
Numerical Methods I
Solving Square Linear Systems:

GEM and LU factorization

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

September 18th, 2014

A. Donev (Courant Institute) Lecture II 9/2014 1 / 43

Outline

1 Linear Algebra Background

2 Conditioning of linear systems

3 Gauss elimination and LU factorization
Pivoting
LU factorization
Cholesky Factorization
Pivoting and Stability

4 Conclusions

A. Donev (Courant Institute) Lecture II 9/2014 2 / 43

Linear Algebra Background

Kernel Space

The dimension of the column space of a matrix is called the rank of
the matrix A ∈ Rm,n,

r = rank A ≤ min(m, n).

If r = min(m, n) then the matrix is of full rank.

The nullspace null(A) or kernel ker(A) of a matrix A is the subspace
of vectors x for which

Ax = 0.

The dimension of the nullspace is called the nullity of the matrix.

The orthogonal complement V⊥ or orthogonal subspace of a
subspace V is the set of all vectors that are orthogonal to every vector
in V.

A. Donev (Courant Institute) Lecture II 9/2014 3 / 43

Linear Algebra Background

Fundamental Theorem

One of the most important theorems in linear algebra: For A ∈ Rm,n

rank A + nullity A = n.

In addition to the range and kernel spaces of a matrix, two more
important vector subspaces for a given matrix A are the:

Row space or coimage of a matrix is the column (image) space of its
transpose, im AT .
Its dimension is also equal to the the rank.
Left nullspace or cokernel of a matrix is the nullspace or kernel of its
transpose, ker AT .

Second fundamental theorem in linear algebra:

im AT = (ker A)⊥

ker AT = (im A)⊥

A. Donev (Courant Institute) Lecture II 9/2014 4 / 43

Linear Algebra Background

The Matrix Inverse

A square matrix A = [n, n] is invertible or nonsingular if there exists
a matrix inverse A−1 = B = [n, n] such that:

AB = BA = I,

where I is the identity matrix (ones along diagonal, all the rest zeros).

The following statements are equivalent for A ∈ Rn,n:

A is invertible.
A is full-rank, rank A = n.
The columns and also the rows are linearly independent and form a
basis for Rn.
The determinant is nonzero, det A 6= 0.
Zero is not an eigenvalue of A.

A. Donev (Courant Institute) Lecture II 9/2014 5 / 43

Linear Algebra Background

Matrix Algebra

Matrix-matrix multiplication is not commutative, AB 6= BA in
general. Note xTy is a scalar (dot product) so this commutes.

Some useful properties:

C (A + B) = CA + CB and ABC = (AB) C = A (BC)(
AT
)T

= A and (AB)T = BTAT(
A−1

)−1
= A and (AB)−1 = B−1A−1 and

(
AT
)−1

=
(
A−1

)T
Instead of matrix division, think of multiplication by an inverse:

AB = C ⇒
(
A−1A

)
B = A−1C ⇒

{
B = A−1C

A = CB−1

A. Donev (Courant Institute) Lecture II 9/2014 6 / 43

Linear Algebra Background

Vector norms

Norms are the abstraction for the notion of a length or magnitude.

For a vector x ∈ Rn, the p-norm is

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

and special cases of interest are:

1 The 1-norm (L1 norm or Manhattan distance), ‖x‖1 =
∑n

i=1 |xi |
2 The 2-norm (L2 norm, Euclidian distance),

‖x‖2 =
√

x · x =
√∑n

i=1 |xi |
2

3 The ∞-norm (L∞ or maximum norm), ‖x‖∞ = max1≤i≤n |xi |

1 Note that all of these norms are inter-related in a finite-dimensional
setting.

A. Donev (Courant Institute) Lecture II 9/2014 7 / 43

Linear Algebra Background

Matrix norms

Matrix norm induced by a given vector norm:

‖A‖ = sup
x6=0

‖Ax‖
‖x‖

⇒ ‖Ax‖ ≤ ‖A‖ ‖x‖

The last bound holds for matrices as well, ‖AB‖ ≤ ‖A‖ ‖B‖.
Special cases of interest are:

