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Review of Linear Algebra: Eigenvalues
Eigenvalue Decomposition

@ For a square matrix A € C"*", there exists at least one A such that
Ax=Xx = (A-X)y=0

e Putting the eigenvectors x; as columns in a matrix X, and the
eigenvalues \; on the diagonal of a diagonal matrix A, we get

AX = XA.

@ A matrix is non-defective or diagonalizable if there exist n linearly
independent eigenvectors, i.e., if the matrix X is invertible:
XIAX = A
A =XAX1.
@ The transformation from A to A = X"1AX is called a similarity
transformation and it preserves the eigenspace.

A. Donev (Courant Institute) Lecture IV 10/2014 3/23



Review of Linear Algebra: Eigenvalues

Unitarily Diagonalizable Matrices

@ A matrix is unitarily diagonalizable if there exist n linearly
independent orthogonal eigenvectors, i.e., if the matrix X can be
chosen to be unitary (orthogonal), X = U, where U™ = U*:

A = UAU™.

Note that unitary matrices generalize orthogonal matrices to the
complex domain, so we use adjoints (conjugate transposes) instead
of transposes throughout.

@ Theorem: A matrix is unitarily diagonalizable iff it is normal, i.e., it
commutes with its adjoint:

A*A = AA™.

@ Theorem: Hermitian (symmetric) matrices, A* = A, are unitarily
diagonalizable and have real eigenvalues.
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Review of Linear Algebra: Eigenvalues
Left Eigenvectors

@ The usual eigenvectors are more precisely called right eigenvectors.
There is also left eigenvector corresponding to a given eigenvalue A

y'A=)y" = Ay=)y.

Y*A = A\Y*
@ For a matrix that is diagonalizable, observe that
Y* — X*l

and so the left eigenvectors provide no new information.

o For unitarily diagonalizable matrices, Y = (X~1)" = U, so that the
left and right eigenvectors coincide.
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Review of Linear Algebra: Eigenvalues

Non-diagonalizable Matrices

@ For matrices that are not diagonalizable, one can use Jordan form
factorizations, or, more relevant to numerical mathematics, the
Schur factorization (decomposition):

A = UTU*,

where T is upper-triangular.
@ The eigenvalues are on the diagonal of T.

@ Note: Observe that A* = (UTU*)* = UT*U”* so for Hermitian
matrices T = T is real diagonal.

@ An important property / use of eigenvalues:

A" = (UTU*) (UTU*)---(UTU*) = UT (U*U) T (U*U) --- TU*

A" = UT"U*
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Conditioning of Eigenvalue Problems
Sensitivity of Eigenvalues

@ Now consider a perturbation of a diagonalizable matrix §A and see
how perturbed the similar matrix becomes:

XLA+SAX=A+iN =
SA=X"1(A)X =

IOA] < [ X7 IOAJIX]| = % (X) [|5A]

@ Conclusion: The conditioning of the eigenvalue problem is related to
the conditioning of the matrix of eigenvectors.

e If X is unitary then [|X||, = 1 (from now on we exclusively work with
the 2-norm): Unitarily diagonalizable matrices are always
perfectly conditioned!

@ Warning: The absolute error in all eigenvalues is of the same order,
meaning that the relative error will be very large for the smallest
eigenvalues.
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Conditioning of Eigenvalue Problems

Sensitivity of Individual Eigenvalues
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Conditioning of Eigenvalue Problems

Sensitivity of Individual Eigenvalues

*
sy~ Y (0A)x
y*x

@ Recalling the Cauchy-Schwartz inequality:

|y - x| = [Ix[| [ly[| cos fxy < [|x[|[y]]

X[ [OAI[lIyll _ [I6A]l
x| lyllcosfixy  cosbyy

|0A] < H
@ Defining a conditioning number for a given eigenvalue

2N 1
AA) = =
r(AA) séuAp |6A||  cos by

e For unitarily diagonalizable matrices y = x and thus x (\,A) = 1:
perfectly conditioned!
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Conditioning of Eigenvalue Problems
Sensitivity of Eigenvectors

