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Trigonometric Orthogonal Polynomials
Periodic Functions

e Consider now interpolating / approximating periodic functions
defined on the interval | = [0, 27]:

Vx  f(x+27m) = f(x),

as appear in practice when analyzing signals (e.g., sound/image
processing).

@ Also consider only the space of complex-valued square-integrable
functions [3_,

21w
Vfel? (f,f):||f||2:/ |F(x)]? dx < oc.
0

@ Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.

@ Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

di(x) = €™ = cos(kx) + isin(kx), k=0,%£1,42,...
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Trigonometric Orthogonal Polynomials
Fourier Basis

du(x) = e™, k=0,+1,42, ...

@ It is easy to see that these are orhogonal with respect to the

continuous dot product
2w 2w
(0) = | e(06300ck = [ expli — k)x] e = 25
x=0 0
@ The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L27r, i.e.,

Vf € L%W o f(x) = Z lfke"kx,

k=—00

where the Fourier coefficients can be computed for any frequency

or wavenumber k using:

n f, ok 1 [ »

fo = 7( : Ok) = —. f(x)e i .
27 27 Jo
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Trigonometric Orthogonal Polynomials
Discrete Fourier Basis

e For a general interval [0, X] the discrete frequencies are

2
k:%;-; k=0,41,42, ...

@ For non-periodic functions one can take the limit X — oo in which
case we get continuous frequencies.
@ Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,
k=—-(N-1)/2,...,0,...,(N—1)/2 if Nis odd
k=-N/2,...,0,...,N/2 -1 if N is even,
and for simplicity we focus on N odd.
@ The least-squares spectral approximation for this basis is:
(N-1)/2
F)mpx)= Y Fe™
k=—(N—1)/2
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Trigonometric Orthogonal Polynomials
Discrete Dot Product

@ Now also discretize a given function on a set of N equi-spaced nodes
27
; = jh where h= —
X =J N

where j = N is the same node as j = 0 due to periodicity so we only
consider N instead of N 4 1 nodes.

@ We also have the discrete dot product between two discrete
functions (vectors) f; = f(x;):

N—1
f-g=h> fg
j=0

@ The discrete Fourier basis is discretely orthogonal

¢k : ¢k/ = 27T5k,k'
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Trigonometric Orthogonal Polynomials
Proof of Discrete Orthogonality

The case k = k' is trivial, so focus on

¢k-¢k/:Ofork7ék/

N-1
Zexp ikx;) exp (—ik'x;) Zexp [i (Ak)xj] = Z [exp (ih (AK))P
J j=0

where Ak = k — k’. Thisis a geometric series sum:

1—2zN
. ;] = :Ofk k/
R it k #

since z = exp (ih (Ak)) # 1 and
N — exp (ihN (Ak)) = exp (27i (Ak)) =

A. Donev (Courant Institute) Lecture X 11/2014 7 /41



Trigonometric Orthogonal Polynomials
Discrete Fourier Transform

@ The Fourier interpolating polynomial is thus easy to construct

(N-1)/2

T S

k=—(N—1)/2
where the discrete Fourier coefficients are given by

w ¢ ] N1

7 — ) k — . [ .

fo = o =N EO f(x;) exp (—ikx;)
J:

e Simplifying the notation and recalling x; = jh, we define the the
Discrete Fourier Transform (DFT):

N—

fiexp | —
N

=0

[ay

ho—

=2~
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Trigonometric Orthogonal Polynomials
Discrete spectrum

@ The set of discrete Fourier coefficients f is called the discrete
spectrum, and in particular,

is the power spectrum which measures the frequency content of a
signal.

o If f is real, then f satisfies the conjugacy property
Fu =1,

so that half of the spectrum is redundant and % is real.

@ For an even number of points N the largest frequency k = —N/2
does not have a conjugate partner.
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Trigonometric Orthogonal Polynomials
Fourier Spectral Approximation

e Discrete Fourier Transform (DFT):

N—1
Forward f — f : Ak 1 < 27“]/()
J:O
(N=1)/2 2rijk
Inverse f — f: f(x;) = ¢(x;) = Z fi exp < N >
k=—(N—1)/2

@ There is a very fast algorithm for performing the forward and
backward DFTs (FFT).
@ There is different conventions for the DFT depending on the

interval on which the function is defined and placement of factors of
N and 27.

