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Background
What is Monte Carlo?

@ Monte Carlo is any numerical algorithm that uses random numbers to
compute a deterministic (non-random) answer: stochastic or
randomized algorithm.

@ An important example is numerical integration in higher

dimensions:
J= f(x) dx
QCR»

@ Recall that using a deterministic method is very accurate and fast
for low dimensions.

@ But for large dimensions we have to deal with the curse of
dimensionality:
The number of quadrature nodes scales like at least 2"
(exponentially). E.g., 220 = 106, but 240 = 10!
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Probability Theory

@ First define a set Q of possible outcomes w € Q of an “experiment’

e A coin toss can end in heads or tails, so two outcomes.
o A sequence of four coin tosses can end in one of 4> = 16 outcomes,
e.g., HHTT or THTH.

@ The set Q can be finite (heads or tails), countably infinite (the number
of atoms inside a box), or uncountable (the weight of a person).

@ An event A C Q is a set of possible outcomes: e.g., more tails
then heads occur in a sequence of four coin tosses,

A ={HHHH, THHH, HTHH, HHTH, HHHT } .
o Each event has an associated probability
0<P(A) <1,

with P(Q) =1 and P()) = 0.
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Background
Conditional Probability

@ A basic axiom is that probability is additive for disjoint events:
P(AUB)=P(AorB)=P(A)+P(B) ifANB=10

@ Bayes formula gives the conditional probability that an outcome
belongs to set B if it belongs to set C:
P(BNC) P(Band ()

PEIO="p TP @

@ Two events are said to be independent if their probabilities are
multiplicative:

P(ANB) = P(Aand B) = P(A)P(B)
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Background
Probability Distribution

o If Q is uncountable, think of outcomes as random variables, that is,
variables whose value is determined by a random outcome:

X = X(w) €R.

e The probability density function 7(x) > 0 determines the
probability for the outcome to be close to x, in one dimension

P(x <X < x+ dx) = f(x)dx,

mmzpmem:/'a@w

xX€EA

@ The concept of a measure and the Lebesque integral generalizes
the traditional Riemann integral in probability theory.
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Background
Mean and Variance

@ We call the probability density or the probability measure the law
or the distribution of a random variable X, and write:

X ~ f.

@ The cummulative distribution function is
X

F(x)=P(X <x) = / f(x")dx',

-0
and we will assume that this function is continuous.

@ The mean or expectation value of a random variable X is
[e.e]

;L:)_(:E[X]:/ xf(x)dx.

—0oQ
@ The variance o2 and the standard deviation o measure the
uncertainty in a random variable

o0

02 = var(X) = E[(X — p)?] = / (x — p)2F(x)dx.

—0o0
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Background
Multiple Random Variables

o Consider a set of two random variables Z = (X, Y) and the joint
probability distribution Z ~ f(x,y).

@ The marginal density for X is the distribution of just X, without
regard to Y:

g(x) = / f(x,y)dy, similarly h(y) = / f(x,y)dx

@ The conditional probability distribution is the distribution of X for
a known Y:
f(x,y)

h(y)
@ Two random variables X and Y are independent if

f(x,y) =g(x)hly) = f(xly)=g(x).

f(xly) =
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Background
Covariance

@ The term i.i.d.=independent identically-distributed random
variables is used to describe independent samples X, ~ f, k=1,....

@ The generalization of variance for two variables is the covariance:
Cxy =cov(X,Y)=E[(X = X) (Y = Y)] = E(XY) — E(X)E(Y).

@ For independent variables

E(xY) = [ 5 fx.y)ady = [ xel)ax [ yhiy)dy = EXOE(Y)

and so Cxy = 0.

@ Define the correlation coefficient between X and Y as a measure of
how correlated two variables are:

cov(X,Y)  Cxy
var(X)var(Y) oxoy’

rxy =
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Background
Law of Large Numbers

@ The average of N i.i.d. samples of a random variable X ~ f is itself a
random variable:

o Ais an unbiased estimator of the mean of X, E(A) = X.

@ Numerically we often use a biased estimate of the variance:

N N
o :IJTOO Xk_ Nﬁkﬂ(Xk_A) B (Nk1Xk>_

@ The weak law of large numbers states that the estimator is also
consistent:

lim A= X = E(X) (almost surely).

N—oo
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Background
Central Limit Theorem

@ The central value theorem says that if ox is finite, in the limit
N — oo the random variable A is normally-distributed:

X\
A~ f(a) = (2#03\)_1/2 exp {(‘9202)}

@ The error of the estimator A decreases as N1, more specifically,

N 2 N
—\ 2 1 1 2
E[(a-%)°] =€ Nkz_:l(xk—x) ~ —E ;(Xk—X)
2
var(A) = 02 = UWX.

