

Numerical Methods I

Eigenvalue Problems

Aleksandar Donev

*Courant Institute, NYU*¹

donev@courant.nyu.edu

¹MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 2nd, 2014

- 1 Review of Linear Algebra: Eigenvalues
- 2 Conditioning of Eigenvalue Problems
- 3 Computing Eigenvalues and Eigenvectors
- 4 Methods based on QR factorizations
- 5 Conclusions

Eigenvalue Decomposition

- For a square matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, there exists at least one λ such that

$$\mathbf{A}\mathbf{x} = \lambda\mathbf{x} \quad \Rightarrow \quad (\mathbf{A} - \lambda\mathbf{I})\mathbf{y} = \mathbf{0}$$

- Putting the **eigenvectors** \mathbf{x}_j as columns in a matrix \mathbf{X} , and the **eigenvalues** λ_j on the diagonal of a diagonal matrix Λ , we get

$$\mathbf{A}\mathbf{X} = \mathbf{X}\Lambda.$$

- A matrix is **non-defective** or **diagonalizable** if there exist n **linearly independent eigenvectors**, i.e., if the matrix \mathbf{X} is invertible:

$$\mathbf{X}^{-1}\mathbf{A}\mathbf{X} = \Lambda$$

$$\mathbf{A} = \mathbf{X}\Lambda\mathbf{X}^{-1}.$$

- The transformation from \mathbf{A} to $\Lambda = \mathbf{X}^{-1}\mathbf{A}\mathbf{X}$ is called a **similarity transformation** and it preserves the eigenspace.

Unitarily Diagonalizable Matrices

- A matrix is **unitarily diagonalizable** if there exist n linearly independent **orthogonal eigenvectors**, i.e., if the matrix \mathbf{X} can be chosen to be **unitary (orthogonal)**, $\mathbf{X} \equiv \mathbf{U}$, where $\mathbf{U}^{-1} = \mathbf{U}^*$:

$$\mathbf{A} = \mathbf{U}\Lambda\mathbf{U}^*.$$

Note that unitary matrices generalize orthogonal matrices to the complex domain, so we use **adjoints** (conjugate transposes) instead of transposes throughout.

- Theorem: A matrix is unitarily diagonalizable iff it is **normal**, i.e., it commutes with its adjoint:

$$\mathbf{A}^*\mathbf{A} = \mathbf{A}\mathbf{A}^*.$$

- Theorem: **Hermitian (symmetric) matrices**, $\mathbf{A}^* = \mathbf{A}$, are unitarily diagonalizable and have **real eigenvalues**.

Left Eigenvectors

- The usual eigenvectors are more precisely called **right eigenvectors**. There is also **left eigenvector** corresponding to a given eigenvalue λ

$$\mathbf{y}^* \mathbf{A} = \lambda \mathbf{y}^* \quad \Rightarrow \quad \mathbf{A}^* \mathbf{y} = \lambda \mathbf{y}.$$

$$\mathbf{Y}^* \mathbf{A} = \Lambda \mathbf{Y}^*$$

- For a matrix that is diagonalizable, observe that

$$\mathbf{Y}^* = \mathbf{X}^{-1}$$

and so the left eigenvectors provide no new information.

- For **unitarily diagonalizable** matrices, $\mathbf{Y} = (\mathbf{X}^{-1})^* = \mathbf{U}$, so that the **left and right eigenvectors coincide**.

Non-diagonalizable Matrices

- For matrices that are not diagonalizable, one can use **Jordan form factorizations**, or, more relevant to numerical mathematics, the **Schur factorization** (decomposition):

$$\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^*,$$

where **T** is **upper-triangular**.

