
Reversible Diffusive Mixing by Thermal Velocity FluctuationsThe
importance of hydrodynamic fluctuations to diffusion in liquids

Aleksandar Donev,1, ∗ Thomas G. Fai,1 and Eric Vanden-Eijnden1, †

1Courant Institute of Mathematical Sciences,
New York University, New York, NY 10012

[We need to rewrite abstract so it is different from PRL] We study diffusive
mixing in the presence of thermal fluctuations under the assumption of large Schmidt
number. In this regime we obtain a limiting equation that contains a diffusive thermal
drift term with diffusion coefficient obeying a Stokes-Einstein relation, in addition
to the expected advection by a random velocity. The overdamped limit correctly
reproduces both the enhanced diffusion in the ensemble-averaged mean and the long-
range correlated giant fluctuations in individual realizations of the mixing process, and
is amenable to efficient numerical solution. Through a combination of Eulerian and
Lagrangian numerical methods we demonstrate that diffusion in liquids is not described
by Fick’s irreversible law; rather, diffusion is better modeled as reversible random
advection by thermal velocity fluctuations. We find that the diffusion coefficient is
effectively renormalized to a value that depends on the scale of observation. Our work
reveals somewhat unexpected connections between flows at small scales, dominated by
thermal fluctuations, and flows at large scales, dominated by turbulent fluctuations.

I. Introduction

Diffusion is one of the most ubiquitous transport processes. It is, arguably, the simplest dissipative
mechanism. Fick’s law of diffusion is “derived” in most elementary textbooks, and relates diffusive fluxes to
the gradient of chemical potentials via a diffusion coefficient that is typically thought of as an independent
material property. There are several well-known hints that diffusion in liquids is, in fact, a rather subtle
process. A first hint is that the Stokes-Einstein (SE) prediction for the diffusion coefficient is in surprisingly
reasonable agreement with measurements even in cases where it should not apply at all, such as molecular
diffusion. The fact that the SE prediction involves the viscosity of the fluid, a seemingly independent
transport property, hints at the connection between momentum transport and diffusion. A second hint is
the fact that nonequilibrium diffusive fluxes are known to be accompanied by “giant” long-range correlated
thermal fluctuations [1–3]. The enhancement of large-scale (small wavenumber) concentration fluctuations
during free diffusive mixing has been measured using light scattering and shadowgraphy techniques [2, 4–6].

It is now well-understood that these unexpected features of diffusion in liquids stem from the contributions
of advection by thermal velocity fluctuations [7–10]. The fact that thermal fluctuations exhibit long-ranged
correlations in nonequilibrium settings has long been appreciated in statistical mechanics and nonequilibrium
thermodynamics circles [1, 3]. The overarching importance of nonequilibrium fluctuations to transport
in fluids has not, however, been widely appreciated. The microgravity experiments described in Ref.
[6] show fluctuations of the order of a fewfraction of a percent at millimeter scales. These results are
a striking demonstration that thermal fluctuations are important not just at microscopic and mesoscopic
scales, but also at macroscopic scales. Theoretical studies and computer simulations have verified that
the advection by the thermally fluctuating fluid velocity leads to an enhancement or renormalization of the
diffusion coefficient that depends on the viscosity of the fluid, and, importantly, on the dimensionality and
imposed boundary conditions (in particular, system size) [8–10]. At the mathematical level, the diffusion
enhancement is closely-related to the eddy diffusivity that arises in turbulent flows as mass is advected
by the chaotic fluid velocity [11]. A critical deficiency in all theoretical studies we are aware of is the
fact they invariably rely on uncontrolled approximations. When modeling molecular diffusion, most theories
are based on some form of mode-mode coupling, which is essentially a perturbative analysis in the strength
of the thermal fluctuations [7, 12], starting from linearized fluctuating hydrodynamics. When modeling
diffusion of particles suspended in a (complex) fluid, it is typically assumed that the immersed particle
is either very large, much more massive, or both, compared to the fluid molecules [13].

In either gases, liquids or solids, one can, at least in principle, coarse-grain Hamiltonian dynamics for the
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atoms (at the classical level) to obtain a model of diffusive mass transport at hydrodynamic scales. The
actual coarse-graining procedure is, however, greatly simplified by first coarse-graining the microscopic
dynamics to a simpler stochastic description. In the case of gases, mass transport can be modeled effectively
using kinetic theory with cross-sections obtained from the underlying molecular interactions. In solids,
atoms remain trapped around the crystal lattice sites for long periods of time and infrequently hop, so that
diffusive transport can be modeled effectively at the microscopic level as a Markov Chain with transition
rates that can be obtained using transition state theory. In both of these cases the picture that emerges
is that of independent Brownian walkers performing uncorrelated random walks in continuum (gases) or
on a lattice (solids). By contrast, in liquids the physical picture is rather different and must account for
hydrodynamic correlations among the diffusing particles. In a liquid, molecules become trapped (caged) over
long periods of time, as they collide with their neighbors. Therefore, momentum and energy are exchanged
(diffuse) much faster than the molecules themselves can escape their cage. The main mechanism by which
molecules diffuse is the motion of the whole cage when a large-scale velocity fluctuation (coordinated motion
of parcels of fluid) moves a group of molecules and shifts and rearranges the cage.

Here we formulate a simple model for diffusion in the presence of thermal velocity fluctuations and we use
it to make a precise assessment of the contribution of fluctuations to diffusive transport. In our model the
momentum exchange is modeled using a continuum fluctuating hydrodynamic formalism, and represents the
background fluctuating momentum (velocity) bath with which the diffusing particles (tracers) interact. We
demonstrate that this simple model mimics all of the crucial features of realistic liquids, while also being
tractable analytically and numerically, and showing rich physical behavior. Along the way we will construct
a multiscale numerical method that can efficiently handle the practically-relevant case of very large Schmidt
number. In our model we assume that the diffusing particles follow, on average, the locally-averaged
(thermally fluctuating) velocity of the fluid. We further assume the existence of a large separation of time
scales between the fast dynamics of the velocity (vorticity) fluctuations and the diffusive dynamics (very large
Schmidt number). This is known to be true in most liquids due to the effective caging of molecules in densely-
packed liquid microstructures. Through a mix of theoretical and numerical studies, we demonstrate that over
a broad range of length scales diffusion is better described as a reversible stochastic process, rather than an
irreversible deterministic process. This has the consequence that the diffusion coefficient (effective dissipation
rate) is not a material constant, but rather depends on the scale of observation. Some of these predictions
could be used as a guide to design new experiments to study the collective dynamics of tracer particles.

A. Advection-Diffusion Model

We consider the diffusion of passive tracer particles as they are advected by thermal velocity fluctuations.
This could, for example, model the dynamics of fluorescently-labeled molecules in a Fluorescence Recovery
After Photo-bleaching (FRAP) experiment, the transport of nano-colloidal particles in a nanofluid, or
even the dynamics of the molecules comprising a simple fluid. The hydrodynamic fluctuations of the fluid
velocity v (r, t) will be modeled via the linearized incompressible fluctuating Navier-Stokes equation in
d dimensions, ∇ · v = 0, and

ρ∂tv + ∇π = η∇2v +
√

2ηkBT ∇ ·W , (1)
where W (r, t) denotes a white-noise symmetric tensor field (stochastic momentum flux) with covariance
chosen to obey a fluctuation-dissipation principle [3, 14]. Note that because the noise is additive in (1)
there is no difference between an Ito and a Stratonovich interpretation of the stochastic term.

The details of the coupling between the fluid and the passive tracer are complicated at the microscopic
level [15] and some approximations are required to model the motion of the tracer. The principal effect
of advection by the thermal velocity fluctuations can be captured by assuming that the position of a tracer
q (t) follows a spatially smooth fluctuating velocity field u (r, t),

q̇ = u (q, t) +
√

2χ0 Wq, (2)
where Wq(t) denotes a collection of d independent white-noise processes. Here χ0 is a bare diffusion
coefficient that can be thought of as representing a “random slip” relative to the local fluid velocity coming
from the under-resolved microscopic dynamics, uncorrelated among distinct tracers. In what follows it
will be crucial that u be divergence free, ∇ · u = 0. Here we assume that the velocity felt by the tracer,

u (r, t) =

∫
σ (r, r′)v (r′, t) dr′ ≡ σ ? v, (3)

is obtained by convolving the fluid velocity with a smoothing kernel σ that filters out features at scales
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below a molecular cutoff scale σ. For example, in the α-Navier-Stokes equations [16] the smoothing is
chosen to be an inverse Helmholtz operator, v = u− σ2∇2u, with boundary conditions chosen such that
u is divergence free within the domain of interest [17]. With periodic boundary conditions, in Fourier

space, the inverse Helmholtz operator filter is σ̂k = (1 + σ2k2)
−1
I.

It is important to point out that the smoothing or regularization of the fluctuating velocity field (3) is
necessary. Otherwise, the diffusion coefficient of the tracer particle will diverge leading to an “ultraviolet
catastrophe” familiar in renormalization theories. In the literature a phenomenological cutoff at large
wavenumbers is imposed [7, 8, 12]. We implement this regularization here by applying a smooth filter to v
to generate a velocity u with which we can advect the scalar. Alternatively, one can filter the white-noise
forcing in the velocity equation. In the end, as far as the passive tracers are concerned, the only thing that
matters is the spatio-temporal spectrum of the advective velocity u (r, t).