@ The slow convergence of the error, o ~ N~1/2  is a fundamental
characteristic of Monte Carlo.

A. Donev (Courant Institute) Lecture XlI 12/2014 11 / 42



Pseudo-Random Numbers
Monte Carlo on a Computer

@ In order to compute integrals using Monte Carlo on a computer, we
need to be able to generate samples from a distribution, e.g.,
uniformly distributed inside an interval | = [a, b].

@ Almost all randomized software is based on having a pseudo-random
number generator (PRNG), which is a routine that returns a
pseudo-random number 0 < u < 1 from the standard uniform

distribution:
1 ifo<u<i1
fluy=4 " =Y=
0 otherwise

@ Since computers (Turing machines) are deterministic, it is not
possible to generate truly random samples (outcomes):
Pseudo-random means as close to random as we can get it.

@ There are well-known good PRNGs that are also efficient: One should
use other-people’s PRNGs, e.g., the Marsenne Twister.
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Pseudo-Random Numbers
PRNGs

@ The PRNG is a procedure (function) that takes a collection of m
integers called the state of the generator s = {ii,...,in}, and
updates it:

s «+ ®(s),

and produces (returns) a number u = W(s) that is a pseudo-random
sample from the standard uniform distribution.

@ So in pseudo-MATLAB notation, [u,s] = rng(s), often called a
random stream.

@ Simple built-in generator such as the MATLAB/C function rand or
the Fortran function RANDOM_NUMBER hide the state from the
user (but the state is stored somewhere in some global variable).

@ All PRNGs provide a routine to seed the generator, that is, to set
the seed s to some particular value.

This way one can generate the same sequence of “random” numbers
over and over again (e.g., when debugging a program).
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Pseudo-Random Numbers

Generating Non-Uniform Variates

@ Using a uniform (pseudo-)random number generator (URNG), it is
easy to generate an outcome drawn uniformly in | = [a, b]:

X=a+(b—-a)U,

where U = rng() is a standard uniform variate.

@ We often need to generate (pseudo)random samples or variates
drawn from a distribution f(x) other than a uniform distribution,
where f(x) > 0 and f(x) is normalized, [ f(x)dx = 1.

@ Almost all non-uniform samplers are based on a URNG.

@ Sometimes it may be more efficient to replace the URNG with a
random bitstream, that is, a sequence of random bits, if only a few
random bits are needed (e.g., for discrete variables).

@ We need a method to convert a uniform variate into a non-uniform
variate.
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Pseudo-Random Numbers
Generating Non-Uniform Variates

@ Task: We want to sample a random number with probability
distribution f(x). For now assume f(x) is a probability density:

P(x < X < x+ dx) = f(x)dx,

@ Tool: We can generate samples from some special distributions, e.g.,
a sample U from the standard uniform distribution.

o Consider applying a non-linear differentiable one-to-one function
g(x) to U:

X=XU)=g(U) = dx=g'(U)du

@ We can find the probability density of X by using the informal
differential notation
dx

g'(u)
fIx(u)] = [g' ()]
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Pseudo-Random Numbers Inversion Method

Inverting the CDF

-1

flx(u)] = [g' ()]
e Can we find g(u) given the target f(x)? It is simpler to see this if we
invert x(u):
u=g " (x) = F(x).
@ Repeating the same calculation

P(u< U< u+dx)=du= F'(x)dx = f(x)dx

F'(x) = f(x)
@ This shows that F(x) = g~!(x) is the cummulative probability
distribution:
F(x)=P(X <x) = / f(x")dx'.

e Note that F(x) is monotonically non-decreasing because f(x) > 0.
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Pseudo-Random Numbers Inversion Method

Sampling by Inversion

Inversion algorithm: Generate a standard uniform variate u and then
solve the non-linear equation F(x) = u to get x.

F(x)
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Pseudo-Random Numbers Inversion Method

Exponentially-Distributed Number

@ As an example, consider generating a sample from the exponential
distribution with rate A:

e M ift>0
H(t) = -
A1) {0 otherwise

@ Related to the Poisson process of events whose rate of occurence is
A and whose occurence does not depend on the past (history):

P(t<T<t+dt|T>t)=P(T <dt)=\dt.

