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Basics of Nonlinear Solvers
Fundamentals

@ Simplest problem: Root finding in one dimension:

f(x) = 0 with x € [a, b]
@ Or more generally, solving a square system of nonlinear equations
f(x) =0 = fi(x,x2,...,x,) =0fori=1,...,n.

@ There can be no closed-form answer, so just as for eigenvalues, we
need iterative methods.

@ Most generally, starting from m > 1 initial guesses x°, x!, ..., x™

iterate:

XKL = (K XK= xkem),
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Basics of Nonlinear Solvers
Order of convergence

@ Consider one dimensional root finding and let the actual root be «,
f(a) =0.

@ A sequence of iterates x¥ that converges to a has order of
convergence p > 1 if as k — oo

k+1 k+1‘

X —a] e
Xk —al® — Jek]?

— C = const,

where the constant 0 < C < 1 is the convergence factor.

@ A method should at least converge linearly, that is, the error should
at least be reduced by a constant factor every iteration, for example,
the number of accurate digits increases by 1 every iteration.

@ A good method for root finding coverges quadratically, that is, the
number of accurate digits doubles every iteration!
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Basics of Nonlinear Solvers
Local vs. global convergence

o A good initial guess is extremely important in nonlinear solvers!

@ Assume we are looking for a unique root a < o < b starting with an
initial guess a < xg < b.

@ A method has local convergence if it converges to a given root « for
any initial guess that is sufficiently close to « (in the neighborhood
of a root).

@ A method has global convergence if it converges to the root for any
initial guess.

@ General rule: Global convergence requires a slower (careful) method
but is safer.

@ It is best to combine a global method to first find a good initial guess
close to « and then use a faster local method.
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Basics of Nonlinear Solvers
Conditioning of root finding

fla+da) ~ f(a)+ f'(a)da = 6f

|67]
()]

@ The problem of finding a simple root is well-conditioned when |f'(a))|
is far from zero.

6al & = kaps = |F'(@)| .

e Finding roots with multiplicity m > 1 is ill-conditioned:

1/m
Pa) == |rr D) =0 = ]5@]%[ 197 }

fm(a)]

e Note that finding roots of algebraic equations (polynomials) is a
separate subject of its own that we skip.
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One Dimensional Root Finding

he bisection and Newton algorithms
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One Dimensional Root Finding
Bisection

o First step is to locate a root by searching for a sign change, i.e.,
finding a® and b° such that

f(a%)F(b°) < 0.
@ The simply bisect the interval, for k =0,1,...
Ko ak + bk
2
and choose the half in which the function changes sign, i.e.,
either akT1 = xk, pkt1 = pk or pk*1 = xk ak+1 = 3K 50 that
f(akTh)fF(bkH1) < 0.
o Observe that each step we need one function evaluation, f(x*), but
only the sign matters.
@ The convergence is essentially linear because
K

‘Xk _0“ < ok+1 Xk —a] =
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One Dimensional Root Finding
Newton's Method

@ Bisection is a slow but sure method. It uses no information about the
value of the function or its derivatives.

o Better convergence, of order p = (1 + v/5)/2 ~ 1.63 (the golden
ratio), can be achieved by using the value of the function at two
points, as in the secant method.

@ Achieving second-order convergence requires also evaluating the
function derivative.

@ Linearize the function around the current guess using Taylor series:

FXEE) = F() + (41— X F/(xK) = 0
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One Dimensional Root Finding

Convergence of Newton's method

Taylor series with remainder:

1
fla)=0= f(xk)—l—(a—xk)f’(xk)+§(a—xk)2f”(§) =0, for some § € [xp, A
After dividing by f'(x¥) # 0 we get

[Xk . f(Xk)] o= —1(04 _Xk)2 f"(€)
f'(xk) 2 f'(xk)