Let us assume that there are N tracers and define the concentration or density of tracers c (r, t) =∑N
i=1 δ (qi (t)− r). The Lagrangian description (2) of the dynamics of anthe individual tracers formally

corresponds to an Eulerian description for the evolution of the concentration or number density of tracers
c (r, t) via a fluctuating advection-diffusion Ito equation [18, 19],

∂tc = −u ·∇c+ χ0∇2c+ ∇ ·
(√

2χ0cWc

)
, (4)

where Wc (r, t) denotes a white-noise vector field. It is important to point out that this equation is
simply a formal rewriting of the equations of motion for the N tracers and as such contains no physical
content. However, it can be argued that (4) also describes the dynamics of a spatially coarse-grained
smooth concentration field when the density of tracers varies on a length scale much larger than the typical
tracer distance [20, 21]. While a precise mathematical derivation of (4) from (2) is not possible except in
the case of no bare diffusion, χ0 = 0, we believe it is a very plausible fluctuating hydrodynamic model of
self-diffusion or diffusion of dilute passive tracers in liquids.

As an illustration of the importance of thermal fluctuations in diffusive transport we use recently-developed
finite-volume numerical methods [22, 23] for solving (1,4) to model the diffusive mixing between two initially
phase-separated fluids in two dimensions with periodic boundary conditions. In the left panel of Fig. 1 we
show snapshots of the concentration field at several points in time. As seen in the figure, the interface between
the fluids develops large-scale roughness (giant fluctuations) instead of remaining flat as in simple diffusion
[6]. This roughening is accompanied by a slow spreading of the initially-sharp interface, similarly to what
would be observed in deterministic diffusion. Molecular dynamics simulations have confirmed that fluctuating
hydrodynamics accurately models the diffusive mixing process down to essentially molecular scales [24].

II. The Limit of Large Schmidt Number

In liquids, diffusion of mass is much slower than diffusion of momentum, i.e., the Schmidt number is very
large. More precisely, there is a large separation of time scales between the fast dynamics of the velocity
fluctuations and the slow evolution of the concentration. This separation of time scales, to be verified
a posteriori, can be used to perform a formal adiabatic mode-elimination procedure of the fast velocity
degrees of freedom [25, 26] in (1,4). The mode-elimination procedure, which is detailed in Appendix I, gives
a limiting stochastic advection-diffusion equation for the the overdamped dynamics of the concentration,

∂tc = −w �∇c+ χ0∇2c+ ∇ ·
(√

2χ0cWc

)
, (5)

where � denotes a Stratonovich dot product, and the advection velocity w (r, t) is white in time, with
covariance proportional to a Green-Kubo integral of the velocity auto-correlation function,

〈w (r, t)⊗w (r′, t′)〉 = R (r, r′) δ (t− t′) , (6)

R (r, r′) = 2

∫ ∞
0

〈u (r, t)⊗ u (r′, t+ t′)〉dt′. (7)

Similar equations appear in the Kraichnan model of turbulent transport of a passive tracer [27, 28] (see
section 4.1 in [11]). To be more precise, let us factorize the covariance R in some (infinite dimensional)
set of basis functions φk, R (r, r′) =

∑
k,k′ φk (r)φk′ (r′). The notation w �∇c is a short-hand for∑

k (φk ·∇c) ◦ dBk/dt, where Bk (t) are independent Brownian motions (Wiener processes). In our
numerical simulations, we use the Stratonovich form of the equations and apply an Euler-Heun (midpoint
predictor-corrector) temporal integrator to (5).
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Figure 1: Snapshots of concentration showing the development of a rough diffusive interface between two miscible
fluids, starting from concentration being unity in a horizontal (red) stripe occupying one third of the periodic
domain, and zero elsewhere. We show four snapshots in time (evolving from top to bottom). The effective Schmidt
number is Sc ≈ 1.5 · 103 and the bare diffusion is such that χ/χ0 ≈ 5. (Left panel) A single instance of the resolved
dynamics (1,4). (Right panel) An independent instance of the limiting dynamics (5), or, equivalently, (8), obtained
at a very small fraction (10−3 ∼ S−1

c ) of the computational cost of the simulation shown in the left panel.

For calculating ensemble averages, the Ito form of the equation is more useful. In the Ito interpretation,
an unexpected “thermal” or “Ito” drift appears in the limiting equation and takes the form of an enhanced
diffusion,

∂tc = −w ·∇c+ ∇ · [χ (r)∇c] + χ0∇2c+ ∇ ·
(√

2χ0cWc

)
(8)

where the enhancement of the diffusion coefficient is

χ (r) = 1
2
R (r, r) =

∫ ∞
0

〈u (r, t)⊗ u (r, t+ t′)〉dt′. (9)

Here we have made use of the fact that ∇ ·w = 0 and w ·∇c is shorthand notation for
∑

k (φk ·∇c) dBk/dt.
The Ito equation (8) is the key result of the mode elimination procedure. The last two terms in this equation
are deterministic diffusive terms, while the advective term −w ·∇c is a (multiplicative) stochastic noise
term that vanishes in the mean as a consequence of the Ito interpretation. That is, the ensemble average of
the concentration obeys Fick’s law,

∂t〈c〉 = ∇ · (χeff∇〈c〉) = ∇ · [(χ0 + χ)∇〈c〉] , (10)
which is a well-known result (c.f. (255) in Ref. [26]) that can be justified rigorously using stochastic
homogenization theory [26]. In the absence of bare diffusion, χ0 = 0, the same equation (10) holds for all
moments of c.

It is important to note that the stochastic terms in (8) need to be retained to obtain the giant fluctuations
seen in a particular instance (realization) of the diffusive mixing process. The “deterministic” dissipative
term ∇ · [χ (r)∇c] and the stochastic forcing term −w ·∇c are signatures of the same physical process,
advection by thermal velocity fluctuations. This is most clearly seen in the Stratonovich form (5) where
there is only a single stochastic term −w �∇c present. Including the dissipative term but omitting the
random advection term violates fluctuation-dissipation balance and cannot be justified by simply arguing
that the fluctuating term has mean zero. Just like the stochastic noise term

√
2χ0c∇ ·Wc corresponds

(i.e., is in fluctuation-dissipation balance with) to the dissipative term χ0∇2c for a collection of uncorrelated
random walkers, the stochastic noise term −w ·∇c corresponds to the Fickian term ∇ · [χ (r)∇c] for a
collection of hydrodynamically correlated tracers. While the dissipation in both cases looks like simple
diffusion, the important distinction between the two types of microscopic dynamics is made clear in the
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stochastic forcing term.

A. Connections to tThe Stokes-Einstein Relation

In the overdamped limit, the details of the evolution of the fluid velocity do not matter, so long as there
exists a unique time-reversible equilibrium dynamics over which the average in (7) is taken. If one assumes
the linearized fluctuating Navier-Stokes equation (1) holds, then it is not hard to show that∫ ∞

0

〈v (r, t)⊗ v (r′, t+ t′)〉dt′ = kBT

η
G (r, r′) , (11)

where G is the Green’s function (Oseen tensor) for the steady Stokes equation 1 with unit viscosity,
∇π = ∇2v + f subject to ∇ · v = 0 and appropriate boundary conditions. A sample of the Brownian
increment

∑
k φkdBk can be obtained by solving a steady Stokes problem with a suitable random forcing

(fluctuating stress), and then convolving the velocity with the filter σ. The diffusion enhancement (9)
can be obtained explicitly from (11) as

χ (r) =
kBT

η

∫
σ (r, r′)G (r′, r′′)σT (r, r′′) dr′dr′′. (12)

The relation (12) is nothing more than the Stokes-Einstein (SE) relation χ (q) = kBT µ (q), where µ is the
deterministic mobility of one of the tracers, defined via the relation u = µF , where F is a constant force
applied on a tracer at position q and u is the resulting velocity of the tracer [29]. Namely, the applied force
can easily be included in our model as an additional force density f (r) = σT (q, r)F in the steady Stokes
equation, which directly leads to the SE relation (12). This shows that the diffusion enhancement χ (r) is
consistent with the SE relation, as expected, validating our model equations. Our derivation shows that the SE
diffusivity can be seen as an eddy-diffusivity due to advection by a thermally fluctuating random velocity field.