1 The 1-norm or column sum norm, ‖A‖1 = maxj
∑n

i=1 |aij |
2 The ∞-norm or row sum norm, ‖A‖∞ = maxi

∑n
j=1 |aij |

3 The 2-norm or spectral norm, ‖A‖2 = σ1 (largest singular value)

4 The Euclidian or Frobenius norm, ‖A‖F =
√∑

i,j |aij |
2

(note this is not an induced norm)

A. Donev (Courant Institute) Lecture II 9/2014 8 / 43

Conditioning of linear systems

Matrices and linear systems

It is said that 70% or more of applied mathematics research involves
solving systems of m linear equations for n unknowns:

n∑
j=1

aijxj = bi , i = 1, · · · ,m.

Linear systems arise directly from discrete models, e.g., traffic flow
in a city. Or, they may come through representing or more abstract
linear operators in some finite basis (representation).
Common abstraction:

Ax = b

Special case: Square invertible matrices, m = n, det A 6= 0:

x = A−1b.

The goal: Calculate solution x given data A,b in the most
numerically stable and also efficient way.

A. Donev (Courant Institute) Lecture II 9/2014 9 / 43

Conditioning of linear systems

Stability analysis: rhs perturbations

Perturbations on right hand side (rhs) only:

A (x + δx) = b + δb ⇒ b + Aδx = b + δb

δx = A−1δb ⇒ ‖δx‖ ≤
∥∥A−1

∥∥ ‖δb‖

Using the bounds

‖b‖ ≤ ‖A‖ ‖x‖ ⇒ ‖x‖ ≥ ‖b‖ / ‖A‖

the relative error in the solution can be bounded by

‖δx‖
‖x‖

≤
∥∥A−1

∥∥ ‖δb‖
‖x‖

≤
∥∥A−1

∥∥ ‖δb‖
‖b‖ / ‖A‖

= κ(A)
‖δb‖
‖b‖

where the conditioning number κ(A) depends on the matrix norm used:

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1.

A. Donev (Courant Institute) Lecture II 9/2014 10 / 43

Conditioning of linear systems

Stability analysis: matrix perturbations

Perturbations of the matrix only:

(A + δA) (x + δx) = b ⇒ δx = −A−1 (δA) (x + δx)

‖δx‖
‖x + δx‖

≤
∥∥A−1

∥∥ ‖δA‖ = κ(A)
‖δA‖
‖A‖

.

Conclusion: The conditioning of the linear system is determined by

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1

No numerical method can cure an ill-conditioned systems, κ(A)� 1.

The conditioning number can only be estimated in practice since
A−1 is not available (see MATLAB’s rcond function).

Practice: What is κ(A) for diagonal matrices in the 1-norm, ∞-norm, and
2-norm?

A. Donev (Courant Institute) Lecture II 9/2014 11 / 43

Conditioning of linear systems

Mixed perturbations

Now consider general perturbations of the data:

(A + δA) (x + δx) = b + δb

The full derivation is the book [next slide]:

‖δx‖
‖x‖

≤ κ(A)

1− κ(A)‖δA‖
‖A‖

(
‖δb‖
‖b‖

+
‖δA‖
‖A‖

)
Important practical estimate:
Roundoff error in the data, with rounding unit u (recall ≈ 10−16 for
double precision), produces a relative error

‖δx‖∞
‖x‖∞

. 2uκ(A)

It certainly makes no sense to try to solve systems with κ(A) > 1016.

A. Donev (Courant Institute) Lecture II 9/2014 12 / 43

Conditioning of linear systems

General perturbations (1)

A. Donev (Courant Institute) Lecture II 9/2014 13 / 43

Conditioning of linear systems

General perturbations (2)

A. Donev (Courant Institute) Lecture II 9/2014 14 / 43

Gauss elimination and LU factorization

Numerical Solution of Linear Systems

There are several numerical methods for solving a system of linear
equations.

