

Numerical Methods I

Solving Square Linear Systems: GEM and LU factorization

Aleksandar Donev

*Courant Institute, NYU*¹

donev@courant.nyu.edu

¹MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

September 18th, 2014

Outline

- 1 Linear Algebra Background
- 2 Conditioning of linear systems
- 3 Gauss elimination and **LU** factorization
 - Pivoting
 - LU factorization
 - Cholesky Factorization
 - Pivoting and Stability
- 4 Conclusions

Kernel Space

- The dimension of the column space of a matrix is called the **rank** of the matrix $\mathbf{A} \in \mathbb{R}^{m,n}$,

$$r = \text{rank } \mathbf{A} \leq \min(m, n).$$

- If $r = \min(m, n)$ then the matrix is of **full rank**.
- The **nullspace** $\text{null}(\mathbf{A})$ or **kernel** $\text{ker}(\mathbf{A})$ of a matrix \mathbf{A} is the subspace of vectors \mathbf{x} for which

$$\mathbf{A}\mathbf{x} = \mathbf{0}.$$

- The dimension of the nullspace is called the **nullity** of the matrix.
- The **orthogonal complement** \mathcal{V}^\perp or orthogonal subspace of a subspace \mathcal{V} is the set of all vectors that are orthogonal to every vector in \mathcal{V} .

Fundamental Theorem

- One of the most important theorems in linear algebra: For $\mathbf{A} \in \mathbb{R}^{m,n}$

$$\text{rank } \mathbf{A} + \text{nullity } \mathbf{A} = n.$$

- In addition to the range and kernel spaces of a matrix, two more important vector subspaces for a given matrix \mathbf{A} are the:
 - Row space or coimage** of a matrix is the column (image) space of its transpose, $\text{im } \mathbf{A}^T$.
Its dimension is also equal to the the rank.
 - Left nullspace or cokernel** of a matrix is the nullspace or kernel of its transpose, $\ker \mathbf{A}^T$.
- Second fundamental theorem in linear algebra:

$$\text{im } \mathbf{A}^T = (\ker \mathbf{A})^\perp$$

$$\ker \mathbf{A}^T = (\text{im } \mathbf{A})^\perp$$

The Matrix Inverse

- A square matrix $\mathbf{A} = [n, n]$ is **invertible or nonsingular** if there exists a **matrix inverse** $\mathbf{A}^{-1} = \mathbf{B} = [n, n]$ such that:

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I},$$

where \mathbf{I} is the identity matrix (ones along diagonal, all the rest zeros).

- The following statements are equivalent for $\mathbf{A} \in \mathbb{R}^{n,n}$:
 - **\mathbf{A} is invertible.**
 - **\mathbf{A} is full-rank**, $\text{rank } \mathbf{A} = n$.
 - The columns and also the rows are linearly independent and form a **basis** for \mathbb{R}^n .
 - The **determinant** is nonzero, $\det \mathbf{A} \neq 0$.
 - Zero is not an eigenvalue of \mathbf{A} .

Matrix Algebra

- Matrix-matrix multiplication is **not commutative**, $\mathbf{AB} \neq \mathbf{BA}$ in general. Note $\mathbf{x}^T \mathbf{y}$ is a scalar (dot product) so this commutes.
- Some useful properties:

$$\mathbf{C}(\mathbf{A} + \mathbf{B}) = \mathbf{CA} + \mathbf{CB} \text{ and } \mathbf{ABC} = (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

$$(\mathbf{A}^T)^T = \mathbf{A} \text{ and } (\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$$

$$(\mathbf{A}^{-1})^{-1} = \mathbf{A} \text{ and } (\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1} \text{ and } (\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$$

- Instead of **matrix division**, think of multiplication by an inverse:

$$\mathbf{AB} = \mathbf{C} \quad \Rightarrow \quad (\mathbf{A}^{-1}\mathbf{A})\mathbf{B} = \mathbf{A}^{-1}\mathbf{C} \quad \Rightarrow \quad \begin{cases} \mathbf{B} &= \mathbf{A}^{-1}\mathbf{C} \\ \mathbf{A} &= \mathbf{CB}^{-1} \end{cases}$$

Vector norms

- Norms are the abstraction for the notion of a length or **magnitude**.
- For a vector $\mathbf{x} \in \mathbb{R}^n$, the p -norm is

$$\|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p \right)^{1/p}$$

and special cases of interest are:

- ① The 1-norm (L^1 norm or Manhattan distance), $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$
- ② The 2-norm (L^2 norm, **Euclidian distance**),

$$\|\mathbf{x}\|_2 = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{\sum_{i=1}^n |x_i|^2}$$

- ③ The ∞ -norm (L^∞ or maximum norm), $\|\mathbf{x}\|_\infty = \max_{1 \leq i \leq n} |x_i|$
- ④ Note that all of these norms are inter-related in a finite-dimensional setting.

