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Trigonometric Orthogonal Polynomials

Periodic Functions

Consider now interpolating / approximating periodic functions
defined on the interval I = [0, 2π]:

∀x f (x + 2π) = f (x),

as appear in practice when analyzing signals (e.g., sound/image
processing).

Also consider only the space of complex-valued square-integrable
functions L2

2π,

∀f ∈ L2
w : (f , f ) = ‖f ‖2 =

∫ 2π

0
|f (x)|2 dx <∞.

Polynomial functions are not periodic and thus basis sets based on
orthogonal polynomials are not appropriate.

Instead, consider sines and cosines as a basis function, combined
together into complex exponential functions

φk(x) = e ikx = cos(kx) + i sin(kx), k = 0,±1,±2, . . .
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Trigonometric Orthogonal Polynomials

Fourier Basis

φk(x) = e ikx , k = 0,±1,±2, . . .

It is easy to see that these are orhogonal with respect to the
continuous dot product

(φj , φk) =

∫ 2π

x=0
φj (x)φ?k(x)dx =

∫ 2π

0
exp [i(j − k)x ] dx = 2πδij

The complex exponentials can be shown to form a complete
trigonometric polynomial basis for the space L2

2π, i.e.,

∀f ∈ L2
2π : f (x) =

∞∑
k=−∞

f̂ke ikx ,

where the Fourier coefficients can be computed for any frequency
or wavenumber k using:

f̂k =
(f , φk)

2π
=

1

2π
.

∫ 2π

0
f (x)e−ikx dx .

Note that there are different conventions in how various factors of
2π are placed! Be consistent!
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Trigonometric Orthogonal Polynomials

Discrete Fourier Basis

For a general interval [0,X ] the discrete frequencies are

k =
2π

X
κ κ = 0,±1,±2, . . .

For non-periodic functions one can take the limit X →∞ in which
case we get continuous frequencies.

Now consider a discrete Fourier basis that only includes the first N
basis functions, i.e.,{

k = −(N − 1)/2, . . . , 0, . . . , (N − 1)/2 if N is odd

k = −N/2, . . . , 0, . . . ,N/2− 1 if N is even,

and for simplicity we focus on N odd.

The least-squares spectral approximation for this basis is:

f (x) ≈ φ(x) =

(N−1)/2∑
k=−(N−1)/2

f̂ke ikx .
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Trigonometric Orthogonal Polynomials

Discrete Dot Product

Now also discretize a given function on a set of N equi-spaced nodes

xj = jh where h =
2π

N

where j = N is the same node as j = 0 due to periodicity so we only
consider N instead of N + 1 nodes.

We also have the discrete dot product between two discrete
functions (vectors) f j = f (xj ):

f · g = h
N−1∑
j=0

fi g
?
i

The discrete Fourier basis is discretely orthogonal

φk · φk′ = 2πδk,k′
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Trigonometric Orthogonal Polynomials

Proof of Discrete Orthogonality

The case k = k ′ is trivial, so focus on

φk · φk′ = 0 for k 6= k ′

∑
j

exp (ikxj ) exp
(
−ik ′xj

)
=
∑

j

exp [i (∆k) xj ] =
N−1∑
j=0

[exp (ih (∆k))]j

where ∆k = k − k ′. This is a geometric series sum:

φk · φk′ =
1− zN

1− z
= 0 if k 6= k ′

since z = exp (ih (∆k)) 6= 1 and
zN = exp (ihN (∆k)) = exp (2πi (∆k)) = 1.
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Trigonometric Orthogonal Polynomials

Discrete Fourier Transform

The Fourier interpolating polynomial is thus easy to construct

φN(x) =

(N−1)/2∑
k=−(N−1)/2

f̂
(N)

k e ikx

where the discrete Fourier coefficients are given by

f̂
(N)

k =
f · φk

2π
=

1

N

N−1∑
j=0

f (xj ) exp (−ikxj )

Simplifying the notation and recalling xj = jh, we define the the
Discrete Fourier Transform (DFT):

f̂k =
1

N

N−1∑
j=0

fj exp

(
−2πijk

N

)
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Trigonometric Orthogonal Polynomials

Discrete spectrum

The set of discrete Fourier coefficients f̂ is called the discrete
spectrum, and in particular,

Sk =
∣∣∣f̂k

∣∣∣2 = f̂k f̂ ?k ,

is the power spectrum which measures the frequency content of a
signal.