The most appropriate method really depends on the properties of the
matrix A:

General dense matrices, where the entries in A are mostly non-zero
and nothing special is known.
We focus on the Gaussian Elimination Method (GEM).
General sparse matrices, where only a small fraction of aij 6= 0 .
Symmetric and also positive-definite dense or sparse matrices.
Special structured sparse matrices, arising from specific physical
properties of the underlying system (more in Numerical Methods II).

It is also important to consider how many times a linear system with
the same or related matrix or right hand side needs to be solved.

A. Donev (Courant Institute) Lecture II 9/2014 15 / 43

Gauss elimination and LU factorization

GEM: Eliminating x1

A. Donev (Courant Institute) Lecture II 9/2014 16 / 43

Gauss elimination and LU factorization

GEM: Eliminating x2

A. Donev (Courant Institute) Lecture II 9/2014 17 / 43

Gauss elimination and LU factorization

GEM: Backward substitution

A. Donev (Courant Institute) Lecture II 9/2014 18 / 43

Gauss elimination and LU factorization

GEM as an LU factorization tool

Observation, proven in the book (not very intuitively):

A = LU,

where L is unit lower triangular (lii = 1 on diagonal), and U is
upper triangular.

GEM is thus essentially the same as the LU factorization method.

A. Donev (Courant Institute) Lecture II 9/2014 19 / 43

Gauss elimination and LU factorization

GEM in MATLAB

Sample MATLAB code (for learning purposes only, not real computing!):

f u n c t i o n A = MyLU(A)
% LU f a c t o r i z a t i o n in−p l a c e (o v e r w r i t e A)
[n ,m]= s i z e (A) ;
i f (n ˜= m) ; e r r o r (’ M a t r i x not square ’) ; end
f o r k =1:(n−1) % For v a r i a b l e x (k)

% C a l c u l a t e m u l t i p l i e r s i n column k :
A((k +1):n , k) = A((k +1):n , k) / A(k , k) ;
% Note : P i v o t e l em en t A(k , k) assumed nonzero !
f o r j =(k +1): n

% E l i m i n a t e v a r i a b l e x (k) :
A((k +1):n , j) = A((k +1):n , j) − . . .

A((k +1):n , k) ∗ A(k , j) ;
end

end
end

A. Donev (Courant Institute) Lecture II 9/2014 20 / 43

Gauss elimination and LU factorization

Gauss Elimination Method (GEM)

GEM is a general method for dense matrices and is commonly used.

Implementing GEM efficiently is difficult and we will not discuss it
here, since others have done it for you!

The LAPACK public-domain library is the main repository for
excellent implementations of dense linear solvers.

MATLAB uses a highly-optimized variant of GEM by default, mostly
based on LAPACK.

MATLAB does have specialized solvers for special cases of matrices,
so always look at the help pages!

A. Donev (Courant Institute) Lecture II 9/2014 21 / 43

Gauss elimination and LU factorization Pivoting

Pivoting example

A. Donev (Courant Institute) Lecture II 9/2014 22 / 43

Gauss elimination and LU factorization Pivoting

GEM Matlab example (1)

>> L=[1 0 0 ; 3 1 0 ; 2 0 1]
L =

1 0 0
3 1 0
2 0 1

>> U=[1 1 3 ; 0 3 −5; 0 0 −4]
U =

1 1 3
0 3 −5
0 0 −4

A. Donev (Courant Institute) Lecture II 9/2014 23 / 43

Gauss elimination and LU factorization Pivoting

GEM Matlab example (2)

>> AP=L∗U % Permuted A
AP =

1 1 3
3 6 4
2 2 2

>> A=[1 1 3 ; 2 2 2 ; 3 6 4]
A =

1 1 3
2 2 2
3 6 4

A. Donev (Courant Institute) Lecture II 9/2014 24 / 43

Gauss elimination and LU factorization Pivoting

GEM Matlab example (3)

