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Motivation

Original idea:

• Fast and slow degrees of

freedom

• Example: Brownian motion

• Replace fast degrees by

friction and random noise

• Conceptually and technically

simpler
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Learn the mathematics of random noise!

Technical interest:

• Original system: Deterministic, no additional degrees of

freedom

• Add friction and noise to stabilize equations of motion

• Permitted if

– noise does not alter the (relevant) dynamics, or

– only static properties are sought



Markov Processes

• Continuous (state) space (x, usually multi–dimensional)

• Continuous time (t)

Conditional probability for x0(t0)→ x(t):

P (x, t|x0, t0)

does not depend on previous history (t < t0)

Z

dxP (x, t|x0, t0) = 1

P (x, t0|x0, t0) = δ(x− x0)

Chapman–Kolmogorov:

1t t

x

x

0

0

t

P (x, t|x0, t0) =

Z

dx1P (x, t|x1, t1)P (x1, t1|x0, t0)



Formal Moment Expansion

Consider:

• p(x) > 0

•
R

dx p(x) = 1

• µn =
R

dx xnp(x) exists for all x

Then

p̃(k) =

Z

dx exp(ikx)p(x)

=
∞
X

n=0

(ik)n

n!
µn

I. e.

p(x)←→ {µn}
unique

p(x) =
∞
X

n=0

„

− ∂

∂x

«n µn

n!
δ(x)

Proof: Both sides produce the same moments!



Kramers–Moyal Expansion

Define

µn(t; x0, t0) = 〈(x− x0)
n〉 (t, t0)

=

Z

dx (x− x0)
n P (x, t|x0, t0)

(mean displacement, mean square displacement etc.) ⇒

P (x, t|x0, t0)

=
∞
X

n=0

„

− ∂

∂x

«n

δ(x− x0)
1

n!
µn(t; x0, t0)

particularly good for short times.

Chapman–Kolmogorov (small τ ):

P (x, t|x0, t0)

=

Z

dx1

∞
X

n=0

„

− ∂

∂x

«n

δ(x− x1)
1

n!
µn(t; x1, t− τ)

P (x1, t− τ |x0, t0)

=

∞
X

n=0

„

− ∂

∂x

«n 1

n!
µn(t; x, t− τ)

P (x, t− τ |x0, t0)



Subtract n = 0 term:

1

τ
[P (x, t|x0, t0)− P (x, t− τ |x0, t0)]

=
1

τ

∞
X

n=1

„

− ∂

∂x

«n 1

n!
µn(t; x, t− τ)P (x, t− τ |x0, t0)

Short–time behavior of the moments defines the Kramers–Moyal

coefficients D(n) (o(τ): Terms of order higher than linear!):

〈(x− x0)
n〉 (t0 + τ, t0) = n!D

(n)
(x0, t0)τ + o(τ)

µn(t; x, t− τ) = n!D(n)(x, t− τ)τ + o(τ)

= n!D
(n)

(x, t)τ + o(τ)

Similarly

P (x, t− τ |x0, t0) ≈ P (x, t|x0, t0)

Hence

∂

∂t
P (x, t|x0, t0) =

∞
X

n=1

„

− ∂

∂x

«n

D(n)(x, t)P (x, t|x0, t0)

generalized Fokker–Planck equation

Shorthand:

∂

∂t
P (x, t|x0, t0) = LP (x, t|x0, t0)



Pawula Theorem

Only four types of processes:

1. Expansion stops at n = 0: No dynamics

2. Expansion stops at n = 1: Deterministic processes (→
Liouville equation)

3. Expansion stops at n = 2: Fokker–Planck / diffusion

processes

4. Expansion stops at n =∞

Proof: See Risken, The Fokker–Planck Equation.

Truncation at finite order n > 2 would produce

P < 0!!