To get an intuitive understanding and an estimate of the diffusion enhancement χ we consider an infinite
isotropic system and introduce a cutoff for the fluctuations in the advective velocity w at both large and
small scales. The large-scale cutoff corresponds to a finite extent of the system L, and the small-scale
cutoff corresponds to the filtering at the molecular scale σ. According to (11), at intermediate scales the
Fourier spectrum of w should match the Green’s function for Stokes flow with unit density and viscosity,

Ĝk = k−2 (I − k−2k ⊗ k) for wavevector k. As an example, we choose an isotropic filtering kernel

σ (r, r′) = ς (‖r − r′‖) I such that the Fourier transform of (12), χ̂k = (kBT/η) |ς̂k|2 Ĝk, has the form

χ̂k =
kBT

η

k2L4

(1 + k4L4) (1 + k2σ2)

(
I − k ⊗ k

k2

)
. (13)

This particular form is chosen for convenience and not because of any particular physical importance;
the important thing is that at intermediate L−1 � k � σ−1 we have ς̂k ≈ 1, that |ς̂k| � 1 for k � L−1

and vanishes at k = 0 2, and that χ̂k decays faster than k−d for k � σ−1.
Converting (13) to real space gives an isotropic enhancement to the diffusion tensor

χ = (2π)−d
∫
χ̂kdk = χI. Note that this Fourier integral is exactly the one that appears in the

linearized steady-state (static) approximate renormalization theory [7, 12] when ν � χ0 (c.f. Eq. (12)
in [9]). Here we obtain the same result with a simple and precise calculation that applies quite generally.
Performing the integral of (13) in spherical coordinates gives an asymptotic expansion in σ/L,

χ =
kBT

η

{
(4π)−1 ln L

σ
if d = 2

(6πσ)−1
(

1−
√

2
2
σ
L

)
if d = 3.

(14)

Note that in three dimensions the coefficients
√

2/2 and the 6π in the denominator in (14) depend on the
exact form of the spectrum χ̂k, but the coefficient of 4π in two dimensions does not depend on the details
of the spectrum at small and large k. For a Gaussian filter σ with standard deviation σ, as employed in our
Lagrangian numerical algorithm, for a periodic domain of length L the diffusion enhancement has a form
similar to (14), χ = kBT (4πη)−1 ln [L/ (ασ)] in two dimensions, where we numerically estimate the coefficient

1 For unbounded three-dimensional systems the Oseen tensor is G (r′, r′′) = (8πr)
−1 (

I + r−2r ⊗ r
)
, where r = r′ − r′′.

2 An alternative approach is to make the lower bound for integrals in Fourier space be k = 2π/L, mimicking a Fourier

series for a cubic box of length L.
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α ≈ 5.5. When L� σ, in three dimensions (14) gives the Stokes-Einstein prediction χ ≈ χSE = kBT/ (6πησ)
for the diffusion coefficient of a slowly-diffusing no-slip rigid sphere of radius σ. In two dimensions, the
effective diffusion coefficient grows logarithmically with system size, in agreement with the Einstein relation
and the Stokes paradox for the mobility of a disk of radius σ. This system-size dependence of the effective
diffusion coefficient was quantitatively verified using steady-state particle simulations in Refs. [9, 30].

It is important to note that (12) continues to hold in bounded domains also, and can be used to obtain
expressions for the position-dependent diffusion coefficient of a tracer particle in confined domains such as
nano-channels [10, 31]. In confined geometry, the Green’s function G can be expressed as an infinite series
G (r, r′) =

∑
k λ
−1
k ϕk (r)ϕk (r′), where ϕk are a set of orthonormal eigenfunctions of the Stokes problem

(with the appropriate boundary conditions), and λk are the associated eigenvalues.
Having obtained and analyzed the limiting dynamics, we are in a position to ascertain the validity of

the initial assumption of large separation of time scales between concentration and momentum diffusion.
Specifically, the limiting equations (5,8) [similarly, (15,16)] are good approximations to (4) [correspondingly,
(2)] if the effective Schmidt number Sc = ν/χeff = ν/ (χ0 + χ) � 1. This is indeed the case in practice
for both simple liquids and especially for macromolecular solutions.

B. Relation to Brownian Dynamics

In the Lagrangian description, the overdamped limit of (2) in the Stratonovich interpretation is

dq =
∑
k

φk (q) ◦ dBk +
√

2χ0 dBq. (15)

The second stochastic term on the right hand side of (15) uses an independent Brownian motion Bq(t)
for each Brownian walker (tracer). The first stochastic forcing term uses a single realization of the random
field

∑
k φk ◦ dBk for all of the walkers, and therefore induces correlations between the trajectories of

the tracers. In the Ito interpretation the Lagrangian overdamped dynamics takes the form

dq =
∑
k

φk (q) dBk + [∂q · χ (q)] dt+
√

2χ0 dBq. (16)

For translationally-invariant systems the last “thermal drift” term vanishes because χ is independent of the
position of tracer. In the more general case, it can be shown from (6) that ∂q ·χ (q) =

∑
k φk (q) ·∇φk (q).

Our overdamped Lagrangian equations (16) are equivalent in form to the standard equations of Brownian
Dynamics (BD), which are commonly used to model dynamics of colloidal particles or polymer chains
in flow [32, 33]. In the absence of external forces, BD is typically presented as solving the Ito equations
of motion for the (correlated) positions of the N tracers (Brownian walkers) Q = {q1, . . . , qN},

dQ = (2kBTM)
1
2 dB + (∂Q ·M ) dt+

√
2χ0 dBq, (17)

where M (Q) is the mobility matrix for the collection of particles. This is equivalent to (16) with the
identification of the mobility tensor for a pair of particles i and j,

M ij

(
qi, qj

)
=

1

2kBT

∑
k,k′

φk (qi)φk′
(
qj
)

=
R2

(
qi, qj

)
2kBT

.

If we write this explicitly for Stokes flow we get (see, for example, Eq. (3.25) in Ref. [34]),

M ij

(
qi, qj

)
= η−1

∫
σ (qi, r

′)G (r′, r′′)σT
(
qj, r

′′) dr′dr′′. (18)

When the particles are far apart,
∥∥qi − qj∥∥� σ, the mobility is well-approximated by the Oseen tensor,

M ij

(
qi, qj

)
≈ η−1G

(
qi, qj

)
. At short distances the divergence of the Oseen tensor is mollified by the

filter, and (18) gives a pairwise mobility very similar to the Rotne-Prager-Yamakawa (RPY) mobility used
in BD simulations [35].

In principle, traditional BD can be used to study the Lagrangian tracer dynamics numerically. This has
in fact been done by some authors in turbulence to study multi-particle correlations of a few passive tracers
[36]. A key difference is that in traditional BD the stochastic terms are generated by applying some form
of square root of the mobility M (Q), which can be expensive for many tracers unless specialized fast
multipole techniques are employed [32, 37]. By contrast, in the equivalent formulation (17) the stochastic
forcing is generated by evaluating a random velocity field at the positions of the tracers. This formulation
leads to a simple Lagrangian algorithm that is linear in the number of tracers N , as we discuss in Section
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II D.

C. Relation to mode-mode coupling and renormalization theories

The fact that thermal velocity fluctuations enhance diffusion is well known and there are several mode-
mode coupling calculations that eventually lead to a similar result to (12). A key difference between our
approach and other derivations is the fact that our calculation replaced typical uncontrolled approximations
by a precise set of initial assumptions, and leads to a rigorous closed-form fluctuating advection-diffusion
equation for the concentration. In traditional perturbative renormalization approaches [7–9, 12, 13], one
starts from equations that already have diffusion (dissipation) in them, and then considers what perturbation
the fluctuations make. In this sense, Fick’s linear law is the zeroth order approximation, and the first order
perturbation is linearized fluctuating hydrodynamics. At the next order the fluctuations are found to give
rise to Fick’s law with a renormalized diffusion obeying a Stokes-Einstein relation [8]. This leads to a
circular argument in which the physical phenomenon included in the lowest order approximation is the
result of higher-order approximations, and an infinite sequence of renormalization steps is required to make
the model self-consistent. Our work shows that the problem is quite simply and straightforwardly solved by
not starting with a model that has diffusion put in as input, rather, by instead starting with a non-linear
model that then self-consistently gives rise to “renormalized” diffusion.

While the physical difference between two and three dimensional fluctuations has been long appreciated
in the literature, we believe our approach is not only simpler, but also more effective and more illuminating
than mode-mode coupling analysis. There has been some confusion in the literature about the applicability
of hydrodynamics to two dimensional systems, and statements to the effect that Stokes-Einstein does not
apply in two dimensions have been made [38]. We showed that for finite systems nonlinear fluctuating
hydrodynamics does lead to Stokes-Einstein relation for the diffusion coefficient in Fick’s law (10) for the
ensemble mean. One of the reasons we are able to easily obtain results is our use of the separation of time
scales. We note, however, that the assumption of infinite Schmidt number, crucial to our approach, has
to fail in very large two dimensional systems because large-scale (slow) velocity modes make a crucial
contribution to diffusion which occurs at faster time scales as the system grows due to the increasing
diffusion coefficient. At finite Schmidt numbers the situation is much more complex and even mode-mode
coupling theories run into problems [39]. The asymptotic behavior of the system of equations (1,4) in the
infinite system size (thermodynamic) limit remains an interesting open question.