Read the documentation to be consistent!
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Trigonometric Orthogonal Polynomials

Spectral Convergence (or not)

@ The Fourier interpolating polynomial ¢(x) has spectral accuracy,
i.e., exponential in the number of nodes N

1F(x) = ¢(x)| ~ e
for sufficiently smooth functions.
@ Specifically, what is needed is sufficiently rapid decay of the Fourier
coefficients with k, e.g., exponential decay ‘?k‘ ~ e Ikl
@ Discontinuities cause slowly-decaying Fourier coefficients, e.g., power
law decay ’?k’ ~ k™1 for jump discontinuities.
@ Jump discontinuities lead to slow convergence of the Fourier series for

non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

N1 at points away from jumps

1 (x) = ¢(x)I| ~ {

const. at the jumps themselves
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon

Approximation of a square wave timing signal (f, = 20 MHz)
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Trigonometric Orthogonal Polynomials
Gibbs Phenomenon

Reconstruction of the periodic square waveform with 1, 3,5, 7, 9 sinusoids
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Trigonometric Orthogonal Polynomials

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, ...

1.5
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Fast Fourier Transform

DFT

@ Recall the transformation from real space to frequency space and

back:
(i 7 1"’21 27ryk L (N-1) (N1
. k— 5 = 2 gee ey 2
Jj=
(N-1)/2 ok
A ~ T .
fof: = > fkexp< v > j=0,...,N—1
k=—(N—-1)/2

@ We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k =0,..., N:

1 = 2mijk
Forward f — f : fk:ﬁ lj-exp<— NJ>’ k=0,...,N—1
N— ..
" 1 - 2mijk .
Inverse f > f: f=— f , =0,....,.N—-1
TN & < N ) /
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Fast Fourier Transform

FFT

@ We can write the transforms in matrix notation:

~ 1
f= Unf
N
1 n
f=——=Ujxf,
N N

where the unitary Fourier matrix (fft(eye(N)) in MATLAB) is an
N x N matrix with entries

N ik —2ri/N
u}k):w’,\,, wy = e 2™/N,

o A direct matrix-vector multiplication algorithm therefore takes O(N?)
multiplications and additions.

@ Is there a faster way to compute the non-normalized

N-1

o= fwh 7

j=0
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Fast Fourier Transform

FFT

@ For now assume that N is even and in fact a power of two, N = 2",
@ The idea is to split the transform into two pieces, even and odd

points:

. . Nj2-1 § N/2-1 3
Yofent D fon= > fy (Wi) “ul > hpia (W) ‘
=2y j=2j'+1 J'=0 j'=0

@ Now notice that

W = e—4mi/N _ g=2mi/(N/2) _ W
@ This leads to a divide-and-conquer algorithm:

N/2-1 N/2-1

A 'lk k 'lk
fk = Z ij""ij/Q—}_wN Z f2j/+1uI/N/2
Jj'=0 j'=0

?k = Upf = (UN/2feven + W/ﬁ/UN/Zfodd)
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Fast Fourier Transform
FFT Complexity

@ The Fast Fourier Transform algorithm is recursive:

FFTN(f) = FFTﬁ (feven) +w[] FFTM (fodd),
2 2

where wy = w,’§, and [ denotes element-wise product. When N =1
the FFT is trivial (identity).
@ To compute the whole transform we need log, (/) steps, and at each
step we only need N multiplications and N/2 additions at each step.
@ The total cost of FFT is thus much better than the direct method's
O(N?): Log-linear
O(Nlog N).
@ Even when N is not a power of two there are ways to do a similar
splitting transformation of the large FFT into many smaller FFTs.

@ Note that there are different normalization conventions used in
different software.
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Fast Fourier Transform
In MATLAB

@ The forward transform is performed by the function f = fft(f) and
the inverse by f = fft(f). Note that ifft(fft(f)) = f and f and f may
be complex.

