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Abstract
We computationally study jammed disordered hard-sphere packings as large as a million particles.
We show that the packings are saturated and hyperuniform, i.e., that local density fluctuations
grow only as a logarithmically-augmented surface area rather than the volume of the window. The
structure factor shows an unusual non-analytic linear dependence near the origin, S(k) ~ |k|. In
addition to exponentially damped oscillations seen in liquids, this implies a weak power-law tail in

the total correlation function, h(r) ~ —r~%, and a long-ranged direct correlation function c(r).



The characterization of local density fluctuations in many-particle systems is a problem
of great fundamental interest in the study of condensed matter, including atomic, molecular
and granular materials. In particular, long-wavelength density fluctuations are important
to such diverse fields as statistical mechanics, granular flow, and even cosmology (see Ref.
[1] and references therein). Previous work by some of us [1] considered the quantitative
characterization of density fluctuations in point patterns, and in particular, those in which
infinite-wavelength fluctuations are completely suppressed, i.e., the structure factor S(k)
vanishes at the origin. In these so-called hyperuniform (or superhomogeneous [2]) systems,
the variance in the number of points inside a large window grows slower than the volume
of the window, typically like the window surface area. Known examples include ordered
lattices and quasi-crystals [1, 2], but it is important to identify statistically homogeneous
and isotropic systems (e.g., glasses) that are hyperuniform.

For equilibrium liquids and crystals, S(k = 0) is proportional to the isothermal compress-
ibility and is thus positive. Strictly jammed sphere packings [3] are rigorously incompressible
(and non-shearable), but they are also nonequilibrium systems. In Ref. [1], it was conjec-
tured that all saturated [4] strictly jammed packings are hyperuniform. Of particular im-
portance are disordered jammed packings, especially the maximally random jammed (MR.J)
state [5]. The MRJ state is the most disordered among all strictly jammed packings and is
related to the view of jamming as a rigidity transition and/or dynamic arrest in both granu-
lar [6] and glassy materials [7]. Hyperuniformity involves an “inverted critical phenomenon”
in which the range of the direct correlation function c(r) diverges [1]. It is hence of great
interest to test whether disordered jammed sphere packings are hyperuniform. In this Let-
ter, we demonstrate that MRJ packings are indeed hyperuniform and saturated. Moreover,
we observe an unusual non-analytic structure factor S(k) ~ |k| for & — 0, or equivalently,
a quasi-long ranged negative tail of the total pair correlation function h(r) ~ —r=%, just as
found in diverse systems such as the early Universe [2] and in liquid helium [§].

We prepare jammed packings of hard spheres under periodic boundary conditions using
a modified Lubachevsky-Stillinger (LS) packing algorithm (see Ref. [9]). The generated
disordered sphere packings typically have volume fractions in the range ¢ = 0.64 — 0.65, and
to a good approximation the packings should be representative of the MRJ state. For this
study, we have generated a dozen packings of N = 10° and N = 10° particles jammed up to

a reduced pressure of 10'? using an expansion rate of 1073 [9] with ¢ ~ 0.644. Generating



such unprecedented one-million-particle packings was neccesary in order to study large-scale
density fluctuations without relying on dubious extrapolations.

The packings generated by the LS and other algorithms have a significant fraction
(~ 2.5%) of rattling particles that are not truly jammed but can rattle inside a small cage
formed by their jammed neighbors [9]. Assuming that the rattlers are more or less randomly
distributed among all particles, a hyperuniform packing from which the rattlers are then
removed would have S(0) ~ 0.025 > 0. Similarly, the hyperuniformity could be destroyed
by randomly filling large-enough voids with additional rattlers. It is therefore important to
verify that the jammed packings are saturated, i.e., that there are no voids large enough
to insert additional rattlers. Figure 1 shows the complementary cumulative pore-size distri-
bution [10] F'(4), which gives the probability that a sphere of diameter § could be inserted
into the void space, with and without the rattlers. Clearly there is no room to insert any
additional rattlers; the largest observed voids are around . &~ 0.8D. The algorithm used
to produce the packings appears to fill all void cages with particles.

