
Numerical Methods I
Non-Square and Sparse Linear Systems

Aleksandar Donev
Courant Institute, NYU1

donev@courant.nyu.edu

1MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

September 25th, 2014

A. Donev (Courant Institute) Lecture III 9/2014 1 / 36



Outline

Homework 1 is due tomorrow, Friday Sept. 19th:
go through instructions in class.
Howework 2 (linear systems) is posted online.
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Numerical Solution of Linear Systems

Ax = b

The most appropriate algorithm really depends on the properties of
the matrix A:

General dense matrices, where the entries in A are mostly non-zero
and nothing special is known: Use LU factorization.
Symmetric (aij = aji ) and also positive-definite matrices.
General sparse matrices, where only a small fraction of aij 6= 0.
Special structured sparse matrices, arising from specific physical
properties of the underlying system.

It is also important to consider how many times a linear system with
the same or related matrix or right hand side needs to be solved.
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Overdetermined Linear Systems

Non-Square Matrices

In the case of over-determined (more equations than unknowns) or
under-determined (more unknowns than equations), the solution to
linear systems in general becomes non-unique.

One must first define what is meant by a solution, and the common
definition is to use a least-squares formulation:

x? = arg min
x∈Rn
‖Ax− b‖ = arg min

x∈Rn
Φ(x)

where the choice of the L2 norm leads to:

Φ(x) = (Ax− b)T (Ax− b) .

Over-determined systems, m > n, can be thought of as fitting a
linear model (linear regression):
The unknowns x are the coefficients in the fit, the input data is in A
(one column per measurement), and the output data (observables)
are in b.
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Overdetermined Linear Systems

Normal Equations

It can be shown that the least-squares solution satisfies:

∇Φ(x) = AT [2 (Ax− b)] = 0 (critical point)

This gives the square linear system of normal equations(
ATA

)
x? = ATb.

If A is of full rank, rank (A) = n, it can be shown that ATA is
positive definite, and Cholesky factorization can be used to solve the
normal equations.

Multiplying AT (n ×m) and A (m × n) takes n2 dot-products of
length m, so O(mn2) operations
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Overdetermined Linear Systems

Problems with the normal equations

(
ATA

)
x? = ATb.

The conditioning number of the normal equations is

κ
(
ATA

)
= [κ(A)]2

Furthermore, roundoff can cause ATA to no longer appear as
positive-definite and the Cholesky factorization will fail.

If the normal equations are ill-conditioned, another approach is
needed.
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Overdetermined Linear Systems

The QR factorization

For nonsquare or ill-conditioned matrices of full-rank r = n ≤ m, the
LU factorization can be replaced by the QR factorization:

A =QR

[m × n] =[m × n][n × n]

where Q has orthogonal columns, QTQ = In, and R is a
non-singular upper triangular matrix.

Observe that orthogonal / unitary matrices are well-conditioned
(κ2 = 1), so the QR factorization is numerically better (but also more
expensive!) than the LU factorization.

For matrices not of full rank there are modified QR factorizations
but the SVD decomposition is better (next class).

In MATLAB, the QR factorization can be computed using qr (with
column pivoting).
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Overdetermined Linear Systems

Solving Linear Systems via QR factorization

(
ATA

)
x? = ATb where A = QR

Observe that R is the Cholesky factor of the matrix in the normal
equations:

ATA = RT
(
QTQ

)
R = RTR

(
RTR

)
x? =

(
RTQT

)
b ⇒ x? = R−1

(
QTb

)
which amounts to solving a triangular system with matrix R.

This calculation turns out to be much more numerically stable
against roundoff than forming the normal equations (and has similar
cost).
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Overdetermined Linear Systems

Undetermined Linear Systems

Sometimes the solution to the least-squares is still not unique:

Under-determined systems (not enough equations to fix all unknowns)
Singular systems, i.e., A that is not of full rank (use SVD):
Any solution to Ax0 = 0 can be added to x without changing the left
hand side!

Additional condition: Choose the x? that has minimal Euclidean
norm, i.e., use a least-squares definition:

minAx=b ‖x‖2 ,

although more recently of great importance are solutions that
minimize the L1 norm (compressed sensing).

