J. Computational Physics Manuscript

A Linear Programming Algorithm to Test for Jamming in

Hard-Sphere Packings

Aleksandar Donev,"? Salvatore Torquato,?? * Frank H. Stillinger,> and Robert Connelly*

"Program in Applied and Computational Mathematics,
Princeton University, Princeton NJ 08544
“Princeton Materials Institute, Princeton University, Princeton NJ 08544
SDepartment of Chemistry, Princeton University, Princeton NJ 08544
4Department of Mathematics, Cornell University, Ithaca NY 14853
(Dated: 26th November 2003)

* Electronic address: torquato@electron.princeton.edu

Abstract

Jamming in hard-particle packings has been the subject of considerable interest in recent years.
In a paper by Torquato and Stillinger [J.Phys.Chem. B, 105 (2001)], a classification scheme of
jammed packings into hierarchical categories of locally, collectively and strictly jammed configura-
tions has been proposed. They suggest that these jamming categories can be tested using numerical
algorithms that analyze an equivalent contact network of the packing under applied displacements,
but leave the design of such algorithms as a future task. In this work, we present a rigorous and
practical algorithm to assess whether an ideal hard-sphere packing in two or three dimensions is
jammed according to the aforementioned categories. The algorithm is based on linear program-
ming and is applicable to regular as well as random packings of finite size with hard-wall and
periodic boundary conditions. If the packing is not jammed, the algorithm yields representative
multi-particle unjamming motions. Furthermore, we extend the jamming categories and the testing
algorithm to packings with significant interparticle gaps. We describe in detail two variants of the
proposed randomized linear programming approach to test for jamming in hard-sphere packings.
The first algorithm treats ideal packings in which particles form perfect contacts. Another algo-
rithm treats the case of jamming in packings with significant interparticle gaps. This extended
algorithm allows one to explore more fully the nature of the feasible particle displacements. We
have implemented the algorithms and applied them to ordered as well as random packings of disks
and spheres with periodic boundary conditions. Some representative results for large disordered
disk and sphere packings are given, but more robust and efficient implementations as well as further

applications (e.g., nonspherical particles) are anticipated for the future.

I. INTRODUCTION

Packings of hard particles interacting only with infinite repulsive pairwise forces on con-
tact are applicable as models of complex many-body systems because repulsive interactions
are the primary factor in determining their structure. Hard-particle packings are there-
fore widely used as simple models for granular media [9, 16|, glasses [29], liquids [11], and
other random media [22], to mention a few examples. Furthermore, hard-particle packings,
and especially hard-sphere packings, have inspired mathematicians and been the source of
numerous challenging (many still open) theoretical problems [1].

We focus our attention in this paper on the venerable idealized hard-sphere model, i.e.,
the only interparticle interaction is an infinite repulsion for overlapping particles. This
idealization is crucial because it enables us to be precise about the important concept of
“jamming.” This concept is closely related to that of rigid or stable packings in the math-
ematical literature. In the present work, hard-sphere jamming is presented from a rigorous
perspective by focusing on the geometry of the final packed states. Rigidity of central-force
(spring) networks, and in particular rigidity percolation, has been the subject of extensive
work in the physics literature [17, 21]. For disordered generic networks, the question of
whether a network is rigid or not becomes combinatorial in nature and there are very effi-
cient algorithms that give the answer for systems with millions of degrees of freedom on a
personal workstation, at least in two dimensions [13]. However, for particle packings, geome-
try is crucial, and the problem of verifying jamming or rigidity is significantly more difficult.
Nonetheless, the algorithm presented here is rigorous and polynomial (it is in the same class
as linear programming problems) for ideal packings (as defined in Section ITA), and thus
appreciably enlarges the scope of rigidity problems which can be studied computationally.

There are still many important and challenging questions open even for the simplest type
of hard-particle packings, i.e., packing of perfectly impenetrable equal (congruent) spheres
(called monodisperse packings in the physics literature). One category of open problems
pertains to the enumeration and classification of disordered disk and sphere packings, such
as the precise identification and quantitative description of the maximally random jammed
(MRJ) state [25], which has supplanted the ill-defined “random close packed” (RCP) state.
Others pertain to the study of ordered systems and finding packing structures with extremal

properties, such as the lowest or highest (for packings of unequal spheres, called polydisperse

packings in the physics literature) density jammed disk or sphere packings, for the various
jamming categories described below [10, 19]. Numerical algorithms have long been the pri-
mary tool for studying random packings quantitatively. In this work, we take an important
step toward future studies aimed at answering the challenging questions posed above by
designing tools for algorithmic assessment of the jamming category of finite packings.

In section II, we present the conceptual theoretical framework underlying this work.
Specifically, we review and expand on the hierarchical classification scheme for jammed
packings into locally, collectively and strictly jammed packings proposed in Ref. [24]. In
section III, we present a randomized linear programming algorithm for finding unjamming
motions within the approximation of small displacements, focusing on periodic boundary
conditions in section IV. This algorithm is rigorous when applied to ideal packings, where
interparticle gaps are very small. In section V, we extend the concepts of jamming and the
randomized linear programming algorithm to packings that have significant interparticle gaps
and do not fit well in the rigorous framework suitable for ideal packings. We also introduce
a randomized sequential loading algorithm to study nonideal packings. We discuss the two
algorithms in detail and describe a preliminary, but efficient, implementation in Section VI.
Results of physical relevance obtained using this implementation are presented in a separate
publication [8]. Here we only give some representative illustrations and timing statistics in
order to illustrate the utility of the proposed algorithms. We focus here on sphere packings.
However, extensions to packings of nonspherical smooth convex particles, and in particular,
packings of ellipsoids, are possible and are the subject of current and future work. The ideas
that we employ here are drawn heavily from the mathematics literature [2, 4, 5, 21]. Some
mathematical preliminaries are given here, and more technical points are deferred to the

Appendix.

II. JAMMING IN HARD-PARTICLE PACKINGS

The physical intuition behind the word jamming is strong: It connotes that a given
configuration is “frozen” or “trapped”. Two main approaches can be taken to define jamming,
kinematic or static. In the kinematic approach, one considers the motion of particles away

from their current positions, and this approach is for example relevant to the study of flow

in granular media!. The term jammed seems most appropriate here. In the static approach,
one considers the mechanical properties of the packing and its ability to resist external
forces?. The term rigid is often used among physicists in relation to such considerations.
However, due to the correspondence between kinematic and static properties, i.e. strains
and stresses, these two different views are largely equivalent.

In this paper we largely adopt a kinematic approach, as we focus on the geometry of
packings, but the reader should bear in mind the inherent ties to static approaches. We first
give a general approach to jamming in hard-particle packings in section IT A, and then focus
on the fundamental and rigorous case of packings with ideal interparticle contacts (i.e., no
interparticle gaps) in section II B, studied both in the physics and mathematics literature.
Finally, we connect these definitions to the kinematic concept of unjamming motion in
section IIC, and also to static concepts in section IID. Since we are attempting to bring
together several apparently different approaches and terminologies, as well as generalize to
packings with interparticle gaps, the exposition will be gradual and more detailed discussion,

illustrations and proofs are delayed to later parts of this paper.

A. Jamming as Isolation in Configuration Space

Capitalized bold letters will be used to denote dN-dimensional vectors which correspond
to the d-dimensional vectors of all N of the particles. Note also that we often use “sphere”
and “ellipsoid” in any dimension d, but sometimes we will emphasize “disk” and “ellipse” in
two dimensions for clarity.

A hard-particle packing P(R) is characterized by the positions and orientations of N
nonoverlapping particles, which give the configuration R. In particular, a sphere packing
in a finite region in d-dimensional Euclidean space R? is characterized only by the positions
of the sphere centers R = (ry,...,ry),

Di+D; . .
P(R):{rieéﬁd, i=1,...,N : ||ri—rj||2%w7éz},

where the diameter of the i*® sphere is D;. Two configurations are identical if all interparticle

distances are the same, i.e., if the configurations are related via a rigid-body motion (and pos-

! In particular, the cessation of flow as jamming is approached.
2 In particular, the infinite elastic moduli near jamming.

sibly a mirror inversion in addition). We focus here on monodisperse (i.e., D; = D = const.)
hard-sphere packings for simplicity, but some of the conclusions are in fact applicable to
particles of any strictly convex shape, and in particular ellipsoids. In the case of ellipsoids
though, there are d(d — 1) /2 additional degrees of freedom per particle associated with
the possible rotations of the particles, and these need to be considered as part of the con-
figuration. We are currently working on generalizations and extensions of the theory and
algorithms to packings of ellipsoids.

Our perspective on jamming focuses on the set Jr of configurations around a particu-
lar initial configuration R reachable via continuous displacements of the spheres, subject
to nonoverlapping constraints and certain boundary conditions. An illustration of this is
provided in Fig. 1 for a very simple case in which only one disk is free to move, i.e., there
are only two degrees of freedom. If Jg is isolated in configuration space, we call it a basin
of jamming, and the configuration R € Jgr determines a jammed packing P(R). To
relate this to the physical intuition of jamming, we must further ask that the extent of Jg be
small, in the sense that only small continuous displacements of the particles from their initial
configurations are possible for all R € Jr. The natural length scale defining the meaning of
“small” is the typical size of the particles, and also the typical size of the interparticle gaps.
A more strict mathematical definition of jamming considers packings that have perfect in-
terparticle contacts, which we will call ideal packings. For a jammed ideal packing R is an
isolated point in configuration space, i.e., Jr = {R}, so that the particles cannot at all be
displaced continuously from their current configuration (modulo trivial rigid-body motions).
We focus first on this strict definition, and we will return to the issue of interparticle gaps
later. By changing the boundary conditions, we get several different categories of jamming,

namely local, collective and strict jamming.