Matrix norms

- Matrix norm **induced** by a given vector norm:

$$\|\mathbf{A}\| = \sup_{\mathbf{x} \neq 0} \frac{\|\mathbf{Ax}\|}{\|\mathbf{x}\|} \quad \Rightarrow \quad \|\mathbf{Ax}\| \leq \|\mathbf{A}\| \|\mathbf{x}\|$$

- The last bound holds for matrices as well, $\|\mathbf{AB}\| \leq \|\mathbf{A}\| \|\mathbf{B}\|$.
- Special cases of interest are:

- ① The 1-norm or **column sum norm**, $\|\mathbf{A}\|_1 = \max_j \sum_{i=1}^n |a_{ij}|$
- ② The ∞ -norm or **row sum norm**, $\|\mathbf{A}\|_\infty = \max_i \sum_{j=1}^n |a_{ij}|$
- ③ The 2-norm or **spectral norm**, $\|\mathbf{A}\|_2 = \sigma_1$ (largest singular value)
- ④ The Euclidian or **Frobenius norm**, $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$
(note this is not an induced norm)

Matrices and linear systems

- It is said that 70% or more of applied mathematics research involves solving systems of m linear equations for n unknowns:

$$\sum_{j=1}^n a_{ij}x_j = b_i, \quad i = 1, \dots, m.$$

- Linear systems arise directly from **discrete models**, e.g., traffic flow in a city. Or, they may come through representing one or more abstract **linear operators** in some finite basis (representation).

Common abstraction:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

- Special case: Square invertible matrices, $m = n$, $\det \mathbf{A} \neq 0$:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}.$$

- The goal: Calculate solution \mathbf{x} given data \mathbf{A}, \mathbf{b} in the most numerically stable and also efficient way.

Stability analysis: rhs perturbations

Perturbations on right hand side (rhs) only:

$$\mathbf{A}(\mathbf{x} + \delta\mathbf{x}) = \mathbf{b} + \delta\mathbf{b} \Rightarrow \mathbf{b} + \mathbf{A}\delta\mathbf{x} = \mathbf{b} + \delta\mathbf{b}$$

$$\delta\mathbf{x} = \mathbf{A}^{-1}\delta\mathbf{b} \Rightarrow \|\delta\mathbf{x}\| \leq \|\mathbf{A}^{-1}\| \|\delta\mathbf{b}\|$$

Using the bounds

$$\|\mathbf{b}\| \leq \|\mathbf{A}\| \|\mathbf{x}\| \Rightarrow \|\mathbf{x}\| \geq \|\mathbf{b}\| / \|\mathbf{A}\|$$

the relative error in the solution can be bounded by

$$\frac{\|\delta\mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\|\mathbf{A}^{-1}\| \|\delta\mathbf{b}\|}{\|\mathbf{x}\|} \leq \frac{\|\mathbf{A}^{-1}\| \|\delta\mathbf{b}\|}{\|\mathbf{b}\| / \|\mathbf{A}\|} = \kappa(\mathbf{A}) \frac{\|\delta\mathbf{b}\|}{\|\mathbf{b}\|}$$

where the **conditioning number** $\kappa(\mathbf{A})$ depends on the matrix norm used:

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \geq 1.$$

Stability analysis: matrix perturbations

- Perturbations of the matrix only:

$$(\mathbf{A} + \delta\mathbf{A})(\mathbf{x} + \delta\mathbf{x}) = \mathbf{b} \Rightarrow \delta\mathbf{x} = -\mathbf{A}^{-1}(\delta\mathbf{A})(\mathbf{x} + \delta\mathbf{x})$$

$$\frac{\|\delta\mathbf{x}\|}{\|\mathbf{x} + \delta\mathbf{x}\|} \leq \|\mathbf{A}^{-1}\| \|\delta\mathbf{A}\| = \kappa(\mathbf{A}) \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|}.$$

- Conclusion: The conditioning of the linear system is determined by

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \geq 1$$

- No numerical method can cure an ill-conditioned systems, $\kappa(\mathbf{A}) \gg 1$.
- The conditioning number can only be **estimated** in practice since \mathbf{A}^{-1} is not available (see MATLAB's *rcond* function).