For under-determined full-rank systems, r = m ≤ n, one does a QR
factorization of AT = Q̃R̃ and the least-squares solution is

x? = Q̃
(

R̃
−T

b
)

Practice: Derive the above formula.
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Overdetermined Linear Systems

Computing the QR Factorization

Assume that

∃x s.t. b = Ax, that is,b ∈ range(A)

b = Q (Rx) = Qy ⇒ x = R−1y

showing that the columns of Q form an orthonormal basis for the
range of A (linear subspace spanned by the columns of A).
The QR factorization is thus closely-related to the orthogonalization
of a set of n vectors (columns) {a1, a2, . . . , an} in Rm.
Classical approach is the Gram-Schmidt method: To make a vector
b orthogonal to a do:

b̃ = b− (b · a)
a

(a · a)

Practice: Verify that b̃ · a = 0
Repeat this in sequence: Start with ã1 = a1, then make ã2 orthogonal
to ã1 = a1, then make ã3 orthogonal to span (ã1, ã2) = span (a1, a2).
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Overdetermined Linear Systems

Modified Gram-Schmidt Orthogonalization

More efficient formula (standard Gram-Schmidt):

ãk+1 = ak+1 −
k∑

j=1

(
ak+1 · qj

)
qj , qk+1 =

ãk+1

‖ãk+1‖
,

with cost ∼ mn2 FLOPS.

A mathematically-equivalent but numerically much superior against
roundoff error is the modified Gram-Schmidt, in which each
orthogonalization is carried in sequence and repeated against each
of the already-computed basis vectors:
Start with ã1 = a1, then make ã2 orthogonal to ã1, then make ã3

orthogonal to ã1 and then make the result orthogonal to ã2.

The modified procedure is twice more expensive, ∼ 2mn2 FLOPS,
but usually worth it.

Pivoting is strictly necessary for matrices not of full rank but it can
also improve stability in general.
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Sparse Matrices

Sparse Matrices

A matrix where a substantial fraction of the entries are zero is called a
sparse matrix. The difference with dense matrices is that only the
nonzero entries are stored in computer memory.

Exploiting sparsity is important for large matrices (what is large
depends on the computer).

The structure of a sparse matrix refers to the set of indices i , j such
that aij > 0, and is visualized in MATLAB using spy .

The structure of sparse matrices comes from the nature of the
problem, e.g., in an inter-city road transportation problem it
corresponds to the pairs of cities connected by a road.

In fact, just counting the number of nonzero elements is not enough:
the sparsity structure is the most important property that
determines the best method.
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Sparse Matrices

Banded Matrices

Banded matrices are a very special but common type of sparse
matrix, e.g., tridiagonal matrices

a1 c1 0

b2 a2
. . .

. . .
. . . cn−1

0 bn an


There exist special techniques for banded matrices that are much
faster than the general case, e.g, only 8n FLOPS and no additional
memory for tridiagonal matrices.

A general matrix should be considered sparse if it has sufficiently
many zeros that exploiting that fact is advantageous:
usually only the case for large matrices (what is large?)!
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Sparse Matrices

Sparse Matrices
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Sparse Matrices

Fill-In

There are general techniques for dealing with sparse matrices such as
sparse LU factorization. How well they work depends on the
structure of the matrix.

When factorizing sparse matrices, the factors, e.g., L and U, can be
much less sparse than A: fill-in.

Pivoting (reordering of variables and equations) has a dual,
sometimes conflicting goal:

1 Reduce fill-in, i.e., improve memory use.
2 Reduce roundoff error, i.e., improve stability. Typically some

threshold pivoting is used only when needed.

For many sparse matrices there is a large fill-in and iterative
methods are required.
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Sparse Matrices

Sparse matrices in MATLAB

>> A = sparse ( [ 1 2 2 4 4 ] , [ 3 1 4 2 3 ] , 1 : 5 )
A =

( 2 , 1 ) 2
( 4 , 2 ) 4
( 1 , 3 ) 1
( 4 , 3 ) 5
( 2 , 4 ) 3

>> nnz (A)
ans = 5
>> whos A

A 4 x4 120 d o u b l e sparse

>> A = sparse ( [ ] , [ ] , [ ] , 4 , 4 , 5 ) ; % Pre−a l l o c a t e memory
>> A(2 ,1)=2 ; A(4 ,2 )=4 ; A(1 ,3 )=1; A(4 ,3)=5; A(2 ,4)=3;
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Sparse Matrices