If f is real, then f̂ satisfies the conjugacy property

f̂−k = f̂ ?k ,

so that half of the spectrum is redundant and f̂0 is real.

For an even number of points N the largest frequency k = −N/2
does not have a conjugate partner.
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Trigonometric Orthogonal Polynomials

Fourier Spectral Approximation

Discrete Fourier Transform (DFT):

Forward f → f̂ : f̂k =
1

N

N−1∑
j=0

fj exp

(
−2πijk

N

)

Inverse f̂ → f : f (xj ) ≈ φ(xj ) =

(N−1)/2∑
k=−(N−1)/2

f̂k exp

(
2πijk

N

)

There is a very fast algorithm for performing the forward and
backward DFTs (FFT).

There is different conventions for the DFT depending on the
interval on which the function is defined and placement of factors of
N and 2π.
Read the documentation to be consistent!
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Trigonometric Orthogonal Polynomials

Spectral Convergence (or not)

The Fourier interpolating polynomial φ(x) has spectral accuracy,
i.e., exponential in the number of nodes N

‖f (x)− φ(x)‖ ∼ e−N

for sufficiently smooth functions.

Specifically, what is needed is sufficiently rapid decay of the Fourier

coefficients with k, e.g., exponential decay
∣∣∣f̂k

∣∣∣ ∼ e−|k|.

Discontinuities cause slowly-decaying Fourier coefficients, e.g., power

law decay
∣∣∣f̂k

∣∣∣ ∼ k−1 for jump discontinuities.

Jump discontinuities lead to slow convergence of the Fourier series for
non-singular points (and no convergence at all near the singularity),
so-called Gibbs phenomenon (ringing):

‖f (x)− φ(x)‖ ∼

{
N−1 at points away from jumps

const. at the jumps themselves
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon
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Trigonometric Orthogonal Polynomials

Gibbs Phenomenon
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Trigonometric Orthogonal Polynomials

Aliasing

If we sample a signal at too few points the Fourier interpolant may be
wildly wrong: aliasing of frequencies k and 2k, 3k, . . .
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Fast Fourier Transform

DFT

Recall the transformation from real space to frequency space and
back:

f → f̂ : f̂k =
1

N

N−1∑
j=0

fj exp

(
−2πijk

N

)
, k = −(N − 1)

2
, . . . ,

(N − 1)

2

f̂ → f : fj =

(N−1)/2∑
k=−(N−1)/2

f̂k exp

(
2πijk

N

)
, j = 0, . . . ,N − 1

We can make the forward-reverse Discrete Fourier Transform
(DFT) more symmetric if we shift the frequencies to k = 0, . . . ,N:

Forward f → f̂ : f̂k =
1√
N

N−1∑
j=0

fj exp

(
−2πijk

N

)
, k = 0, . . . ,N−1

Inverse f̂ → f : fj =
1√
N

N−1∑
k=0

f̂k exp

(
2πijk

N

)
, j = 0, . . . ,N − 1
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Fast Fourier Transform

FFT

We can write the transforms in matrix notation:

f̂ =
1√
N

UN f

f =
1√
N

U?
N f̂,

where the unitary Fourier matrix (fft(eye(N)) in MATLAB) is an
N × N matrix with entries

u
(N)
jk = ωjk

N , ωN = e−2πi/N .

A direct matrix-vector multiplication algorithm therefore takes O(N2)
multiplications and additions.

Is there a faster way to compute the non-normalized

f̂k =
N−1∑
j=0

fjω
jk
N ?
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Fast Fourier Transform

FFT

For now assume that N is even and in fact a power of two, N = 2n.

The idea is to split the transform into two pieces, even and odd
points:

∑
j=2j ′

fjω
jk
N +

∑
j=2j ′+1

fjω
jk
N =

N/2−1∑
j ′=0

f2j ′
(
ω2

N

)j ′k
+ ωk

N

N/2−1∑
j ′=0

f2j ′+1

(
ω2

N

)j ′k

Now notice that

ω2
N = e−4πi/N = e−2πi/(N/2) = ωN/2

This leads to a divide-and-conquer algorithm:

f̂k =

N/2−1∑
j ′=0

f2j ′ω
j ′k
N/2 + ωk

N

N/2−1∑
j ′=0

f2j ′+1ω
j ′k
N/2

f̂k = UN f =
(
UN/2feven + ωk

NUN/2fodd

)
A. Donev (Courant Institute) Lecture X 11/2014 17 / 41



Fast Fourier Transform

FFT Complexity

The Fast Fourier Transform algorithm is recursive:

FFTN(f) = FFT N
2

(feven) + w � FFT N
2

(fodd ),

where wk = ωk
N and � denotes element-wise product. When N = 1

the FFT is trivial (identity).