>> AP=MyLU(AP) % Two l a s t rows permuted
AP =

1 1 3
3 3 −5
2 0 −4

>> MyLU(A) % No p i v o t i n g
ans =

1 1 3
2 0 −4
3 I n f I n f

A. Donev (Courant Institute) Lecture II 9/2014 25 / 43

Gauss elimination and LU factorization Pivoting

GEM Matlab example (4)

>> [Lm,Um,Pm]= l u (A)
Lm =

1.0000 0 0
0 .6667 1 .0000 0
0 .3333 0 .5000 1 .0000

Um =
3.0000 6 .0000 4 .0000

0 −2.0000 −0.6667
0 0 2 .0000

Pm =
0 0 1
0 1 0
1 0 0

A. Donev (Courant Institute) Lecture II 9/2014 26 / 43

Gauss elimination and LU factorization Pivoting

GEM Matlab example (5)

>> Lm∗Um
ans =

3 6 4
2 2 2
1 1 3

>> A
A =

1 1 3
2 2 2
3 6 4

>> norm (Lm∗Um − Pm∗A)
ans =

0

A. Donev (Courant Institute) Lecture II 9/2014 27 / 43

Gauss elimination and LU factorization Pivoting

Pivoting during LU factorization

Partial (row) pivoting permutes the rows (equations) of A in order
to ensure sufficiently large pivots and thus numerical stability:

PA = LU

Here P is a permutation matrix, meaning a matrix obtained by
permuting rows and/or columns of the identity matrix.

Complete pivoting also permutes columns, PAQ = LU.

A. Donev (Courant Institute) Lecture II 9/2014 28 / 43

Gauss elimination and LU factorization LU factorization

Solving linear systems

Once an LU factorization is available, solving a linear system is simple:

Ax = LUx = L (Ux) = Ly = b

so solve for y using forward substitution.
This was implicitly done in the example above by overwriting b to
become y during the factorization.

Then, solve for x using backward substitution

Ux = y.

In MATLAB, the backslash operator (see help on mldivide)

x = A\b ≈ A−1b,

solves the linear system Ax = b using the LAPACK library.
Never use matrix inverse to do this, even if written as such on paper.

A. Donev (Courant Institute) Lecture II 9/2014 29 / 43

Gauss elimination and LU factorization LU factorization

Permutation matrices

If row pivoting is necessary, the same applies if one also permutes the
equations (rhs b):

PAx = LUx = Ly = Pb

or formally (meaning for theoretical purposes only)

x = (LU)−1 Pb = U−1L−1Pb

Observing that permutation matrices are orthogonal matrices,
P−1 = PT ,

A = P−1LU =
(
PTL

)
U = L̃U

where L̃ is a row permutation of a unit lower triangular matrix.

A. Donev (Courant Institute) Lecture II 9/2014 30 / 43

Gauss elimination and LU factorization LU factorization

In MATLAB

Doing x = A\b is equivalent to performing an LU factorization and
doing two triangular solves (backward and forward substitution):

[L̃,U] = lu(A)

y = L̃\b
x = U\y

This is a carefully implemented backward stable pivoted LU
factorization, meaning that the returned solution is as accurate as the
conditioning number allows.

The MATLAB call [L,U,P] = lu(A) returns the permutation matrix
but the call [L̃,U] = lu(A) permutes the lower triangular factor
directly.

A. Donev (Courant Institute) Lecture II 9/2014 31 / 43

Gauss elimination and LU factorization LU factorization

GEM Matlab example (1)

>> A = [1 2 3 ; 4 5 6 ; 7 8 0] ;
>> b=[2 1 −1] ’ ;

>> x=Aˆ(−1)∗b ; x ’ % Don ’ t do t h i s !
ans = −2.5556 2 .1111 0 .1111

>> x = A\b ; x ’ % Do t h i s i n s t e a d
ans = −2.5556 2 .1111 0 .1111

>> l i n s o l v e (A, b) ’ % Even more c o n t r o l
ans = −2.5556 2 .1111 0 .1111