Sparse matrix factorization

>> B=s p r a n d ( 4 , 4 , 0 . 2 5 ) ; % Dens i t y o f 25%
>> f u l l (B)
ans =

0 0 0 0.7655
0 0 .7952 0 0
0 0 .1869 0 0

0 .4898 0 0 0

>> B=s p r a n d ( 1 0 0 , 1 0 0 , 0 . 1 ) ; spy (B)
>> X=g a l l e r y ( ’ p o i s s o n ’ , 1 0 ) ; spy (X)
>> [ L , U, P]= l u (B ) ; spy ( L )
>> p = symrcm (B ) ; % Symmetric Reve r s e C u t h i l l−McKee o r d e r i n g
>> PBP=B( p , p ) ; spy (PBP ) ;
>> [ L , U, P]= l u (PBP ) ; spy ( L ) ;
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Sparse Matrices

Random matrix B and structured matrix X

The MATLAB function spy shows where the nonzeros are as a plot
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Sparse Matrices

LU factors of random matrix B

Fill-in (generation of lots of nonzeros) is large for a random sparse matrix
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Sparse Matrices

LU factors of structured matrix X

Fill-in is much smaller for the sparse matrix but still non-negligible.

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

L for structured matrix X

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

nz = 1009

U for structured matrix X

A. Donev (Courant Institute) Lecture III 9/2014 20 / 36



Sparse Matrices

Matrix reordering

Matrix reordering cannot do much for the random matrix B, but it can
help for structured ones!
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Sparse Matrices

Reducing fill-in by reordering X

Fill-in was reduced by about 20% (from 1000 nonzeros to 800) by the
reordering for the structured X, but does not help much for B.

The actual numbers are different for different classes of matrices!
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Sparse Matrices

Importance of Sparse Matrix Structure

Important to remember: While there are general techniques for
dealing with sparse matrices that help greatly, it all depends on the
structure (origin) of the matrix.

Pivoting has a dual, sometimes conflicting goal:

1 Reduce fill-in, i.e., improve memory use: Still active subject of
research!

2 Reduce roundoff error, i.e., improve stability. Typically some
threshold pivoting is used only when needed.

Pivoting for symmetric non-positive definite matrices is trickier:
One can permute the diagonal entries only to preserve symmetry,
but small diagonal entries require special treatment.

For many sparse matrices iterative methods (briefly covered next
lecture) are required to large fill-in.
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Iterative Methods

Why iterative methods?

Direct solvers are great for dense matrices and can be made to avoid
roundoff errors to a large degree. They can also be implemented very
well on modern machines.

Fill-in is a major problem for certain sparse matrices and leads to
extreme memory requirements (e.g., three-d.

Some matrices appearing in practice are too large to even be
represented explicitly (e.g., the Google matrix).

Often linear systems only need to be solved approximately, for
example, the linear system itself may be a linear approximation to a
nonlinear problem.

Direct solvers are much harder to implement and use on (massively)
parallel computers.
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Iterative Methods

Stationary Linear Iterative Methods of First Order

In iterative methods the core computation is iterative matrix-vector
multiplication starting from an initial guess x(0).

Prototype is the linear recursion:

x(k+1) = Bx(k) + f,

where B is an iteration matrix somehow related to A.

For this method to be consistent, we must have that the actual
solution x = A−1b is a stationary point of the iteration:

x = Bx + f ⇒ A−1b = BA−1b + f

f = A−1b− BA−1b = (I− B) x

For this method to be stable, and thus convergent, the error
e(k) = x(k) − x must decrease:

e(k+1) = x(k+1)−x = Bx(k)+f−x = B
(

x + e(k)
)

+(I− B) x−x = Be(k)
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Iterative Methods

Convergence of simple iterative methods

We saw that the error propagates from iteration to iteration as

e(k) = Bke(0).

When does this converge? Taking norms,∥∥∥e(k)
∥∥∥ ≤ ‖B‖k ∥∥∥e(0)

∥∥∥
which means that ‖B‖ < 1 is a sufficient condition for convergence.

More precisely, limk→∞ e(k) = 0 for any e(0) iff Bk → 0.

Theorem: The method converges iff the spectral radius of the
iteration matrix is less than unity:

ρ(B) < 1.
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Iterative Methods

Spectral Radius

The spectral radius ρ(A) of a matrix A can be thought of as the
smallest consistent matrix norm

ρ(A) = max
λ
|λ| ≤ ‖A‖

The spectral radius often determines convergence of iterative
schemes for linear systems and eigenvalues and even methods for
solving PDEs because it estimates the asymptotic rate of error
propagation:

ρ(A) = lim
k→∞

∥∥Ak
∥∥1/k
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Iterative Methods

Termination

The iterations of an iterative method can be terminated when:

1 The residual becomes small,∥∥∥r(k)
∥∥∥ ≤ ε ‖b‖

This is good for well-conditioned systems.
2 The solution x(k) stops changing, i.e., the increment becomes small,

[1− ρ(B)]
∥∥∥e(k)

∥∥∥ ≤ ∥∥∥x(k+1) − x(k)
∥∥∥ ≤ ε ‖b‖ ,

which can be seen to be good if convergence is rapid, ρ(B)� 1.