B. Three Jamming Categories

First we repeat, with slight modifications as in Ref. [23], the definitions of several hierar-
chical jamming categories as taken from Ref. [24], and later we make them mathematically
specific and rigorous for several different types of sphere packings. When defining jamming,
one must be very specific about the type of boundary conditions imposed on the packing,

for example, the packing may be contained inside a hard-wall container. For now we simply

assume that some boundary conditions are imposed, and we specialize the meaning of the
terms boundary and boundary deformation for specific types of packings in the next section.

A finite system of spheres is:

Locally jammed Each particle in the system is locally trapped by its neighbors, i.e., it
cannot be translated while fixing the positions of all other particles. This definition
is analogous to the definition of 1-stability in Ref. [4]. Because of its simplicity, this
definition has been overused to obtain theoretical estimates of the density of random

packings [12, 26].

Collectively jammed Any locally jammed configuration in which no subset of particles
can simultaneously be continuously displaced so that its members move out of contact
with one another and with the remainder set. An equivalent definition is to require
that all finite subsets of particles be trapped by their neighbors. Compare this to the
definition of finite stability in Ref. [4].

Strictly jammed Any collectively jammed configuration that disallows all globally uniform
volume-nonincreasing deformations of the system boundary. Note the similarity with
collective jamming but with the additional provision of a deforming boundary. This
difference and the physical motivations behind it should become clearer in section
IV C. Compare this to the definition of periodic stability in Ref. [4] for packings

with periodic boundary conditions.

Observe that these are ordered hierarchically, with local being implied by collective and
similarly collective being implied by strict jamming. We point out that these do not exhaust
all possibilities and various intricacies can arise, especially when considering infinite packings

14].

C. Unjamming Motions

Note that the mathematics literature often uses the term rigid or stable packing for
what we call a jammed packing in section IIB. It can be shown [5] that to assess jamming

for a given sphere packing, one need only look for the existence of analytic continuous

displacements of the particles from their current configuration®. An unjamming motion
AR(t) = (Ary(t),...,Ary(t)), where t is a time-like parameter, t € [0,1], is a continuous
analytic displacement of the spheres from their current position along the path R + AR(t),
starting from the current configuration, AR(0) = 0, and ending at the final configuration
R + AR(1), while observing all relevant constraints along the way, such that some of the
contacting spheres lose contact with each other for ¢ > 0. This means that impenetrability
and any other particular (boundary) conditions must be observed, i.e. P(R + AR(t)) is a
valid packing for all ¢ € [0, 1]. If such an unjamming motion does not exist, we say that the
packing is jammed. By changing the (boundary) constraints we get different categories of
jamming, such as local, collective and strict.

It can be shown (see references in Ref. [5]) that an equivalent definition® is to say that
a packing is jammed if it is isolated in the allowed configuration space, i.e., there is no
valid packing within some (possibly small) finite region around R that is not equivalent
(congruent) to P(R). In the language of section ITA, Jg = {R}.

Furthermore, it is a simple yet fundamental fact that we only need to consider first
derivatives V = %AR(t), which can be thought of as velocities, and then simply move the
spheres in the directions V = (vy,...,Vv3) to obtain an unjamming motion AR(t) = Vt.
Therefore, henceforth special consideration will be given to the final displacement AR(1),
so that we will most often just write AR = AR(1). The formal statement is that a packing
is rigid if and only if it is infinitesimally rigid®, see Refs. [2]. Although the proofs of this
statement published in the mathematics literature consider packings of equal spheres in a
hard-wall container, the proof carries directly to the case of collective jamming with periodic
boundary conditions (i.e., packings on a flat torus), as well as packings of unequal spheres.
As discussed in Section IV C, the statement is also true for strict jamming with periodic
boundary conditions. A sphere packing is not jammed if and only if one can give the spheres
velocities V such that no two contacting spheres ¢ and j, ||r; — r;|| = D, have a relative

speed v; ; toward each other®:

v = (Vi — Vj)T u;; <0, (1)

3 This is the third definition (definition c) in section 2.1 of Ref. [5].

4 This is the first definition (definition a) in section 2.1 of Ref. [5].

5 This is not true for packings of ellipsoids, which may be rigid but not infinitesimally rigid.
6 See section 2.2 of Ref. [5].

where

W TiTT
RN

7. Of course, some special and trivial cases

is the unit vector connecting the two spheres
like rigid body translations (V = constant) or rigid body rotations need to be excluded
since they do not really change the configuration of the system. We will elaborate on this
“linearized” perspective in the context of packings with interparticle gaps in section ITTA.
In this paper we will plot unjamming motions as “velocity” fields, and occasionally sup-
plement such illustrations with a sequence of frames from ¢ = 0 to ¢ = 1 showing the
unjamming process. Note that the lengths of the vectors in the velocity fields have been
scaled to aid in better visualization. For the sake of clear visualization, only two-dimensional
examples will be used, however, all of the techniques described here are fully applicable to
three-dimensional packings as well. Interactive Virtual Reality Modeling Language (VRML)

animations which are very useful in getting an intuitive feeling for unjamming mechanisms

in sphere packings can be viewed on our webpage [6].

D. Jamming and Forces

We have defined jamming above using kinematic concepts and focused on the positions
of the particles, i.e., on the geometry of the packings. It is very instructive to discuss
briefly the relations between contact forces and applied loads in the context of jamming.
This is crucial because of the physical importance of statical considerations in the study of
granular materials and the preponderance of force-based discussions in the physics literature.
Furthermore, forces play a very important role in the analysis of the configuration-based
definitions given above as dual variables associated with impenetrability constraints, and
have appeared prominently in the mathematics literature as well [5]. Ref. [18] contains a
wide-ranging discussion of the relation between geometry and forces.

Consider a configuration belonging to a basin of jamming, R € Jgr, and an applied load
B = (by,...,by) on the particles. In the case of spheres, b; is just the total force acting on
sphere i (for example, due to thermal or mechanical vibrations or externally-applied fields).

In the case of ellipsoids, it would also contain the total torque acting on each particle.

" The sign notation may be a bit unorthodox but is taken from Ref. [27].

Assume for simplicity that this load is independent of the configuration. Under this load,

the particles will displace to a new configuration of minimal energy:

maxar BYAR for virtual work

such that R+ AR € Jr for impenetrability. (2)

Since the packing is jammed, the program (2) will have a bounded solution which lies on
the boundary of Jr, i.e., some particles will be in contact in the new configuration. The
Lagrange multipliers associated with the impenetrability constraints are in fact the reaction
contact forces which resist the applied load B.

We thus see the meaning of the three jamming categories in the static context: In a
locally jammed packing each particle ¢ can support any load b; if its neighbors are fixed.
A collectively jammed packing can resist (support) any loading without rearrangements of
the particles as long as the boundary is held fixed externally. Strictly jammed packings on
the other hand can support any load with a compressive global (boundary) component (i.e.,
positive macroscopic pressure). Note however that a packing may be able to support all
compressive global loads even though it is not strictly jammed, as it may be unstable due

to the existence of collective unjamming mechanisms®.

E. Jammed Subpackings

It should be mentioned that jammed random particle packings produced experimentally
or in simulations typically contain a small population of “rattlers”; i.e., particles trapped in
a cage of jammed neighbors but free to move within the cage. For present purposes we shall
assume that these have been removed before considering the (possibly) jammed remainder.
This idea of excluding rattlers can be further extended to “rattling clusters” of particles,
i.e., groups of particles that can be displaced collectively even though the remainder of the
packing is jammed. In fact, one can consider any packing which has a jammed subpacking

(collectively or strictly as defined above, with identical boundary conditions) to be jammed.

8 An example is the Kagomé lattice disk packing, which can support all compressive global loads (some-
times called “loads at infinity” in the engineering literature), but is not collectively jammed with periodic

boundary conditions.

10

The physical meaning and mathematical basis for such a modified approach is more
evident from the static perspective. Specifically, as long as there is a jammed subpacking,
this subpacking will resist (support) global loads (stresses), and furthermore, this jammed
subpacking is also able to resist local loads, such as, for example, induced by vibrations

(shaking) in granular materials, therefore making the whole packing stable and rigid.

F. Boundary Conditions

Large or infinite packings are most easily created by periodically repeating a certain
finite (and possibly small) known packing. A repetitive packing }A’(R) is generated by
replicating a finite generating packing P(f{) on a lattice A = {Aq,..., Ay}, where A; are
linearly independent lattice vectors and d is the spatial dimensionality. The positions of the

spheres are generated by,

where we think of the lattice A as a matrix with d? elements having the lattice vectors as
columns and n. is the number of replications of the unit cell along each basis direction. The
sphere ?(nc) is the familiar image sphere of the original sphere i = 7(0), and of course for
the impenetrability condition only the nearest image matters. Notice that condition (3) only
gives the positions of the spheres, and additional boundary conditions need to be specified
before applying the jamming definitions from Section IIB.

As previously mentioned, the boundary conditions imposed on a given packing are very
important, especially in the case of strict jamming. Here we consider two main types of

boundary conditions, hard-wall and periodic boundary conditions.