- The eigenvalues are on the diagonal of **T**.
- Note: Observe that $\mathbf{A}^* = (\mathbf{U}\mathbf{T}\mathbf{U}^*)^* = \mathbf{U}\mathbf{T}^*\mathbf{U}^*$ so for Hermitian matrices $\mathbf{T} = \mathbf{T}^*$ is real diagonal.
- An important property / use of eigenvalues:

$$\mathbf{A}^n = (\mathbf{U}\mathbf{T}\mathbf{U}^*)(\mathbf{U}\mathbf{T}\mathbf{U}^*) \cdots (\mathbf{U}\mathbf{T}\mathbf{U}^*) = \mathbf{U}\mathbf{T}(\mathbf{U}^*\mathbf{U})\mathbf{T}(\mathbf{U}^*\mathbf{U}) \cdots \mathbf{T}\mathbf{U}^*$$

$$\mathbf{A}^n = \mathbf{U}\mathbf{T}^n\mathbf{U}^*$$

Sensitivity of Eigenvalues

- Now consider a perturbation of a diagonalizable matrix $\delta \mathbf{A}$ and see how perturbed the similar matrix becomes:

$$\mathbf{X}^{-1} (\mathbf{A} + \delta \mathbf{A}) \mathbf{X} = \Lambda + \delta \Lambda \quad \Rightarrow$$

$$\delta \Lambda = \mathbf{X}^{-1} (\delta \mathbf{A}) \mathbf{X} \quad \Rightarrow$$

$$\|\delta \Lambda\| \leq \|\mathbf{X}^{-1}\| \|\delta \mathbf{A}\| \|\mathbf{X}\| = \kappa(\mathbf{X}) \|\delta \mathbf{A}\|$$

- Conclusion: The conditioning of the eigenvalue problem is related to the **conditioning of the matrix of eigenvectors**.
- If \mathbf{X} is unitary then $\|\mathbf{X}\|_2 = 1$ (from now on we exclusively work with the 2-norm): **Unitarily diagonalizable matrices are always perfectly conditioned!**
- Warning: The **absolute error** in all eigenvalues is of the same order, meaning that the **relative error will be very large** for the smallest eigenvalues.

Sensitivity of Individual Eigenvalues

PERTURBATION ANALYSIS

$$Ax = \lambda x$$

$$A(\epsilon) = A + \epsilon \cdot \delta A, \quad \epsilon \ll 1$$

DIFFERENTIATE
W.R.T ϵ

$$A(\epsilon) \cdot x(\epsilon) = \lambda(\epsilon) \cdot x(\epsilon)$$

PRE-MULTIPLY
BY y^*

$$y^* (\delta A) \cdot x + y^* A \cdot x' = \lambda' x + \lambda \cdot x'$$

$$y^* (\delta A) x + (y^* A) x' =$$

$$\lambda' (y \cdot x) + (\lambda y^*) x' \Rightarrow$$

$$y^* (\delta A) x = (y \cdot x) \lambda' \Rightarrow$$

$$\lambda' = \frac{y^* (\delta A) x}{(y \cdot x)}$$

SENSITIVITY
OF
 λ

Sensitivity of Individual Eigenvalues

$$\delta\lambda \approx \frac{\mathbf{y}^*(\delta\mathbf{A})\mathbf{x}}{\mathbf{y}^*\mathbf{x}}$$

- Recalling the Cauchy-Schwartz inequality:

$$|\mathbf{y} \cdot \mathbf{x}| = \|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_{xy} \leq \|\mathbf{x}\| \|\mathbf{y}\|$$

$$|\delta\lambda| \leq \frac{\|\mathbf{x}\| \|\delta\mathbf{A}\| \|\mathbf{y}\|}{\|\mathbf{x}\| \|\mathbf{y}\| \cos \theta_{xy}} = \frac{\|\delta\mathbf{A}\|}{\cos \theta_{xy}}$$

- Defining a conditioning number for a given eigenvalue

$$\kappa(\lambda, \mathbf{A}) = \sup_{\delta\mathbf{A}} \frac{|\delta\lambda|}{\|\delta\mathbf{A}\|} = \frac{1}{\cos \theta_{xy}}$$

- For **unitarily diagonalizable** matrices $\mathbf{y} = \mathbf{x}$ and thus $\kappa(\lambda, \mathbf{A}) = 1$: **perfectly conditioned!**

Sensitivity of Eigenvectors

- A priori estimate: The conditioning number for the eigenvector itself depends on the **separation between the eigenvalues**

$$\kappa(\mathbf{x}, \mathbf{A}) = \left(\min_j |\lambda - \lambda_j| \right)^{-1}$$

