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Linear Algebra Background
Kernel Space

@ The dimension of the column space of a matrix is called the rank of
the matrix A € R™",

r =rank A < min(m, n).

o If r = min(m, n) then the matrix is of full rank.

@ The nullspace null(A) or kernel ker(A) of a matrix A is the subspace
of vectors x for which

Ax = 0.
@ The dimension of the nullspace is called the nullity of the matrix.

o The orthogonal complement V! or orthogonal subspace of a
subspace V is the set of all vectors that are orthogonal to every vector
in V.
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Linear Algebra Background
Fundamental Theorem

@ One of the most important theorems in linear algebra: For A € R™"
rank A + nullity A = n.

@ In addition to the range and kernel spaces of a matrix, two more
important vector subspaces for a given matrix A are the:

o Row space or coimage of a matrix is the column (image) space of its

transpose, im AT
Its dimension is also equal to the the rank.
o Left nullspace or cokernel of a matrix is the nullspace or kernel of its

transpose, ker AT

@ Second fundamental theorem in linear algebra:
imAT = (kerA)*

ker AT = (imA)*
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Linear Algebra Background
The Matrix Inverse

@ A square matrix A = [n, n] is invertible or nonsingular if there exists
a matrix inverse A~! = B = [n, n] such that:

AB = BA = |,

where | is the identity matrix (ones along diagonal, all the rest zeros).
@ The following statements are equivalent for A € R™":

e A is invertible.

A is full-rank, rank A = n.

e The columns and also the rows are linearly independent and form a
basis for R".

The determinant is nonzero, det A # 0.

e Zero is not an eigenvalue of A.
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Linear Algebra Background
Matrix Algebra

@ Matrix-matrix multiplication is not commutative, AB # BA in
general. Note x "y is a scalar (dot product) so this commutes.

@ Some useful properties:
C(A+B)=CA +CB and ABC = (AB)C = A (BC)
(AT)" = A and (AB)T =BTA”
(A7) =Aand (AB) ' =B !Aland (AT) "= (A 1)"

@ Instead of matrix division, think of multiplication by an inverse:

B =A"'C
AB=C = (A'A)B=A"'C = .
A =CB
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Linear Algebra Background
Vector norms

@ Norms are the abstraction for the notion of a length or magnitude.

@ For a vector x € R”, the p-norm is

n
Ixll, = { > bal?
i=1

and special cases of interest are:

1/p

@ The 1-norm (L norm or Manhattan distance), ||x||; = >_"_; |xi
@ The 2-norm (L2 norm, Euclidian distance),

/ 2
[x[[, = vx-x= Z?:l |xi]

© The oo-norm (L™ or maximum norm), |

x| = maxi<i<n Xl

@ Note that all of these norms are inter-related in a finite-dimensional
setting.
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Linear Algebra Background
Matrix norms

@ Matrix norm induced by a given vector norm:

|| Ax]|

|A[l = sup =——
x#0 ||X||

= [|Ax|| < [[A[[Ix]]
@ The last bound holds for matrices as well, ||AB]|| < ||A]| [|B]|.
@ Special cases of interest are:

@ The 1-norm or column sum norm, ||A|; = max; >."_; |a;]

@ The oo-norm or row sum norm, ||A[|_ = max; Zf:l |ajj]

© The 2-norm or spectral norm, ||A|, = o1 (largest singular value)

© The Euclidian or Frobenius norm, [|A||- = /3", [a;/*

(note this is not an induced norm)
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Conditioning of linear systems
Matrices and linear systems

o It is said that 70% or more of applied mathematics research involves
solving systems of m linear equations for n unknowns:

n
E ajxj=>bj, i=1---,m
Jj=1

@ Linear systems arise directly from discrete models, e.g., traffic flow
in a city. Or, they may come through representing or more abstract
linear operators in some finite basis (representation).

Common abstraction:
Ax=b

@ Special case: Square invertible matrices, m = n, det A # 0:
x=A""b.

@ The goal: Calculate solution x given data A, b in the most
numerically stable and also efficient way.