D. Multiscale Numerical Algorithms

We have developed finite-volume numerical methods to simulate the limiting dynamics (5), details of
which will be given elsewhere. The spatial discretization of the advective term w�∇c is identical to the one
described in Ref. [22], and is constructed to ensure that advection is discretely non-dissipative. A pseudo-
spectral steady-Stokes solver is used to generate a random advection velocity w. The temporal integrator
uses the implicit midpoint rule for the term χ0∇2c [22], and the Euler-Heun method 3 for the term w�∇c,
as detailed in Appendix II. This approach is chosen because it ensures fluctuation-dissipation balance
between the enhanced diffusion and the random advection. Note that in this numerical method the small-
scale cutoff σ is related to the grid spacing employed in the finite-volume grid. The results of our numerical
algorithm are compared to the results for the resolved dynamics (1,4) in Fig. 1. Visually the two figure
panels are indistinguishable, and more detailed analysis has not found any statistically significant differences.
It is, however, important to point out that the multiscale method employing the limiting dynamics can
reach the same time scales in much less computational effort than the direct numerical simulation because it
avoids the need to resolve the fast velocity fluctuations. Because it plays little role far from equilibrium and
does not affect the giant fluctuations that are the focus of our study, we do not include the multiplicative
noise term ∇ ·

(√
2χ0cWc

)
from the concentration equation in all of our Eulerian numerical simulations.

We cannot study the case of no bare diffusion, χ0 = 0, using an Eulerian grid-based algorithm. Because
advection creates finer and finer scales in the solution, truncation on a regular grid leads to a Gibbs
phenomenon and ultimately numerical instability. We are, in fact, not aware of any Eulerian numerical
method that could be used to reliably study the limiting case χ0 = 0 without introducing artificial dissipation.
The best Eulerian approach is likely a pseudo-spectral method with suitable filtering of small-scale features.

3 The Euler-Heun method is a predictor-corrector algorithm that can be can be thought of as the Stratonovich equivalent

of the Euler-Maruyama method for Ito stochastic differential equations.
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Any such filtering is, however, a form of artificial dissipation and introduces numerical artifacts in the solution.
We have therefore developed a Lagrangian tracer algorithm to solve (15). In the Lagrangian algorithm,

a realization of the advection velocity field w (r, t) is sampled using a spectral steady Stokes solver, a
convolution with a Gaussian function of standard deviation σ is used to filter the small scales, and a
non-uniform FFT algorithm [40] is used to evaluate w(q, t). This approach leads to a scheme in which
the only truncation (discretization) error comes from the Euler-Heun temporal integrator presented in
Appendix II. This is particularly useful when the Lagrangian tracers model actual physical particles, for
example, fluorescently-labeled molecules in a FRAP experiment or colloidal particles in a nanofluid. The
Lagrangian tracing algorithm can also be used to solve (5,8) in the abscence of bare diffusion by employing
the identity c (q(t), t) = c (q(0), 0). Because the Lagrangian trajectories are time-reversible, one can obtain
the concentration at a given position r by starting a tracer from q(0) = r, following its trajectory for
a time t, and then evaluating the initial condition at the new position of the tracer, c (q(0), t) = c (q(t), 0).
The Lagrangian approach leads to a spatial discretization free of artificial dispersion or dissipation, with
the main source of numerical error coming from the fact that a finite number of tracers is employed.

III. Is Diffusion Irreversible?

The well-known fact that the measured diffusion coefficients in molecular liquids and macromolecular
solutions closely match the Stokes-Einstein prediction hints that in realistic fluids diffusive transport is
dominated by advection by the velocity fluctuations, χ� χ0. This suggests that it is relevant to consider
the case of no bare diffusion. If χ0 = 0, the evolution of the mean is dissipative since χeff = χ > 0. However,
each realization follows a strictly reversible dynamics. It is not difficult to appreciate that an instance of
a random process can behave very differently from the ensemble mean. For example, the average over many
randomly dephasing oscillators will produce a decaying amplitude, even though each instance is non-decaying.
It is therefore important to understand the difference in the behavior of the ensemble mean of the diffusive
mixing process, described by (10), and the behavior of an individual realization, described by (5).

Figure 2: The concentration obtained after a substantial decay of a single-mode initial condition
c(r, 0) = sin (2πx/L) sin (2πy/L). Contour lines are also shown, and the same final time t ∼ τ and
color legend is used in all three panels. (Left panel) The ensemble averaged mean, which follows (10). (Middle)
Solution of the stochastic advection-diffusion equation (5) on a grid of size 1024×1024 cells for the case χeff/χ0 ≈ 50.
(Right panel) An instance of the solution of (5) for a grid of size 256× 256 cells, for χeff/χ0 ≈ 5, with the same
χeff = χ0 + χ as the other two panels.

Let us consider the temporal decay of a smooth single-mode initial perturbation c(r, 0) =
sin (2πx/L) sin (2πy/L) in two dimensions, using our numerical method for simulating the overdamped
dynamics (5,8). In the left panel of Fig. 2, we show the ensemble mean of the concentration at a later
time, as obtained by solving the deterministic equation (10). The discrete equivalent of (12) via which
the enhancement χ was obtained will be detailed elsewhere. In the middle panel of the figure, we show
an instance of the concentration at the same time obtained by solving (5,8) using the smallest value of
χ0 that stabilized the numerical scheme. The same giant fluctuations seen in Fig. 1 are revealed, with
the contour lines of the concentration becoming rough even at the scale of the grid spacing. We note
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in passing that we have performed hard-disk molecular dynamics simulation of this mixing process and
have observed the same qualitative behavior seen in the middle panel of Fig. 2.

A. Power Transfer

The conserved quantity4
∫

(c2/2) dr injected via the initial perturbation away from equilibrium is
effectively dissipated through a mechanism similar to the energy cascade observed in turbulent flows.
Advection transfers power from the large length scales to the small length scales, effectively dissipating
the power injected into the large scales via the initial condition. To make this more quantitative, let us
set χ0 = 0 and write (5) in the Fourier domain,

dĉk
dt

= ŵk ~ (ikĉk) ,

where ~ is a combination of Stratonovich dot product and convolution. This equation strictly conserves
the total power

∑
k |ĉk (t)|2 /2 since the advective term simply redistributes the power between the modes.

Let us denote the ensemble average power in mode k with pk (t) = 〈|ĉk (t)|2〉/2. Using straightforward
stochastic calculus we can obtain a simple system of ODEs for the transfer of power between the modes,

dpk
dt

= −
∑
k′ 6=k

(
k · χ̂k−k′ · k

)
pk +

∑
k′ 6=k

(
k′ · χ̂k−k′ · k′

)
pk′ . (19)

The first term on the right hand side of this equation expresses the power lost from mode k to other
modes, while the second term gives the power transferred from other modes to mode k. The total power∑

k pk is conserved because the flow in (15) is unique, ensuring that there is no anomalous dissipation [41].
Consider starting from an initial configuration in which the only mode with nonzero power is wavenumber

k0, ĉk (0) = δk,k0 . The average rate at which power will be transferred from mode k0 to mode k 6= k0

via the advective term −w �∇c is proportional to the spectrum of w at wavenumber k − k0 and is given
by k0 · χ̂k−k0

· k0. The total relative rate at which power is lost (“dissipated”) from mode k0 is given by

k0 · χ · k0, where χ =
∑

k χ̂k for a finite system case, or χ = (2π)−d
∫
χ̂kdk in the infinite system limit.

This is exactly the same rate of dissipation as one would get for ordinary diffusion with diffusion tensor χ. In
simple diffusion, the power of mode k0 would also decay exponentially as exp (−t/τ), where τ = (2χeffk

2
0)
−1

is a decay time. However, all other modes would remain unexcited, as in the left panel of Fig. 2.
The above calculation shows that after a short time t� τ , mode k 6= k0 will have, on average, power

proportional to
(
k0 · χ̂k−k0

· k0

)
t. For large-scale initial pertubations, k0 ≈ 0, the spectrum of c at short

times will therefore be proportional to one of the diagonal elements of χ̂k, which can be read from (13)
to be ∼ k−2 sin2 θ for intermediate wavenumbers, where θ is the angle between k and k0. This is exactly
what we observe in our numerical simulations, as illustrated in Fig. 3.

If there were only random advection, with no bare diffusion, the transfer of energy from the coarse to the fine
scales would continue indefinitely. It is not hard to see that even a very small finite bare diffusion can affect
the results at small scales dramatically, making the limit χ0 → 0+ non-trivial [42]. Namely, the diffusive term
χ0∇2c becomes stronger and stronger at smaller scales (χ0k

2 in Fourier space), and will eventually become
important and dissipate the small scale features created by the random advection. In particular, at late times
of the diffusive decay, t ∼ τ , shown in Fig. 2, one expects that a steadily decaying state will be reached in
which the shape of the spectrum of c does not change as it decays exponentially in time as exp (−t/τ). This
is indeed what we observe, and the shape of the steadily decaying spectrum is shown in Fig. 3. Numerically
we observe that the majority of the bare dissipation occurs at the largest wavenumbers, dissipating the power
injected into small scales from the large and intermediate scales. This is seen in Fig. 3 as a concentration
of the power in the largest wavenumbers. Note however that the shape of the spectrum at the large
wavenumbers is strongly affected by discretization artifacts for the finite volume scheme employed here.