Proof of Pawula Theorem

Define scalar product

〈f |g〉 =

Z

dx P (x, t|x0, t0)f
⋆(x)g(x)

Moments:

µn =

Z

dx P (x, t|x0, t0) (x− x0)
n

I. e.

µm+n = 〈(x− x0)
m|(x− x0)

n〉

Schwarz inequality:

µ
2
m+n ≤ µ2mµ2n

⇒
D(m+n)2 ≤ (2m)!(2n)!

[(m + n)!]2
D(2m)D(2n)

for m ≥ 1, n ≥ 1

Suppose

D(2N) = D(2N+1) = . . . = 0

Set m = 1, n = N, N + 1, . . .:

D(N+1) = D(N+2) = . . . = 0

“Zeroing” always works except for very small N where no new

information is obtained.



• N = 1:

D(2) = . . . = 0 ⇒ D(2) = . . . = 0

• N = 2:

D(4) = . . . = 0 ⇒ D(3) = . . . = 0

• N = 3:

D(6) = . . . = 0 ⇒ D(4) = . . . = 0

• N = 4:

D(8) = . . . = 0 ⇒ D(5) = . . . = 0

• etc.

Thus: Truncation at any finite order implies D(3) = D(4) =

. . . = 0.



Goal

Langevin simulation ≡

• Generation of stochastic trajectories

• for a process of type 3

• with a discretization time step τ

Physical input:

• Drift coefficient D(1) (→ deterministic part)

• Diffusion coefficient D(2) (→ stochastic part)



Euler Algorithm

We know for the displacements:

〈∆xi〉 = D
(1)
i (x, t)τ + o(τ)

〈∆xi∆xj〉 = 2D
(2)
ij (x, t)τ + o(τ)

〈(∆x)n〉 = o(τ) n ≥ 3

Satisfied by

xi(t + τ) = xi(t) + D
(1)
i τ +

√
2τ ri

ri random variables with:

• 〈ri〉 = 0

• 〈rirj〉 = Dij

• All higher moments exist

• Some distribution, e. g. Gaussian or uniform (B. D. & W.

Paul, Int. J. Mod. Phys. C 2, 817 (1991))

• Stochastic term dominates for τ → 0

• Large number of independent kicks

• Central Limit Theorem⇒ Gaussian behavior

• “Gaussian white noise”

• Often: Dij has a simple structure (diagonal, constant, or

both)

• Non–diagonal Dij for systems with hydrodynamic interactions

(correlations in the stochastic displacements): Ermak &

MacCammon, J. Chem. Phys. 69, 1352 (1978)



A Simple Example

d = 1 diffusion with constant drift.

D(1) = const., D(2) = const.

Trajectories:
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continuous but not differentiable!

Solution of the Fokker–Planck equation:

P (x, t|0, 0) =
1√

4πD(2)t
exp

 

−(x−D(1)t)2

4D(2)t

!
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Langevin Equation

Formal way of writing the Euler algorithm (stochastic differential

equation):

d

dt
xi = D

(1)
i + fi(t)

fi(t) “Gaussian white noise” with properties

• 〈fi〉 = 0

•
˙

fi(t)fj(t
′)
¸

= 2Dijδ(t − t′)

• Thus

〈∆xi∆xj〉 =

Z τ

0

dt

Z τ

0

dt′
˙

fi(t)fj(t
′)
¸

= 2Dijτ

• Higher–order moments:
R τ

0
dt fi(t) is Gaussian!



Thermal Systems:
The Fluctuation–Dissipation Theorem

Langevin dynamics to describe:

• Decay into thermal equilibrium

• Thermal fluctuations in equilibrium

• ⇒ D(1), D(2) do not explicitly depend on time

Equilibrium state:

• Hamiltonian H(x)

• β = 1/(kBT )

• Z =
R

dx exp(−βH)

• ρ(x) = Z−1 exp(−βH)

Necessary:

P (x, t|x0, 0)→ ρ(x) for t→∞

L exp(−βH) = 0

Balance between drift and diffusion defines temperature.



Ito vs. Stratonovich

Definition of the process via

• Langevin equation

• plus interpretation of the stochastic term!

So far: Ito interpretation

Other common interpretation: Stratonovich: Assume that the

trajectories are differentiable, and take the limit of vanishing

correlation time at the end!