@ A priori estimate: The conditioning number for the eigenvector itself
depends on the separation between the eigenvalues

o (x, A) = (mjin A Ajy>1

@ This indicates that multiple eigenvalues require care. Even for
Hermitian matrices eigenvectors are hard to compute.

o If there is a defective (non-diagonalizable) matrix with eigenvalue for
which the difference between the algebraic and geometric
multiplicities is d > 0, then

N ~ [|oA|H/ )

which means the conditioning number is infinite: Defective
eigenvalues are very badly conditioned.
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Computing Eigenvalues and Eigenvectors
The need for iterative algorithms

@ The eigenvalues are roots of the characteristic polynomial of A,
which is generally of order n.

@ According to Abel’s theorem, there is no closed-form (rational)
solution for n > 5.

o All eigenvalue algorithms must be iterative!
This is a fundamental difference from, example, linear solvers.

@ There is an important distinction between iterative methods to:

e Compute all eigenvalues (similarity transformations).
e Compute only one or a few eigenvalues, typically the smallest or the
largest one (power-like methods).

@ Bounds on eigenvalues are important, e.g., Courant-Fisher theorem
for the Rayleigh quotient:

*

, x*Ax
min A < ra (x) = < max\
X*X
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Computing Eigenvalues and Eigenvectors
The Power Method

@ Recall that for a diagonalizable matrix
A" = XA"X 1

and assume |[A1| > |A2| > |A3]-- - |As| and that the columns of X are
normalized, ||x;|| = 1.

@ Any initial guess vector qg can be represented in the linear basis
formed by the eigenvectors

qo = Xa

@ Recall iterative methods for linear systems: Multiply a vector with
the matrix A many times:

Aiy1 = Agy

q, = A"qy = (XA"X"!) Xa = X (A"a)
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Computing Eigenvalues and Eigenvectors
Power Method

@ As n — oo, the eigenvalue of largest modulus )\ will dominate,
n nn: A2 ! nn;
N" = \{Diag < 1, ) o — A/Diag{1,0,...,0}
1

ai
0
q,=X(AN"a) > \IX | . | =Axg
0
@ Therefore the normalized iterates converge to the eigenvector:

"_|| A
I‘I

@ The Rayleigh quotient converges to the eigenvalue:

a,Aq,

n Yn

ra(a,) = =q,Aq, = A\t
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Computing Eigenvalues and Eigenvectors

An alternative derivation

w&w_

S —
Now ﬁw’% w= XLA X O(é)ZXA%
DT
5/ A= N 0fe?) ”
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Computing Eigenvalues and Eigenvectors
Power Method Implementation

Start with an initial guess qg, and then iterate:

@ Compute matrix-vector product and normalize it:

. Aq,_;
W= Aae ]

@ Use Raleigh quotient to obtain eigenvalue estimate:
M = ajAa
© Test for convergence: Evaluate the residual
re = Agy — Akay
and terminate if the error estimate is small enough:

vkl

’)\1 - )\k‘ ~
cos O,

<e€
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Computing Eigenvalues and Eigenvectors
Convergence Estimates

@ The normalized iterates converge to the eigenvector linearly:
A2

k
lax — (£x1)[ = O < )\*1 )

o If A is normal the eigenvalue estimate converges a bit faster but still

linearly
Ao 2
pe-nf~o (1)

A1
@ The power method is fast when the dominant eigenvalue is
well-separated from the rest (even if it is degenerate).
@ This conclusion is rather general for all iterative methods:
Convergence is good for well-separated eigenvalues, bad otherwise.

@ The power method is typically too slow to be used in practice and
there are more sophisticated alternatives (Lanczos/Arnoldi
iteration).
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Computing Eigenvalues and Eigenvectors
Inverse Power Iteration

o Observe that applying the power method to A~! will find the largest
of )\fl, i.e., the smallest eigenvalue (by modulus).

o If we have an eigenvalue estimate p ~ )\, then doing the power
method for the matrix

(A—pu)t
will give the eigenvalue closest to .