- This indicates that **multiple eigenvalues require care**. Even for Hermitian matrices eigenvectors are hard to compute.
- If there is a defective (non-diagonalizable) matrix with eigenvalue for which the difference between the algebraic and geometric multiplicities is $d > 0$, then

$$\delta\lambda \sim \|\delta\mathbf{A}\|^{1/(1+d)},$$

which means the conditioning number is infinite: **Defective eigenvalues are very badly conditioned.**

The need for iterative algorithms

- The eigenvalues are roots of the **characteristic polynomial** of \mathbf{A} , which is generally of order n .
- According to Abel's theorem, there is no closed-form (rational) solution for $n \geq 5$.
- **All eigenvalue algorithms must be iterative!**
This is a fundamental difference from, example, linear solvers.
- There is an important distinction between iterative methods to:
 - Compute **all eigenvalues** (similarity transformations).
 - Compute **only one or a few eigenvalues**, typically the smallest or the largest one (power-like methods).
- Bounds on eigenvalues are important, e.g., Courant-Fisher theorem for the **Rayleigh quotient**:

$$\min \lambda \leq r_{\mathbf{A}}(\mathbf{x}) = \frac{\mathbf{x}^* \mathbf{A} \mathbf{x}}{\mathbf{x}^* \mathbf{x}} \leq \max \lambda$$

The Power Method

- Recall that for a diagonalizable matrix

$$\mathbf{A}^n = \mathbf{X}\Lambda^n\mathbf{X}^{-1}$$

and assume $|\lambda_1| > |\lambda_2| \geq |\lambda_3| \cdots |\lambda_n|$ and that the columns of \mathbf{X} are normalized, $\|\mathbf{x}_j\| = 1$.

- Any **initial guess** vector \mathbf{q}_0 can be represented in the linear basis formed by the eigenvectors

$$\mathbf{q}_0 = \mathbf{X}\mathbf{a}$$

- Recall iterative methods for linear systems: **Multiply a vector with the matrix \mathbf{A} many times:**

$$\mathbf{q}_{k+1} = \mathbf{A}\mathbf{q}_k$$

$$\mathbf{q}_n = \mathbf{A}^n\mathbf{q}_0 = (\mathbf{X}\Lambda^n\mathbf{X}^{-1})\mathbf{X}\mathbf{a} = \mathbf{X}(\Lambda^n\mathbf{a})$$

Power Method

- As $n \rightarrow \infty$, the **eigenvalue of largest modulus** λ_0 will dominate,

$$\mathbf{\Lambda}^n = \lambda_1^n \text{Diag} \left\{ 1, \left(\frac{\lambda_2}{\lambda_1} \right)^n, \dots \right\} \rightarrow \lambda_1^n \text{Diag} \{ 1, 0, \dots, 0 \}$$

$$\mathbf{q}_n = \mathbf{X}(\mathbf{\Lambda}^n \mathbf{a}) \rightarrow \lambda_1^n \mathbf{X} \begin{bmatrix} a_1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \lambda_1^n \mathbf{x}_1$$

- Therefore the **normalized iterates** converge to the eigenvector:

$$\tilde{\mathbf{q}}_n = \frac{\mathbf{q}_n}{\|\mathbf{q}_n\|} \rightarrow \mathbf{x}_1$$

- The **Rayleigh quotient** converges to the eigenvalue:

$$r_A(\mathbf{q}_n) = \frac{\mathbf{q}_n^* \mathbf{A} \mathbf{q}_n}{\mathbf{q}_n \cdot \mathbf{q}_n} = \tilde{\mathbf{q}}_n^* \mathbf{A} \tilde{\mathbf{q}}_n \rightarrow \lambda_1$$

An alternative derivation

$$q_0 = \sum_i a_i \cdot x_i$$

$$q_n = A^n q_0 = \sum_i a_i (A^n x_i)$$

$$= \sum_i a_i (\lambda_i^n x_i) =$$

$$= \sum_i a_i \lambda_1^n \left(\frac{\lambda_i}{\lambda_1} \right)^n x_i \xrightarrow[n \rightarrow \infty]{\text{as}} a_1 \lambda_1^n x_1 + O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^n\right)$$

$$\Rightarrow \begin{cases} \tilde{q}_n \rightarrow x_1 + O(\epsilon) x_2 + O(\epsilon) x_3 + \dots \\ \text{where } \epsilon = \left| \frac{\lambda_2}{\lambda_1} \right|^n \end{cases}$$

$$\begin{aligned} \text{Now } \tilde{q}_n^* A \tilde{q}_n &= x_1^* A x_1 + O(\epsilon^2) \sum_{i,j \neq 1} x_i^* A x_j \\ \Rightarrow \hat{\lambda}_n'' &= \lambda_1 + O(\epsilon^2) \end{aligned}$$