Consider
d

dt
x = F (x) + σ(x)f(t)

• F deterministic part

• σ(x) noise strength (multiplicative noise)

• 〈f〉 = 0

•
˙

f(t)f(t′)
¸

= 2δ(t− t′)



d

dt
x = F (x) + σ(x)f(t)

Ito:

Z τ

0

dt σ(x(t))f(t) → σ(x(0))

Z τ

0

dt f(t)

⇒
fiZ τ

0

dt σ(x(t))f(t)

fl

= 0

Stratonovich:

Z τ

0

dt σ(x(t))f(t)

→ σ(x(0))

Z τ

0

dt f(t) +
dσ

dx

Z τ

0

dt ∆x(t)f(t) + . . .

= σ(x(0))

Z τ

0

dt f(t) + σ
dσ

dx

Z τ

0

dt

Z t

0

dt′ f(t′)f(t) + . . .

⇒
fiZ τ

0

dt σ(x(t))f(t)

fl

= 0 + σ
dσ

dx
τ + o(τ)

“spurious drift”



Brownian Dynamics

• System of particles

• Coordinates ~ri

• Friction coefficients ζi

• Diffusion coefficients Di

• Potential energy U (≡ H)

• Forces
~Fi = −∂U

∂~ri

d

dt
~ri =

1

ζi

~Fi + ~δi

D

~δi

E

= 0

D

~δi(t)⊗ ~δj(t
′)
E

= 2Di

↔
1 δijδ(t − t′)

I. e.

L = −
X

i

∂

∂~ri

1

ζi

~Fi +
X

i

Di

„

∂

∂~ri

«2

L exp(−βH) = 0

⇒
X

i

∂

∂~ri

»

1

ζi

∂H
∂~ri

− βDi

∂H
∂~ri

–

exp(−βH) = 0

Di =
kBT

ζi

Einstein relation



Stochastic Dynamics

• Generalized coordinates qi

• Generalized canonically conjugate momenta pi

• Hamiltonian H

Hamilton’s equations of motion, augmented by friction and noise

terms:

d

dt
qi =

∂H
∂pi

d

dt
pi = −∂H

∂qi

− ζi

∂H
∂pi

+ σifi

ζi = ζi ({qi})
σi = σi ({qi})
〈fi〉 = 0

˙

fi(t)fj(t
′
)
¸

= 2δijδ(t− t
′
)

L = LH + LSD



LH = −
X

i

∂

∂qi

∂H
∂pi

+
X

i

∂

∂pi

∂H
∂qi

= −
X

i

∂H
∂pi

∂

∂qi

+
X

i

∂H
∂qi

∂

∂pi

LH exp(−βH) = 0 o.k.

LSD =
X

i

∂

∂pi

»

ζi

∂H
∂pi

+ σ2
i

∂

∂pi

–

LSD exp(−βH) = 0

X

i

∂

∂pi

»

ζi

∂H
∂pi

− βσ
2
i

∂H
∂pi

–

e
−βH

= 0

σ2
i = kBTζi

Simple recipe for MD with hard potentials & weak noise:

• Standard velocity Verlet

• Add friction and noise at those instances where forces are

calculated

• → Symplectic algorithm in the ζ = 0 limit



Dissipative Particle Dynamics (DPD)

Disadvantages of SD:

• v = 0 reference frame is special

• Galileo invariance is broken

• Global momentum is not conserved

• No proper description of hydrodynamics

Idea:

• Dampen relative velocities of nearby particles

• Stochastic kicks between pairs of nearby particles

• satisfying Newton III

Result:

• Galileo invariance

• Momentum conservation

• Locality

• Correct description of hydrodynamics

• No profile biasing in boundary–driven shear simulations



In practice: Define

• ζ(r) (relative) friction for particles at distance r

• σ(r) noise strength for particles at distance r

~rij = ~ri − ~rj = rijr̂ij

Friction force along interparticle axis:

