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Motivation

Original idea:

e Fast and slow degrees of
freedom

e Example: Brownian motion

e Replace fast degrees by
friction and random noise

e Conceptually and technically
simpler

Learn the mathematics of random noise!

Technical interest:

e Original system: Deterministic, no additional degrees of
freedom

e Add friction and noise to stabilize equations of motion

e Permitted if

— noise does not alter the (relevant) dynamics, or
— only static properties are sought



Markov Processes

e Continuous (state) space (x, usually multi-dimensional)
e Continuous time (t)

Conditional probability for xo(tg) — x(t):
P(x, t|$0, to)

does not depend on previous history (t < tg)

/d:cP(x, t|xo, tg) = 1

P(CU, to|£l§'0, to) = 5(51? - .CU())

Chapman—Kolmogorov:

P(CU,thUo,to) :/d:mP(:B,t|:131,t1)P(:131,t1|:130,to)



Formal Moment Expansion

Consider:

e p(x) >0
o [dxp(x)=1
® u, = [dxz"p(x) exists for all x

Then
p) = [ dv exp(ika)p(a)
= nz;o —
l. e.
p(x) «— {pn}
unique

p0) =3 (~) 25

n=0

Proof: Both sides produce the same moments!



Kramers—Moyal Expansion
Define
pn(ts o, t0) = (@ —x0)") (L, to)

/da: (x — x9)" P(x, t|xq, to)

(mean displacement, mean square displacement etc.) =

P(x, t|xg, to)
— ox n!

particularly good for short times.

Chapman—Kolmogorov (small 7):

P(x, t|$0, to)

— /dCBl nZ:% <—£> d(x — $1)aun(t§ r1,t —T)

P(xl, t — ’7'|5130, to)

fj( a)” L (bt — 7)
— - = —Mn\l; L, L — T
ox n!'u

n=0

P(x,t — T|xo, to)



Subtract n = 0 term:

1
~ [P(x, t|xo, tog) — P(x,t — 7|x0, to)]

1 & oO\" 1
— — E _— —,u,n(t;x,t—T)P(ﬂ?,t—7'|£li'0,t0)
T = ox n!

Short—time behavior of the moments defines the Kramers—Moyal
coefficients D™ (o(7): Terms of order higher than linear!):

(z — 20)™) (to + 7, t0) = n!D™ (20, to)T + o(7)

,un(t; x,t — 7') — N'D(n)(x, t — 7')7' -+ 0(7-)
= D™ (z,t)1 + o(7)

Similarly

P(x,t — 7|xg,to) = P(x, t|xg, to)
Hence
o > o\"

—P(x, t|zo, to) = —— ) D™(x, t)P(x, t|xzo, t
i@ theonto) = 3= (50 ) D PG tao, o
generalized Fokker—Planck equation

Shorthand:

0
2 p(a.tlro,to) = LP(z. thao. o)



Pawula Theorem

Only four types of processes:

1. Expansion stops at n = 0: No dynamics

. Expansion stops at n = 1: Deterministic processes (—
Liouville equation)

. Expansion stops at n = 2: Fokker-Planck / diffusion
processes

. Expansion stops at n = oo

Proof: See Risken, The Fokker—Planck Equation.

Truncation at finite order n > 2 would produce

P <ol



Proof of Pawula Theorem

Define scalar product

(flg) = / dz P(x, t|z0, to) £ (2)g(x)

Moments:

[ = /da: P(x, t|zo, to) (x — x0)"

fmin = ((x — x0)" |(x — x0)")

Schwarz inequality:

2
Popirn S H2mfbon

=
plm+m?2 o (2m)!(2n)!D(2m)D(2n)
[(m + n)!]?
form>1,n2>1
Suppose
D®N) = p@NTh — =9

Setm=1,n=N,N+1,...:

pW+h — pW+2) _

“Zeroing” always works except for very small N where no new
information is obtained.



DP=...=0 = D¥=...=0
o N =2

DW=...=0 = D¥=..=0
o N =23

DW=...=0 = DYW=..=0
o N =14

D¥=...=0 = DY=..=0

® ctc.

Thus: Truncation at any finite order implies D® = pW =
... =0.