Usually a careful combination of the two strategies is employed along
with some safeguards.
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Iterative Methods

Fixed-Point Iteration

A naive but often successful method for solving

x = f (x)

is the fixed-point iteration

xn+1 = f (xn).

In the case of a linear system, consider rewriting Ax = b as:

x = (I− A) x + b

Fixed-point iteration gives the consistent iterative method

x(k+1) = (I− A) x(k) + b
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Iterative Methods

Preconditioning

The above method is consistent but it may not converge or may
converge very slowly

x(k+1) = (I− A) x(k) + b.

As a way to speed it up, consider having a good approximate solver

P−1 ≈ A−1

called the preconditioner (P is the preconditioning matrix), and
transform

P−1Ax = P−1b

Now apply fixed-point iteration to this modified system:

x(k+1) =
(
I− P−1A

)
x(k) + P−1b,

which now has an iteration matrix I− P−1A ≈ 0, which means more
rapid convergence.
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Iterative Methods

Preconditioned Iteration

x(k+1) =
(
I− P−1A

)
x(k) + P−1b

In practice, we solve linear systems with the matrix P instead of
inverting it:

Px(k+1) = (P− A) x(k) + b = Px(k) + r(k),

where r(k) = b− Ax(k) is the residual vector.

Finally, we obtain the usual form of a preconditioned stationary
iterative solver

x(k+1) = x(k) + P−1r(k).

Note that convergence will be faster if we have a good initial guess
x(0).
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Iterative Methods

Some Standard Examples

Splitting: A = LA + UA + D

Since diagonal systems are trivial to solve, we can use the Jacobi
method

P = D.

Or since triangular systems are easy to solve by forward/backward
substitution, we can use Gauss-Seidel method

P = LA + D.

Both of these converge for strictly diagonally-dominant matrices.

Gauss-Seidel converges for positive-definite matrices (maybe slowly
though!).
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Iterative Methods

A Good Preconditioner

Note that the matrix A is only used when calculating the residual
through the matrix-vector product Ax(k).

We must be able to do a direct linear solver for the preconditioner

P (∆x) = r(k),

so it must be in some sense simpler to deal with than A.

Preconditioning is all about a balance between fewer iterations to
convergence and larger cost per iteration.

Making good preconditioners is in many ways an art and very
problem-specific:
The goal is to make P−1A as close to being a normal (diagonalizable)
matrix with clustered eigenvalues as possible.
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Iterative Methods

In the Real World

Some general preconditioning strategies have been designed, for
example, incomplete LU factorization (MATLAB’s cholinc).

There are many more-sophisticated iterative methods
(non-stationary, higher-order, etc) but most have the same basic
structure:
At each iteration, solve a preconditioning linear system, do a
matrix-vector calculation, and a convergence test.

For positive-(semi)definite matrices the Preconditioned Conjugate
Gradient method is good (MATLAB’s pcg).

For certain types of matrices specialized methods have been designed,
such as multigrid methods for linear systems on large grids (PDE
solvers in Numerical Methods II).
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Conclusions

Special Matrices in MATLAB

MATLAB recognizes (i.e., tests for) some special matrices
automatically: banded, permuted lower/upper triangular, symmetric,
Hessenberg, but not sparse.

In MATLAB one may specify a matrix B instead of a single
right-hand side vector b.

The MATLAB function

X = linsolve(A,B, opts)

allows one to specify certain properties that speed up the solution
(triangular, upper Hessenberg, symmetric, positive definite, none),
and also estimates the condition number along the way.

Use linsolve instead of backslash if you know (for sure!) something
about your matrix.
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Conclusions

Conclusions/Summary

The QR factorization is a numerically-stable method for solving
full-rank non-square systems.

For rank-defficient matrices the singular value decomposition (SVD)
is best, discussed in later lectures.

Sparse matrices deserve special treatment but the details depend on
the specific field of application.

In particular, special sparse matrix reordering methods or iterative
systems are often required.

When sparse direct methods fail due to memory or other
requirements, iterative methods are used instead.

Convergence of iterative methods depends strongly on the matrix, and
a good preconditioner is often required.

There are good libraries for iterative methods as well (but you
must supply your own preconditioner!).
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