To compute the whole transform we need log2(N) steps, and at each
step we only need N multiplications and N/2 additions at each step.

The total cost of FFT is thus much better than the direct method’s
O(N2): Log-linear

O(N log N).

Even when N is not a power of two there are ways to do a similar
splitting transformation of the large FFT into many smaller FFTs.

Note that there are different normalization conventions used in
different software.
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Fast Fourier Transform

In MATLAB

The forward transform is performed by the function f̂ = fft(f ) and
the inverse by f = fft(f̂ ). Note that ifft(fft(f )) = f and f and f̂ may
be complex.

In MATLAB, and other software, the frequencies are not ordered in
the “normal” way −(N − 1)/2 to +(N − 1)/2, but rather, the
nonnegative frequencies come first, then the positive ones, so the
“funny” ordering is

0, 1, . . . , (N − 1)/2, −N − 1

2
,−N − 1

2
+ 1, . . . ,−1.

This is because such ordering (shift) makes the forward and inverse
transforms symmetric.

The function fftshift can be used to order the frequencies in the
“normal” way, and ifftshift does the reverse:

f̂ = fftshift(fft(f )) (normal ordering).
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Fast Fourier Transform

FFT-based noise filtering (1)

Fs = 1000 ; % Sampl ing f r e qu enc y
dt = 1/Fs ; % Sampl ing i n t e r v a l
L = 1000 ; % Length o f s i g n a l
t = ( 0 : L−1)∗dt ; % Time v e c t o r
T=L∗ dt ; % Tota l t ime i n t e r v a l

% Sum of a 50 Hz s i n u s o i d and a 120 Hz s i n u s o i d
x = 0.7∗ s i n (2∗ p i ∗50∗ t ) + s i n (2∗ p i ∗120∗ t ) ;
y = x + 2∗ randn ( s i z e ( t ) ) ; % S i n u s o i d s p l u s n o i s e

f i g u r e ( 1 ) ; c l f ; p l o t ( t ( 1 : 1 0 0 ) , y ( 1 : 1 0 0 ) , ’ b−− ’ ) ; hold on
t i t l e ( ’ S i g n a l Cor rupted wi th Zero−Mean Random Noi se ’ )
x l a b e l ( ’ t ime ’ )
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Fast Fourier Transform

FFT-based noise filtering (2)

i f (0 )
N=(L /2)∗2 ; % Even N
y ha t = f f t ( y ( 1 :N) ) ;
% Frequ en c i e s o rd e r ed i n a funny way :
f f u n n y = 2∗ p i /T∗ [ 0 :N/2−1, −N/2: −1 ] ;
% Normal o r d e r i n g :
f no rma l = 2∗ p i /T∗ [−N/2 : N/2−1];

e l s e
N=(L/2)∗2−1; % Odd N
y ha t = f f t ( y ( 1 :N) ) ;
% Frequ en c i e s o rd e r ed i n a funny way :
f f u n n y = 2∗ p i /T∗ [ 0 : (N−1)/2 , −(N−1)/2:−1];
% Normal o r d e r i n g :
f no rma l = 2∗ p i /T∗ [−(N−1)/2 : (N−1)/2 ] ;

end
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Fast Fourier Transform

FFT-based noise filtering (3)

f i g u r e ( 2 ) ; c l f ; p l o t ( f f unny , abs ( y ha t ) , ’ ro ’ ) ; hold on ;

y ha t= f f t s h i f t ( y ha t ) ;
f i g u r e ( 2 ) ; p l o t ( f no rma l , abs ( y ha t ) , ’ b− ’ ) ;

t i t l e ( ’ S i ng l e−S ided Ampl i tude Spectrum o f y ( t ) ’ )
x l a b e l ( ’ Frequency (Hz) ’ )
y l a b e l ( ’ Power ’ )

y ha t ( abs ( y ha t )<250)=0; % F i l t e r out n o i s e
y f i l t e r e d = i f f t ( i f f t s h i f t ( y ha t ) ) ;
f i g u r e ( 1 ) ; p l o t ( t ( 1 : 1 0 0 ) , y f i l t e r e d ( 1 : 1 0 0 ) , ’ r− ’ )
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Fast Fourier Transform

FFT results
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Applications of FFT

Applications of FFTs

Because FFT is a very fast, almost linear algorithm, it is used often to
accomplish things that are not seemingly related to function
approximation.