A. Donev (Courant Institute) Lecture Il 9/2014 9 /43



Conditioning of linear systems
Stability analysis: rhs perturbations

Perturbations on right hand side (rhs) only:

A(x+0x)=b+db = b+Asx=b+db

sx =A"téb = |ox| < ||AY| ||5b]|
Using the bounds

bl < [AI x|l =[] = [Ib]| / [[A]
the relative error in the solution can be bounded by

Joxil _ A= ab]| _ A~ b
= r(A
RS xS er/TAr W

where the conditioning number x(A) depends on the matrix norm used:

15b]]
b

R(A) = A |A Y] > 1.
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Conditioning of linear systems

Stability analysis: matrix perturbations

@ Perturbations of the matrix only:
(A+5A)(x+0x)=b = dx=—A"1(5A)(x + ox)
[OA]l

1Al

@ Conclusion: The conditioning of the linear system is determined by

1)
HxHer(|5|xH < |[[A7H| I6A]] = K(A)

s(A) = [All[|A~Y] > 1

@ No numerical method can cure an ill-conditioned systems, x(A) > 1.
@ The conditioning number can only be estimated in practice since
A~ is not available (see MATLAB's rcond function).

Practice: What is k(A) for diagonal matrices in the 1-norm, oo-norm, and
2-norm?
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Conditioning of linear systems
Mixed perturbations

@ Now consider general perturbations of the data:
(A +6A)(x+ x) = b+ b
@ The full derivation is the book [next slide]:

1ox]| . ~(A) <H5bH n ||5A||>

x| = 1= Ay EAL bl A

@ Important practical estimate:
Roundoff error in the data, with rounding unit u (recall ~ 10716 for
double precision), produces a relative error

19x]
[%[] o

2 < 2uk(A)

e It certainly makes no sense to try to solve systems with x(A) > 10%°.
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Conditioning of linear systems

General perturbations (1)
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Conditioning of linear systems

General perturbations (2)
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Gauss elimination and LU factorization

Numerical Solution of Linear Systems

@ There are several numerical methods for solving a system of linear
equations.

@ The most appropriate method really depends on the properties of the
matrix A:

o General dense matrices, where the entries in A are mostly non-zero
and nothing special is known.
We focus on the Gaussian Elimination Method (GEM).

o General sparse matrices, where only a small fraction of a;; # 0 .

e Symmetric and also positive-definite dense or sparse matrices.

e Special structured sparse matrices, arising from specific physical
properties of the underlying system (more in Numerical Methods II).

@ It is also important to consider how many times a linear system with
the same or related matrix or right hand side needs to be solved.
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Gauss elimination and LU factorization

GEM: Eliminating xq
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Gauss elimination and LU factorization

GEM: Eliminating x,
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Gauss elimination and LU factorization

GEM: Backward substitution

szmr{l& SJ*’/F 2 o
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Gauss elimination and LU factorization

GEM as an LU factorization tool

by |

(o

@ Observation, proven in the book (not very intuitively):
A =LU,

where L is unit lower triangular (/; = 1 on diagonal), and U is
upper triangular.

@ GEM is thus essentially the same as the LU factorization method.
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Gauss elimination and LU factorization
GEM in MATLAB

Sample MATLAB code (for learning purposes only, not real computing!):

function A = MyLU(A)
% LU factorization in—place (overwrite A)
[n,m]=size(A);
if (n "=m); error(’'Matrix not square'); end
for k=1:(n—1) % For variable x(k)
% Calculate multipliers in column k:
A((k+1):n,k) = A((k+1):n, k) / A(k, k);
% Note: Pivot element A(k,k) assumed nonzero!
for j=(k+1):n
% Eliminate variable x(k):
A((k+1):n,j) = A((k+1):n,j) —
A((k+1):n,k) * A(k,j);
end
end
end
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Gauss elimination and LU factorization

Gauss Elimination Method (GEM)

e GEM is a general method for dense matrices and is commonly used.

@ Implementing GEM efficiently is difficult and we will not discuss it
here, since others have done it for you!

@ The LAPACK public-domain library is the main repository for
excellent implementations of dense linear solvers.

o MATLAB uses a highly-optimized variant of GEM by default, mostly
based on LAPACK.

@ MATLAB does have specialized solvers for special cases of matrices,
so always look at the help pages!

A. Donev (Courant Institute) Lecture Il 9/2014 21 /43



Pivoting

Gauss elimination and LU factorization

Pivoting example
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Gauss elimination and LU factorization Pivoting

GEM Matlab example (1)

>> L=[100; 310; 20 1]

L =
1 0 0
1
2 0 1

>> U=[113; 03 -5, 00 —4]

U =
1 1 3
3 -5
0 0 —4
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Gauss elimination and LU factorization Pivoting

GEM Matlab example (2)

>> AP=L+U % Permuted A

AP =
1 1 3
3 6 4
2 2 2

>> A=[1 1 3; 22 2; 36 4]

A =
1 1 3
2 2 2
3 6 4
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Gauss elimination and LU factorization Pivoting

GEM Matlab example (3)