Goal

Langevin simulation =

e Generation of stochastic trajectories
e for a process of type 3

e with a discretization time step 7T
Physical input:

e Drift coefficient DY) (— deterministic part)

e Diffusion coefficient D?) (— stochastic part)



Euler Algorithm
We know for the displacements:
(Az;) = DY(z,t)T + o(r)
(Az;Az;) = 2D (x,t)T + o(7)
((Az)") o(r) n>3

Satisfied by

zi(t+ 7) = zi(t) + Df) T+ V217
r; random variables with:

(ri) =0
(rirj) = Dij
All higher moments exist

Some distribution, e. g. Gaussian or uniform (B. D. & W.
Paul, Int. J. Mod. Phys. C 2, 817 (1991))

Stochastic term dominates for - — 0
Large number of independent kicks
Central Limit Theorem = Gaussian behavior

“Gaussian white noise”

e Often: D;; has a simple structure (diagonal, constant, or
both)
e Non-diagonal D;; for systems with hydrodynamic interactions

(correlations in the stochastic displacements): Ermak &
MacCammon, J. Chem. Phys. 69, 1352 (1978)



A Simple Example
d = 1 diffusion with constant drift.
DO — const., D® — const.

Trajectories:

16 —
i2 | v
L 'M{«(M\" I/‘
1 0 [ A N m’” Mﬁ% 7
8 | y o m MWN ot
5l
4 | M‘M’ ,m"' M "'1
2 | M’\"% ety
0 ¥ %’A v
o 1 1 1
0 2 4 6 8 10
t

continuous but not differentiable!

Solution of the Fokker—Planck equation:

1 — DWy)?
P(x,t]0,0) = exp (_(:13 )

Var D@t 4Dt

0.3
0.25 |
0.2 |
0.15 | t=3

t=1

P(x,t)




Langevin Equation

Formal way of writing the Euler algorithm (stochastic differential
equation):

d
(1)
“z; = D! (¢

fi(t) “Gaussian white noise” with properties

o (fi)=0
o {fi®)f;(t)) = 2Dio(t — 1)
e [hus

(AziAxy) = /OT dt /OT dt’ (fi(t)fi(t)) = 2Dy

e Higher—order moments: [ dt f;(¢) is Gaussian!



Thermal Systems:
The Fluctuation—Dissipation Theorem

Langevin dynamics to describe:

e Decay into thermal equilibrium
e Thermal fluctuations in equilibrium

e = DM D® o not explicitly depend on time
Equilibrium state:

e Hamiltonian H(x)

] ﬁ — 1/(]€BT)

o Z = [dx exp(—FH)

o p(x) = Z ' exp(—FH)

Necessary:

P(x,t|xo,0) — p(x) for t— o0

Lexp(—BH) =0

Balance between drift and diffusion defines temperature.



Ito vs. Stratonovich

Definition of the process via

e Langevin equation

e plus interpretation of the stochastic term!

So far: Ito interpretation

Other common interpretation: Stratonovich: Assume that the
trajectories are differentiable, and take the limit of vanishing
correlation time at the end!

Consider p

Lo = F(@) + o(2) (1)
e [’ deterministic part

e o (x) noise strength (multiplicative noise)
o« (f)=0

(FOfE)) =26t —t)



S = F(z) + o(2)f (1)

Ito:

/0 "dt o (2(0)) £ (1) — o((0)) / Cdtf()

([ o) =o

Stratonovich:
| dto@@se
. a(x(O))/OTdtf(t)—I—Z—Z/()Ttha:(t)f(t)+...
= o(x(0)) /OT dt f(t) +a;l—; /OT dt /Ot dt' f(t) f(t) + ...

.
([ atoaos)

do
= O0+o0o—7+4 o(7)
dx

“spurious drift”



Brownian Dynamics

System of particles
Coordinates 7
Friction coefficients (;
Diffusion coefficients D;
Potential energy U (= H)
Forces
T T a,r_{L
dt 1 - CZ 1 1
5y = o
<&(t) ? Sj(t’)> = 2D; 1 6,;6(t —t)

o1 . o\ 2
L=— ——F; D;
S orehr 20 (5%)

7

Lexp(—BH) =0

O [10H OH
— — 6D, —BH) =0
257 [cz- o, " aﬁ-] p(=AT)
kT . :
D, = Einstein relation

Gi



Stochastic Dynamics

e Generalized coordinates g;
e Generalized canonically conjugate momenta p;

e Hamiltonian 'H

Hamilton's equations of motion, augmented by friction and noise
terms:

d  OH

dth B 8pz~

d oOH oOH

P = Y Ci@pi + oifi

G = G ({ai})
o = o0i({4qi})
(fiy = 0
(i) f;(&)) = 28;6(t — 1)

L=Lyg+ Lsp



0 OH 0 OH
= _Zaqz Op; z;é’pz- 0q;

OH O OH O
- Z Op; Oq; Z; 9q; Op;

Lpexp(—BH) =0 o.k.