Denote the Discrete Fourier transform, computed using FFTs in
practice, with

f̂ = F (f) and f = F−1
(

f̂
)
.

Plain FFT is used in signal processing for digital filtering: Multiply

the spectrum by a filter Ŝ(k) discretized as ŝ =
{

Ŝ(k)
}

k
:

ffilt = F−1
(

ŝ� f̂
)

= f ~ s,

where ~ denotes convolution, to be described shortly.

Examples include low-pass, high-pass, or band-pass filters. Note
that aliasing can be a problem for digital filters.
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Applications of FFT

Convolution

For continuous function, an important type of operation found in
practice is convolution of a (periodic) function f (x) with a (periodic)
kernel K (x):

(K ~ f ) (x) =

∫ 2π

0
f (y)K (x − y)dy = (f ~ K ) (x).

It is not hard to prove the convolution theorem:

F (K ~ f ) = F (K ) ·F (f ) .

Importantly, this remains true for discrete convolutions:

(K~ f)j =
1

N

N−1∑
j ′=0

fj ′ · Kj−j ′ ⇒

F (K~ f) = F (K) ·F (f) ⇒ K~ f = F−1 (F (K) ·F (f))
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Applications of FFT

Proof of Discrete Convolution Theorem

Assume that the normalization used is a factor of N−1 in the forward and
no factor in the reverse DFT:

F−1 (F (K) ·F (f)) = K~ f

[
F−1 (F (K) ·F (f))

]
k

=
N−1∑
k=0

f̂k K̂k exp

(
2πijk

N

)
=

N−2
N−1∑
k=0

(
N−1∑
l=0

fl exp

(
−2πilk

N

))(N−1∑
m=0

Km exp

(
−2πimk

N

))
exp

(
2πijk

N

)

= N−2
N−1∑
l=0

fl

N−1∑
m=0

Km

N−1∑
k=0

exp

[
2πi (j − l −m) k

N

]
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Applications of FFT

contd.

Recall the key discrete orthogonality property

∀∆k ∈ Z : N−1
∑

j

exp

[
i
2π

N
j∆k

]
= δ∆k ⇒

N−2
N−1∑
l=0

fl

N−1∑
m=0

Km

N−1∑
k=0

exp

[
2πi (j − l −m) k

N

]
= N−1

N−1∑
l=0

fl

N−1∑
m=0

Kmδj−l−m

= N−1
N−1∑
l=0

fl Kj−l = (K~ f)j

Computing convolutions requires 2 forward FFTs, one element-wise
product, and one inverse FFT, for a total cost N log N instead of N2.
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Applications of FFT

Spectral Derivative

Consider approximating the derivative of a periodic function f (x),
computed at a set of N equally-spaced nodes, f.

One way to do it is to use the finite difference approximations:

f ′(xj ) ≈
f (xj + h)− f (xj − h)

2h
=

fj+1 − fj−1

2h
.

In order to achieve spectral accuracy of the derivative, we can
differentiate the spectral approximation: Spectral derivative

f ′(x) ≈ φ′(x) =
d

dx
φ(x) =

d

dx

(
N−1∑
k=0

f̂ke ikx

)
=

N−1∑
k=0

f̂k
d

dx
e ikx

φ′ =
N−1∑
k=0

(
ik f̂k

)
e ikx = F−1

(
i f̂ � k

)
Differentiation, like convolution, becomes multiplication in
Fourier space.
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Applications of FFT

Multidimensional FFT

DFTs and FFTs generalize straightforwardly to higher dimensions due
to separability: Transform each dimension independently

f̂ =
1

Nx Ny

Ny−1∑
jy =0

Nx−1∑
jx =0

fjx ,jy exp

[
−2πi (jx kx + jy ky )