Hard-wall boundaries The packing P(R) is placed in an impenetrable concave hard-
wall container K (see Ref. [2]). Figure 2 shows that the honeycomb lattice can
be unjammed inside a certain hard-wall container. We can also make an effective
container out of N fized spheres whose positions cannot change. This is because it
is often hard to fit a packing into a simple container such as a square box, while it is
easy to surround it with other fixed spheres, particularly if a periodic lattice is used
to generate the packing. Specifically, one can take a finite sub-packing of an infinite

repetitive packing and freeze the rest of the spheres, thus effectively making a container

11

for the sub-packing. An example is depicted in Fig. 3. Note that hard-wall containers

do not allow any trivial unjamming motions.

Periodic boundaries Periodic boundary conditions are often used to emulate infinite sys-
tems, and they fit the algorithmic framework of this work very nicely. To obtain a
periodic packing we wrap a repetitive packing]3(R) around a flat torus, i.e. we ask
that whatever happens to a sphere ¢ also happens to all of the image spheres ?(nc),

with the additional provision that the lattice may also change by AA:

When the lattice is fixed (AA = 0), periodic boundary conditions allow for trivial
rigid body translations of the packing, but trivial rotations only exist if the lattice is
allowed to change. Furthermore, by imposing a suitable condition on the deformation
of the lattice AA, as described in Section IV C, one can eliminate the trivial rigid-body

rotations of the packing.

G. Generating Hard-Particle Packings

Algorithms to generate large-scale hard-particle packings are very important, especially
because experimental hard-particle configurations are very hard to obtain and are limited
in applicability. Of particular interest are stochastic algorithms aimed at producing random
(disordered) packings. Many such algorithms have been proposed and used in previous work,
as explained in more detail in Ref. [§8]. We produced most packings using the Lubachevsky-
Stillinger compression algorithm [14] with periodic boundary conditions. This algorithm is
essentially a hard-sphere molecular dynamics in which the spheres grow in size during the
course of the simulation at a certain expansion rate and collide with each other elastically.
In the limit of an infinite number of collisions a final state is reached in which the collision
rate diverges and the particles cannot grow any further. We have extended this algorithm to
generate packings of ellipses and ellipsoids, and developed a methodology to access jamming
during the compression algorithm, however, this work will be presented in future publica-
tions. A number of packings produced by other methods, such as the Zinchenko algorithm

[30], have also been tested, with similar results.

12

1. Using Simple Lattices to Generate Packings

Familiar lattices with a simple basis (unit cell), such as the triangular, honeycomb,
Kagomé and square in two dimensions, or the simple cubic (SC), body-centered cubic (BCC),
face-centered cubic (FCC) and hexagonal-close packed (HCP) in three dimensions, can be
used to create a (possibly large) packing taking a subsystem of size N, unit cells along each
dimension from the infinite lattice packing. The properties of the resulting system can be
studied with the tools developed here, provided that we restrict ourselves to finite N.. More-
over, it is important to specify which lattice vectors are to be used. We will usually take
them to be primitive vectors (for which there is one particle per unit cell), but sometimes it
will be more convenient to use conventional ones, as used in the physics literature (usually
representing a cubic unit cell having more then one particle per unit cell for variations on
the cubic lattice).

For hard-wall boundary conditions, we can take an infinite packing generated by these
simple lattices and then freeze all but the spheres inside the window of N, unit cells, thus
effectively obtaining a hard-wall container. Figure 3 illustrates an unjamming motion for
the honeycomb lattice under these conditions.

~

For periodic boundary conditions, the generator P(R) can itself be generated using N,

9. In this case the lattice A is a sub-lattice of the underlying

unit cells of a simple lattice
(primitive) lattice A, i.e., A = ADiag{N.}, where Diag{N,} denotes a diagonal matrix
whose diagonal is N.. This is not only a convenient way to generate simple finite periodic
packings, but it is in general what we mean when we ask, for example, to analyze the
jamming properties of the Kagomé lattice under periodic or hard-wall boundary conditions.
Figure 4 shows a periodic unjamming motion for the Kagomé lattice. Notice though that the
jamming properties one finds depend on how many neighboring unit cells N, are used as the
“base” region (i.e., the generating packing), and therefore, we will usually specify this number
explicitly. Some properties may be independent of N. (for example, the triangular lattice
packing is strictly jammed for all N.) and tailored mathematical analysis can be used to show

this [3, 4]. More systematic approaches based on Bloch wave (Fourier) decompositions of the

set of feasible motions are being investigated for repetitive packings. We will not consider

9 This closely resembles the Born-von Karman boundary conditions used in solid-state physics models of

lattice vibrations.

13

these issues in detail here, but rather focus on algorithmic approaches tailored for finite
and fized systems (i.e., N, is fixed and finite), which is important when studying disordered

A~

particle packings, i.e., packings where the generator P(R) is itself a large disordered packing.

III. LINEAR PROGRAMMING ALGORITHM TO TEST FOR JAMMING

Given a sphere packing, we would often like to test whether it is jammed according to each
of the categories given above, and if it is not, find one or several unjamming motions AR(t).
We now describe a simple algorithm to do this that is exact for gap-less (ideal) packings, i.e.,
packings where neighboring spheres touch exactly, and for which the definitions given earlier
apply directly. However, in practice, we would also like to be able to study packings with
small gaps, such as produced by various heuristic compression schemes like the Lubachevsky-
Stillinger algorithm [14], and we will consider these along with ideal packings. In this case
the meaning of unjamming needs to be modified so as to fit physical intuition. We do this
using what Roux [18] calls the approzimation of small displacements (ASD), and propose an
algorithm based on linear programming that can test whether a finite packing is jammed.

We believe that computer-generated packings which are almost ideal are often actually
very close in configurational space to an ideal packing. This cannot be verified exactly in most
cases, though some support for this claim can be obtained by setting the numerical precision
of the generation algorithm to higher and higher values (for example, by increasing the
number of collisions per particle in the Lubachevsky-Stillinger algorithm [14]) and verifying
that the interparticle gaps monotonically decrease toward zero. It is possible though that
gaps are natural and essential in certain applications, such as for example, the study of
particle rearrangement in granular materials, and we therefore separately study packings
which need not be (close to) ideal, using mathematical programming as the fundamental
tool. When the configuration is known exactly, often the case for small ordered packings,

jamming may be analyzed analytically.

A. Approximation of Small Displacements

As already explained, an unjamming motion for a sphere packing can be obtained by

giving the spheres suitable velocities, such that neighboring spheres do not approach each

14

other. Here we focus on the case when AR(t) = Vit + O(t?) are small finite displacements
from the current configuration. We will drop the time designation and just use AR for the
displacements from the current configuration R to the new configuration R=R+AR. We
defer discussion of packings with significant interparticle gaps to section V.

In this ASD approximation, we can linearize the impenetrability constraints
[7; — 5l = [[(r; — ;) + (Ar; — Ary)|| = D (5)

by expanding to first order in AR, to get the condition for the existence of a (first-order)
feasible displacement AR,

(AI‘Z‘ — Arj)Tum S Ali,j for all {Z,]}, (6)
where {1, j} represents a potential contact between nearby spheres i and j, and
Alyj=|ri —x;| = D

is the interparticle gap (or interstice). The set of contacts {i, 7} that we include in (6) form
the contact network of the packing, and they correspond to a subclass of the class of
fascinating objects called tensegrity frameworks, namely strut frameworks (see Ref. [5] for
details, and also [9] for a treatment of more general packings). We only consider potential
contacts {7, j} between nearby, and not all pairs of spheres, that is we only consider a contact
if

[ri —r)f| < (1+6) D, (7)
where § < 1 is a chosen gap tolerance. Figure 6 shows a random bidisperse (containing
two different kinds of particles) disk packing and the associated contact network.

For a gap-less packing, we have Al = 0 and the condition (6) reduces to (1), and the
packing is jammed if and only if the only nontrivial solution to (6) is AR = 0. For packings
with finite but small gaps though, condition (6) is only a first-order approximation. By
transforming Eq. (5) we obtain the nonlinear analog of Eq. (6):

2
(Ar; — Arj)Tu;; — % < Al (1 - 2”%31']”) for all {7,5}. (8)
Notice that any displacement feasible under the linearized constraints (6) will also be feasible

under the full nonlinear impenetrability constraints (8). In other words, within the ASD,

15

Jr is approximated with the inscribed polyhedral set Par C Jr of feasible (linearized)
displacements, as determined by the system of linear inequalities (6), as illustrated in Fig. 1.
This is a very special and most useful property of sphere packings which does not generalize
to other convex particle shapes.

Also note that for any nontrivial (i.e., Ar; # Ar;) solution to (6) the nonlinear inequal-
ity (8) is satisfied as a strict inequality, which means that particles i and j lose contact,
even if the inequality is active to first order. This is an important property which shows
that by scaling a first-order feasible displacement AR appropriately one can always obtain
a nontrivial feasible displacement which separates some of the contacting particles. This
property does not directly generalize to other smooth strictly convex particle shapes, and in
particular, it does not apply to packings of ellipsoids.

Comparison of (6) and (8) also suggests that the linearized constraints become too strict
as the magnitude of the displacements becomes comparable to the size of the particles
|Ar; — Arj|| = D. The complicated issue of how well the ASD approximation works when
the gaps are not small enough is illustrated in Fig. 1.