We also study the spectrum of concentration fluctuations with the Lagrangian tracer algorithm described
in Section II D, which allows us to eliminate bare diffusion and numerical grid artifacts. We evaluate
the concentration on a regular grid of Nt = 20482 tracer positions and then use the FFT algorithm to
obtain the spectrum. This would be a very accurate numerical algorithm if the concentration were smooth
on the scale of the grid of tracers, or, equivalently, if the number of tracers were infinite. In reality, as

4 Advection preserves not just the second but all moments of the concentration.
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Figure 3: Power spectrum of an individual realization of the concentration c(r, t) corresponding to the simulation
illustrated in the middle panel in Fig. 2. The power of individual modes k with nearby k is averaged and the result
is shown with a colored solid line, while dashed/dotted lines show power laws k−2, k−3 and k−4 for comparison.

At early times t� τ =
(
2χeffk

2
0

)−1
(red line) power is being transferred from mode k0 ≈ 2π/L ≈ 10−3, initially

excited to have spectral power pk0 ≈ 7 · 108, to the rest of the modes, leading to a spectrum ∼ k−2. At late times
t & τ (magenta and blue lines), a steadily-decaying shape of the spectrum is reached where power transferred
from the larger scales is dissipated at the small scales via bare diffusion. Linearized fluctuating hydrodynamics
predicts a spectrum ∼ k−4 (green line). (Inset) Difference in the spectrum between random advection and simple
diffusion, as obtained using a Lagrangian simulation of the diffusive decay. The parameters used are different
from the main panel and are summarized in Section IV.

the power-law tail in the spectrum gets filled by the advection the concentration becomes less and less
smooth and the spectrum at the larger wavenumbers becomes dominated by discretization artifacts. In
order to filter these artifacts and further emphasize the difference between simple diffusion and advection
by a random field, we consider repeating the Lagrangian calculation with tracers that perform independent
Brownian motions with diffusion coefficient χeff. For simple diffusion, the numerical spectrum is not zero
for k 6= k0 as it should be; rather, due to the finite number of tracers we get pk (t) ∼ N−1

t [1− exp (−t/τ)].
We subtract this background spectrum from the numerical spectrum obtained using the Lagrangian tracing
algorithm. We find that the difference in the spectrum for random advection and simple diffusion follows
a power-law behavior, as illustrated in the inset of Fig. 3.

[Donev: Deleted all of this handwaving] Let us now briefly return to the intricate question
about reversibility of the diffusive decay of the single-mode initial condition ĉk (0) = δk,k0 . Let us
consider starting from the middle panel of Fig. 2 in the absence of bare diffusion. In principle, using the
Brownian paths associated with w in reverse, will generate the same trajectory backward in time, all
the way to the deterministic initial condition. However, observing such a trajectory in practice is very
unlikely, that is, starting with the middle panel of the figure as an initial condition, almost all trajectories
will lead to a further transfer of power into even smaller scales, rather than concentration of the power
into a large scale perturbation. In this sense, the evolution of the far-from-equilibrium (unlikely) initial
condition is effectively irreversible. This can be made more quantitative via a fluctuation theorem of
the form used by Evans and Searles [43] to resolve Loschmidt’s paradox. We do not pursue this here
further and instead focus on understanding the occurrence of irreversibility via elimination of degrees of
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freedom (coarse-graining) [44].

B. Linearized Fluctuating Hydrodynamics

In the literature, linearized fluctuating hydrodynamics is frequently used to obtain the steady-state
spectrum of fluctuations [3]. In the limit of large Schmidt numbers, the standard heuristic approach leads
to the additive-noise equation for the weak fluctuations,

∂tc̃ = −w ·∇〈c〉+ ∇ · [χeff∇c̃] , (20)
where 〈c〉 is the ensemble mean, which follows (10). Equation (20) can easily be solved analytically in the
Fourier domain when ∇〈c〉 = g is an externally applied constant gradient (c.f., for example, Eq. (9) in Ref.
[9]), to obtain a spectrum (g · χ̂k · g) / (χeffk

2) ∼ k−4 for intermediate wavenumbers. More generally, we can
solve (20) numerically with the same algorithm used to solve the full nonlinear equation (5), as described in
Ref. [22]. Namely, we set χ0 = χeff and reduce the magnitude of the fluctuations by a factor ε� 1 by setting
the “temperature” to εkBT , and then simply rescale the spectrum of the fluctuations by a factor ε−1 to obtain
the spectrum of c̃. The result of this calculation is shown in Fig. 3 and the spectrum is indeed seen to follow a
power-law k−4. Note however that the spectrum obtained from (20) is not in a very good match with the spec-
trum obtained by solving (5), which appears closer to k−3 in the two-dimensional setting we study here. Tools
developed in the turbulence literature [27, 28] could potentially be used to study the spectrum of uniformly
decaying steady states without resorting to linearization. Alternatively, the system of differential equations
(19) can be solved numerically to study the average dynamics of the transfer of power between the modes.

By integrating the ∼ k−4 spectrum of concentration fluctuations predicted by (20 it can easily be seen
that in two dimensions the fluctuations of the concentration around the Fickian mean are on the order of
the applied concentration gradient. Therefore, they cannot be considered “microscopic” or “small”, and
linearized fluctuating hydrodynamics does not apply in two dimensions. For example, the solution of
(20) does not necessarily stay positive due to the large fluctuations., as we have observed numerically for
parameters representative of moderately-dense hard-disk systems. This is an inherent pitfall of linearizing
the nonlinear advective term when fluctuations become truly “giant” (as they do in two dimensions). By
contrast, the nonlinear equations preserve the bounds on concentration even when the fluctuations become
strong, since advecting by a smooth (even if fluctuating) velocity obeys a monotonicity principle.

IV. Spatial Coarse-Graining

If there were only random advection, with no bare diffusion, the transfer of energy from the coarse to the
fine scales would continue indefinitely, since the dynamics is reversible and there is nothing to dissipate the
power. However, any features in c at length scales below molecular scales have no clear physical meaning. In
fact, continuum models are inapplicable at those scales. It is expected that not resolving (coarse-graining)
the microscopic scales will lead to true dissipation and irreversibility in the coarse-grained dynamics. Such
coarse-graining can take form of ensemble averaging, or elimination of slow degrees of freedom. In either
case, the loss of knowledge about the small scales will lead to positive entropy production.

Any features in c at length scales below molecular scales have no clear physical meaning. In fact,
continuum models are inapplicable at those scales. Can one replace the molecular scale details, or even all
details of the dynamics at scales below some mesoscopic observation scale δ, by some simple approximation,
for example, a bare diffusion term with suitably chosen χ0? We propose here a way to carry out such spatial
coarse-graining of the overdamped dynamics (5,8) by splitting the velocity w into a large-scale component
wδ and a small-scale component w̃,

w = δ ?w + w̃ = wδ + w̃,
where δ is a filter that smooths scales below some mesoscopic length δ > σ. More precisely, the equality

w = wδ + w̃ is in law and corresponds to splitting the covariance matrix R = δ ?R ? δT + R̃ into a
small-scale and large-scale component, and generating the two parts of w independently.

In Eq. (10), we performed an ensemble average over all realizations of w. We can also, however, only
average over realizations of the unresolved w̃, that is, we can define c̄δ = 〈c〉w̃ as the conditional ensemble
average keeping wδ fixed. We can directly take such a conditional average of the Ito equation (8), to
obtain, without any approximations, a closed equation for c̄δ of exactly the same form as (8),

∂tc̄δ = −wδ ·∇c̄δ + χ0∇2c̄δ + ∇ · [χ (r)∇c̄δ] , (21)
with exactly the same initial condition, and, importantly, with an identical effective diffusion coefficient
χeff = χ0 + χ. However, if we write (21) in the Stratonovich form used by our numerical methods, we see
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that the bare diffusion coefficient needs to be renormalized to take into account the coarse-grained scales,
∂tc̄δ = −wδ �∇c̄δ + ∇ · [(χ0 + ∆χδ)∇c̄δ] , (22)

where the diffusion renormalization ∆χδ is

∆χδ (r) =
1

2
R̃ (r, r) =

1

2
R (r, r)− 1

2

∫
δ (r, r′)R (r′, r′′) δT (r, r′′) dr′dr′′ (23)

Note that the renormalized bare diffusion coefficient χ0 (δ) = χ0 + ∆χδ in (22) is nonzero even if χ0 = 0.
This true dissipation is a remnant of the unresolved (eliminated) small scales. This renormalized bare
diffusion coefficient is not, however, a material constant, but rather, depends on the mesoscopic lengthscale δ.

A. Coarse-Grained Stochastic Advection-Diffusion Model

In reality, we are not interested in the behavior of the conditional average c̄δ because this is not a
measurable quantity. Rather, we are interested in the behavior of individual realizations of the spatially
coarse-grained concentration cδ = δ ? c, which can be measured by observing c at scales larger than some
experimental resolution δ. A physically reasonable coarse-grained model to assume that cδ follows the
same equation as the conditional mean c̄δ,

∂tcδ ≈ −wδ �∇cδ + ∇ · [(χ0 + ∆χδ)∇cδ] , (24)
so long as the initial condition is smooth at the scale δ. One can also use initial condition cδ(0) = δ ? c(0)
since the enhanced bare diffusion quickly damps fine-scale features in the initial condition. In principle,
a Markovian stochastic model can be used to construct an approximation to the fluctuations of c around
c̄δ. It is important to note that, in order to obtain correct equilibrium fluctuations, there should also
be an additional stochastic forcing term in (24). This term would balance the enhanced bare dissipation
and restore fluctuation-dissipation balance in the coarse-grained system [14]. Such a term would, however,
have little effect on the nonequilibrium decay of a large initial perturbation, and we will not include it here.