Practice: What is $\kappa(\mathbf{A})$ for diagonal matrices in the 1-norm, ∞ -norm, and 2-norm?

Mixed perturbations

- Now consider general perturbations of the data:

$$(\mathbf{A} + \delta\mathbf{A})(\mathbf{x} + \delta\mathbf{x}) = \mathbf{b} + \delta\mathbf{b}$$

- The full derivation is the book [*next slide*]:

$$\frac{\|\delta\mathbf{x}\|}{\|\mathbf{x}\|} \leq \frac{\kappa(\mathbf{A})}{1 - \kappa(\mathbf{A}) \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|}} \left(\frac{\|\delta\mathbf{b}\|}{\|\mathbf{b}\|} + \frac{\|\delta\mathbf{A}\|}{\|\mathbf{A}\|} \right)$$

- Important practical estimate:

Roundoff error in the data, with rounding unit u (recall $\approx 10^{-16}$ for double precision), produces a relative error

$$\frac{\|\delta\mathbf{x}\|_\infty}{\|\mathbf{x}\|_\infty} \lesssim 2u\kappa(\mathbf{A})$$

- It certainly makes no sense to try to solve systems with $\kappa(\mathbf{A}) > 10^{16}$.

General perturbations (1)

$$\begin{aligned}
 (A + \delta A)(x + \delta x) &= b + \delta b \\
 \cancel{b} + (A + \delta A)\delta x + (\delta A)x &= \cancel{b} + \delta b \\
 \Rightarrow \delta x &= (A + \delta A)^{-1} [\delta b - (\delta A)x] \\
 &= \left[A \left(I + A^{-1} \delta A \right) \right]^{-1} [\delta b - (\delta A)x] \\
 &= (I + A^{-1} \delta A)^{-1} A^{-1} [\delta b - (\delta A)x]
 \end{aligned}$$

$$\|\delta x\| \leq \|(I + A^{-1} \delta A)^{-1}\| \|A^{-1}\| \|\delta b - (\delta A)x\|$$

Derived in book:

$$\text{FACT 1: } \|(I + A^{-1} \delta A)^{-1}\| \leq \frac{1}{1 - \|A^{-1} \delta A\|} \leq \frac{1}{1 - \|A^{-1}\| \|\delta A\|} \quad (1)$$

$$\text{FACT 2: } \|\delta b - (\delta A)x\| \leq \|\delta b\| + \|(\delta A)x\| \leq \delta b + \|\delta A\| \|\delta x\| \quad (1)$$

General perturbations (2)

$$\Rightarrow \frac{\|\delta x\|}{\|x\|} \leq \frac{\|A^{-1}\|}{1 - \|A^{-1}\| \|\delta A\|} \cdot \left[\frac{\|\delta b\|}{\|x\|} + \|\delta A\| \right]$$

$$= \frac{\|A^{-1}\| \|A\|}{1 - \|A^{-1}\| \|A\| \|\delta A\|} \left[\frac{\|\delta b\|}{\|A\| \|x\|} + \frac{\|\delta A\|}{\|A\|} \right]$$

[just put $\|A\|$ in both numerator and denominator]

$$\leq \frac{\kappa(A)}{1 - \kappa(A) \frac{\|\delta A\|}{\|A\|}} \left[\frac{\|\delta b\|}{\|b\|} + \frac{\|\delta A\|}{\|A\|} \right]$$

2

Numerical Solution of Linear Systems

- There are several numerical methods for solving a system of linear equations.
- The most appropriate method really depends on the properties of the matrix **A**:
 - General **dense matrices**, where the entries in **A** are mostly non-zero and nothing special is known.
We focus on the Gaussian Elimination Method (GEM).
 - General **sparse matrices**, where only a small fraction of $a_{ij} \neq 0$.
 - **Symmetric** and also **positive-definite** dense or sparse matrices.
 - Special **structured sparse matrices**, arising from specific physical properties of the underlying system (more in Numerical Methods II).
- It is also important to consider **how many times** a linear system with the same or related matrix or right hand side needs to be solved.