1 2 (&)
k+1 _ k1 k
X a=Ee - _E (e ) f’(Xk)
which shows second-order convergence
|Xk+1 o Oz’ B |ek—|—1‘ B f”(f) f”(a)
Ixk—a> ek [2f'(x})| " [2f'(a)
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One Dimensional Root Finding
Proof of Local Convergence

‘Xk+1 _

" («)
2f'(«@)

<M=

of _ ‘ F(€)

xk —af? [2f(x5)

|48 = [t —a| < M|xk —al” = (M]e]) |e]
which will converge, ‘ek+1| < }ek’, if M }ek’ < 1.
This will be true for all k > 0 if [e°| < M™!, leading us to conclude that

Newton's method thus always converges quadratically if we start
sufficiently close to a simple root, more precisely, if

2f' ()

‘XO —Oz‘ = |60’ < Mt~ f”(a)
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One Dimensional Root Finding
Fixed-Point lteration

@ Another way to devise iterative root finding is to rewrite f(x) in an
equivalent form

x = ¢(x)

@ Then we can use fixed-point iteration

whose fixed point (limit), if it converges, is x — .

@ For example, recall from first lecture solving x2 = ¢ via the
Babylonian method for square roots

w1 = 000) = 5 (S x).

which converges (quadratically) for any non-zero initial guess.
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One Dimensional Root Finding

Convergence theory

o It can be proven that the fixed-point iteration xkT1 = ¢(x*)
converges if ¢(x) is a contraction mapping:

|¢/(x)| <K <1 Vxelab]

X —a = ¢(x¥)—p(a) = ¢/(€) (x* — @) by the mean value theorem

|Xk+1 — a‘ <K ‘xk — a‘
o If ¢/(«) # 0 near the root we have linear convergence

‘XkJrl —Oz‘

— ¢/(a).

[xk —a
e If ¢’(a)) = 0 we have second-order convergence if ¢’ (a) # 0, etc.
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One Dimensional Root Finding
Applications of general convergence theory

@ Think of Newton’s method

as a fixed-point iteration method x¥*1 = ¢(x*) with iteration
function:

_ . f)

¢(X) =X f/(X)‘

@ We can directly show quadratic convergence because (also see
homework)
f(x)f"(x)
'(x) = 21 = '(a) =0
dORE e ¢'(a)

()

#'(0) = iy #0
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One Dimensional Root Finding
Stopping Criteria

@ A good library function for root finding has to implement careful
termination criteria.

@ An obvious option is to terminate when the residual becomes small
|f(xk)‘ < g,

which is only good for very well-conditioned problems, |f'(«)| ~ 1.
@ Another option is to terminate when the increment becomes small

‘xkﬂ — Xk‘ <e.
@ For fixed-point iteration

k+1 k k+1 _ .k / k k €

X —x"=eT —e"xm|l-¢ ()| e = |e|rRT—F,
-t <1~ g

so we see that the increment test works for rapidly converging

iterations (¢/(a) < 1).
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One Dimensional Root Finding
In practice

@ A robust but fast algorithm for root finding would combine bisection
with Newton’s method.

o Specifically, a method like Newton's that can easily take huge steps in
the wrong direction and lead far from the current point must be
safeguarded by a method that ensures one does not leave the search
interval and that the zero is not missed.

@ Once x¥ is close to «, the safeguard will not be used and quadratic or
faster convergence will be achieved.

@ Newton's method requires first-order derivatives so often other
methods are preferred that require function evaluation only.

@ Matlab's function fzero combines bisection, secant and inverse
quadratic interpolation and is “fail-safe”.
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One Dimensional Root Finding

Find zeros of asin(x) + bexp(—x2/2) in MATLAB

% f=@mfile uses a function in an m—file

% Parameterized functions are created with:
a=1; b = 2;
f = 0(x) axsin(x) + bxexp(—x"2/2) ; % Handle

figure (1)
ezplot(f,[—5,5]); grid

xl=fzero (f, [—2,0])
[x2,f2]=fzero(f, 2.0)

x1l = —1.227430849357917
X2 = 3.155366415494801
f2 = —2.116362640691705e—16
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One Dimensional Root Finding

Figure of f(x)

a sin(x)+b exp(-x?/2)
25F T T T m|
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Systems of Non-Linear Equations
Multi-Variable Taylor Expansion

@ We are after solving a square system of nonlinear equations for
some variables x:

f(X):O :>ff(X17X27"‘7Xn):Of0r/.:1,...7n.