Power Method Implementation

Start with an initial guess \mathbf{q}_0 , and then iterate:

- ① Compute **matrix-vector product** and normalize it:

$$\mathbf{q}_k = \frac{\mathbf{A}\mathbf{q}_{k-1}}{\|\mathbf{A}\mathbf{q}_{k-1}\|}$$

- ② Use Raleigh quotient to obtain **eigenvalue estimate**:

$$\hat{\lambda}_k = \mathbf{q}_k^* \mathbf{A} \mathbf{q}_k$$

- ③ **Test for convergence**: Evaluate the residual

$$\mathbf{r}_k = \mathbf{A}\mathbf{q}_k - \hat{\lambda}_k \mathbf{q}_k$$

and terminate if the error estimate is small enough:

$$\left| \lambda_1 - \hat{\lambda}_k \right| \approx \frac{\|\mathbf{r}_k\|}{\cos \theta_{xy}} < \varepsilon$$

Convergence Estimates

- The normalized iterates converge to the eigenvector **linearly**:

$$\|\mathbf{q}_k - (\pm \mathbf{x}_1)\| = O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

- If \mathbf{A} is normal the eigenvalue estimate converges a bit faster but still linearly

$$\|\hat{\lambda}_k - \lambda_1\| \sim O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^{2k}\right)$$

- The power method is fast when the **dominant eigenvalue is well-separated from the rest** (even if it is degenerate).
- This conclusion is rather general for all iterative methods: Convergence is good for **well-separated** eigenvalues, bad otherwise.
- The power method is typically too slow to be used in practice and there are more sophisticated alternatives (**Lanczos/Arnoldi iteration**).

Inverse Power Iteration

- Observe that applying the power method to \mathbf{A}^{-1} will find the largest of λ_j^{-1} , i.e., the **smallest eigenvalue** (by modulus).
- If we have an **eigenvalue estimate** $\mu \approx \lambda$, then doing the power method for the matrix

$$(\mathbf{A} - \mu \mathbf{I})^{-1}$$

will give the **eigenvalue closest to μ** .

- Convergence will be faster if μ is much closer to λ than to other eigenvalues.
- Recall that in practice $(\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{q}$ is computed by **solving a linear system**, not matrix inversion (one can **reuse an LU factorization**!).
- Finally, if we have an estimate of **both** the eigenvalue and the eigenvector, we can use **Rayleigh Quotient Iteration** (see homework).

Estimating all eigenvalues / eigenvectors

- Iterative methods akin the power method are not suitable for estimating all eigenvalues.
- Basic idea: Build a sequence of matrices \mathbf{A}_k that all share eigenvalues with \mathbf{A} via **similarity transformations**:

$$\mathbf{A}_{k+1} = \mathbf{P}^{-1} \mathbf{A}_k \mathbf{P}, \text{ starting from } \mathbf{A}_1 = \mathbf{A}.$$

- A numerically stable and good way to do this is to use the *QR* factorization:

$$\mathbf{A}_k = \mathbf{Q}_{k+1} \mathbf{R}_{k+1}$$

$$\mathbf{A}_{k+1} = \mathbf{Q}_{k+1}^{-1} \mathbf{A}_k \mathbf{Q}_{k+1} = (\mathbf{Q}_{k+1}^{-1} \mathbf{Q}_{k+1}) \mathbf{R}_{k+1} \mathbf{Q}_{k+1} = \mathbf{R}_{k+1} \mathbf{Q}_{k+1}.$$

- Note that the fact the **Q**'s are orthogonal is crucial to keep the **conditioning** from getting worse.