GEM: Eliminating x_1

Step 1:

$$A \mathbf{x} = \mathbf{b}$$

$$\left[\begin{array}{|ccc|} \hline a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ \hline a_{21}^{(1)} & a_{22}^{(1)} & a_{23}^{(1)} \\ \hline a_{31}^{(1)} & a_{32}^{(1)} & a_{33}^{(1)} \\ \hline \end{array} \right] \left[\begin{array}{|c|} \hline x_1 \\ \hline x_2 \\ \hline x_3 \\ \hline \end{array} \right] = \left[\begin{array}{|c|} \hline b_1^{(1)} \\ \hline b_2^{(1)} \\ \hline b_3^{(1)} \\ \hline \end{array} \right]$$

Multiply FIRST row by $\frac{a_{21}^{(1)}}{a_{11}^{(1)}}$

$\ell_{21} = \frac{a_{21}^{(1)}}{a_{11}^{(1)}}$

$\ell_{31} = \frac{a_{31}^{(1)}}{a_{11}^{(1)}}$

↓ Eliminate x_1

$$\left[\begin{array}{|ccc|} \hline a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ \hline 0 = a_{21}^{(1)} - \ell_{21} \cdot a_{11}^{(1)} & a_{22}^{(1)} - \ell_{21} \cdot a_{12}^{(1)} & a_{23}^{(1)} - \ell_{21} \cdot a_{13}^{(1)} \\ \hline \hline 0 & a_{32}^{(1)} - \ell_{31} \cdot a_{12}^{(1)} & a_{33}^{(1)} - \ell_{31} \cdot a_{13}^{(1)} \\ \hline \end{array} \right] \left[\begin{array}{|c|} \hline x_1 \\ \hline x_2 \\ \hline x_3 \\ \hline \end{array} \right] = \left[\begin{array}{|c|} \hline b_1 \\ \hline b_2 - \ell_{21} \cdot b_1 \\ \hline b_3 - \ell_{31} \cdot b_1 \\ \hline \end{array} \right]$$

①

GEM: Eliminating x_2

Step 2 :

$$\left[\begin{array}{|ccc|} \hline a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ \hline 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & a_{32}^{(2)} & a_{33}^{(2)} \\ \hline \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} b_1^{(2)} \\ b_2^{(2)} \\ b_3^{(2)} \end{array} \right] \begin{array}{l} \text{done row!} \\ \text{Multiply row by} \\ \leftarrow l_{32} = \frac{a_{32}^{(2)}}{a_{22}^{(2)}} \end{array}$$

|| Eliminate x_2

$$\left[\begin{array}{|ccc|} \hline a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} \\ \hline 0 & a_{22}^{(2)} & a_{23}^{(2)} \\ 0 & 0 & a_{33}^{(3)} \\ \hline \end{array} \right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array} \right] = \left[\begin{array}{c} b_1^{(3)} \\ b_2^{(3)} \\ b_3^{(3)} \end{array} \right] \begin{array}{l} \text{Upper} \\ \text{triangular} \\ \text{system} \\ \leftarrow \text{Solve} \\ x_3 = \frac{b_3^{(3)}}{a_{33}^{(3)}} \end{array}$$

GEM: Backward substitution

Eliminate x_3 entirely \rightarrow

$$\begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} \\ 0 & a_{22}^{(2)} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} e_1^{(3)} - a_{13}^{(1)} x_3 \\ e_2^{(3)} - a_{23}^{(2)} x_3 \end{bmatrix} = \tilde{b}$$

solve for $x_2 = \frac{\tilde{b}^{(2)}}{a_{22}^{(2)}}$, then x_1 , and done!

Idea: Store the multipliers in the lower triangle of A :

Matrix at Step k :

$$\left[\begin{array}{c|cc} L^{(k)} & U^{(k)} \\ \hline & A^{(k)} \end{array} \right] \quad \left[\begin{array}{c|cc} u_{11} & u_{12} & u_{13} \\ \hline l_{21} & a_{22}^{(2)} & a_{23}^{(2)} \\ l_{31} & a_{32}^{(2)} & a_{33}^{(2)} \end{array} \right]$$

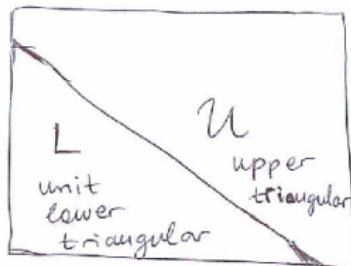
Example step 2

(3)

GEM as an *LU* factorization tool

At the end, we get

$$\left[\begin{array}{ccc|ccc} & u_{11} & u_{12} & u_{13} & & & \\ 1 & & & & & & \\ & l_{21} & 1 & u_{22} & u_{23} & & \\ & & & & & & \\ l_{31} & l_{32} & l_{33} & 1 & u_{33} & & \end{array} \right]$$



- Observation, proven in the book (not very intuitively):

$$\mathbf{A} = \mathbf{L}\mathbf{U},$$

where **L** is **unit lower triangular** ($l_{ii} = 1$ on diagonal), and **U** is **upper triangular**.