9 , 0
Lsp = ;
i ZZ: Op; [C 329@ 7 829@}

Lspexp(—FH) =0

0-1'2 = kBTC’L
Simple recipe for MD with hard potentials & weak noise:

e Standard velocity Verlet

e Add friction and noise at those instances where forces are
calculated

e — Symplectic algorithm in the ¢ = O limit



Dissipative Particle Dynamics (DPD)

Disadvantages of SD:

e v = 0 reference frame is special
e Galileo invariance is broken
o Global momentum is not conserved

e No proper description of hydrodynamics
Idea:

e Dampen relative velocities of nearby particles
e Stochastic kicks between pairs of nearby particles

e satisfying Newton IlI
Result:

e Galileo invariance

e Momentum conservation

e Locality

e Correct description of hydrodynamics

e No profile biasing in boundary—driven shear simulations



In practice: Define

e ((r) (relative) friction for particles at distance r

e o (r) noise strength for particles at distance r

Ty = Ty —Tj =TT

Friction force along interparticle axis:
FUr — _ N — ) 7]
i — Z C(rig) [(Us — U5) - Pij] Piy
J

> F’;.(fr) = 0 (antisymmetric matrix in %7)

Stochastic force along interparticle axis:
= (st .
F =" o (ry) ni(t) 74
J
Mij = Mji (nij) =0

(i (O)mwa(t)) = 2(8ikb51 4+ 8udr)5(t — t)

S F’;.(St) = 0 (similar)



— T, = i

dt mz-p

d = 2 gl
—pi = i+ FY +F
dt

L=Lyg+ Lppp

Op;

b2 ) (”ﬂ'—:-)?

i g(F)

) OH OH
— Zﬁj . o7, [C(’r’z‘j)ﬁj . (8ﬁ _ __,>

J(#%) op;

o 15
2 ~
o)ty (aﬁi a@-) ]

Fluctuation—dissipation theorem:

e gl (-8

o’ (r) = kgT¢(r)



Force Biased Monte Carlo

Idea: Use a BD step (with large 7) as a trial move for Monte
Carlo. Accept / reject with Metropolis criterion = correct
Boltzmann distribution without discretization errors

Just d = 1, set v = 7/(. Algorithm:

Start position x
Calculate energy U = U (x)

Calculate force F' = F(x) = —0U/0x
Trial move: Generate

' =x+~F +/2ksgTvyp

p Gaussian with

(p) =0 (p*) =1

Hence,
(o —a) = — a
Wap(x — ') = exp | —— | = w
g Var T\ 2 1

Calculate energy U’ = U(x")
Calculate AU = U’ — U
Calculate force F' = F(x')
Calculate

pl = (2kpT~)/? (x — 2’ —~F)

(random number needed to go back)



e Hence,

/ 1 p/2
Wep(T — ) = exp | —— | = ws

e Calculate wge.

e Accept with probability wg.

Wyee =7 Detailed balance:

Wap(x — ') Waee(z — ')

= exp(—BAU)

Wap(T' — ) Waee(x! — )

|. e. standard Metropolis with

exp(—BAU) — exp(—me—f



Higher—Order Algorithms
Additive noise: Systematic approach via operator factorization.

|dea: Fokker—Planck equation:

%)
>P=LP = P=ecxp(Lt)d(z — )

Factorize the exponential, each factor such that the result is
known.

Example (2nd order):
L= »Cdet + ﬁstoch
(deterministic propagation, stochastic diffusion)

exp(Lt)
= exp(Lstocnt/2) exp(Laert) exp(Lastocnt /2) + O(L’)

o exp(Lstocnt/2) acting on d(x — xp): Exactly known
solution — Gaussian distribution / solution of the diffusion
equation

o exp(Lyet): Just deterministic propagation. Can be done up
to any desired accuracy with known methods (e. g. Runge-
Kutta)

State of the art: Fourth order: H. A. Forbert, S. A. Chin, Phys.
Rev. E 63, 016703 (2000).



Multiplicative noise: Schemes of higher—order than Euler are
very difficult to construct and apply (Greiner, Strittmatter,
Honerkamp, J. Stat. Phys. 51, 95 (1988)). No known general
solution for a diffusion equation of type