By putting the u; ;’s as columns in a matrix of dimension [Nd x N.|, where N, is the
number of contacts in the contact network, we get the important rigidity matrix'? of the
packing A. This matrix is sparse and has two blocks of d non-zero entries in the column
corresponding to the particle contact {7, 7}, namely, u; ; in the block row corresponding to

particle ¢ and —u, ; in the block row corresponding to particle j. Represented schematically:

{1,5}

1 — um
A =]
J = u; j

For example, for the four-disk packing shown in Fig. 1, and with the numbering of the disks

10 This is in fact the normalized negative transpose of what is usually taken to be the rigidity matrix, and
is chosen to fit the notation in Ref. [27], and also because it resembles the node-arc incidence matriz of

the (directed) graph corresponding to the contact network.

16

depicted in Fig. 5, we have the following rigidity matrix:

Ey Eis Eu
D, U2 Wiz Uy
D, —Uui2
A =
Dy —Uui3
Dy | —Ui4 |

Using this matrix, we can rewrite the linearized impenetrability constraints as a simple

system of linear inequality constraints:

ATAR < AL (9)

1. Boundary conditions

Handling different boundary conditions within the above formulation is easy. For example,
for usual periodic conditions, one adds a few columns to the rigidity matrix A with

- Ymy T

u273(nc) o

ime) — T

for all images j(n,) which have contacts with one of the original spheres i. These columns
correspond to the periodic contacts wrapping the packing around the torus.

For hard-wall boundaries, we add a potential contact to the contact network from each
sphere close to a wall to the closest point on the wall, and fix the endpoint on the wall. Such
fixed points of contact and fixed spheres j, called fized nodes in tensegrity terminology, are
simply handled by transferring the corresponding term Ar?ui,j to the right-hand side of the

constraints in (9).

B. Randomized Linear Programming (LP) Algorithm

The question of whether an ideal packing is jammed, i.e., whether the system (9) is feasible
for some AR # 0, can be answered rigorously by using standard linear programming (LP)
techniques, as described in Appendix A. If a packing is jammed, then this LP test is enough.
However, for packings that are not jammed, it is more useful to obtain a representative

collection of unjamming motions, rather then use a binary classification into packings which

17

are jammed and ones which are not jammed. A random collection of such unjamming
motions is most interesting, and can be obtained easily by solving several linear programs
with a random cost vector.

We adapt such a randomized LP algorithm to testing for jamming, namely, we solve

the following LP in the displacement formulation:

maxar BTAR for virtual work
such that ATAR < Al for impenetrability (10)
|AR| < ARpax for boundedness,

for a random load B, where AR, > D is used to prevent unbounded solutions and thus

1. The physical interpretation of B as an external load was

improve numerical behavior!
elucidated in section IID. Trivial solutions, such as uniform translations of the packing
AR = const. for periodic boundary conditions, can be eliminated a posteriori, for example
by reducing AR to zero mean displacement. Alternatively, trivial motions can be handled by
introducing extra constraints in (10), for example, by fixing the position of one of the spheres,
though we have found this less attractive, particularly for packings with gaps. Finally, trivial
components of AR can also be avoided by carefully choosing B to be in the null-space of
A which usually means it needs to have zero total sum and total torque (see chapter 15 in
Ref. [27]). We will discuss numerical techniques to solve (10) in Section VI.

The reason we have included possibly non-zero gaps Al in (10) is that computer-generated
packings, which we analyze, are never ideal and there are always small interparticle gaps
between some particles!?, typically much less than a percent of the typical particle size D.
One can safely consider such packings purely within the ASD. However, we need to modify
our definition of jamming to allow for very small particle rearrangements at the application
of the load B, i.e., we consider a solution to (10) an unjamming motion only if some particle

is displaced a significant distance:
3i such that [|Ar;|| > Arjapge > Al

where Al < D is the typical size of the interparticle gap. Even though any solution to
ATAR < 0is also a solution to ATAR < Al the latter may have other solutions with large

1 Tn our tests we usually set ARpax ~ 100D.
12 These gaps may be an inherent and essential feature of disordered packings in general.

18

components, corresponding to elongated corners of the polyhedron of feasible displacements
Par (see Fig. 1), which should also be treated as unjamming motions. Therefore, the
primary purpose of including the exact interparticle gaps in (10) is to ensure proper handling
of degenerate cases, such as a near-180-degree angle between two contacts in 2D (see Fig.
5).

In summary, we treat any solution AR to (10) with components significantly larger than
Al as an unjamming motion. For each B, if we fail to find an unjamming motion, we
apply —B as a loading also, for reasons detailed in Appendix B. We stress that despite its
randomized character, this algorithm is almost rigorous when used as a test of jamming,
in the sense that it is strictly rigorous for gap-less packings, and also likely to work well if
the interparticle gaps are sufficiently small, as explained in more detail in Appendix B. We
will discuss more complicated adaptations of the randomized LP algorithm to nonideal, i.e.,

packings with larger gaps, in section V.

C. Kinematic/Static Duality

The subject of kinematic/static duality and its physical meaning and implications have
been discussed in numerous previous works [2, 5, 18, 21, 24]. The dual of the displacement
formulation LP (10) (excluding the additional practical safeguard constraint AR < AR ax),

the force formulation LP:

maxg(AlTf for virtual work
such that Af =B for equilibrium (11)

f<0 for repulsion only,

gives the interparticle repulsive'® force f;; between spheres i and j as the dual variable
associated with the impenetrability constraint (6). The displacement- and force-based LP’s
are of great importance in studying the stress-strain behavior of granular materials, and since
they are equivalent to each other, we can call them the ASD stress-strain LP. We have
emphasized the displacement formulation (10) simply because we based our discussion of

jamming on a kinematic perspective, but a parallel static interpretation can easily be given.

13 We choose a negative sign for repulsive forces here in agreement with mathematical literature [5].

19

For example, a random B used in the randomized LP algorithm that finds an unbounded
unjamming motion physically corresponds to a load that the packing cannot support, i.e.,
the force formulation (dual) LP is infeasible, implying that the displacement formulation
(primal) LP is unbounded.

In general the stress-strain LP will be highly degenerate and its primal and/or dual
solution not unique. However, as Roux points out [18], the existence of small gaps in
random packings is very important in this context. Namely, if Al is random and nonzero
(even if small), and B is also random, both the primal and dual solutions will likely be non-
degenerate (see the references in Ref. [27]), and we have indeed observed this in practice
for random packings. A non-degenerate (basic or vertex) solution to (11) corresponds to an
isostatic force-carrying contact network [18, 21]. We use interior-point linear programming
algorithms, which are not sensitive to degeneracies, but also do not necessarily identify a

vertex solution to the LP if the solution is not unique.

IV. TESTING FOR JAMMING WITH PERIODIC BOUNDARY CONDITIONS

In this section we give more details on using the randomized linear programming approach
to test for local, collective and strict jamming in ideal packings with periodic boundary
conditions. An outline of the actual computational algorithm along with representative

results is given in Section VIA.

A. Local Jamming

Recall that the condition for a packing to be locally jammed is that each particle be fixed
by its neighbors. This is easy to check. Namely, each sphere has to have at least d+1 contacts
with neighboring spheres, not all in the same d-dimensional hemisphere. This can be tested
in any dimension by solving a small linear program, and in two and three dimensions one
can use more elementary geometric constructions.

We prefer the LP approach because it is in the spirit of this work and because of its
dimensional independence, and so we present it here. Take a given sphere ¢ and its set of

contacts {u; .}, and put these as rows in a matrix A7. Then solve the local portion of (10)

20

(using the simplex algorithm):

mina,, (Aze)” Ar;

such that ATAr; < Al;,, (12)

which will have an unbounded solution if the sphere ¢ is not locally jammed, i.e., if it is
a rattler, as illustrated in Fig. 1. Here e is a vector of ones (see Appendix Al). The
local load b; = A;e can be replaced with two random loads of opposite direction, which is
more suitable when larger gaps are present. When testing for jamming in ideal packings,
we remove the rattlers from the packing before proceeding with tests for collective or strict
jamming. Notice that checking each sphere for local jamming using (12) only once is not
enough under this removal scheme. Namely, once a rattling sphere is removed, this removes
some contacts from the packing and can make other spheres not locally jammed. We have
observed that sometimes, particularly in two-dimensional systems, all disks can be removed
on the basis of just the local jamming testing.

Of course we can define higher orders of local jamming by asking that each set of n
spheres be fized by its neighbors, called n-stability in Ref. [4]. However, for n > 1 it
becomes combinatorially too difficult to check for this because the number of subsets to be
tested grows exponentially. Computationally, we have found testing for local jamming using

(12) to be quite efficient and simple.

B. Collective Jamming

The randomized LP algorithm was designed to test for collective jamming in large pack-
ings, and in this case the linear program (10) that needs to be solved is very large and
sparse. Notice that boundary conditions are only involved when making the list of contacts
in the contact network and deciding if certain spheres or contact points are fixed. In the
case of periodic boundary conditions, we simply add the usual contacts between original

spheres near the boundary of the unit cell and any nearby periodic image spheres, and also

fix AA=01in Eq. (4).

21

C. Strict Jamming

To extend the notion of collective jamming to strict jamming we introduced deformations
of the boundary. In the case of periodic packings, the lattice A is the boundary. Therefore,
the only difference with collective jamming is that we will now allow the lattice to change
while the spheres move, i.e., AA # 0in (4). The lattice deformation AA will become part
of the unknowns in (10), but since it too enters linearly in (4), we still get a linear program,
only with coefficient matrix A augmented with new (denser) rows. These rows have nonzero
entries in the columns corresponding to contacts across the periodic boundary, and for
brevity we do not give details here but refer the interested reader to Ref. [7]. The actual
implementation of the algorithm for strict jamming requires more care and bookkeeping,
but the conceptual changes should be clear, and the randomized LP algorithm remains
applicable.