@ Using the inversion technique we get
t

F(t):P(TSt):/ )\e_Atdt:]_—e_At UIE].—U

t'=0

T =-X\"1In(V),

where numerical care must be taken to ensure the log does not
overflow or underflow.
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Pseudo-Random Numbers Rejection

Rejection Sampling

@ An alternative method is to use rejection sampling:
Generate a sample X from some other distribution g(x) and accept
them with acceptance probability p(X), otherwise reject and try
again.
@ The rejection requires sampling a standard uniform variate U:
Accept if U < p(X) and return X, otherwise reject and try a new X.
@ What should p(X) be in order for the distribution of X to be f(x)?
@ Since X and U are independent the marginal distribution of x is
f(x)
f(x) ~g(x)p(x) = p(x) =2 20’

where Z is determined from the normalization condition:
/f(x)dx =1 = /p(x)g(x)dx =7
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Pseudo-Random Numbers Rejection

Envelope Function

@ Since 0 < p(x) <1, we see that g(x) = Z~'g(x) must be a
bounding or envelope function:

g(x) = Z71g(x) > f(x), which implies Z < fg;

o For efficiency, we want to have the highest possible acceptance
probability, that is, maximize

_ff(x)dx_ ffx
Poce = Ta0dx ~ “Talax 2 =1

@ We know f(x) and so once we choose g(x) we can determine
Z = min fgx; and thus g(x) = Z71g(x).
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Pseudo-Random Numbers Rejection

Rejection Sampling lllustrated

Rejection algorithm: Generate a sample X from g(x) and an

f(x)

independent standard uniform variate U. If U < Z(x) accept and return X,

otherwise reject and try again.
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Pseudo-Random Numbers Rejection

Normally-Distributed Numbers

@ The standard normal distribution is a Gaussian “bell-curve™

F(x) = (2m02) " exp <—(X_”)2> :

202

where 1 is the mean and o is the standard deviation.
@ The standard normal distribution has 0 =1 and u© = 0.

@ If we have a sample X from the standard distribution we can
generate a sample X from f(x) using:

X=p+oXs

@ Consider sampling the positive half of the standard normal, that is,

sampling:
2
f(x) = \/>e_xz/2 for x > 0.
s

If we can do that then we can choose a random =+ sign and sample
from the Gaussian distribution.
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Pseudo-Random Numbers Rejection

Optimizing Rejection Sampling

@ We want the tighest possible (especially where f(x) is large)
easy-to-sample g(x) ~ f(x).

@ Since we want f(x) < Z~1g(x) we must have that g(x) does not
decay faster than f(x) for large x.

@ We already know how to sample an exponential:

X

gx)=e"
e We want the tightest possible g(x):

Z e — \/EeXm] =0
T

F(x) = F'(x") and g(x*) = (x")

@ Solving this system of two equations gives x* = 1 and

Z= Pacc = \/Ze—l/Z ~ 76%
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Monte Carlo Integration
Integration via Monte Carlo

@ Define the random variable Y = f(X), and generate a sequence of N
independent uniform samples X, € Q, i.e., N random variables
distributed uniformly inside €Q:

Q™Y forxeQ
x ~ X) =
g(x) {0 otherwise

and calculate the mean
S 1<
Y = N;Yk: Nk;f(xk)
@ According to the weak law of large numbers,

lim Y =E(Y) = ?:/f(x)g(x)dx: |Q|1/Qf(x) dx

N—o0
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Monte Carlo Integration
Accuracy of Monte Carlo Integration

@ This gives a Monte Carlo approximation to the integral:

N
. - 1
J= Fx)dx=Q Y~ QY =0 > F(Xe).
QeRn N
k=1
@ Recalling the central limit theorem, for large N we get an error
estimate by evaluating the standard deviation of the estimate Y:

o2 (V) %UI\%I/:Nl/Q [f(x)—|Q\_1J]2dx

o (V)= L[ [0 760" ]

o Note that this error goes like N=1/2, which is order of convergence
1/2: Worse than any deterministic quadrature.

@ But, the same number of points are needed to get a certain accuracy
independent of the dimension.
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Monte Carlo Integration
Monte Carlo Error Bars

e Monte Carlo (MC) answers should always be reported with
error bars, or equivalently, with confidence intervals!

@ Since the answer is approximately normally-distributed, we have the
well-known confidence intervals:

P(\YJZ|€ {\A/—J,\A/—i-a]) ~ 66%

P(,EI” c [?f—za,%rzaD ~ 95%
@ In practice we estimate the uncertainty empirically as
. 1 -2 1([1 1 2
2 ~ - L 2\ (1 :
"(Y)”WZ(Y’ V) TN (NZY’> (NZY’>

@ This is done in a single MC loop: Average the Y's to get the answer
but also average the squares Y? to get the uncertainty in the answer.
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Monte Carlo Integration
Employing Rejection

@ Integration requires ||, which is hard
to compute for complicated domains,

N
1
f(x)dx =~ |Q| - f(Xk)
/QER" N kzzzl

@ Consider €2 being the unit circle of
radius 1.