@ Convergence will be faster if p is much closer to A then to other
eigenvalues.

e Recall that in practice (A — ul) ™! q is computed by solving a linear
system, not matrix inversion (one can reuse an LU factorization)!

o Finally, if we have an estimate of both the eigenvalue and the
eigenvector, we can use Rayleigh Quotient Iteration (see
homework).
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Methods based on QR factorizations
Estimating all eigenvalues / eigenvectors

o lterative methods akin the power method are not suitable for
estimating all eigenvalues.

@ Basic idea: Build a sequence of matrices Ay that all share eigenvalues
with A via similarity transformations:

A1 =P AP, starting from A; = A.

@ A numerically stable and good way to do this is to use the QR
factorization:
Ax = Qit1Rk1

A1 = Q1A Qi1 = (Qpi1Qks1) Rir1Qusr = Rir1Qust-

@ Note that the fact the Q’s are orthogonal is crucial to keep the
conditioning from getting worse.
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Methods based on QR factorizations
The basic QR method

@ The behavior of the QR iteration can be understood most
transparently as follows [following Trefethen and Baul]:

@ Observation: The range of the matrix A¥ converges to the space
spanned by the eigenvectors of A,
with the eigenvectors corresponding to the largest eigenvalues
dominating as k — oo (so this is ill-conditioned).

@ Recall: The columns of Q in A = QR form an orthonormal basis for
the range of A.

o Idea: Form a well-conditioned basis for the eigenspace of A by
factorizing:

A¥ = QiR

and then calculate
A = Q. 'AQk = Q{AQy.

@ It is not too hard to show that this produces the same sequence of
matrices Ay as the QR algorithm.
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Methods based on QR factorizations
Why the QR algorithm works

@ Summary: The columns of Q« converge to the eigenvectors, and
Al = Q;AQ.

@ We can recognize the above as a matrix of Rayleigh quotients, which
for diagonalizable matrices

showing that (under suitable assumptions):
A, — AN
@ It can also be shown that

Qr=Q:Q2---Q, = X

A. Donev (Courant Institute) Lecture IV 10/2014 20 /23



Methods based on QR factorizations
More on QR algorithm

@ The convergence of the basic QR algorithm is closely related to that
of the power method: It is only fast if all eigenvalues are
well-separated.

@ For more general (non-diagonalizable) matrices in complex arithmetic,
the algorithm converges to the Schur decomposition A = UTU*,

Ak—>Tanko—>U.

@ It is possible to implement the algorithm entirely using real arithmetic
(no complex numbers).

@ There are several key improvements to the basic method that make
this work in practice: Hessenberg matrices for faster QR
factorization, shifts and deflation for acceleration.

@ There are other sophisticated algorithms as well, such as the
divide-and-conquer algorithm, and the best are implemented in the
library LAPACK (MATLAB).
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Eigenvalues in MATLAB

e In MATLAB, sophisticated variants of the QR algorithm (LAPACK
library) are implemented in the function eig:

A = eig(A)

X, A] = eig(A)

@ For large or sparse matrices, iterative methods based on the Arnoldi
iteration (ARPACK library), can be used to obtain a few of the
largest /smallest/closest-to-u eigenvalues:

N = eigs(A, neigs)
[X,\] = eigs(A, Neigs)

@ The Schur decomposition is provided by [U, T| = schur(A).
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Conclusions
Conclusions/Summary

o Eigenvalues are well-conditioned for unitarily diagonalizable
matrices (includes Hermitian matrices), but ill-conditioned for nearly
non-diagonalizable matrices.

@ Eigenvectors are well-conditioned only when eigenvalues are
well-separated.

e Eigenvalue algorithms are always iterative.

@ The power method and its variants can be used to find the largest
or smallest eigenvalue, and they converge fast if there is a large
separation between the target eigenvalue and nearby ones.

e Estimating all eigenvalues and/or eigenvectors can be done by
combining the power method with QR factorizations.

@ MATLAB has high-quality implementations of sophisticated variants
of these algorithms.
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