- GEM is thus essentially the same as the **LU factorization method**.

GEM in MATLAB

Sample MATLAB code (for learning purposes only, not real computing!):

```
function A = MyLU(A)
% LU factorization in-place (overwrite A)
[n,m]=size(A);
if (n ~= m); error('Matrix not square'); end
for k=1:(n-1) % For variable x(k)
    % Calculate multipliers in column k:
    A((k+1):n,k) = A((k+1):n,k) / A(k,k);
    % Note: Pivot element A(k,k) assumed nonzero!
    for j=(k+1):n
        % Eliminate variable x(k):
        A((k+1):n,j) = A((k+1):n,j) - ...
            A((k+1):n,k) * A(k,j);
    end
end
end
```

Gauss Elimination Method (GEM)

- GEM is a **general** method for **dense matrices** and is commonly used.
- Implementing GEM efficiently is difficult and we will not discuss it here, since others have done it for you!
- The **LAPACK** public-domain library is the main repository for excellent implementations of dense linear solvers.
- MATLAB uses a highly-optimized variant of GEM by default, mostly based on LAPACK.
- MATLAB does have **specialized solvers** for special cases of matrices, so always look at the help pages!

Pivoting example

Zero diagonal entries (pivots) pose a problem \rightarrow PIVOTING (swapping rows and columns)

$$A x = b$$

$$\begin{bmatrix} 1 & 1 & 3 \\ 2 & 2 & 2 \\ 3 & 6 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \\ 13 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 3 \\ 2 & 0 & -4 \\ 3 & -5 & -5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 3 \\ 3 & 0 & -5 \\ 2 & 0 & -4 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 3 \\ 3 & 1 & -5 \\ 2 & 0 & 1 \end{bmatrix}$$

Observe
PERMUTED
 $LU = A$

GEM Matlab example (1)

```
>> L=[1 0 0; 3 1 0; 2 0 1]
```

```
L =
```

1	0	0
3	1	0
2	0	1

```
>> U=[1 1 3; 0 3 -5; 0 0 -4]
```

```
U =
```

1	1	3
0	3	-5
0	0	-4

GEM Matlab example (2)

```
>> AP=L*U % Permuted A
```

```
AP =
```

1	1	3
3	6	4
2	2	2

```
>> A=[1 1 3; 2 2 2; 3 6 4]
```

```
A =
```

1	1	3
2	2	2
3	6	4

GEM Matlab example (3)

```
>> AP=MyLU(AP) % Two last rows permuted
```

```
AP =
```

1	1	3
3	3	-5
2	0	-4

```
>> MyLU(A) % No pivoting
```

```
ans =
```

1	1	3
2	0	-4
3	Inf	Inf

GEM Matlab example (4)

```
>> [Lm,Um,Pm]=lu(A)
```

Lm =

1.0000	0	0
0.6667	1.0000	0
0.3333	0.5000	1.0000

Um =

3.0000	6.0000	4.0000
0	-2.0000	-0.6667
0	0	2.0000

Pm =

0	0	1
0	1	0
1	0	0

GEM Matlab example (5)

```
>> Lm*Um
```

```
ans =
```

3	6	4
2	2	2
1	1	3

```
>> A
```

```
A =
```

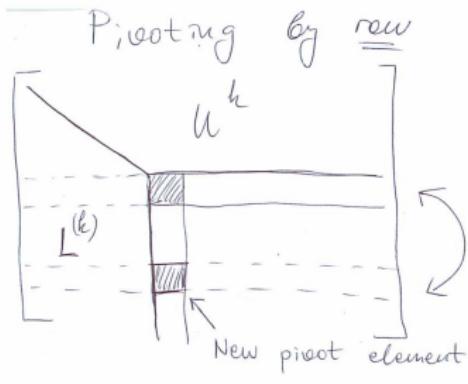
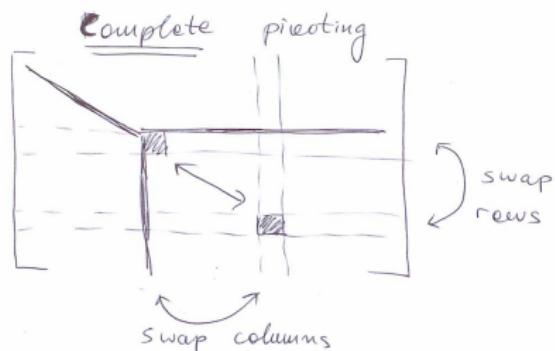
1	1	3
2	2	2
3	6	4

```
>> norm ( Lm*Um - Pm*A )
```

```
ans =
```