It is not possible to numerically solve (5) due to the presence of nontrivial dynamics at essentially all length
scales, especially in the absence of bare diffusion. Our arguments suggest that we can instead solve the coarse-
grained equation (24), which has exactly the same form as (5), but in which small scales are not resolved, and
there is increased bare dissipation. This is very easy to do in finite-volume numerical methods for solving (5) by
simply increasing the cell volume and increasing the bare diffusion coefficient accordingly. In the right panel of
Fig. 2, we show the result of an Eulerian simulation performed with a four times coarser grid than the middle
panel. This is roughly equivalent to choosing δ = 4σ and solving (24). The value of χ0 is increased according
to a discrete equivalent of (23) to account for the unresolved scales. This ensures that the effective diffusion
coefficient χeff is the same for all panels of Fig. 2, in agreement with (21). Except at scales not resolved by
the four-times coarser grid, the right panel and the middle panel look similar visually, as confirmed by an
examination of the corresponding Fourier spectra. This suggests that (24) is indeed a good approximation
to the true dynamics of the spatially coarse-grained concentration. A more quantitative comparison between
the spatially smoothed cδ and the conditional average c̄δ will be performed in future studies.

We emphasize that the inclusion of the fluctuating term −wδ�∇cδ in (24) is necessary to obtain the correct
physical behavior, especially in two dimensions. In large three dimensional systems, when the spatial coarse-
graining is performed at macroscopic scales δ � σ, it has often been assumed [3] that one can approximate
(24) with the deterministic Fick’s law (10) and linearize the fluctuations around the deterministic dynamics,
as in (20). To our knowledge there have been no precise mathematical arguments to support this picture
suggested by renormalization arguments [7]. In two dimensions, linearization is certainly not appropriate due
to the logarithmic growth of the effective diffusion coefficient (14) with system size. Thin films may exhibit
an intermediate behavior depending on the scale of observation relative to the thickness of the thin film [45].

B. Irreversibility of Spatial Coarse-Graining

In the coarse-grained dynamics (24), there is irreversible dissipation, ∆χδ > 0, even in the absence of dissipa-
tion in the original dynamics. It is easy to appreciate that elimination of degrees of freedom (coarse-graining)
is necessary in order to obtain dissipative (irreversible) dynamics starting from a non-dissipative (reversible,
even Hamiltonian) dynamics [14]. Consider the specific example of diffusive mixing illustrated in Fig. 1 in the
absence of bare diffusion, χ0 = 0. Since u and w are spatially-smooth velocity fields, advection by u or w, in
the absence of bare diffusion, leads to behavior qualitatively different from diffusion. Specifically, if the initial
concentration c (r, 0) has a sharp interface, this interface will remain sharp at all times, even if it becomes
very rough. This implies that if χ0 = 0, in Fig. 1 one should see only the red and blue colors present in the
initial snapshot, at all times, in every realization, instead of the spectrum of colors actually seen in the figure.
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Figure 4: (Top panel) A snapshot of the concentration c for the diffusive mixing process first shown in Fig. 1, here
in the absence of bare diffusion, χ0 = 0. The top and bottom interface are represented with about half a million
Lagrangian tracers each, and (15) is solved for each tracer numerically. A Gaussian filter with standard deviation σ
is used to filter the velocity field, and the periodic domain has unit cell of shape 512σ×128σ. The space between the
two interfaces is colored black using image-processing tools. (Two color panels on left) The spatially-coarse grained
concentration cδ obtained by blurring the top panel using a Gaussian filter with standard deviation δ, for δ = 1.5σ
(top left) and δ = 3σ (bottom left). (Two color panels on right) An independent snapshot of the conditional average
c̄δ at the same point in time as the panels on the left, obtained by solving (22) with an Eulerian method using a grid of
2048×512 finite-volume cells. A Gaussian filter of width δ is used to filter the discrete velocity and the bare diffusion
χ0 is chosen such that χeff is the same as in the Lagrangian simulations. In the top panel, δ = 1.5σ (six grid cells) and
χeff/χ0 ≈ 9.6, and in the bottom panel δ = 3σ and χeff/χ0 ≈ 3.5. The same settings and random number sequence
was used to generate the random velocities for both panels on the right in order to facilitate a direct comparison.

We turn to our Lagrangian tracer algorithm for solving (15) as a means to track the interface in Fig. 1 with-
out dissipation. For the particular example of diffusive mixing starting from a sharp interface, in the absence
of bare diffusion, tracking the interface is sufficient to reconstruct the solution everywhere. Specifically, c = 0
on one side of the interface (topologically a closed curve on the torus for a periodic system), and c = 1 on the
other side. Therefore, we put a large number of Lagrangian tracers on the flat interface at t = 0, keeping the
distance between neighboring tracers much smaller than the molecular cutoff scale σ. We then simulate a real-
ization of the particles’ trajectories to a later time, connecting neighboring points with straight line segments
to obtain an approximation of the interface. In the top panel of Fig. 4 we show the results of a Lagrangian sim-
ulation of the mixing process first illustrated in Fig. 1. The top and bottom interface are tracked using tracers,
and the concentration in the space between the two interfaces is set to c = 1 (black), c = 0 elsewhere (white).

As illustrated in Fig. 5, an initially straight line of tracers becomes quite contorted at later times, even
though topologically it remains a non-crossing curve at all times. Asymptotically as t → ∞ we expect
that the line will densely cover the plane (i.e., become a space-filling curve), in the same way that simple
diffusion would lead to uniform concentration throughout the domain. Simulating the mixing process
using a Lagrangian algorithm would therefore require an unbounded increase in the number of Lagrangian
tracers with time in order to track the ever-increasing level of fine-scale detail in the interface. Spatial
coarse-graining introduces effective bare diffusion and eliminates the fine-scale details in the mixing front.
In the two color panels on the left in Fig. 4 we show the concentration field cδ = δ ? c smoothed with a
Gaussian filter of width δ = 1.5σ and δ = 3σ, now showing a spectrum of colors due to the spatial averaging.
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Figure 5: A snapshot of a portion of an initially straight line of Lagrangian tracers after some time. The individual
tracers and the straight line segments connecting them are both shown. The length of the shown portion of the
domain is about 20σ.

In the two color panels on the right in Fig. 4 we show statistically-independent samples of the conditional
average c̄δ = 〈c〉w̃ obtained by solving (22) using a finite-volume Eulerian algorithm. A slight modification
of the algorithm used to prepare Figs. 1, 2 and 3 was implemented, in which the discrete random advection
velocity w was filtered in Fourier space with a Gaussian filter of width δ to obtain the wδ used to
discretize the term −wδ �∇cδ. The grid spacing was set to be smaller than δ/6, which ensures that
discretization artifacts are quite small and the Eulerian code can be directly compared to the very accurate
Lagrangian code 5. More details about the numerical scheme will be provided elsewhere. The value of
the coarse-graining length was set to be δ > σ, and the bare diffusion coefficient ∆χδ > 0 was set so that
the effective diffusion coefficient χeff remained the same as in the Lagrangian simulation. One can choose
the balance between bare diffusion and enhanced diffusion essentially arbitrarily by choosing the length
scale δ at which to truncate (filter) the velocity spectrum, and for the top right color panel of the figure
we used the smallest value of δ = 1.5σ that stabilized the numerical method. The coarse-graining length
δ = 3σ is twice larger in the bottom right color panel than in the top right color panel, and therefore
there is enhanced bare diffusion (smoothing). Visually the two color panels on the left and on the right
in Fig. 4 look quite similar. This indicates that the irreversible (24) is indeed a good approximation to
the dynamics of the coarse-grained field cδ, even though the dynamics of c is strictly reversible.

C. A Paradigm for Diffusion

Let us now summarize our discussion of spatial coarse-graining. We start from the overdamped equation
(5) as the most accurate representation of diffusion, although itself an approximation of the true molecular
transport processes. The reference molecular scale σ and bare diffusion coefficient χ0 may in principle be
extracted from comparisons to a more fundamental model such as molecular dynamics, or from experimental
observations. In the end, the precise details of the dynamics at the molecular scale do not matter, since at
the larger scales they only enter through a renormalized bare diffusion coefficient. In fact, the microscopic

5 In the algorithms that we used to solve the equations of fluctuating hydrodynamics on an Eulerian grid and produce Figs. 1, 2

and 3, we rely on the grid discretization to do the truncation (filtering) of the small scales [22, 23]. This bypasses the need to use

a very fine grid with spacing substantially smaller than σ, however, at the cost of introducing grid artifacts at the small scales.
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equation (5) should never be solved directly. Doing so numerically would require using a grid resolution
smaller than the molecular scale, and, in the case of no bare diffusion, would require an infinite resolution due
to the creation of every finer-scale details in the solution even when the initial condition is smooth. Instead,
what one should really calculate is the spatially-coarse grained cδ = δ?c, where δ � σ is a scale of observation.