When periodic boundary conditions apply with a periodic box of length L, particle cor-
relations can only be studied up to a distance L/2, and there are large finite-size corrections
for distances comparable to L. Additionally, as we show later, strong statistical fluctuations
appear due to finite system size, making it necessary to use even larger systems to measure
pair correlations at large distances. In reciprocal space, S(k) can only be measured for
k > 2w /L, with large discretization errors for the smallest wavevectors. To overcome these
finite-size effects, it was necessary to generate packings of one million particles.

Consider a large isotropic three-dimensional packing of N hard spheres of diameter D,
with average number density p = N/V and average volume fraction ¢ = wpD?/6. We
employ the usual pair correlation function gso(x = r/D) or the total correlation function
h(x) = go(x) — 1 in real space, or the equivalent Fourier representation given by the structure
factor

sin (K x)

S(K = kD) =1+ 24¢ / 2*h(z)dx.

Of particular interest are the moments of h(x f > z"h(z)dz. Computer-generated
packings are always finite, and thus binning technlques must be used to obtain probability

densities like h. Accordingly, we prefer to use the more readily measurable excess coordina-
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Figure 1: (Color online) The cumulative pore-size distribution F'(J) for a (single) packing with
N = 10° particles, with and without the rattlers. The method of trial spheres with 2 - 10° trials
was used [10]. A very similar F(§) with cutoff around dpax ~ 0.8D is observed when N = 105,
when rattlers are present. The cutoff is however not as sharply defined as it is for the FCC crystal,

shown for comparison.

tion
AZ (z) =1+ 24¢/ w?h(w)dw.
0
This is the average excess number of points inside a spherical window of radius D centered
at a particle, compared to the ideal-gas expectation 8¢x3. Any integral containing h(x) can

easily be represented in terms of AZ (x) using integration by parts. For the structure factor

we get S (K) = limg_,o S(K, R), where

KR der Kz

This has quadratic behavior near £ = 0 when expanded in a Taylor series,

S(K, R) = Az () SUER) /R AZ () LB ) (1)
5 (K) ~ 5(0) + - /0 T2 [AZ() — S(0)] da, 2)

where S(0) = AZ (z — oo) vanishes for a hyperuniform system. For large =, an explicit

finite-size correction of order 1/N needs to be applied to the infinite-system excess coor-
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dination, AZ(z) ~ S(0) [1 — 8px3/N] [11], as it is clear that the excess coordination must
vanish for windows as large as the whole system.

Figure 2 shows S(k) for the simulated packings as obtained via a direct Fourier transform
(DFT) of the particle positions, S(k) = N~! Zf\il exp (ik - r;) 2, where k is a reciprocal
lattice vector for the periodic unit cell [12]. To obtain an approximation to the radially sym-
metric infinite-system S(k), we average over the reciprocal lattice vectors inside a spherical
shell of thickness 27 /L. Using Eq. (1) together with a numerical (truncated) AZ(z) quickly
gives S(k) over a wide range of wavelengths. However, the behavior near the origin is not
reliable since it depends on the analytic extension for the tail of AZ(z). The results of the
DFT calculations are shown in Fig. 2, and they closely match the one obtained from AZ(x)
for wavelengths smaller than about 20 diameters.

Figure 2 reveals that the saturated packing is indeed hyperuniform (as conjectured in Ref.
[1]) to within S(0) < 1073. The behavior of S(k) near the origin is very surprising. The
observed S(k) follows closely a non-analytic linear relationship [13] well-fitted by S(K) ~
6.1-107* 4 3.4-1073K over the whole range K /27 < 0.4. By contrast, analytic quadratic
behavior is observed for a liquid sample at ¢ = 0.49, as shown in the figure. Theoretical
finite-size corrections to the small-k behavior of S(k) have only been considered for relatively
low-density liquid systems with relatively small N [11], and are not useful for our purposes.
Although estimating the corrections to the DFT data analytically is certainly desirable, such
corrections appear to be rather small at least for the well-understood liquid at ¢ = 0.49.
Comparison among the different N = 10° samples shows that statistical fluctuations in S(k)
near the origin are very small.