A. Donev (Courant Institute) Lecture II 9/2014 32 / 43

Gauss elimination and LU factorization LU factorization

GEM Matlab example (2)

>> [L ,U] = l u (A) % Even b e t t e r i f r e s o l v i n g

L = 0.1429 1 .0000 0
0 .5714 0 .5000 1 .0000
1 .0000 0 0

U = 7.0000 8 .0000 0
0 0 .8571 3 .0000
0 0 4 .5000

>> norm(L∗U−A, i n f)
ans = 0

>> y = L\b ;
>> x = U\y ; x ’
ans = −2.5556 2 .1111 0 .1111

A. Donev (Courant Institute) Lecture II 9/2014 33 / 43

Gauss elimination and LU factorization LU factorization

Cost estimates for GEM

For forward or backward substitution, at step k there are ∼ (n − k)
multiplications and subtractions, plus a few divisions.
The total over all n steps is

n∑
k=1

(n − k) =
n(n − 1)

2
≈ n2

2

subtractions and multiplications, giving a total of n2 floating-point
operations (FLOPs).
For GEM, at step k there are ∼ (n − k)2 multiplications and
subtractions, plus a few divisions.
The total is

FLOPS = 2
n∑

k=1

(n − k)2 ≈ 2n3

3
,

and the O(n2) operations for the triangular solves are neglected.
When many linear systems need to be solved with the same A the
factorization can be reused.

A. Donev (Courant Institute) Lecture II 9/2014 34 / 43

Gauss elimination and LU factorization Cholesky Factorization

Positive-Definite Matrices

A real symmetric matrix A is positive definite iff (if and only if):

1 All of its eigenvalues are real (follows from symmetry) and positive.
2 ∀x 6= 0, xTAx > 0, i.e., the quadratic form defined by the matrix A is

convex.
3 There exists a unique lower triangular L, Lii > 0,

A = LLT ,

termed the Cholesky factorization of A (symmetric LU factorization).

1 For Hermitian complex matrices just replace transposes with adjoints
(conjugate transpose), e.g., AT → A? (or AH in the book).

A. Donev (Courant Institute) Lecture II 9/2014 35 / 43

Gauss elimination and LU factorization Cholesky Factorization

Cholesky Factorization

The MATLAB built in function

R = chol(A)

gives the Cholesky factorization and is a good way to test for
positive-definiteness.

For Hermitian/symmetric matrices with positive diagonals MATLAB
tries a Cholesky factorization first, before resorting to LU
factorization with pivoting.

The cost of a Cholesky factorization is about half the cost of GEM,
n3/3 FLOPS.

A. Donev (Courant Institute) Lecture II 9/2014 36 / 43

Gauss elimination and LU factorization Pivoting and Stability

When pivoting is unnecessary

It can be shown that roundoff is not a problem for triangular system
Tx = b (forward or backward substitution). Specifically,

‖δx‖∞
‖x‖∞

. nuκ(T),

so unless the number of unknowns n is very very large the truncation
errors are small for well-conditioned systems.

Special classes of well-behaved matrices A:
1 Diagonally-dominant matrices, meaning

|aii | ≥
∑
j 6=i

|aij | or |aii | ≥
∑
j 6=i

|aji |

2 Symmetric positive-definite matrices, i.e., Cholesky factorization
does not require pivoting,

‖δx‖2
‖x‖2

. 8n2uκ(A).

A. Donev (Courant Institute) Lecture II 9/2014 37 / 43

Gauss elimination and LU factorization Pivoting and Stability

When pivoting is necessary

For a general matrix A, roundoff analysis leads to the following type
of estimate

‖δx‖
‖x‖

. nuκ(A)
‖|L| |U|‖
‖A‖

,

which shows that small pivots, i.e., large multipliers lij , can lead to
large roundoff errors.
What we want is an estimate that only involves n and κ(A).

Since the optimal pivoting cannot be predicted a-priori, it is best to
search for the largest pivot in the same column as the current
pivot, and exchange the two rows (partial pivoting).