@ It is convenient to focus on one of the equations, i.e., consider a
scalar function f(x).
@ The usual Taylor series is replaced by

1
f(x+ Ax) = f(x) +g" (Ax) + 5 (Ax)T H(AX)
where the gradient vector is

of of af]T

_Wv.f = |2 Y
g X [axl’ Ox2’ 7 Ox,

and the Hessian matrix is

2
H:Vif:{ af}
0x;0x; i
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Systems of Non-Linear Equations
Newton's Method for Systems of Equations

@ It is much harder if not impossible to do globally convergent methods
like bisection in higher dimensions!

@ A good initial guess is therefore a must when solving systems, and
Newton's method can be used to refine the guess.

@ The first-order Taylor series is

f (xk + Ax) ~ f (xk) +[J (xk)] Ax =0
where the Jacobian J has the gradients of f;(x) as rows:

;=

@ So taking a Newton step requires solving a linear system:

[J (xk)] Ax = —f (xk) but denote J =J (xk)

XKL = xk £ Ax = xk — J1f (xk) .
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Systems of Non-Linear Equations

Convergence of Newton's method

@ Newton's method converges quadratically if started sufficiently close
to a root x*at which the Jacobian is not singular.

[l = = flef T =l = 37 () = x| = le® = 37 (x|

but using second-order Taylor series

S ()} 0t {f(x*) Pk (@) H (ek)}

-1 1
Hek+1H _ HJ2 (ek)TH (e ) ||J || IH||

e |
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Systems of Non-Linear Equations
Problems with Newton'’s method

@ Newton's method requires solving many linear systems, which can
become complicated when there are many variables.

@ It also requires computing a whole matrix of derivatives, which can
be expensive or hard to do (differentiation by hand?)

e Newton's method converges fast if the Jacobian J (x*) is
well-conditioned, otherwise it can “blow up”.

@ For large systems one can use so called quasi-Newton methods:

o Approximate the Jacobian with another matrix J and solve
JAx = f(x).
e Damp the step by a step length oy < 1,

X = xk ¢+ a Ax.

e Update J by a simple update, e.g., a rank-1 update (recall homework
2).
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Systems of Non-Linear Equations
In practice

@ It is much harder to construct general robust solvers in higher
dimensions and some problem-specific knowledge is required.

@ There is no built-in function for solving nonlinear systems in
MATLAB, but the Optimization Toolbox has fsolve.

@ In many practical situations there is some continuity of the problem
so that a previous solution can be used as an initial guess.

@ For example, implicit methods for differential equations have a
time-dependent Jacobian J(t) and in many cases the solution x(t)
evolves smootly in time.

@ For large problems specialized sparse-matrix solvers need to be used.

@ In many cases derivatives are not provided but there are some
techniques for automatic differentiation.
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Systems of Non-Linear Equations
Conclusions/Summary

@ Root finding is well-conditioned for simple roots (unit multiplicity),
ill-conditioned otherwise.

@ Methods for solving nonlinear equations are always iterative and the
order of convergence matters: second order is usually good enough.

@ A good method uses a higher-order unsafe method such as Newton
method near the root, but safeguards it with something like the
bisection method.

e Newton's method is second-order but requires derivative/Jacobian
evaluation. In higher dimensions having a good initial guess for
Newton's method becomes very important.

@ Quasi-Newton methods can aleviate the complexity of solving the
Jacobian linear system.
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