N

]

f̂kx ,ky =
1

Nx

Ny−1∑
jy =0

exp

(
−2πijy kx

N

) 1

Ny

Ny−1∑
jy =0

fjx ,jy exp

(
−2πijy ky

N

)
For example, in two dimensions, do FFTs of each column, then
FFTs of each row of the result:

f̂ = F row (Fcol (f))

The cost is Ny one-dimensional FFTs of length Nx and then Nx

one-dimensional FFTs of length Ny :

Nx Ny log Nx + Nx Ny log Ny = Nx Ny log (Nx Ny ) = N log N
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Wavelets

The need for wavelets

Fourier basis is great for analyzing periodic signals, but is not good
for functions that are localized in space, e.g., brief bursts of speach.

Fourier transforms are not good with handling discontinuities in
functions because of the Gibbs phenomenon.

Fourier polynomails assume periodicity and are not as useful for
non-periodic functions.

Because Fourier basis is not localized, the highest frequency present
in the signal must be used everywhere: One cannot use different
resolutions in different regions of space.
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Wavelets

An example wavelet
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Wavelets

Wavelet basis

A mother wavelet function W (x) is a localized function in space.
For simplicity assume that W (x) has compact support on [0, 1].

A wavelet basis is a collection of wavelets Ws,τ (x) obtained from
W (x) by dilation with a scaling factor s and shifting by a
translation factor τ :

Ws,τ (x) = W (sx − τ) .

Here the scale plays the role of frequency in the FT, but the shift is
novel and localized the basis functions in space.

We focus on discrete wavelet basis, where the scaling factors are
chosen to be powers of 2 and the shifts are integers:

Wj ,k = W (2j x − k), k ∈ Z, j ∈ Z, j ≥ 0.
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Wavelets

Haar Wavelet Basis
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Wavelets

Wavelet Transform

Any function can now be represented in the wavelet basis:

f (x) = c0 +
∞∑

j=0

2j−1∑
k=0

cjkWj ,k(x)

This representation picks out frequency components in different
spatial regions.

As usual, we truncate the basis at j < J, which leads to a total
number of coefficients cjk :

J−1∑
j=0

2j = 2J
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Wavelets

Discrete Wavelet Basis

Similarly, we discretize the function on a set of N = 2J equally-spaced
nodes xj ,k or intervals, to get the vector f:

f = c0 +
J−1∑
j=0

2j−1∑
k=0

cjkWj ,k(xj ,k) = Wj c

In order to be able to quickly and stably compute the coefficients c
we need an orthogonal wavelet basis:∫

Wj ,k(x)Wl ,m(x)dx = δj ,lδl ,m

The Haar basis is discretely orthogonal and computing the transform
and its inverse can be done using a fast wavelet transform, in linear
time O(N) time.
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Wavelets

Discrete Wavelet Transform
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Wavelets

Scaleogram
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Wavelets

Another scaleogram
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Wavelets

Daubechies Wavelets

For the Haar basis, the wavelet approximation

φ(x) = c0 +
J−1∑
j=0

2j−1∑
k=0

cjkWj ,k(x)

is piecewise constant on each of the N sub-intervals of [0, 1].

It is desirable to construct wavelet basis for which:

The basis is orthogonal.
One can exactly represent linear functions (differentiable).
One can compute the forward and reverse wavelet transforms
efficiently.

Constructions of such basis start from a father wavelet function
φ(x):

φ(x) =
N∑

k=0

ckφ(2x − k), and W (x) =
1∑

k=1−N

(−1)k c1−kφ(2x − k)
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Wavelets

Mother and Father Wavelets
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Conclusions

Conclusions/Summary

Periodic functions can be approximated using basis of orthogonal
trigonometric polynomials.

The Fourier basis is discretely orthogonal and gives spectral
accuracy for smooth functions.

Functions with discontinuities are not approximated well: Gibbs
phenomenon.

The Discrete Fourier Transform can be computed very efficiently
using the Fast Fourier Transform algorithm: O(N log N).

FFTs can be used to filter signals, to do convolutions, and to
provide spectrally-accurate derivatives, all in O(N log N) time.

For signals that have different properties in different parts of the
domain a wavelet basis may be more appropriate.

Using specially-constructed orthogonal discrete wavelet basis one
can compute fast discrete wavelet transforms in time O(N).
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