The basic QR method

- The behavior of the QR iteration can be understood most transparently as follows [following Trefethen and Bau]:
- Observation: The range of the matrix \mathbf{A}^k converges to the space spanned by the eigenvectors of \mathbf{A} , with the eigenvectors corresponding to the largest eigenvalues dominating as $k \rightarrow \infty$ (so this is ill-conditioned).
- Recall: The columns of \mathbf{Q} in $\mathbf{A} = \mathbf{QR}$ form an **orthonormal basis** for the range of \mathbf{A} .
- Idea: Form a **well-conditioned basis for the eigenspace** of \mathbf{A} by factorizing:

$$\mathbf{A}^k = \tilde{\mathbf{Q}}_k \tilde{\mathbf{R}}_k$$

and then calculate

$$\mathbf{A}_k = \tilde{\mathbf{Q}}_k^{-1} \mathbf{A} \tilde{\mathbf{Q}}_k = \tilde{\mathbf{Q}}_k^* \mathbf{A} \tilde{\mathbf{Q}}_k.$$

- It is not too hard to show that this produces the **same sequence** of matrices \mathbf{A}_k as the QR algorithm.

Why the QR algorithm works

- Summary: The columns of $\tilde{\mathbf{Q}}_k$ converge to the eigenvectors, and

$$\mathbf{A}_k = \tilde{\mathbf{Q}}_k^* \mathbf{A} \tilde{\mathbf{Q}}_k.$$

- We can recognize the above as a matrix of Rayleigh quotients, which for diagonalizable matrices

$$(\mathbf{A}_k)_{ij} = \tilde{\mathbf{q}}_i^* \mathbf{A} \tilde{\mathbf{q}}_j \rightarrow \lambda_i \delta_{ij} = \begin{cases} \lambda_i & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

showing that (under suitable assumptions):

$$\mathbf{A}_k \rightarrow \Lambda$$

- It can also be shown that

$$\tilde{\mathbf{Q}}_k = \mathbf{Q}_1 \mathbf{Q}_2 \cdots \mathbf{Q}_k \rightarrow \mathbf{X}$$

More on QR algorithm

- The convergence of the basic QR algorithm is closely related to that of the power method: It is only fast if all eigenvalues are **well-separated**.
- For more general (non-diagonalizable) matrices in complex arithmetic, the algorithm converges to the **Schur decomposition** $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^*$,

$$\mathbf{A}_k \rightarrow \mathbf{T} \text{ and } \tilde{\mathbf{Q}}_k \rightarrow \mathbf{U}.$$

- It is possible to implement the algorithm entirely using real arithmetic (no complex numbers).
- There are several key improvements to the basic method that make this work in practice: **Hessenberg matrices** for faster QR factorization, **shifts** and **deflation** for acceleration.
- There are other sophisticated algorithms as well, such as the **divide-and-conquer algorithm**, and the best are implemented in the library LAPACK (MATLAB).

Eigenvalues in MATLAB

- In MATLAB, sophisticated variants of the **QR algorithm** (LAPACK library) are implemented in the function `eig`:

$$\Lambda = \text{eig}(A)$$

$$[X, \Lambda] = \text{eig}(A)$$

- For large or sparse matrices, iterative methods based on the **Arnoldi iteration** (ARPACK library), can be used to obtain a few of the largest/smallest/closest-to- μ eigenvalues:

$$\Lambda = \text{eigs}(A, n_{eigs})$$

$$[X, \Lambda] = \text{eigs}(A, n_{eigs})$$

- The **Schur decomposition** is provided by $[U, T] = \text{schur}(A)$.

Conclusions/Summary

- Eigenvalues are **well-conditioned** for **unitarily diagonalizable matrices** (includes Hermitian matrices), but ill-conditioned for nearly non-diagonalizable matrices.
- Eigenvectors are **well-conditioned** only when **eigenvalues are well-separated**.
- Eigenvalue algorithms are **always iterative**.
- The **power method** and its variants can be used to find the **largest or smallest eigenvalue**, and they converge fast if there is a **large separation** between the target eigenvalue and nearby ones.
- Estimating **all eigenvalues and/or eigenvectors** can be done by combining the power method with *QR* factorizations.
- MATLAB has high-quality implementations of sophisticated variants of these algorithms.