@ In MATLAB, and other software, the frequencies are not ordered in
the "normal” way —(N —1)/2 to +(N — 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny"” ordering is

0,1,....,(N-1)/2, ——= = _—=41,..., -1

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

@ The function fftshift can be used to order the frequencies in the
“normal” way, and ifftshift does the reverse:

f = fftshift(fft(f)) (normal ordering).
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Fast Fourier Transform

FFT-based noise filtering (1)

Fs = 1000; %
dt = 1/Fs; %
L = 1000; %
t = (0:L—1)xdt; %
T=Lxdt; %

% Sum of a 50 Hz sinusoid and a

Sampling frequency
Sampling interval
Length of signal
Time vector

Total time interval

120 Hz sinusoid

x = 0.7*xsin(2xpi*x50xt) + sin(2xpi*x120xt);

y = x + 2xrandn(size(t)); %

Sinusoids plus noise

figure(1); clIf; plot(t(1:100),y(1:100), 'b—"); hold on
title(’'Signal_Corrupted _with _Zero—Mean_Random_Noise ")

xlabel ('time")
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Fast Fourier Transform

FFT-based noise filtering (2)

if(0)
N=(L/2)%2; % Even N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/T+ [0:N/2—-1, —N/2:-1];
% Normal ordering:
f_normal = 2xpi/Tx [-N/2 : N/2-1];
else
N=(L/2)*2—-1; % Odd N
y_hat = fft(y(1:N));
% Frequencies ordered in a funny way:
f_funny = 2xpi/T+ [0:(N-1)/2, —(N-1)/2:-1];
% Normal ordering:
f_normal = 2xpi/T*x [—(N-1)/2 : (N-1)/2];
end
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Fast Fourier Transform

FFT-based noise filtering (3)

figure (2); clIf; plot(f_funny, abs(y_hat), 'ro’); hold on;

y_hat=fftshift (y_hat);
figure (2); plot(f_normal, abs(y_hat), 'b—");

title(’'Single—Sided_Amplitude _Spectrum_of_y(t) ")
xlabel ('Frequency_(Hz)")
ylabel ('Power ')

y_hat(abs(y_hat)<250)=0; % Filter out noise

y_filtered = ifft(ifftshift(y_hat));
figure (1); plot(t(1:100),y_filtered (1:100), 'r—")
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Fast Fourier Transform

FFT results

Single-Sided Amplitude Spectrum of y(t)
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Applications of FFT
Applications of FFTs

@ Because FFT is a very fast, almost linear algorithm, it is used often to
accomplish things that are not seemingly related to function
approximation.

@ Denote the Discrete Fourier transform, computed using FFTs in
practice, with
f=7F(f) and f = F1 (f) .

@ Plain FFT is used in signal processing for digital filtering: Multiply

the spectrum by a filter S(k) discretized as § = {g(k) %

fpe = F L (gm?) —f®s,

where ® denotes convolution, to be described shortly.

@ Examples include low-pass, high-pass, or band-pass filters. Note
that aliasing can be a problem for digital filters.
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Applications of FFT
Convolution

@ For continuous function, an important type of operation found in
practice is convolution of a (periodic) function f(x) with a (periodic)
kernel K(x):

27
(K F)() = [ )K= )dy = (7 K) ()
@ It is not hard to prove the convolution theorem:
F(Kef)=F(K) - F(f).

@ Importantly, this remains true for discrete convolutions:

2
—

1

N -
J

0

!

FKef)=F(K)-F(f) = Kaf=FHF(K) Ff))
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Applications of FFT
Proof of Discrete Convolution Theorem

Assume that the normalization used is a factor of N~1 in the forward and
no factor in the reverse DFT:

FHUF(K)-F(f))=Kaf

k=0
N—-1 /N-1 N-1 ..
_ 2milk 2mwimk 2rijk
k=0 \ /=0 N m=0 N N
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Applications of FFT
contd.

Recall the key discrete orthogonality property

21
VAkeZ: N1 i iAk| =6
€ JZeXp |:I NJ ] Ak =

N

N—1
— N1 Z fiKi—1 = (K®f);
1=0

L 2mi(j— 1 —m)k [P g
N ) Knd exp =N 6> Knbjmi—m
I=0 m=0

Computing convolutions requires 2 forward FFTs, one element-wise
product, and one inverse FFT, for a total cost N log N instead of N2,
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Applications of FFT
Spectral Derivative

e Consider approximating the derivative of a periodic function f(x),
computed at a set of N equally-spaced nodes, f.
@ One way to do it is to use the finite difference approximations:
Fii+h) —f05—h) _ fin—fia

(x:) _
Fx) 2h 2h

@ In order to achieve spectral accuracy of the derivative, we can
differentiate the spectral approximation: Spectral derivative

f(x) = ¢'(x) = iqb(x) _d NZ:I A Nz:l? A ik
dx dx — k paar kdX

¢ = NZI (i) e = 771 (if k)
k=0

o Differentiation, like convolution, becomes multiplication in
Fourier space.
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Applications of FFT
Multidimensional FFT

@ DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

Ny 1 Nx 1 “ g .
2 271 (Jixckx +Jyky)
f = N N Z E fi.j, €XP [ N
J =0 jx=
N, —1 N, —1
o 1 27ij, k 1 < 27ij, k
Freky, = N Z exp <— /\7 X> N E fiv.jy €XP <_I\)I/ y>
X jy=0 Y jy,=0

@ For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:
f = -’Frow (Tcol (f))
@ The cost is N, one-dimensional FFTs of length N, and then N,
one-dimensional FFTs of length N,:
N, N, log Ny + N, N, log N, = N, N, log (NxN,) = Nlog N
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Wavelets
The need for wavelets

@ Fourier basis is great for analyzing periodic signals, but is not good
for functions that are localized in space, e.g., brief bursts of speach.

@ Fourier transforms are not good with handling discontinuities in
functions because of the Gibbs phenomenon.

e Fourier polynomails assume periodicity and are not as useful for
non-periodic functions.

@ Because Fourier basis is not localized, the highest frequency present
in the signal must be used everywhere: One cannot use different
resolutions in different regions of space.
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Wavelets
n example wavelet

—
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Wavelets
Wavelet basis

o A mother wavelet function W(x) is a localized function in space.
For simplicity assume that W(x) has compact support on [0, 1].

e A wavelet basis is a collection of wavelets W; -(x) obtained from
W(x) by dilation with a scaling factor s and shifting by a
translation factor 7:

Ws -(x) = W (sx — 7).

@ Here the scale plays the role of frequency in the FT, but the shift is
novel and localized the basis functions in space.

@ We focus on discrete wavelet basis, where the scaling factors are
chosen to be powers of 2 and the shifts are integers:

Wik =W(2x—k), keZ jeZ j>0.
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Haar Wavelet Basis

thop = W(x)
1
1
-1
l*ﬁLn =¥(2x) diL.L =y(2x-1)
YT
4 U 4
l*ﬁ o =(4x) *liz.L =_¢’(4x— 1 il]’_z.z =y(4x—-2) *)-'3_2,3 =¢'(4J-¢—3J
| 1] ]
L I I e I i
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Wavelets
Wavelet Transform

@ Any function can now be represented in the wavelet basis:

oo 22-1

)=t > uWulx)

j=0 k=0

This representation picks out frequency components in different
spatial regions.

@ As usual, we truncate the basis at j < J, which leads to a total
number of coefficients cj:
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Wavelets
Discrete Wavelet Basis

e Similarly, we discretize the function on a set of N = 27 equally-spaced
nodes x; x or intervals, to get the vector f:

J—12/-1

f_C0+ZZCJkW Xjk) W

j=0 k=0

@ In order to be able to quickly and stably compute the coefficients c
we need an orthogonal wavelet basis:

/ W W/ m( )dX = 5j,151,m
@ The Haar basis is discretely orthogonal and computing the transform
and its inverse can be done using a fast wavelet transform, in linear

time O(N) time.
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Wavelets
Discrete Wavelet Transform

prma—
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Wavelets
Scaleogram
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Wavelets

other scaleogram
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Wavelets
Daubechies Wavelets

@ For the Haar basis, the wavelet approximation

J—12/-1

o =0+ 3 eyl
j=0 k=0
is piecewise constant on each of the N sub-intervals of [0, 1].
@ It is desirable to construct wavelet basis for which:
e The basis is orthogonal.

o One can exactly represent linear functions (differentiable).

e One can compute the forward and reverse wavelet transforms
efficiently.

@ Constructions of such basis start from a father wavelet function

¢(x):

N 1
= cp(2x— k), and W(x) = > (-1)*ci_ip(2x — k)
k=0 k=1—-N
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Wavelets

Mother and Father Wavelets

Daubechies 4 tap wavelet
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Conclusions
Conclusions/Summary

@ Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

@ The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

@ Functions with discontinuities are not approximated well: Gibbs
phenomenon.

@ The Discrete Fourier Transform can be computed very efficiently
using the Fast Fourier Transform algorithm: O(N log N).

@ FFTs can be used to filter signals, to do convolutions, and to
provide spectrally-accurate derivatives, all in O(N log N) time.

@ For signals that have different properties in different parts of the
domain a wavelet basis may be more appropriate.

@ Using specially-constructed orthogonal discrete wavelet basis one
can compute fast discrete wavelet transforms in time O(N).
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