Obviously, we cannot allow the volume of the unit cell to enlarge, since the unit cell is
in a sense the container holding the packing together. Therefore, we only consider volume-

non-increasing continuous lattice deformations AA(t):
det [A = A + AA(t)] < det A, for t > 0. (13)

We now think of [AR(t), AA(t)] as an unjamming motion and focus on linear motions
AA(t) = Wt, W = const. and the final small deformations AA = AA(1), and consider
first-order linearizations of the non-expansion nonlinear constraint (13).

The linearized version of (13) is:
Tr[(AA)AT] <0, (14)

and this is just one extra linear constraint to be added to the linear program (10). An extra
condition which needs to be added is that (AA)A™! be symmetric, which is also an added
linear constraint,

(AMA' =cande =" (15)

where we add the strain tensor € as an unknown in the randomized LP algorithm. Even
better, one can eliminate AA = €A and use the strain as the only added variable. References
[23] and [7] discuss the interpretation of (AA)A™! as a macroscopic (global) strain tensor.

Note that condition (15) does nothing more than eliminate trivial rotations of the lattice,

22

which correspond to skew-symmetric strain tensors, so that uniform translations remain the
only trivial unjamming motion. Appendix C proves that adding lattice deformations does
not change the mathematical theory presented in section I1C.

The motivation for the category of strict jamming and its above interpretation in the
periodic case should be clear: Changing the lattice in a volume non-increasing way models
macroscopic non-expansive strain (i.e., a compressive macroscopic stress) and is therefore
of great relevance to studying the macroscopic mechanical properties of random packings
(see Ref. [23]). We also again point out that strict jamming is (significantly) stronger than
collective jamming for periodic boundary conditions, particularly in two-dimensional pack-
ings. This point is illustrated in Fig. 7, which shows an unjamming motion involving a
deformation of the lattice, even though this lattice packing is collectively jammed. Periodic
boundary conditions are often used to model infinite systems, in the hope that a jammed
periodic packing will produce a “jammed” infinite packing (for example, in the sense of uni-
form stability [4]) when periodically replicated in all directions. A simple counting argument
demonstrates that isostatic collectively jammed periodic packings cannot generate “jammed”
infinite packings because they have too few contacts, but isostatic strictly jammed periodic
packings can since they have enough contacts (due to the inclusion of additional degrees of
freedom for the deforming lattice). We omit details of this counting argument for the sake

of brevity.

V. DEALING WITH INTERPARTICLE GAPS

We originally motivated our perspective on jamming in section II A by looking at the set
of available (reachable) configurations Jg around a particular initial configuration R, and
have since focused mostly on ideal packings, though allowing for sufficiently small interpar-
ticle gaps. For these packings, Jgr is very localized around R, and this makes it possible
to define the three jamming categories meaningfully and rigorously, and also allows for a
simple randomized linear programming testing algorithm. However, the either-or character
of such a jamming criterion is often too restrictive or specialized when analyzing large dis-
ordered packings with possibly larger interparticle gaps, where particle displacements may
be comparable to the typical particle size. Therefore, we investigate ways to study jamming

in this practical sense.

23

One can make a rigorous definition of jamming even in the case when particle displace-
ments are large. However, it is not clear that this has a physical significance. A somewhat
ambitious but desirable goal is to efficiently obtain a grasp on the character and extent of
Jr, and use this to judge whether the packing should be considered jammed or not. How-
ever, since Jg is a very high-dimensional and nonconvex set, it is a very complex object to
describe or understand. We focus here on trying to judge the extent of Jr by trying to dis-
place the spheres away from their current position by as much as possible. This can be done
with a sequential random loading algorithm: Repeatedly solve the LP (10), displace the
spheres in the direction of AR by as much as possible while still avoiding overlap, until the
particles rearrange and form contacts that actually support the applied load B. This should
be repeated for several random loads, in the hope of exploring Jgr along several directions.
We give an outline of an algorithm to do this along with representative results in Section
VIB. The important point here is that for packings which are almost jammed, mathemati-
cal programming is needed in order to efficiently find a direction in which the particles can
be displaced by significant amounts. Traditional heuristics such as Monte Carlo schemes in
which particles are displaced one-by-one simply get trapped easily, and algorithms which

search for collective particle rearrangements are needed.

A. Shrink-And-Bump Heuristic

The following heuristic test for collective jamming has been suggested in Ref. [14]: Shrink
the particles by a small amount v and then start the Lubachevsky-Stillinger molecular
dynamics algorithm with random velocities, and see if the system gets unjammed. One
would also slowly enlarge the particles back to their original size while they bump around,
so as to allow finite termination of this test (within numerical accuracies). We call this
the shrink-and-bump heuristic. The idea is that the vector of velocities takes on random
values in velocity space and if there is a direction of unjamming, it will be found with a high
probability and the system will unjam. Animations of this process can be found at Ref. [6].

This kind of heuristic has the advantage of being very simple and thus easy to implement
and use (and also incorporates nonlinear effects), and it is also very efficient, though still
significantly slower than the linear programming algorithm since typically many collisions

per particle are needed to significantly displace the particles due to the high density. By

24

incorporating deformations of the lattice in the Lubachevsky-Stillinger algorithm, one can
also use this test to test for strict jamming, as discussed further in Ref. [8]. Its disadvantages
are its non-rigorous character and indeterminacy, artificial introduction of dynamics into
a geometrical problem, and most of all, its strong dependence on the exact value of ~.
For example, animations showing how the Kagomé lattice inside a container made of fixed
spheres (as in Fig. 3) can be unjammed with a large-enough 7, even though it is actually
collectively jammed under these boundary conditions, can be found at our webpage [6]. In
fact, many jammed large packings will appear unstable under this kind of test, as motivated

with the notion of uniform stability, defined in Ref. [4].

VI. ALGORITHMIC DETAILS

In this section we outline in detail two algorithms to test for jamming in hard-sphere
packings. The first one is applicable to ideal packings, while the second one deals with
non-ideal packings. Although the core concept used in both is the randomized linear pro-
gramming algorithms presented in Sections III and IV, the two differ in their goals and the
way they process the results of the linear programming step: The first one attempts to give
a binary classification of packings into jammed and not jammed, while the second tries to
explore the extent of Jr by trying to continuously displace the particles as much as possible,

as discussed in Section V.

A. Algorithm: Ideal Packings

We summarize the proposed algorithm to test for collective or strict jamming in ideal
packings, applicable also to packings with very small interparticle gaps (Algorithm 1). This
algorithm removes spheres which are not locally jammed. Once a rattling sphere is removed,
this removes some contacts from the packing, which can make other spheres not locally
jammed. Therefore an implementation in which neighbors of rattlers are recycled on a stack
of spheres to be checked is needed. This algorithm also classifies packings which have an
ideal jammed subpacking as jammed, even if they have some rattling particles or rattling

clusters of particles, as illustrated in Fig. 6 for a disordered binary disk packing.

25

Algorithm 1 Randomized Linear Programming Algorithm

1. If testing for collective jamming, fix the strain € = 0.

2. Choose a suitable gap tolerance 6, 6D ~ Arjage, in Eq. (7) and add all potential contacts

{i,j} between neighboring particles to the contact network.
3. If there are no spheres in the packing, declare the packing as not jammed and terminate.
4. Test for local jamming (rattlers):

(a) Make a stack of all the spheres.

(b) Remove the top (pop) sphere i from the stack and solve the LP (12) with b; = Aje
using the simplex algorithm. If ||Ar;|| > Arjarge, remove the sphere from the packing,
push all its neighbors not on the stack back on the stack, and remove all its contacts

from the contact network.
(c¢) Go back to step 4a if the stack is not empty.
(d) Repeat step 3.
5. Choose a random load B.
6. Solve the LP (10) along with constraint (14) (if testing for strict jamming).
7. Remove all spheres i displaced by the load from the packing, ||Ar;|| > A7arge-
8. Repeat steps 3-4, reverse the direction of B, B «+— —B, and repeat steps 6-7.

9. If no spheres were displaced by either load, declare the (sub)packing jammed and terminate.

Otherwise go back to step 3.

B. Algorithm: Nonideal Packings

When dealing with nonideal packings, one has to abandon the strict “jammed” versus
“not jammed” binary classification. Instead we focus on trying to judge the extent of Jr by
trying to displace the spheres away from their current position by as much as possible. We

first give the algorithm to do this in Algorithm 2 and then we discuss specific steps and the

26

choices one can make in each step. Some illustrative results are given in Section VIIB.

Algorithm 2 Sequential Random Loading Algorithm

1

10.

If testing for collective jamming, fix the strain € = 0.

Choose a suitable gap tolerance 6, 6D ~ Arjyge, in Eq. (7) and add all potential contacts

{i,j} between neighboring particles to the contact network.

. Test for rattlers:

For all spheres i, solve the LP (12) using the simplex algorithm and two randomly chosen

loads b; of opposite direction. If ||Ar;|| > Arjage, mark the sphere as a rattler.

Choose a random load B and set b; = 0 for rattling particles.

. Solve the LP (10) along with constraint (14) to obtain a linearized unjamming motion AR.