In order to derive an approximation for the dynamics of cδ, we started by splitting the spectrum of
the velocity fluctuations into a microscopic component w̃ containing the fluctuations at scales below
a mesoscopic length δ, and the rest of the spectrum extending all the way to the macroscopic scale. A
rigorous closed-form equation for the conditional average c̄δ = 〈c〉w̃ is given by (22). A key result of our
numerical experiments illustrated in Fig. 4 is that cδ ≈ c̄δ. We can express the relations between the
different quantities by the following diagram

cδ = δ ? c
↗

c m
↘

c̄δ = 〈c〉w̃
In the coarse-grained approximation (24), the bare diffusion coefficient is renormalized to take into account
the contribution of advection by the unrepresented (eliminated) velocity scales. This makes solving this
equation numerically a much simpler task, since the enhanced bare diffusion dissipates small scale features
in the solution.

The correspondence cδ ⇔ c̄δ is an approximation inspired by (22). Stochastic homogenization theory [11]
can potentially be used to justify (24) for δ � σ. It is unlikely that there can be a rigorous justification for
this identification in the case when there is no separation of scales between the mesoscopic and microscopic
scales, i.e., when δ ∼ σ, even though Fig. 4 shows a very good visual agreement. In future work we will
perform more detailed quantitative comparisons in order to quantify the length and time scales at which
(24) is a good approximation.

Here we studied coarse-graining based on a continuum rather than a discrete microscopic model of
diffusion. An alternative approach to coarse-graining of diffusion is to consider purely discrete models in
which the coarse-grained variables are not smothed fields, as we have done here, but rather, a collection of
discrete variables associated with coarse-graining volumes (cells) of length δ � σ [21, 46]. The accuracy of
such finite-dimensional truncations can, in principle, be evaluated by comparing them to particle simulations.
As an alternative, one can start from the physically-relevant yet tractable continuum model (5) and think
of finite-dimensional truncations as discretizations of (24). In the end, our numerical observations suggest
that at scales much larger than the molecular the behavior of all models is similar, and can be described
by a combination of bare diffusion and advection by a thermally fluctuating velocity field. Understanding
this equivalence mathematically is a challenge common to all dynamical coarse-graining endeavors.

V. Conclusions

We presented a model of diffusion in liquids that captures in a simple yet precise way the contribution
that thermal velocity fluctuations make to the transport of a passive tracer. The standard equations of
fluctuating hydrodynamics [3] need to be regularized below a cutoff molecular scale. We introduced this
regularization by filtering the fluctuating velocity field v at a molecular scale σ in order to obtain a smooth
(in both space and time) velocity u with which we advect the passive tracer. Under the assumption of
large separation of scales between the fast momentum diffusion (collisional transport of momentum) and
the slow mass diffusion, i.e., large Schmidt number, we obtained an overdamped limiting equation for
the concentration. This equation is amenable to numerical simulations, allowing us to simulate diffusive
mixing even in the presence of infinite separation of time scales between mass and momentum diffusion.

In the Stratonovich form the overdamped equation for the concentration of passive tracers is a stochastic
advection-diffusion equation in which the thermal velocity fluctuations enter as a white-in-time random advec-
tion field w with spectrum given by a Green-Kubo formula. For the case of Stokes flow the spectrum of w is
proportional to a regularized Oseen tensor. In the Ito form of the overdamped equation, there is an additional
diffusive term with diffusion coefficient closely related to the Stokes-Einstein prediction for the diffusion coef-
ficient of a sphere of radius σ immersed in the fluid. This enhancement of the diffusion over the bare diffusion
is mathematically similar to the well-known eddy diffusivity in turbulent transport. However, its origin is very
different physically since the random flow here describes very low Reynolds number thermal fluctuations in the
velocity. Unlike previous derivations of the Stokes-Einstein law for diffusion in liquids, our model makes no
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assumptions beyond that of a large Schmidt number and gives a stochastic dynamical description of diffusion.
The sum of the bare and enhanced diffusion coefficients determines the effective diffusion coefficient, which

gives the rate of dissipation in the ensemble mean. In each individual realization of the diffusion process, how-
ever, only bare diffusion is dissipative (irreversible) and the random advection giving rise to the enhanced diffu-
sion is strictly non-dissipative (reversible). We showed that, from the perspective of an initially excited mode
(wavenumber), the advection by the random velocity field effects apparent dissipation in the form of transfer of
power into other modes. The average rate of power dissipation is found to be exactly the same as for simple dif-
fusion with an equal effective diffusion coefficient. However, the physical behavior of each realization is very dif-
ferent from that predicted by Fick’s deterministic law of diffusion. Instead of each mode being independent of
all other modes as in simple (linear) diffusion, the random advection couples all the modes and produces large-
scale giant fluctuations in the concentration. These are manifested in a power-law behavior of the spectrum of
concentrations, as predicted by linearized fluctuating hydrodynamics and observed in recent experiments [4–6].

In typical experiments, such as FRAP measurements of diffusion coefficients, one observes the concentration
spatially-coarse grained at scales much larger than the molecular scale. We discussed how to perform such spa-
tial coarse-graining for the conditional ensemble average over only the unresolved velocity fluctuations. This
conditional mean shows true dissipation in the form of a renormalized diffusion coefficient, a remnant of the
eliminated degrees of freedom. We observed numerically that the equation for the conditional ensemble aver-
age is a good approximation (closure) to the dynamics of individual realizations of the spatially coarse-grained
concentration. This means that, even in the absence of bare diffusion, the coarse-grained concentration shows
dissipative behavior, as we confirmed using Lagrangian numerical simulations. The renormalized diffusion
coefficient in the coarse-grained equation is nonzero even in the absence of bare diffusion, and, in fact, one can
set χ0 = 0 without affecting the behavior of the concentration field at mesoscopic scales. The renormalized
diffusion coefficient is then controlled by the molecular scale σ only, in agreement with Stokes-Einstein’s for-
mula. Contrary to the standard renormalization theory [7, 12] which accounts for the contribution of thermal
fluctuations as a perturbation (correction) to the bare (molecular) diffusion coefficient, in our model diffusion
arises entirely due to the velocity fluctuations and it is not necessary to include an ad hoc bare diffusion term.

In the limit of infinite coarse-graining length scale, at least in three dimensions, one obtains the usual
Fick’s law of diffusion. In two dimensions, however, there is no macroscopic limit because the renormalized
diffusion coefficient grows logarithmically with system size. More importantly, in both two and three
dimensions the behavior of a diffusive mixing process cannot be described by Fick’s law at mesoscopic
scales. One must include random advection by the mesoscopic scales of the velocity fluctuations in order
to reproduce not just the behavior of the mean but also the giant fluctuations observed in individual
realizations (instances). The diffusion renormalization depends sensitively on the spectrum of the velocity
fluctuations, which is affected by boundary conditions (confinement) [9, 10, 45] and even gravity [8]. The
traditional Fick’s diffusion constant is only meaningful under special conditions which may not in fact
be satisfied in many experiments aimed to measure “the” diffusion coefficient. A length scale of observation
(coarse-graining) must be attached to the diffusion coefficient value in order to make it a true “material
constant” that can be used in a predictive model of diffusive transport [9].

Dismissing the effect of thermal fluctuations as “weak” is easy with hand-waving estimates, but not
easily justified upon an in-depth analysis as we have performed here. We hope that our work will spur
interest in designing experiments that carefully examine diffusion at a broad range of length scales. Existing
experiments have been able to measure concentration fluctuations across a wide range of lenghtscales
transverse to the gradient, but fluctuations are averaged longitudinally over essentially macroscopic scales
(thickness of the sample) [4–6]. FRAP experiments routinely look at diffusion at micrometer scales, however,
we are not aware of any work that has even attempted to account for the important effect of thermal
fluctuations. It is perhaps not surprising that diffusion coefficients in liquids are typically only known
to at most a couple of decimal places. The renormalization of the diffusion coefficient by the velocity
fluctuations depends on the geometry of the sample and the initial excitation, and on factors such as
gravity and surface tension. Giant fluctuations are expected to be more easily observed and measured
in thin liquid films due to the quasi-two dimensional geometry [45, 47].

Recently, nonequilibrium fluctuations have been used as a way to measure mass and thermophoretic
diffusion coefficients more accurately [48]. Our work is directly relevant to such efforts, especially when
combined with numerical methods to solve the resulting stochastic advection-diffusion equations [22, 24].
The simple model we considered here is only applicable for self-diffusion or diffusion of tracers in the dilute
regime. Generalizing the model and in particular the mode-elimination procedure to more realistic binary
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fluid mixtures is an important future research direction. To our knowledge, there have been no studies of
the renormalization of diffusion by thermal velocity fluctuations in ternary mixtures. In the future we will
consider extensions of our approach to multispecies liquid mixtures. Such extensions are expected to lead to
a better understanding of the physics of diffusion in fluid mixtures, including a generalized Stokes-Einstein
relation for inter-diffusion coefficients in dilute multispecies solutions.
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Appendix

I. Mode-Elimination Procedure (UNFINISHED)

II. Multiscale Integrators

In this Appendix we describe the algorithms used to numerically solve the limiting Eulerian (5) and
Lagrangian (15) equations. These methods rely on being able to solve the steady Stokes equations with
random forcing, more precisely, to generate a white-in-time random velocity field w with spatial covariance

〈w (r1, t)⊗w (r2, t
′)〉 = δ (t− t′) 2kBT

η

∫
σ (r1, r

′)G (r′, r′′)σT (r2, r
′′) dr′dr′′.