>> AP=MyLU(AP) % Two last rows permuted

AP =
1 1 3

3 -5

2 0 —4

>> MyLU(A) % No pivoting
ans =

1 1 3

2 0 —4

3 Inf Inf
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Gauss elimination and LU factorization Pivoting

GEM Matlab example (4)

>> [Lm,Um,Pm]=1u (A)

Lm =
1.0000 0 0
0.6667 1.0000 0
0.3333 0.5000 1.0000
Un =
3.0000 6.0000 4.0000
0 —2.0000 —0.6667
0 0 2.0000
Pm =
0 0 1
0 1 0
1 0 0
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Gauss elimination and LU factorization Pivoting

GEM Matlab example (5)

>> LmxUm
ans =
3 6 4
2 2
1 1 3
>> A
A =
1 1 3
2 2 2
3 6 4
>> norm ( Lm«Um — PmxA )
ans =
0
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Gauss elimination and LU factorization Pivoting

Pivoting during LU factorization
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e Partial (row) pivoting permutes the rows (equations) of A in order
to ensure sufficiently large pivots and thus numerical stability:

PA =LU

@ Here P is a permutation matrix, meaning a matrix obtained by
permuting rows and/or columns of the identity matrix.
e Complete pivoting also permutes columns, PAQ = LU.
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Gauss elimination and LU factorization LU factorization

Solving linear systems

@ Once an LU factorization is available, solving a linear system is simple:
Ax=LUx=L(Ux)=Ly=b

so solve for y using forward substitution.

This was implicitly done in the example above by overwriting b to
become y during the factorization.

@ Then, solve for x using backward substitution
Ux =y.
e In MATLAB, the backslash operator (see help on mldivide)
x=A\b~x A"lb,

solves the linear system Ax = b using the LAPACK library.
Never use matrix inverse to do this, even if written as such on paper.
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Gauss elimination and LU factorization LU factorization

Permutation matrices

@ If row pivoting is necessary, the same applies if one also permutes the
equations (rhs b):
PAx =LUx =Ly =Pb

or formally (meaning for theoretical purposes only)
x=(LU)"'Pb=U"'L"'Pb
@ Observing that permutation matrices are orthogonal matrices,
P1l=pPT
A=P LU= (PTL)U=LU

where L is a row permutation of a unit lower triangular matrix.
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Gauss elimination and LU factorization LU factorization

In MATLAB

e Doing x = A\b is equivalent to performing an LU factorization and
doing two triangular solves (backward and forward substitution):

[L, U] = Iu(A)
y=1L\b
x=U\y

@ This is a carefully implemented backward stable pivoted LU
factorization, meaning that the returned solution is as accurate as the
conditioning number allows.

e The MATLAB call [L, U, P] = lu(A) returns the permutation matrix
but the call [L, U] = lu(A) permutes the lower triangular factor
directly.
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Gauss elimination and LU factorization LU factorization

GEM Matlab example (1)

> A=[1 2 3
>> b=[2 1 —-1];

>> x=A"(—1)xb; x' % Don’'t do this!
ans = —2.5556 2.1111 0.1111

>> x = A\b; x' % Do this instead
ans = —2.5556 2.1111 0.1111

>> linsolve (A,b)" % Even more control
ans = —2.5556 2.1111 0.1111
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Gauss elimination and LU factorization LU factorization

GEM Matlab example (2)

>> [L,U] = lu(A) % Even better if resolving
L = 0.1429 1.0000 0
0.5714 0.5000 1.0000
1.0000 0 0
U= 7.0000 8.0000 0
0 0.8571 3.0000
0 0 4.5000

>> norm(LxU-A, inf)

ans = 0

>> y = L\b;

>> x = U\y; x’

ans = —2.5556 2.1111 0.1111
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Gauss elimination and LU factorization LU factorization

Cost estimates for GEM

e For forward or backward substitution, at step k there are ~ (n — k)
multiplications and subtractions, plus a few divisions.
The total over all n steps is
n 2
n(n—1) n
n—k)j=—~ —
D (n-k) ===~
k=1
subtractions and multiplications, giving a total of n? floating-point
operations (FLOPs).
e For GEM, at step k there are ~ (n — k)? multiplications and
subtractions, plus a few divisions.

The total is

n 3
FLOPS =23 " (n — k) ~ 2

b
k=1 3
and the O(n?) operations for the triangular solves are neglected.
@ When many linear systems need to be solved with the same A the

factorization can be reused.
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Gauss elimination and LU factorization Cholesky Factorization

Positive-Definite Matrices

@ A real symmetric matrix A is positive definite iff (if and only if):

O All of its eigenvalues are real (follows from symmetry) and positive.

Q vx #£0, xTAx > 0, i.e., the quadratic form defined by the matrix A is
convex.