0

Pivoting during LU factorization



- **Partial (row) pivoting** permutes the rows (equations) of \mathbf{A} in order to ensure sufficiently large pivots and thus numerical stability:

$$\mathbf{PA} = \mathbf{LU}$$

- Here \mathbf{P} is a **permutation matrix**, meaning a matrix obtained by permuting rows and/or columns of the identity matrix.
- **Complete pivoting** also permutes columns, $\mathbf{PAQ} = \mathbf{LU}$.

Solving linear systems

- Once an LU factorization is available, solving a linear system is simple:

$$\mathbf{Ax} = \mathbf{LUx} = \mathbf{L}(\mathbf{Ux}) = \mathbf{Ly} = \mathbf{b}$$

so solve for \mathbf{y} using **forward substitution**.

This was implicitly done in the example above by overwriting \mathbf{b} to become \mathbf{y} during the factorization.

- Then, solve for \mathbf{x} using **backward substitution**

$$\mathbf{Ux} = \mathbf{y}.$$

- In MATLAB, the **backslash operator** (see help on *mldivide*)

$$\mathbf{x} = \mathbf{A} \backslash \mathbf{b} \approx \mathbf{A}^{-1} \mathbf{b},$$

solves the linear system $\mathbf{Ax} = \mathbf{b}$ using the LAPACK library.

Never use matrix inverse to do this, even if written as such on paper.

Permutation matrices

- If row pivoting is necessary, the same applies if one also permutes the equations (rhs \mathbf{b}):

$$\mathbf{P}\mathbf{A}\mathbf{x} = \mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{L}\mathbf{y} = \mathbf{P}\mathbf{b}$$

or *formally* (meaning for theoretical purposes only)

$$\mathbf{x} = (\mathbf{L}\mathbf{U})^{-1} \mathbf{P}\mathbf{b} = \mathbf{U}^{-1}\mathbf{L}^{-1}\mathbf{P}\mathbf{b}$$

- Observing that permutation matrices are orthogonal matrices, $\mathbf{P}^{-1} = \mathbf{P}^T$,

$$\mathbf{A} = \mathbf{P}^{-1}\mathbf{L}\mathbf{U} = (\mathbf{P}^T\mathbf{L})\mathbf{U} = \tilde{\mathbf{L}}\mathbf{U}$$

where $\tilde{\mathbf{L}}$ is a row permutation of a unit lower triangular matrix.

In MATLAB

- Doing $x = A \setminus b$ is **equivalent** to performing an *LU* factorization and doing two **triangular solves** (backward and forward substitution):

$$[\tilde{L}, U] = lu(A)$$

$$y = \tilde{L} \setminus b$$

$$x = U \setminus y$$

- This is a carefully implemented **backward stable** pivoted LU factorization, meaning that the returned solution is as accurate as the conditioning number allows.
- The MATLAB call $[L, U, P] = lu(A)$ returns the permutation matrix but the call $[\tilde{L}, U] = lu(A)$ permutes the lower triangular factor directly.

GEM Matlab example (1)

```
>> A = [ 1      2      3 ; 4      5      6 ; 7      8      0 ];  
>> b=[2 1 -1]';  
  
>> x=A^(-1)*b; x' % Don't do this!  
ans =      -2.5556      2.1111      0.1111  
  
>> x = A\b; x' % Do this instead  
ans =      -2.5556      2.1111      0.1111  
  
>> linsolve(A,b)' % Even more control  
ans =      -2.5556      2.1111      0.1111
```

GEM Matlab example (2)

```
>> [L,U] = lu(A) % Even better if resolving
```

```
L = 0.1429 1.0000 0  
0.5714 0.5000 1.0000  
1.0000 0 0
```

```
U = 7.0000 8.0000 0  
0 0.8571 3.0000  
0 0 4.5000
```

```
>> norm(L*U-A, inf)
```

```
ans = 0
```

```
>> y = L\b;
```

```
>> x = U\y; x'
```

```
ans = -2.5556 2.1111 0.1111
```

Cost estimates for GEM

- For forward or backward substitution, at step k there are $\sim (n - k)$ multiplications and subtractions, plus a few divisions.

