
coarse-grained equation becomes Fick’s law with Stokes-Einstein’s
form for the diffusion coefficient. This hints that
In three dimensions (but not in two dimensions!) at
macroscopic scales Fick’s law applies. At mesoscopic scales
fluctuating hydrodynamics with renormalized transport
coefficients is a good model.
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The Physics of Diffusion

Conclusions

Fluctuations are not just a microscopic phenomenon: giant
fluctuations can reach macroscopic dimensions or certainly dimensions
much larger than molecular.

Fluctuating hydrodynamics describes these effects and can be
justified microscopically.

Due to large separation of time scales between mass and
momentum diffusion in liquids we get an overdamped stochastic
advection-diffusion equation.

Diffusion in liquids is strongly affected and in fact dominated by
advection by velocity fluctuations.

This kind of “eddy” diffusion is very different from Fickian diffusion: it
is conservative rather than dissipative!

At macroscopic scales, however, one expects to recover Fick’s
deterministic law, in three, but not in two dimensions.
How to prove this? (law of large numbers, central limit theorem, large
deviation theory)
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The Physics of Diffusion
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