Equation (2) shows that if & is truly short-ranged, the structure factor must be analytic
(i.e., an even power of k, usually quadratic), near the origin. Our numerical observations
point strongly to a linear S(K') for small K. This observation S(K) ~ |K| implies a
negative algebraic power-law tail h(x) ~ —z~% uncharacteristic of liquid states and typically
only seen in systems with long-range interactions. Such non-analytic behavior is assumed
in the so-called Harrison-Zeldovich power spectrum of the density fluctuations in the early
Universe [2] and is also seen in the ground state of liquid helium [8]. A long-ranged tail
must appear in the direct correlation function ¢(r) for a strictly hyperuniform system due
to the divergence of ¢(0), in a kind of “inverted critical phenomenon” [1]. Such a tail is

uncharacteristic of liquids where the range of ¢(r) is substantially limited to the range of the



C Linear fit " —0.04 C
C Quadratic predictions v ./ h C(I‘) 5 :—
C | o DFT (N=10°) / i -
- | Vv DFTat0=049 (N=105 . R
4= '/ ] I\ 0 -
C - |\ C
- ) I ;
C i | - j/ —— PYar¢=049
- ] 002 , ‘ B I 0. =106
3 < ~ | -10 ! ZV=I0Y
— OQ - N - , — ,
= f I F
':\i - 7] . ' ‘_15_|||l|||||||||||||||||||||
A b G 1o h o T s
e I r/D
2 10 0 \‘
r ] ] ] | ] ] ] ] | ] ] : ’ |
- 0
0 0.25 0.5 - I _
IE- © DFT(N=I0) . ;5 R R
C _ \ 7 /
- - =— PYat($=0.49 / @ . \\ e ,
C =+ From AZ(x) (N=106) / \.~ _——
: o
() BabsEossseacasnRaEaRaeanaerIRc i HH (A TR N RN A SN NN NI AN N SO N N H S A
0 0.5 1 1.5 2

kD/21

Figure 2: (Color online) Structure factor for a jammed 10%-particle packing (¢ = 0.642) and for
a hard-sphere liquid near the freezing point (¢ = 0.49), as obtained via two alternative numerical
methods and also from the Percus-Yevick (PY) theory [14]. DFT results are also shown over
a larger range of K for a jammed 105-particle packing (¢ = 0.643). The left inset shows the
range near the origin, revealing that while a parabola matches the liquid data reasonably well |
S(K) ~0.02+4-1073K? according to PY theory, which is known to underestimate S(0) ], it does
not appear appropriate for the jammed packing for large-to-intermediate wavelengths [as obtained
from Eq. (2)]. The right inset shows ¢(r) convolved with a narrow Gaussian [due to numerical

truncation of S(k)]. The peak at r = D is essentially a J-function.

interaction potential. The direct correlation function can numerically be obtained from its
Fourier transform via the Ornstein-Zernike (OZ) equation, é(k) = (7/6¢) [S(k) — 1] /S(k),
and we have shown it in the inset in Fig. 2, along with the corresponding Percus-Yevick
(PY) anzatz [14] for ¢(r) at ¢ = 0.49 which makes the approximation that ¢(r) vanishes

outside the core. Two unusual features relative to the liquid are observed for our jammed



packing. First, there is a positive d-function at contact corresponding to the Z = 6 average
touching neighbours around each jammed particle [9]. Second, there is a relatively long tail
outside the core, the exact form of which depends on the behavior of S(k) around the origin
[15].

The numerical coefficient in the power-law tail in h(z) is very small, AZ(z) ~ 4.4-10 3271,
and cannot be directly observed, as we will show shortly. It is however possible to observe its
effect on large-scale density fluctuations. For monodisperse hard sphere systems it suffices
to focus only on the positions of the sphere centers and consider density fluctuations in point
patterns. Following Ref. [1], consider moving a spherical window of radius R = X D through
a point pattern and recording the number of points inside the window N(X). The number