~F
(fr)
i = −

X

j

ζ(rij) [(~vi − ~vj) · r̂ij] r̂ij

P

i
~F

(fr)
i = 0 (antisymmetric matrix in ij)

Stochastic force along interparticle axis:

~F
(st)
i =

X

j

σ(rij) ηij(t) r̂ij

ηij = ηji 〈ηij〉 = 0

˙

ηij(t)ηkl(t
′)
¸

= 2(δikδjl + δilδjk)δ(t − t′)

P

i
~F

(st)
i = 0 (similar)



d

dt
~ri =

1

mi

~pi

d

dt
~pi = ~Fi + ~F

(fr)
i + ~F

(st)
i

L = LH + LDPD

LDPD =
X

ij

ζ(rij)r̂ij ·
∂

∂~pi

»

r̂ij ·
„

∂H
∂~pi

− ∂H
∂~pj

«–

−
X

i 6=j

σ
2
(rij)

„

r̂ij ·
∂

∂~pi

«„

r̂ij ·
∂

∂~pj

«

+
X

i

X

j( 6=i)

σ
2
(rij)

„

r̂ij ·
∂

∂~pi

«2

=
X

i

r̂ij ·
∂

∂~pi

X

j( 6=i)

"

ζ(rij)r̂ij ·
„

∂H
∂~pi

− ∂H
∂~pj

«

+ σ2(rij)r̂ij ·
„

∂

∂~pi

− ∂

∂~pj

«

#

Fluctuation–dissipation theorem:

σ2(r) = kBTζ(r)



Force Biased Monte Carlo

Idea: Use a BD step (with large τ ) as a trial move for Monte

Carlo. Accept / reject with Metropolis criterion ⇒ correct

Boltzmann distribution without discretization errors

Just d = 1, set γ = τ/ζ. Algorithm:

• Start position x

• Calculate energy U = U(x)

• Calculate force F = F (x) = −∂U/∂x

• Trial move: Generate

x
′
= x + γF +

p

2kBTγ ρ

ρ Gaussian with

〈ρ〉 = 0
D

ρ
2
E

= 1

• Hence,

wap(x→ x
′
) =

1√
2π

exp

 

−ρ2

2

!

= w1

• Calculate energy U ′ = U(x′)

• Calculate ∆U = U ′ − U

• Calculate force F ′ = F (x′)

• Calculate

ρ′ = (2kBTγ)−1/2 `x− x′ − γF ′
´

(random number needed to go back)



• Hence,

wap(x
′ → x) =

1√
2π

exp

 

−ρ′2

2

!

= w2

• Calculate wacc

• Accept with probability wacc

wacc =? Detailed balance:

wap(x→ x′)

wap(x′ → x)

wacc(x→ x′)

wacc(x′ → x)
= exp(−β∆U)

I. e. standard Metropolis with

exp(−β∆U)→ exp(−β∆U)
w2

w1



Higher–Order Algorithms

Additive noise: Systematic approach via operator factorization.

Idea: Fokker–Planck equation:

∂

∂t
P = LP ⇒ P = exp(Lt)δ(x − x0)

Factorize the exponential, each factor such that the result is

known.

Example (2nd order):

L = Ldet + Lstoch

(deterministic propagation, stochastic diffusion)

exp(Lt)

= exp(Lstocht/2) exp(Ldett) exp(Lstocht/2) + O(t
3
)

• exp(Lstocht/2) acting on δ(x − x0): Exactly known

solution — Gaussian distribution / solution of the diffusion

equation

• exp(Ldett): Just deterministic propagation. Can be done up

to any desired accuracy with known methods (e. g. Runge–

Kutta)

State of the art: Fourth order: H. A. Forbert, S. A. Chin, Phys.

Rev. E 63, 016703 (2000).



Multiplicative noise: Schemes of higher–order than Euler are

very difficult to construct and apply (Greiner, Strittmatter,

Honerkamp, J. Stat. Phys. 51, 95 (1988)). No known general

solution for a diffusion equation of type

∂

∂t
P =

∂2

∂x2
D(x)P