The total over all n steps is

$$\sum_{k=1}^n (n - k) = \frac{n(n - 1)}{2} \approx \frac{n^2}{2}$$

subtractions and multiplications, giving a total of n^2 **floating-point operations (FLOPs)**.

- For GEM, at step k there are $\sim (n - k)^2$ multiplications and subtractions, plus a few divisions.

The total is

$$\text{FLOPS} = 2 \sum_{k=1}^n (n - k)^2 \approx \frac{2n^3}{3},$$

and the $O(n^2)$ operations for the triangular solves are neglected.

- When many linear systems need to be solved with the same \mathbf{A} the **factorization can be reused**.

Positive-Definite Matrices

- A real symmetric matrix \mathbf{A} is positive definite iff (if and only if):
 - ① All of its eigenvalues are real (follows from symmetry) and positive.
 - ② $\forall \mathbf{x} \neq \mathbf{0}, \mathbf{x}^T \mathbf{A} \mathbf{x} > 0$, i.e., the quadratic form defined by the matrix \mathbf{A} is convex.
 - ③ There exists a *unique* lower triangular \mathbf{L} , $L_{ii} > 0$,

$$\mathbf{A} = \mathbf{L} \mathbf{L}^T,$$

termed the **Cholesky factorization** of \mathbf{A} (symmetric LU factorization).

- ① For Hermitian complex matrices just replace transposes with adjoints (conjugate transpose), e.g., $\mathbf{A}^T \rightarrow \mathbf{A}^*$ (or \mathbf{A}^H in the book).

Cholesky Factorization

- The MATLAB built in function

$$R = \text{chol}(A)$$

gives the Cholesky factorization and is a good way to **test for positive-definiteness**.

- For Hermitian/symmetric matrices with positive diagonals MATLAB tries a Cholesky factorization first, *before* resorting to *LU* factorization with pivoting.
- The cost of a Cholesky factorization is about half the cost of GEM, $n^3/3$ FLOPS.

When pivoting is unnecessary

- It can be shown that roundoff is **not** a problem for triangular system $\mathbf{T}\mathbf{x} = \mathbf{b}$ (forward or backward substitution). Specifically,

$$\frac{\|\delta \mathbf{x}\|_\infty}{\|\mathbf{x}\|_\infty} \lesssim n u \kappa(\mathbf{T}),$$

so unless the number of unknowns n is very very large the truncation errors are small for **well-conditioned systems**.

- Special classes of **well-behaved** matrices \mathbf{A} :

- 1** **Diagonally-dominant** matrices, meaning

$$|a_{ii}| \geq \sum_{j \neq i} |a_{ij}| \quad \text{or} \quad |a_{ii}| \geq \sum_{j \neq i} |a_{ji}|$$

- 2** **Symmetric positive-definite** matrices, i.e., Cholesky factorization does not require pivoting,

$$\frac{\|\delta \mathbf{x}\|_2}{\|\mathbf{x}\|_2} \lesssim 8n^2 u \kappa(\mathbf{A}).$$

When pivoting is necessary

- For a general matrix \mathbf{A} , roundoff analysis leads to the following type of estimate

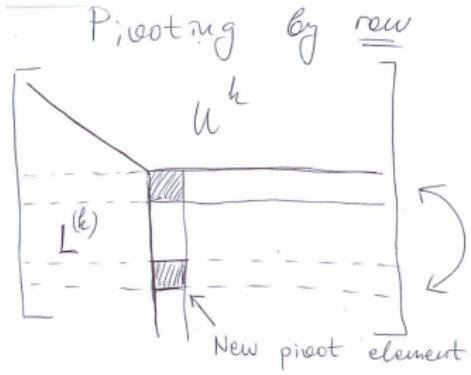
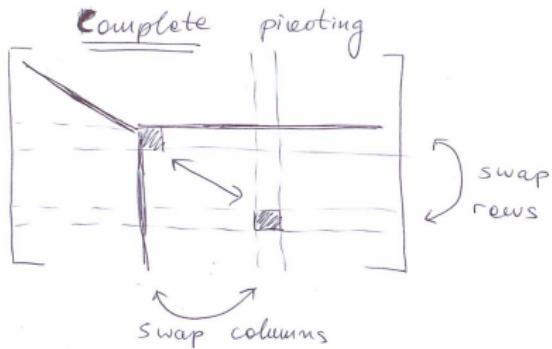
$$\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|} \lesssim n u \kappa(\mathbf{A}) \frac{\|\mathbf{L}\| \|\mathbf{U}\|}{\|\mathbf{A}\|},$$

which shows that small pivots, i.e., large multipliers l_{ij} , can lead to large roundoff errors.