@ Rejection: Integrate by sampling
points inside an enclosing region,

Note how this becomes less e.g, a square of area |Qene/| = 4, and
efficient as dimension grows rejecting any points outside of €:
(most points are outside the 1
sphere). / F(x) dx = [Qenct| = > F(Xe)
QeRrn N
XEQ
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Monte Carlo Integration
Sampling Function

@ In the basic MC algorithm described above, the samples X have a
uniform distribution over the integration domain. This does not work
if the domain of integration is infinite.

@ Instead, we can sample our points from some probablity distribution
function g(X) >0, [ g(x)dx =1, and rewrite:

/f(x) dx = / ;Ei;g(x)dx =E {;&ﬂ where X ~ g.

@ This now corresponds to taking samples from the sampling
function g(x):

/ (x)dx =~ — Z

o Note that |Q2| does not appear since it is implicitly included in the
normalization of g(x). The previous uniform sampling algorithm
corresponds to g(x) = |Q| ! for x € Q.

Where X~g
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Monte Carlo Integration
Example: Option Pricing

@ The fair price of a simple financial option is the expectation of the
discounted future value,

V=E[e h(s ()],

where S(t) is the stochastic (fluctuating) price of the underlying
asset, and r is the risk-free interest rate, and h(S) is the payoff
function, for example, h = max (Sstrike — S, 0) .

@ The price of S(t) is a random process (a random variable that is a
function of time), and can be generated either based on a theoretical
model.

@ For example, a simple theoretical model with volatility 7 and average
return p would give

S(t) = S(0)em VX,

where X is a normally-distributed random variable.
@ So here the natural choice for g(X) is the unit normal distribution,
1

g(x)=(27) 2 e /2,
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Monte Carlo Integration
Option pricing example

@ In the end, combining the pieces together we define
?(X) = "7 — e " max [Sstrike — S(O)e“HVﬁX, 0}

@ The option value is simply the expectation value of ?(X) when
X ~ g, i.e., an integral that can be computed using Monte Carlo:

N N
V:/f(x)dxzilzggii; :%Z?(Xk).

@ Of course, for a one-dimensional example like this we can probably do
this better with a deterministic algorithm.

@ But if there are many assets or the payoff function is complicated or if
the dynamics of the assets is complex, Monte Carlo may be
unavoidable.
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Variance Reduction
Variance Reduction

@ The order of convergence (accuracy) of Monte Carlo is always 1/2
and cannot be improved. Instead, all of the focus is on improving the
error constant, i.e., the variance for a constant number of samples N.

@ The most important thing in Monte Carlo is variance reduction, i.e.,
finding methods that give the same answers in the limit N — oo but
have a much smaller o.

@ There are several methods for variance reduction, the most general
and powerful of which is importance sampling.

@ Importance sampling simply means choosing the sampling function
g(x) to give more importance to those points that dominate the value
of the integral. We call g(x) an importance sampling function.
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Variance Reduction
Importance Sampling

@ Repeating the variance calculation for

Y(X) = ;88, with mean Y = / f(x)dx

@ The variance of the empricial mean ¥ = N1 > Yiis

o2 <\A/> R~ Ul\%l/ = N1/ [Y(x) —ﬂ2g(x)dx
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Variance Reduction
The Importance Function

o We therefore want f(x)/g(x) = Y to be as close as possible to a
constant, ideally

f(x)
Sideal (X) = W
but this requires being able to create independent samples from f(x).

@ Instead, what we try to do is to find an importance function that is
focused on regions where f is large (the peaks).

@ The importance sampling function g(x) must be a probability
distribution function that we know how to sample from, such that

oy — 09

is as close to constant as possible, and in particular, it must be
bounded from above (i.e., finite for all x in the relevant domain).
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Variance Reduction
Antithetic Variables

@ Consider sampling a random variable X ~ f, and assume that f has a
symmetry, S(X) ~ f.

@ Examples: For uniform variates, X and 1 — X, and for normal
variates, X and —X both sample the same distribution.