. Find the largest scaling 7 > 0 for the displacements so that no spheres overlap for dis-

placements from 0 to 7TAR and also require that the volume of the unit cell does not
increase, det [I+ 7¢] < 1. Displace the spheres to a new configuration, R «— R + TAR,
A — (I+7e)A. Note that this changes the rigidity matrix A of the packing and requires

updating the contact network.

. If any particle was displaced by a significant amount, 7 ||Ar;|| > SD, go back to step 5.

Also keep statistics of 7 ||Ar;|| over all spheres, such as average ||Ar;|| and maximum value

max || Ar;]|.

Optionally repeat step 3 and set b; = 0 for (new) rattling particles.

. Reverse the direction of B and repeat steps 5-7.

If the average or maximal particle displacement exceed thresholds, declare packing as not

“jammed” and terminate. Otherwise go back to step 4 until convinced packing is “jammed”.

We discuss the different steps of this algorithm separately in the following subsections.

Note that the proposed algorithm is not as efficient as possible, mostly because not all

linear programs need to be solved to full accuracy. Linear optimizers, and in particular

interior-point algorithms, spend most of their effort in the final stages of the optimization,

27

looking for the exact optimal vertex (or face) of the feasible polytope. Therefore, early
termination is most desirable, and in future work we will develop specialized implementations
that will replace step 5 with several Newton steps of a feasible interior-point algorithm. In
a sense, the above algorithm resembles a Sequential Linear Programming (SLP) algorithm
for finding equilibrium configurations of packings under applied loads. It remains to be
explored whether including information about the curvature of the nonlinear impenetrability
constraints, as is done in most modern nonlinear optimization algorithms, will be useful in
light of the increased complexity of the linear algebra involved. For packings of nonspherical
particles, such as packings of ellipsoids, including second-order information is necessary in
order to find feasible directions of displacements. Numerous optimizations related to reuse
of information in the iterative process and linear solvers as well as parallelization will also
be investigated.

We stress that one cannot directly use off-the-shelf nonlinear optimization software to ex-
plore JR, since feasibility must be strictly maintained throughout the process. Furthermore,
efficiency also demands a specialized implementation. This is why we present in this work
algorithms based on linear programming, which allows one to use any of the numerous lin-
ear programming libraries available today without the complexity of dealing with nonlinear

programming algorithms.

1. Choosing the Gap Tolerance

First, we discuss the choice of the gap tolerance §. The larger this tolerance, the more
possible particle contacts we will add to the set of constraints, and thus the more computa-
tional effort we need. Furthermore, we are including more redundant and/or stricter-than-
necessary linearized impenetrability constraints. Choosing a very small tolerance makes it
hard to treat systems with moderately large interparticle gaps (say of the order of § = 0.1D),
since crucial constraints which become relevant as soon as the magnitude of the displace-
ments becomes comparable to 0D are omitted. We have found values of 6 ~ 0.1D — 1.0D
reasonable, depending on the dimensionality and type of packing. The general rule is that
the contacts of each sphere with all spheres in (only) its first coordination shell should

be included, and of course physical intuition and close examination of the results are very

helpful.

28

2. Testing for Rattlers

Unlike the case of ideal packings, where we permanently remove rattlers from the packing,
here we simply avoid placing a load on the rattlers, but still consider them as part of the
packing, as they may provide important constraints as the spheres displace. It is desirable
not to place a load on rattlers because for some smaller gap tolerances ¢, the contact network
may not provide sufficient constraints to locally trap all particles. The particles that are
not locally trapped will displace by very large distances under any nonzero load, leading to
a very small scaling 7 and very slow progress of the algorithm. Unfortunately, some linear
programming solvers may return a large displacement for a rattler even if no load is applied
on it, as most solvers initialize the variables independently of the user. In practice, step 3 of
the algorithm only helps in cases when there is a small number of clear rattlers, as it enables
one to use a smaller gap tolerance ¢ and thus reduce the size of the linear programs, and in
such cases the first test for rattlers will already identify the troublesome particles. In other

cases, one simply must use a sufficiently large 9.

3. Scaling the Displacements

We emphasized in Section IIT A that any solution of the linearized impenetrability con-
straints is also a solution to the full nonlinear impenetrability constraints. However, there
are several reasons why it is important to choose an appropriate scaling for the displace-
ments 7. First, we do not include all pairs of particles in the constraints, and therefore
any AR for which some particle displaces by more than D is not necessarily a feasible
displacement, and may need to be scaled down appropriately. Furthermore, the linearized
constraints are significantly stricter than the nonlinear ones for larger displacements, and
therefore it is often possible to scale up the displacements by a significant factor without
violating feasibility.

Since our aim is to displace the particles as much as possible from their initial config-
uration, we choose the largest scaling factor possible. To find this scaling, one thinks of
AR as a vector of particle velocities and finds the time of the first interparticle collision 7.
This can be found with exactly the same procedure as used to build collision schedules in

the Lubachevsky-Stillinger packing algorithm [14]. For highest efficiency, the computational

29

domain is partitioned into cells and only collisions between particles in neighboring cells are
considered, along with transfers of the particles between the cells. The same partitioning is
used when building the contact network of the packing after displacing the particles, though
depending on the value of the gap tolerance ¢ more than just the neighboring cells might
need to be searched. One should also ensure that the volume of the unit cell does not

increase during the deformation of the lattice when testing for strict jamming.

4. Termination Criteria

We do not give detailed criteria on when to terminate the iterated linear programming in
step 7, since these should really be adapted to a nonlinear feasible interior-point algorithm
to be used in place of the linear optimizer. Typically 3 ~ 0.01 — 0.1. When none of
the particles can be displaced further despite repeating step 5, the dual variables obtained
by the LP solver will become (close to) the true interparticle forces that resist the load. A
primal-dual nonlinear solver would also terminate at such a point and return the appropriate
Lagrange multipliers. However, outside the ASD these forces are no longer unique [18], nor
is it guaranteed that a packing that can support a random load B and —B can support all
loads. Therefore, we need to use several random loads. We do not have estimates or bounds
on how many loads need to be used, however, experience has shown that only a few (3 —5)

loads are sufficient to find large displacements if such displacements exist.

5. Interpreting the Results

Processing the results of the above algorithm is somewhat of an art. However, by ob-
serving the statistics of the multiple particle displacements, and especially by visualizing the
path traversed by the particles during the loading, one can get a sense of the character of
Jr- Particularly useful is observing the average magnitude of the particle displacements,
and we use this metric in reporting some results for disordered computer-generated pack-
ings in Section VIIB. It may also be useful to observe the distribution of displacement
magnitudes among the particles.

In general, it is best to first try the algorithm of this section, and then use a visual-

ization tool (like our VRML animations) or a histogram of the magnitudes of the particle

30

displacements to judge whether there appears to be a jammed subpacking (to within a tight
tolerance), or whether all particles seem to be able to displace significantly. If the former is
the case, then using the algorithm of Section VI A one can identify such a jammed subpacking

if it exists within the tolerances used.

VII. IMPLEMENTATION AND RESULTS

We have developed a practical numerical implementation of the randomized LP algo-
rithms using a primal-dual interior-point linear optimizer. We have applied the algorithms
to test for the different jamming categories in practice and verified their utility and effi-
ciency. Illustrations of results obtained using our implementations are given throughout this
paper, and results from the application of the algorithm of Section VIB to large computer-
generated mondisperse and bidisperse disk and sphere packings are given in Ref. [8]. Here
we briefly discuss numerical aspects of the implementation in Section VII A and present

some representative results and timing statistics in Section VII B.

A. Numerical Aspects: Linear Optimization

We have implemented an efficient numerical solution of (10) using the primal-dual interior-
point algorithm in the LOQO optimization library [28]. Both Fortran 95 codes which
directly invoke the LOQO library, and Algebraic Modeling Programming Language (AMPL)
models have been developed, along with VRML visualization tools. The AMPL models are
particularly simple to use and modify, and are available on our website [6]. We wish to
emphasize that by using primal-dual interior point algorithms we automatically get both
forces and displacements using the same implementation. For example, both LOQO and
PCx (see Ref. [28]) return both primal and dual solutions to the user. Illustrations of
results obtained using these implementations are given throughout this paper. Primal-
dual interior-point algorithms are very well suited for problems of this type. Nonetheless,
for three-dimensional problems the available high-quality implementations of interior-point
algorithms (such as Ref. [28]) are based on direct linear solvers are too memory-demanding
and inefficient. Tuned implementations based on conjugate-gradient iterative solvers are

needed.

31

B. Results

In this section we apply the algorithm of Section VI B to random disk and sphere packings
generated via the Lubachevsky-Stillinger algorithm [14, 15], although we have also used the
ideal packing algorithm of section VI A, which typically gives a reasonable classification of
the packings into jammed and not jammed. However, Algorithm 1 does not give a feeling
for the character of Jr for packings which are not jammed (within the framework of ideal
packings), and therefore Algorithm 2 (with loose tolerances) is the preferred first-choice when
analyzing a certain type of packing for the first time. In particular, we have learned through
experience that is easy to misclassify disordered monodisperse disk packings as collectively
jammed by choosing inappropriate parameters in the simpler algorithm of section VI A.

As a quantitative measure of jamming in these packings, we report the average particle
displacement ||Ar;| achieved during random loading. Another statistics we report is the
time (in seconds) spent by the AMPL implementation (with some Fortran) of the algorithm
of section VIB on a typical personal computer'®. Since most of the computational time is
spent in LOQO, similar running times are typical of the Fortran codes as well. For each
packing, we applied three different random loads (with opposite orientations), and for each
load we successively solved three linear programs (so a total of 18 linear programs for each
packing). We are currently developing more efficient and robust implementations of these
algorithms, for both packings of disks/spheres and ellipses/ellipsoids.