For the simulations described here we rely on periodic boundary conditions, which means that the Fourier
basis diagonalizes the Stokes operator and therefore one can use the Fast Fourier Transform (FFT) to
efficiently solve the steady Stokes equations. This has enabled us to implement both the Eulerian and
the Lagrangian algorithm on Graphics Processing Units (GPUs), which has enabled simulations with as
many as 16 million degrees of freedom. While both algorithms and our codes work in either two or three
dimensions, in order to be able to study power law behavior over many decades we focus in this work on
two dimensional systems (in 2D we use up to 40962 grid cells or wave-indices, but in 3D we are presently
limited to at most 2563 grids due to memory requirements).

In principle one can use either the Ito or Stratonovich forms of the limiting dynamics. The only difference
is in the temporal integrator, namely, Ito equations can be integrated with the Euler-Maruyama (one-step)
scheme, while Stratonovich equations require the Euler-Heun (predictor-corrector) scheme [49]. Here we use
the Stratonovich form of the equations because this ensures discrete fluctuation-dissipation balance between
the random advection (fluctuation) and the effective diffusion (dissipation). For periodic boundaries, the Ito
drift term [∂q · χ (q)] dt in the Lagrangian equation (15) vanishes, and there is no difference between the
different stochastic interpretations.

A. Eulerian Algorithm

We do not include the term ∇·
(√

2χ0cWc

)
from the concentration equation (5) since properly discretizing

this multiplicative noise term is nontrivial, and irrelevant for our discussion. The overdamped Eulerian
dynamics can be efficiently simulated using the following Euler-Heun predictor-corrector temporal algorithm:

1. Generate a random advection velocity by solving the steady Stokes equation with random forcing,

∇πn+ 1
2 = ν

(
∇2vn

)
+ ∆t−

1
2∇ ·

(√
2νρ−1 kBT Wn

)
∇ · vn = 0,

and compute un = σ ? vn by filtering.
2. Do a predictor step for (5),

c̃n+1 − cn

∆t
= −un ·∇cn + χ0∇2

(
cn + c̃n+1

2

)
.
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3. Take a corrector step for concentration,
cn+1 − cn

∆t
= −un ·∇

(
cn + c̃n+1

2

)
+ χ0∇2

(
cn + cn+1

2

)
.

This scheme can be shown to be a weakly first-order accurate temporal integrator for (5). The key to
obtaining the correct diffusion enhancement is the fact that the average of cn and c̃n+1 is used to evaluate
the advective fluxes in the corrector step. The bare diffusive fluxes can be obtained via any consistent
temporal discretization; here we use the Crank-Nicolson or implicit midpoint rule.

We discretize the continuum equations in space using a staggered finite-volume fluctuating hydrodynamics
solver [22] and use an iterative Krylov linear solver [50, 51] to solve the steady Stokes equations. For
Eulerian algorithm the difficulty is in discretizing advection, which is well-known from turbulence modeling.
Because of the transfer of power from the coarse to the fine scales, advection creates fine-scale features
in the solution that cannot be represented on the fixed Eulerian grid. This leads to well-known Gibbs
instability, and requires introducing some form of dissipation at the larger wavenumbers. If there is
sufficient bare diffusion present to smooth the solution at the scale of the grid, then one can use a strictly
non-dissipative discrete advection operator [22]. This strictly non-dissipative centered advection maintain
discrete fluctuation-dissipation balance [23], and for this reason we have used it for the simulations reported
here. If there is insufficient bare diffusion this approach to handling advection fails and one must introduce
some form of artificial dissipation in the discrete advection procedure. In the future we will explore more
sophisticated minimally-dissipative semi-Lagrangian advection schemes [52, 53].

The filtering of the discrete random velocity field vn required to generate un can be done in one of several
ways. The first approach, which we have employed in several prior works on fluctuating hydrodynamics
[9, 22, 24, 54], is to not perform any filtering. This approach was used when preparing Figs. 1 and 2
and 3. In this case the filtering comes from the truncation of the fluctuating fields on the scale of the
grid, that is, σ ≈ ∆x, where ∆x is the grid spacing. In this case, it is possible to explicitly compute the
diffusion enhancement for the spatially-discretized equations by a discrete analog of (12). This tedious
technical calculation will not be presented here for brevity, and we only quote the result in two dimensions.
We obtain that the effective diffusion coefficient for the average concentration in the discrete setting is

χ2D
eff ≈ χ0 +

kBT

4πη
ln

L

α∆x
, (1)

where L� ∆x is the length of the square periodic cell (note that for non-square unit cells the diffusion
enhancement is not isotropic). Here the coefficient α = 1.2 was estimated by computing the inverse of the
discrete Stokes operator numerically. The formula (1) is the discrete equivalent of (14). In three dimensions,
we would obtain

χ3D
eff ≈ χ0 +

kBT

ηα∆x
, (2)

where the coefficient α can be obtained numerically.
An alternative approach to filtering of the velocity was used when preparing Fig. 4. Namely, in order to

directly compare to the Lagrangian algorithm described next, we filtered the discrete advection velocity with
a Gaussian filter in Fourier space. In this case the width of the Gaussian filter σ needs to be substantially
larger than the grid spacing ∆x, for example, σ > 6∆x, in order to obtain a discrete velocity field that is
smooth on the scale of the grid. In such over-resolved simulations the continuum formula for the diffusion
renormalization applies to a very good approximation. Note, however, that the resulting algorithm is not
efficient because of the large grid sizes required to resolve the continuum fields with the grid. In practice,
if additional filtering of the discrete velocity field is desired, it is much more efficient to perform local
partial filtering of the random velocity field using local averaging over two or three neighboring grid cells, as
described in the Appendix of Ref. [24]. Such filtering would change the coefficient α in (1,2) but not affect
the form of the discrete Stokes-Einstein relation.

B. Lagrangian Algorithm

[Thomas: Check this section is consistent with your code]
In the absence of bare dissipation, a faithful discretization of the overdamped equations must resort to a

Lagrangian discretization of advection. Here we present an algorithm that solves the limiting Lagrangian
equation (15) to within numerical roundoff (more precisely, to twelve decimal places when using double-
precision arithmetic) without artificial dissipation. This unprecedented accuracy is possible by using a
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spectral representation of the random flow and advanced non-uniform fast Fourier transform techniques [40].
Note however that the Lagrangian algorithm is limited in efficiency by the number of tracers required to
represent the finest scales, which grows with time, as shown in Fig. 5. For finite collection of tracers, e.g., a
finite number of colloids in a periodic box, the Lagrangian algorithm below can be seen as an alternative to
more standard Brownian/Stokesian Dynamics. Notably, the algorithm below scales perfectly linearly in the
number of particles and accounts for the finite-size effects naturally.

The tracer Lagrangian dynamics (15) can be efficiently simulated using the following Lagrangian algorithm:

1. Generate a random advection velocity by solving the steady Stokes equations with random forcing
in the Fourier domain

ikπ̂n+ 1
2 = −νk2v̂n −

√
2ν kBT

ρ∆t
ik · Ŵ

n

k · v̂n = 0,

using a grid of Nd wave-indices k consistent with the periodicity. Note that different wave-indices
decouple in the Fourier basis and the above procedure requires only solving a system of d equations for
every wavenumber.

2. Filter the velocity with a Gaussian filter (in Fourier space),
ŵn = σ̂ ? v̂n.

Note the Fourier transform σ̂ of a Gaussian filter σ with standard deviation σ is also a Gaussian with
standard deviation σ−1 [Thomas: Check].

3. Use a non-uniform FFT [40] to evaluate the velocity at the locations of the tracers, un = wn (qn).
4. Move the tracers using a forward Euler step,

q̃n+1 = q + un∆t.

5. For periodic domains there is no difference between different stochastic interpretations of the Lagrangian
equations, and one can set qn+1 = q̃n+1. For non-periodic domains, one has to perform a corrector step,

qn+1 = q +
(
un + ũn+1

) ∆t

2
,

where ũn+1 = wn
(
q̃n+1

)
.

The key to obtaining near roundoff accuracy is the choice of the number of Fourier modes used to represent
the fluctuating velocity field. Assume that the Gaussian filter σ̂ decays to roundoff tolerance above a
wavenumber k0 ≈ 3σ. This means that the Stokes equations only need to be solved for wavenumbers smaller
than k0. In order to also be able to perform the non-uniform FFT with twelve digits of accuracy using a
uniform FFT using the algorithm described in Ref. [40], it is necessary to include redundant modes and set
the cutoff wavenumber to 2k0. This determines the size of the grid used to perform the forward and inverse
FFT transforms to N > 2k0L/π, which can be a large number but the algorithm is easily parallelized on
GPUs.

The Lagrangian algorithm described here solves the continuum equations, and the diffusion enhancement
can be determined from the continuum formula (12) in Fourier space. For a Gaussian filter of standard
deviation σ the relation (1) with ∆x = σ holds, where we numerically estimate the coefficient α ≈ 5.5.
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