@ Variance reduction is achieved if one combines the antithetic
variables X and S(X) when averaging:

N
S5 A *Z[h(xk £ h(S)]-
k=1
o If there is a negative correlation between h(X) and h(S(X)), then
the variance of the right hand side can be much smaller than the left
hand side. This is similar to the use of control variables to reduce
variance (not covered).
@ One example is integrating stochastic differential equations in option
pricing: change the sign of the noise term and average the two results.
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Variance Reduction

Quasi-Random Numbers

@ If you generate a lot of random samples inside a domain € it is easy
to observe that there are some regions where there are many points,
and others where there are very few points.

o If instead, one uses quasi-random or sub-random or
low-discrepancy samples, then one can more uniformly fill the space
and get a lower variance.

y

X{1:10000, 2]
{1:10000, 2

(110000, 1] #{1:10000, 1]
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Variance Reduction

[llustration of the Sobol Sequence

«{11100, 2]

0.z

00

on

#1100, 1] #[1:1000, 1]
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Histogramming
Histogram Validation

@ We need some way to test that a sampler is correct, that is, that the
generated sequence of random numbers really comes from the
specified distribution f(x). One easy way to do that is by computing
the histogram of the samples.

@ Count how many N, samples of the N samples are inside a bin of
width h centered at x:

1 Nx
~ = — — < < ~ —.
()~ Pe= 2P(x = h/2 < X < x+h/2) ~ o

o If we make the bins smaller, the truncation error will be reduced:
1 x+h/2
Pe—f(x) = / f(x")dx — f(x) = ah® + O(h*)
x—h/2

@ But, this means there will be fewer points per bin, i.e., statistical
errors will grow. As usual, we want to find the optimal tradeoff
between the the two types of error.
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Histogramming
Statistical Error in Histogramming

@ For every sample point X, define the indicator random variable Y

1 ifx—h/2<X<x+h/2
0 otherwise

Y:HX(X):{

@ The mean and variance of this Bernoulli random variable are:

E(Y) =Y = hPy ~ hf(x)
oy = /(y— Y2f(y)dy=Y-(1-Y)~ Y = hf(x)

@ The number N, out of N trials inside the bin is a sum of N random
Bernoulli variables Y;:
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Histogramming
Optimal Bin Width

The central limit theorem gives us the uncertainty in our estimate of
f(x)

VN VAN — AN
This means that the empirical distribution 7(x) should be reported

with a 95% confidence interval,
2/ N,
m ] } ~ 95%.

Ny —2+/Ny Ny +
P<f
{rg e |l It
The optimal bin width is when the truncation and statistical errors are
equal:

o (IA3X> o~ hfla—y = Fx) = vy

f(x)

AN

with total error £ ~ (hN)~1/2 ~ N=2/5,
Typically we choose h based on how well we want to resolve f(x), and
accept the fact that statistical errors dominate.

ah? ~ h~ N5,
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Conclusions
Markov Chain Monte Carlo

@ Getting independent samples from complicated multi-dimensional
distributions f(x) is often difficult to do. This is called static
sampling.

@ Instead, it is often easier to construct dynamic samplers, which
generate a sequence of samples, X1, Xo, ..., Xy, which, if scrambled
randomly, are essentially independent samples [formally, the marginal
distribution of each X; is f(x)].

@ But successive samples, for example, X7 and X3, are not independent,
and are usually (strongly) correlated. The number of samples Neor
over which correlations persist is called the correlation length.

@ To generate N independent samples, and thus get variance reduction
of N=1/2, will require generating N x Neoyr dynamic samples.
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Conclusions
Conclusions/Summary

@ Monte Carlo is an umbrella term for stochastic computation of
deterministic answers.

@ Monte Carlo answers are random, and their accuracy is measured by
the variance or uncertaintly of the estimate, which typically scales
like ¢ ~ N=1/2, where N is the number of samples.

@ Implementing Monte Carlo algorithms on a computer requires a
PRNG, almost always a uniform pseudo-random number
generator (URNG).

@ One often needs to convert a sample from a URNG to a sample from
an arbitrary distribution f(x), including inverting the cummulative
distribution and rejection sampling.
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Conclusions
contd.

@ Sampling complex distributions in high-dimensional spaces is often
done using Markov Chain MC, also called Dynamic or Kinetic MC,
which may be based on a model of the actual dynamics of a real
system (e.g., the market), or simply a computational tool (e.g., Gibbs
sampler for Gaussians).

@ Monte Carlo can be used to perform integration in high dimensions
by simply evaluating the function at random points.

@ Variance reduction is the search for algorithms that give the same
answer but with less statistical error. General-purpose
variance-reduction techniques include quasi-random numbers,
antithetic variables, control variates, and importance sampling.
They are usually based on some specific knowledge about the model.
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