Testing for strict jamming typically takes more time, by as much as 25%), since additional
denser rows/columns are included in the rigidity matrix, and this is more pronounced in
three dimensions where more of the contacts are on the boundary. The exact way the strain
and the associated constraints are handled makes a difference in this case. We emphasize
that for three-dimensional packings the sparse factorization linear solver in LOQO is not the
best choice, so much smaller running times are possible with specialized implementations.
The running time of the linear solver depends non-trivially on both the number of spheres
and the number of contacts in the contact network. The number of contacts is very sensitive
to the choice of the gap tolerance ¢, which we usually decreased as the packing size increased

(and thus the average displacements decreased). Therefore, the running times below should

14 More precisely, calculations were performed on an 1666MHz AMD Athlon PC running Linux with 1GB

of memory.

32

not be taken as a measure of the scaling of the LP solver computational effort with the
number of spheres, but rather as typical runtimes for some representative packing sizes.

In general, the random packings we tested were collectively jammed, in the sense that
only small (average) displacements of the particles are possible. This is illustrated in Table
[. The small feasible displacements are mostly due to rattlers and/or early termination of
the packing algorithm and we believe that any (final) Lubachevsky-Stillinger packing with
infinite collision rate will in fact have an ideal collectively jammed subpacking. It is in fact
very important to verify that any packing algorithm claimed to produce jammed packings
can indeed produce jammed ideal packings given enough (possibly) infinite time. One way to
test this is to verify that all tolerances in the test for jamming can be tightened progressively
as the numerical accuracy is increased and the convergence criteria in the packing algorithm
are tightened. We demonstrate this for collective jamming in monodisperse sphere packings
for the Lubachevsky-Stillinger algorithm in Table II.

These quantitative tabular results illustrate the feasibility and utility of the proposed
algorithms. However, qualitative observations, which are best obtained from the numerous
animations of the “unjamming” process, are indeed invaluable to getting a better physical
intuition and understanding of hard particle packings. Such animations can be found on our

webpage [6], and we would be happy to share many more with interested readers.

VIII. CONCLUSIONS

In this work and Ref. [8] we have proposed, implemented, and tested a practical algorithm
for verifying jamming categories in finite sphere packings based on linear programming. We
demonstrated its simplicity and utility, and presented some representative results for ordered
lattices and random packings. Future extensions and applications of the proposed algorithms
are awaiting exploration.

The jamming concepts and algorithms presented here can be extended to packings of
nonspherical particles with certain nontrivial modifications, however, mathematical devel-
opments in this area are lacking. We are investigating such extensions and will report our
findings in future work. Other important tasks include extending various packing genera-
tion algorithms to generate strictly jammed packings, as well as designing algorithms with

guarantees of producing jammed packings. The algorithms to test for jamming, and more

33

generally to explore the set of reachable configurations Jgr for hard-particle packings can
be further improved. In particular, a carefully tuned implementation of linear solvers for
three-dimensional packings is needed as a building block in implementations of various non-
linear programming algorithms related to packings. Work is already under way to provide
highly efficient implementations of various optimization algorithms for linear and nonlinear

programming on large-scale (contact) networks.

IX. ACKNOWLEDGEMENTS

The authors would like to thank Robert Vanderbei for numerous helpful discussions on
mathematical programming issues and for providing us with the LOQO optimization library.
A. D. and S. T. were supported by the Petroleum Research Fund as administered by the
American Chemical Society and by the MRSEC Grant at Princeton University, NSE DMR
- 0213706. R. C. was partially supported by NSF grant number DMS-0209595.

[1] T. Aste and D. Weaire. The Pursuit of Perfect Packing. IOP Publishing, 2000.

[2] R. Connelly. Rigid circle and sphere packings, Part I: Finite Packings. Structural Topology,
14:43-60, 1988. See also Ref. 3.

[3] R. Connelly. Rigid circle and sphere packings Part II: Infinite Packings. Structural Topology,
16:57-76, 1991. Second part of Ref. 2.

[4] R. Connelly, K. Bezdek, and A. Bezdek. Finite and uniform stability of sphere packings.
Discrete and Computational Geometry, 20:111-130, 1998.

[5] R. Connelly and W. Whiteley. Second-order rigidity and prestress stability for tensegrity
frameworks. SIAM Journal of Discrete Mathematics, 9(3):453-491, 1996.

[6] A. Donev. http://atom.princeton.edu/donev/Packing, homepage for the sphere packing
project, with useful supplementary materials.

[7] A. Donev and S. Torquato. Energy-efficient actuation in infinite lattice structures. Int. J.
Solids Structures, 51(8):1459-1475, 2003.

[8] A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly. Jamming in hard sphere and disk

packings. J. App. Phys., 2003. In press.

34

[9]

[24]

S. F. Edwards and D. V. Grinev. The tensorial formulation of volume function for packings
of particles. Chem. Eng. Sci., 56:5451-5455, 2001.

L. Fejes Téth. Regular figures. Pergamon Press, 1964.

J. P. Hansen and I. R. McDonald. Theory of Simple Liquids. Academic Press, New York,
1986.

E. L. Hinrichsen, J. Feder, and T. Jossang. Random packing of disks in two dimensions. Phys.
Rev. A, 41(8):4199-4209, 1990.

D. J. Jacobs and B. Hendrickson. An algorithm for two dimensional rigidity percolation: The
pebble game. J. Comp. Phys., 137(2):346-365, 1997.

B. D. Lubachevsky and F. H. Stillinger. Geometric properties of random disk packings. J.
Stat. Phys., 60:561-583, 1990. See also Ref. 15.

B. D. Lubachevsky, F. H. Stillinger, and E. N. Pinson. Disks vs. spheres: Contrasting prop-
erties of random packings. J. Stat. Phys., 64:501-525, 1991. Second part of Ref. 14.

A. Mehta, editor. Granular Matter. Springer-Verlag, New York, 1994.

C. Moukarzel M.J. Alava, P.M. Duxbury and H. Rieger, editors. FEzact combinatorial algo-
rithms: Ground states of disordered systems, volume 18 of Domb and Lebowitz series on Phase
transitions and critical phenomena. Academic Press, 2001.

J. N. Roux. Geometric origin of mechanical properties of granular materials. Phys. Rev. E,
61(6):6802-6836, 2000.

F. H. Stillinger, H. Sakai, and S. Torquato. Lattice-based random jammed configurations for
hard particles. Phys. Rev. E, 67:031107, 2003.

H. P. F. Swinnerton-Dyer. Extremal lattices of convex bodies. Proc. Cambridge Philos. Soc.,
49:161-162, 1953.

M. F. Thorpe and P. M. Duxbury, editors. Rigidity Theory and Applications. Fundamental
Materials Research. Kluwer/Plenum, 1999.

S. Torquato. Random Heterogeneous Materials:

Microstructure and Macroscopic Properties. Springer-Verlag, New York, 2002.

S. Torquato, A. Donev, and F. H. Stillinger. Breakdown of elasticity theory for jammed hard-
particle packings: Conical nonlinear constitutive theory. Int. J. Solids Structures, 40(25):7143
— 7153, 2003.

S. Torquato and F. H. Stillinger. Multiplicity of generation, selection, and classification pro-

35

[26]

[27]
28]

cedures for jammed hard-particle packings. J. Phys. Chem. B, 105:11849-11853, 2001.

S. Torquato, T. M. Truskett, and P. G. Debenedetti. Is random close packing of spheres well
defined? Phys. Rev. Lett., 84:2064-2067, 2000.

W. Uhler and R. Schilling. A local description of stable 2d random packings. J. Phys. C,
18:L.979-1983, 1985.

R. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer, 1997.

WWW. The general purpose interior-point LOQO optimization library is not public-domain,
but can be tried at http://orfe.princeton.edu/"loqo/. The public-domain PCx library im-
plements interior point linear programming algorithms and can be found at http://www-£p.
mcs.anl.gov/otc/Tools/PCx/.

R. Zallen. The Physics of Amorphous Solids. Wiley, New York, 1983.

A. Zinchenko. Algorithm for random close packing of spheres with periodic boundary condi-

tions. J. Comp. Phys., 114:298-307, 1994.

36

Appendix A: Non-Randomized LP Testing for Jamming

Determining whether the linear system of inequalities (9) with Al = 0 has nontrivial
solutions is an interesting mathematical programming problem. One approach is the follow-
ing: Solve the following linear program aimed at maximizing the sum of the (positive) gap

dilations:

minar Y, (ATAR);; = min (Ae)” AR
such that ATAR <0, (A1)

where e is the unit vector, and if this returns AR = 0 as one of the optimal solutions, test
the rigidity matrix A for rank-defficiency, i.e., look for nontrivial solutions of ATAR = 0.
If this also fails to find an unjamming motion, the packing is jammed. Notice that this will
usually produce a single unjamming motion, which we have found to be rather uninteresting

for lattice packings in the sense that it is extremely dependent upon N..