© There exists a unique lower triangular L, L; > 0,

A=LL",
termed the Cholesky factorization of A (symmetric LU factorization).

© For Hermitian complex matrices just replace transposes with adjoints
(conjugate transpose), e.g., AT — A* (or A" in the book).
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Gauss elimination and LU factorization Cholesky Factorization

Cholesky Factorization

@ The MATLAB built in function
R = chol(A)

gives the Cholesky factorization and is a good way to test for
positive-definiteness.

e For Hermitian/symmetric matrices with positive diagonals MATLAB
tries a Cholesky factorization first, before resorting to LU
factorization with pivoting.

@ The cost of a Cholesky factorization is about half the cost of GEM,
n3/3 FLOPS.
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Gauss elimination and LU factorization Pivoting and Stability

When pivoting is unnecessary

@ It can be shown that roundoff is not a problem for triangular system
Tx = b (forward or backward substitution). Specifically,

< < nuk(T),

so unless the number of unknowns n is very very large the truncation
errors are small for well-conditioned systems.
@ Special classes of well-behaved matrices A:
© Diagonally-dominant matrices, meaning
Jail > layl or [ail > |ajil
J#i J#i
@ Symmetric positive-definite matrices, i.e., Cholesky factorization
does not require pivoting,
[16x[|,

3P

< 8nuk(A).
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Gauss elimination and LU factorization Pivoting and Stability

When pivoting is necessary

@ For a general matrix A, roundoff analysis leads to the following type
of estimate

lox][ L Y]]

R LY
which shows that small pivots, i.e., large multipliers /;;, can lead to
large roundoff errors.
What we want is an estimate that only involves n and x(A).

@ Since the optimal pivoting cannot be predicted a-priori, it is best to
search for the largest pivot in the same column as the current
pivot, and exchange the two rows (partial pivoting).
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Gauss elimination and LU factorization Pivoting and Stability

Partial Pivoting
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@ The cost of partial pivoting is searching among O(n) elements n
times, so O(n?), which is small compared to O(n?) total cost.

o Complete pivoting requires searching O(n?) elements n times, so cost
is O(n3) which is usually not justified.

@ The recommended strategy is to use partial (row) pivoting even if
not strictly necessary (MATLAB takes care of this).
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Gauss elimination and LU factorization Pivoting and Stability

What pivoting does

@ The problem with GEM without pivoting is large growth factors (not
large numbers per se)

max; k|4

(k)
b= ij
max; j |a,J\

@ Pivoting is not needed for positive-definite matrices because p < 2:

|a,-j\2 < |aji| |ajj| (so the largest element is on the diagonal)

Q
2D — S0 a0 0 (0 (GEw)

r o
agik+1) _ aI(ik) _ <a§<1’(:> RN ’Jr ’a"’ } al(k)’
aE(k) ‘ k)‘
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Conclusions
Matrix Rescaling

e Pivoting is not always sufficient to ensure lack of roundoff problems.
In particular, large variations among the entries in A should be
avoided.

@ This can usually be remedied by changing the physical units for x and
b to be the natural units xp and bg.

@ Rescaling the unknowns and the equations is generally a good idea
even if not necessary:

x = D, % = Diag {xo} % and b = Db = Diag {bo} b.

Ax=AD,%x=D,b = (D,'AD,)%=b
o The rescaled matrix A = D;lADX should have a better
conditioning, but this is hard to achieve in general.
@ Also note that reordering the variables from most important to
least important may also help.
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Special Matrices in MATLAB

o MATLAB recognizes (i.e., tests for) some special matrices
automatically: banded, permuted lower/upper triangular, symmetric,
Hessenberg, but not sparse.

@ In MATLAB one may specify a matrix B instead of a single
right-hand side vector b.

@ The MATLAB function
X = linsolve(A, B, opts)

allows one to specify certain properties that speed up the solution
(triangular, upper Hessenberg, symmetric, positive definite,none), and
also estimates the condition number along the way.

@ Use linsolve instead of backslash if you know (for sure!) something
about your matrix.
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Conclusions
Conclusions/Summary

@ The conditioning of a linear system Ax = b is determined by the
condition number
-1
K(A) = |Al[|ATH] =1
@ Gauss elimination can be used to solve general square linear systems
and also produces a factorization A = LU.

e Partial pivoting is often necessary to ensure numerical stability during
GEM and leads to PA = LU or A = LU.

@ For symmetric positive definite matrices the Cholesky factorization
A = LL is preferred and does not require pivoting.

@ MATLAB has excellent linear solvers based on well-known public
domain libraries like LAPACK. Use them!
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