What we want is an estimate that **only** involves n and $\kappa(\mathbf{A})$.

- Since the optimal pivoting **cannot** be predicted a-priori, it is best to **search for the largest pivot in the same column as the current pivot**, and exchange the two rows (partial pivoting).

Partial Pivoting



- The cost of partial pivoting is searching among $O(n)$ elements n times, so $O(n^2)$, which is small compared to $O(n^3)$ total cost.
- Complete pivoting requires searching $O(n^2)$ elements n times, so cost is $O(n^3)$ which is usually not justified.
- The recommended strategy is to **use partial (row) pivoting** even if not strictly necessary (MATLAB takes care of this).

What pivoting does

- The problem with GEM without pivoting is large **growth factors** (not large numbers per se)

$$\rho = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|}$$

- Pivoting is not needed for positive-definite matrices because $\rho \leq 2$:

$$|a_{ij}|^2 \leq |a_{ii}| |a_{jj}| \text{ (so the largest element is on the diagonal)}$$

$$a_{ij}^{(k+1)} = a_{ij}^{(k)} - l_{ik} a_{kj}^{(k)} = a_{ij}^{(k)} - \frac{a_{ki}^{(k)}}{a_{kk}^{(k)}} a_{kj}^{(k)} \text{ (GEM)}$$

$$a_{ii}^{(k+1)} = a_{ii}^{(k)} - \frac{\left(a_{ki}^{(k)}\right)^2}{a_{kk}^{(k)}} \Rightarrow \left|a_{ii}^{(k+1)}\right| \leq \left|a_{ii}^{(k)}\right| + \frac{\left|a_{ki}^{(k)}\right|^2}{\left|a_{kk}^{(k)}\right|} \leq 2 \left|a_{ii}^{(k)}\right|$$

Matrix Rescaling

- Pivoting is not always sufficient to ensure lack of roundoff problems. In particular, **large variations** among the entries in **A** **should be avoided**.
- This can usually be remedied by changing the physical units for **x** and **b** to be the **natural units** \mathbf{x}_0 and \mathbf{b}_0 .
- **Rescaling** the unknowns and the equations is generally a good idea even if not necessary:

$$\mathbf{x} = \mathbf{D}_x \tilde{\mathbf{x}} = \text{Diag}\{\mathbf{x}_0\} \tilde{\mathbf{x}} \text{ and } \mathbf{b} = \mathbf{D}_b \tilde{\mathbf{b}} = \text{Diag}\{\mathbf{b}_0\} \tilde{\mathbf{b}}.$$

$$\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{D}_x \tilde{\mathbf{x}} = \mathbf{D}_b \tilde{\mathbf{b}} \Rightarrow (\mathbf{D}_b^{-1} \mathbf{A} \mathbf{D}_x) \tilde{\mathbf{x}} = \tilde{\mathbf{b}}$$

- The **rescaled matrix** $\tilde{\mathbf{A}} = \mathbf{D}_b^{-1} \mathbf{A} \mathbf{D}_x$ should have a better conditioning, but this is hard to achieve in general.
- Also note that **reordering the variables** from most important to least important may also help.

Special Matrices in MATLAB

- MATLAB recognizes (i.e., tests for) some special matrices automatically: banded, permuted lower/upper triangular, symmetric, Hessenberg, but **not** sparse.
- In MATLAB one may specify a matrix **B** instead of a single right-hand side vector **b**.
- The MATLAB function

$$X = \text{linsolve}(A, B, \text{opts})$$

allows one to specify certain properties that speed up the solution (triangular, upper Hessenberg, symmetric, positive definite, none), and also estimates the condition number along the way.

- Use *linsolve* instead of backslash if you know (for sure!) something about your matrix.

Conclusions/Summary

- The conditioning of a linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is determined by the condition number

$$\kappa(\mathbf{A}) = \|\mathbf{A}\| \|\mathbf{A}^{-1}\| \geq 1$$

- Gauss elimination can be used to solve general square linear systems and also produces a factorization $\mathbf{A} = \mathbf{L}\mathbf{U}$.
- Partial pivoting is often necessary to ensure numerical stability during GEM and leads to $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$ or $\mathbf{A} = \tilde{\mathbf{L}}\mathbf{U}$.
- For symmetric positive definite matrices the Cholesky factorization $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ is preferred and does not require pivoting.
- MATLAB has excellent linear solvers based on well-known public domain libraries like LAPACK. Use them!