Appendix B: The Geometry of the Set of Unjamming Motions

The linearized impenetrability constraints ATAR < Al define a polyhedral set Pag of
feasible (linearized) displacements. Every such convex polyhedron consists of a finite piece
Phull " a convex polytope given by the convex hull of its extreme points, and possibly an
unbounded piece Cagr, a finitely generated polyhedral cone. In some cases this cone will
be empty (i.e., Car = {0}), but in others it will not, as can be seen in Fig. 1. The full
nonlinear impenetrability constraints given by (8) define the true set of feasible displacements
Prk = Jr — {R}, which always relaxes the linearization: Par C PAg. A mathematically
well defined definition of jamming is to take any ray in the cone Car as an unjamming
motion, and exclude others, however, as Fig. 1 shows, the elongated corners of Pagr are in
fact very likely to be unbounded in the true non-linear feasible set of displacements PRk, so
we prefer to take any “long” direction in Par as an unjamming motion.

We note that the randomized LP algorithm proposed here strictly answers the question
of whether the polyhedral set of feasible displacements contains an unbounded ray (i.e.,
whether Car # {0}) just by applying two (nonzero) loads b and —b. This is because an

attempt to find such a ray will be unsuccessful only if —b € CAg, where Cig is the dual

37

(conjugate) cone of Cagr, and in this case b ¢ CAg, so that using the load —b will find
a ray if such a ray exists. Also, we note that one cannot hope to fully characterize the
cone of first-order unjamming motions Car (i.e. find its convex hull of generating rays), as
this is related to the hard problem of fully enumerating the vertices of a polyhedron. Our

randomized approach essentially finds a few sample rays in Cag.

Appendix C: Strict Jamming with Periodic Boundary Conditions

We demonstrate that the mathematical statement that a packing is rigid if and only if it is
infinitesimally rigid (see, for example, Ref. [2]) is true also even if we allow the periodic lattice
to change. This argument is motivated by Ref. [20]. In practice this means that any (first-
order) solution obtained by the linear programming algorithm can be appropriately scaled
to obtain a truly feasible displacement in which some particles strictly lose contact and the
volume of the unit cell strictly decreases. We include this proof because this argument has
not previously appeared. If we consider the nonlinear corrections to (14) by expanding (13)

to second order, we get:
det (A+ AA) = det (A)det (I+¢) =
d
det (A H 1+ X)) = det (A (Z Ai + Z AiA; + higher order terms) ,
1>7

where \; are the eigenvalues of the strain, which are all real because of (15) and also have
a nonpositive sum due to (14). If Tr(e) = > \; < 0, then the first order term will domi-
nate for sufficiently small deformations and the nonlinear constraint (13) will be satisfied.
Furthermore, if Tr () = 0, then we have that

> AN =5 Z AP <0

i>j

for any nontrivial deformation, which shows that the second-order term is of the correct sign

and the volume of the unit cell strictly decreases for sufficiently small deformations.

38

IV. TABLES

N | ¢ |t (s) coll.||Ar;||/D; coll.|||Ar;||/D; strict
50 10.845 21 0.010 0.060
100 10.842 6.4 0.0034 0.011
250 (0.846 21 0.0037 0.0053
500 [0.847 72 0.0016 0.0067
750 (0.849 88 0.0022 0.012
1000{0.849(130 0.0016 0.018
1500(0.848| 247 0.0016 0.020
250010.849| 248 0.0039 0.010

Table I: (From Ref. [8]) Results of Algorithm 2 for equimolar binary disk packings of diameter
ratio 1.4. The first column shows the total number of particles IV, the second the packing fraction,
the third the running time for the AMPL model that tests for collective jamming, and the last two
columns show the average particle displacement during collective (i.e., with a fixed lattice) and strict
jamming (i.e., with a deforming lattice) testing. Notice that the displacements are significantly
larger for the strict jamming test, especially for small packings. The analogous table for three
dimensions, given in Ref. [8], shows similar behavior but significantly larger computational times

due to the inefficiency of the direct linear solver in LOQO for three-dimensional contact networks.

39

N / Neon(103)| 1 5 10 25
50 0.041{0.015| .0018 [4.9-10~10
100 0.036/0.016{0.0011| 0.00014
250 0.050/0.023]0.0015| 0.00036
500 0.047/0.024[0.0028| 0.0014
750 0.046/0.019]0.0030| 0.0011
1000 0.052|0.020{0.0025| 0.00067

Table II: (From Ref. [8]) The average particle displacement [|Ar;||/D during the test for collective
jamming is shown for a series of sphere packings produced by the (original) Lubachevsky-Stillinger
algorithm. From top to bottom the packing size N increases, and from left to right the number of
collisions per particle N oy (in thousands) increases (and thus the density also slowly increases). No
special handling of rattlers was employed. It is easily observed that the packings uniformly become
“more jammed” as the packing algorithm is run longer (though rattlers may continue to give a
finite contribution to the observed displacements). Similar behavior is expected of any algorithm
which in the limit of infinite numerical precision produces packings with a collectively jammed
subpacking. Note that the analogous table for strict jamming, given in Ref. [8], demonstrates that
the packings do not become strictly jammed in the ideal sense even in the limit of infinite number

of collisions.

40

V. FIGURE CAPTIONS

Figure 1: Feasible displacements polyhedron. The figures show three stationary (dark gray) disks
surrounding a mobile disk (light gray). For each of the three stationary disks, we have a nonlinear
impenetrability constraint that excludes the mobile disk from a disk of radius D surrounding each
stationary disk (dark circles), delimiting the (nonconvex) region of reachable configurations Jr.
Also shown are the linearized versions of these constraints (dark lines), which are simply tangents to
the circles at the point of closest approach, as well as the region of feasible displacements bounded
by these lines (shaded gray).

This region is a polyhedral set, and in the left figure it is bounded, meaning that within the
ASD the mobile disk is locally jammed (trapped) by its three neighbors, while on the left it is
unbounded, showing the cone of locally unjamming motions (escape routes). Notice that with the
true nonlinear constraints, the mobile disk can escape the cage of neighbors in both cases, showing
that the ASD is not exact. However, it should also be clear that this is because we have relatively

large interparticle gaps here.

Figure 2: Unjamming the honeycomb lattice. A subpacking of size N, = (3,2) unit cells of the infi-
nite honeycomb lattice disk packing is placed inside a hard-wall rectangular container. The arrows
in the figures given here show the direction of motion of the spheres V in the linear unjamming

motion, scaled by some arbitrary constant to enhance the figure.

Figure 3: Unjamming the honeycomb lattice. A subpacking of size N. = (3,3) of an infinite
honeycomb packing is pinned by freezing all neighboring image disks. A representative unjamming
motion is shown as a sequence of several frames between times t = 0 and ¢ = 1 (in the order top
left, top right, bottom left and bottom right). The unshaded disks represent the particles in the

generating packing P(R), while the shaded ones are image disks that touch one of the original
disks.

Figure 4: Unjamming the Kagomé lattice. Periodic boundary conditions are used with N, = (2, 2).

41

Figure 5: The packing from Fig. 1 shown again with a numbering of the disks. D; denotes particle

i and E;; denotes the contact between the i-th and j-th particles, i.e., the contact {7,j}.

Figure 6: Results from the algorithm of Section VIA (Algorithm 1). The algorithm to test for
collective jamming in ideal packings was applied to this equimolar bidisperse disk packing of 250
disks (¢ = 0.846) in order to identify a jammed subpacking (if any). A gap tolerance of 6 = 0.01
was used, and all disks that displaced by more than Arjaee = 10~3 were removed (colored black)
to leave a jammed subpacking of 232 disks, for which the average displacement during the test
was ||Ar[|/D ~ 7-1077 and the maximal was max; || Ar;|| ~ 2 - 10~°, indicating a high numerical
accuracy in the packing algorithm (about 20,000 collisions per particle were used). If the rattling
particles or rattling clusters of particles were not removed, the displacements observed would have
been higher, as, for example, in Table I. On the other hand, if overly strict tolerances were chosen
in the algorithm of section VI A (for example, Arjarge = 10~%), then no jammed subpacking would
have been found. With reasonably tight tolerances, there is no strictly jammed subpacking of this
packing. Note that it may be possible to remove some of the disks from the collectively jammed

subpacking and still maintain the jamming property. The dotted disks represent periodic images.

Figure 7: Ezample of a lattice deformation. The above periodic packing (packing 3 in Ref. [3]) is
collectively jammed, but not strictly jammed. It can be continuously sheared toward the triangular

lattice by deforming the lattice in a volume non-decreasing manner, as shown here.

Figure 8: Locally jammed disk packing. A random packing (¢ = 0.82) of 1000 disks that is not
collectively jammed, and a representative periodic unjamming motion. More insightful animations

can be found at the webpage [6].

VI. FIGURES

42

]

l.
1: Donev et a
. e ’
Figur

ceee

A0

- @% QQQQ

g igrtg

Figure 5: Donev et al.

Figure 6: Donev et al.

Figure 7: Donev et al.

(¥
X
&)
e
2
JPA
S

o
Ay
QA

\

)
¢
7

N

)\

6
X
L
Q).
By
28
O ®
o‘
\ﬁf
ﬁ'Y
M
A

X
(€,

4
e
®)

D
Q&
N
i
i
cea
(.’
cs
%Q
,oL

g

)€

9{
Iy

)
AN
77,
a1 X
A e Ja Ja),
Ind0Je

o »@
){
o

)
@
5
go
o
o

N

y

&

56
2

S
225
300
%
e
ey
See
)

P OOOOL)
3’;,?% Y
A°\A #V

@

3%
3
S5 éo
2
(N
S 1)

AR

C!
™)
33
0%
@’Q

Y
()
e %

<

Figure 8: Donev et al.

20