variance is exactly [1],

*(X) = (N*(X)) — (N(X))*
3¢ [(2X) AZy(2X) — AZy(2X)]
where AZ,( fo w"AZ(w)dw denotes a running moment of AZ. Asymptotically, for
large Windows, in an infinite system with analytic S(k), 0?(X) ~ AX?3 + BX?, where A =
8¢ (1 + 24¢ (x?)) = 84S(0) is the volume fluctuation coefficient, and B = —144¢? (2®) =
6pAZy (x — 00) is the surface fluctuation coefficient. When a non-integrable power-law tail
exists in AZ(x), asymptotically the “surface” fluctuation coefficient contains an additional
logarithmic term, B(X) = By + C'ln X. Such a logarithmic correction does not appear for
any of the examples studied in Ref. [1]. Explicit finite-size effects for non-hyperuniform
systems yield a correction A(X) = 8pS(0) [1 —8¢pX?/N] [16]. Figure 3 shows numerical
results for the number variance as a function of window size, along with the predicted
asymptotic dependence, including both the logarithmic and N~! corrections [17]. Both
corrections need to be included in order to observe this close a match between the data and
theory. The constants S(0) and C' were obtained from the linear fit to S(k), while By ~ 1.02
was obtained by numerically integrating AZ(x), as explained shortly [18].

We now turn our attention to real space to observe directly the large-distance behavior
of h or equivalently AZ. For equilibrium liquids with short-ranged potentials, it is expected
that the asymptotic behavior of h(x) is exponentially damped oscillatory [19, 20], of the

form

h(z) ~ %exp (—x /&) cos [Ko(x — x0)] - (3)
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Figure 3: (Color online) The variance o versus window radius for a jammed 10%-particle packing.
The uncertainty in the variance (shown with error bars) is estimated to be o2 /v/M, where M = 10*
is the number of windows used for a given window. Also shown is the theoretically predicted

dependence of the form AX? + CX?In X + ByX?, along with just the surface term BoX?2, which

dominates the density fluctuations.

However, it is not clear whether the decay is still exponential for glass-like nonequilibrum
jammed systems. Previous studies have looked at much smaller systems, where explicit
finite-size effects dominate, and also focused on the liquid phase [11]. Figure 4 shows the
numerical AZ(z) along with a relatively good exponentially damped oscillatory fit [21]
AZ(x) =~ 5.47x exp(—x/1.83) cos(7.56x — 2.86) over the range 5 < x < 15. It would be
desirable to look at larger x and, in particular, directly observe the long-range inverse power
tail predicted from the linear behavior of S(k). The use of cubic periodic boundary conditions
implies that pair distances up to Ty.x = €/7r]\7/724¢ ~ 50 can be studied. However, it
is not possible to measure the pair correlations for x > 15 due to statistical variations
among finite systems, estimated to lead to an uncertainty of the order 6Z(x) ~ o(z)/v/'N.
In fact, within the range of validity of the observed AZ(x) the damped oscillatory fit is
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Figure 4: (Color online) Excess coordination for a jammed 10%-particle packing, along with the
best fit of the form (3) for the tail, and the estimated uncertainty. Statistical fluctuations overcome
the actual correlations after x =~ 15. Averaging over 9 samples only reduces the fluctuations by a
factor of 3, without revealing additional information. The top inset uses a logarithmic scale, and
the bottom inset shows the zeroth and first running moments along with their asymptotic values
as estimated from the tail fit. For the range of x shown, explicit finite-size corrections are small

(less than 5%).

perfectly appropriate. We smoothly combined the actual numerical data for x < 10 with
the fitted decaying tail for # > 10, and numerical integration of this smoothed AZ(z) gives
By ~ 1.02 £ 0.02, as used in producing Fig. 3. This smoothed AZ(z) was used to obtain
S(k) via Eq. (1) when producing Fig. 2.

We have given computational results for million-particle jammed disordered hard sphere
packings demonstrating that they are staurated and hyperuniform. We found that S(k) is

nonanalytic at the origin in striking contrast to liquid behavior. There are many open fasci-



nating questions. Can a geometrical significance be attached to the period of oscillations K
in the jamming limit, or to the cutoff of F'(§)? We believe that the strict jamming and satu-
ration conditions demand hyperuniformity of our packings. We conjecture that the observed
nonanalytic behavior of S(k) ~ k is a direct consequence of the condition of maximal disor-
der on the jammed packing. The exponent p appears to increase with increasing order: It
approaches infinity for ordered lattices, is two for perturbed lattices, and is one for MRJ. In
this sense, the MRJ packings are markedly more disordered: they have macroscopic density
fluctuations which are much larger than crystalline packings. Quantitative understanding
of this aspect of disorder and its relation to density fluctuations remains a fascinating open
problem.
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