A. Donev (Courant Institute) Lecture II 9/2014 38 / 43

Gauss elimination and LU factorization Pivoting and Stability

Partial Pivoting

The cost of partial pivoting is searching among O(n) elements n
times, so O(n2), which is small compared to O(n3) total cost.

Complete pivoting requires searching O(n2) elements n times, so cost
is O(n3) which is usually not justified.

The recommended strategy is to use partial (row) pivoting even if
not strictly necessary (MATLAB takes care of this).

A. Donev (Courant Institute) Lecture II 9/2014 39 / 43

Gauss elimination and LU factorization Pivoting and Stability

What pivoting does

The problem with GEM without pivoting is large growth factors (not
large numbers per se)

ρ =
maxi ,j ,k

∣∣∣a(k)ij

∣∣∣
maxi ,j |aij |

Pivoting is not needed for positive-definite matrices because ρ ≤ 2:

|aij |2 ≤ |aii | |ajj | (so the largest element is on the diagonal)

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj = a

(k)
ij −

a
(k)
ki

a
(k)
kk

a
(k)
kj (GEM)

a
(k+1)
ii = a

(k)
ii −

(
a
(k)
ki

)2
a
(k)
kk

⇒
∣∣∣a(k+1)

ii

∣∣∣ ≤ ∣∣∣a(k)ii

∣∣∣+

∣∣∣a(k)ki

∣∣∣2∣∣∣a(k)kk

∣∣∣ ≤ 2
∣∣∣a(k)ii

∣∣∣
A. Donev (Courant Institute) Lecture II 9/2014 40 / 43

Conclusions

Matrix Rescaling

Pivoting is not always sufficient to ensure lack of roundoff problems.
In particular, large variations among the entries in A should be
avoided.

This can usually be remedied by changing the physical units for x and
b to be the natural units x0 and b0.

Rescaling the unknowns and the equations is generally a good idea
even if not necessary:

x = Dx x̃ = Diag {x0} x̃ and b = Dbb̃ = Diag {b0} b̃.

Ax = ADx x̃ = Dbb̃ ⇒
(
D−1b ADx

)
x̃ = b̃

The rescaled matrix Ã = D−1b ADx should have a better
conditioning, but this is hard to achieve in general.

Also note that reordering the variables from most important to
least important may also help.

A. Donev (Courant Institute) Lecture II 9/2014 41 / 43

Conclusions

Special Matrices in MATLAB

MATLAB recognizes (i.e., tests for) some special matrices
automatically: banded, permuted lower/upper triangular, symmetric,
Hessenberg, but not sparse.

In MATLAB one may specify a matrix B instead of a single
right-hand side vector b.

The MATLAB function

X = linsolve(A,B, opts)

allows one to specify certain properties that speed up the solution
(triangular, upper Hessenberg, symmetric, positive definite,none), and
also estimates the condition number along the way.

Use linsolve instead of backslash if you know (for sure!) something
about your matrix.

A. Donev (Courant Institute) Lecture II 9/2014 42 / 43

Conclusions

Conclusions/Summary

The conditioning of a linear system Ax = b is determined by the
condition number

κ(A) = ‖A‖
∥∥A−1

∥∥ ≥ 1

Gauss elimination can be used to solve general square linear systems
and also produces a factorization A = LU.

Partial pivoting is often necessary to ensure numerical stability during
GEM and leads to PA = LU or A = L̃U.

For symmetric positive definite matrices the Cholesky factorization
A = LLT is preferred and does not require pivoting.

MATLAB has excellent linear solvers based on well-known public
domain libraries like LAPACK. Use them!

A. Donev (Courant Institute) Lecture II 9/2014 43 / 43

	Linear Algebra Background
	Conditioning of linear systems
	Gauss elimination and bold0mu mumu LLLLLLbold0mu mumu UUUUUU factorization
	Pivoting
	LU factorization
	Cholesky Factorization
	Pivoting and Stability

	Conclusions

