

Numerical Methods I

Mathematical Programming (Optimization)

Aleksandar Donev

*Courant Institute, NYU*¹

donev@courant.nyu.edu

¹MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 23rd, 2014

- 1 Mathematical Background
- 2 Smooth Unconstrained Optimization
- 3 Constrained Optimization
- 4 Conclusions

Formulation

- Optimization problems are among the most important in engineering and finance, e.g., **minimizing** production cost, **maximizing** profits, etc.

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

where \mathbf{x} are some variable parameters and $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a scalar **objective function**.

- Observe that one only need to consider minimization as

$$\max_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) = - \min_{\mathbf{x} \in \mathbb{R}^n} [-f(\mathbf{x})]$$

- A **local minimum** \mathbf{x}^* is optimal in some neighborhood,

$$f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \quad \text{s.t.} \quad \|\mathbf{x} - \mathbf{x}^*\| \leq R > 0.$$

(think of finding the bottom of a valley)

- Finding the **global minimum** is generally not possible for *arbitrary* functions (think of finding Mt. Everest without a satellite).

Connection to nonlinear systems

- Assume that the objective function is **differentiable** (i.e., first-order Taylor series converges or gradient exists).
- Then a **necessary condition** for a local minimizer is that \mathbf{x}^* be a **critical point**

$$\mathbf{g}(\mathbf{x}^*) = \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \left\{ \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right\}_i = \mathbf{0}$$

which is a system of non-linear equations!

- In fact similar methods, such as Newton or quasi-Newton, apply to both problems.
- Vice versa, observe that solving $\mathbf{f}(\mathbf{x}) = \mathbf{0}$ is equivalent to an optimization problem

$$\min_{\mathbf{x}} \left[\mathbf{f}(\mathbf{x})^T \mathbf{f}(\mathbf{x}) \right]$$

although this is only recommended under special circumstances.

Sufficient Conditions

- Assume now that the objective function is **twice-differentiable** (i.e., Hessian exists).
- A critical point \mathbf{x}^* is a local minimum if the **Hessian is positive definite**

$$\mathbf{H}(\mathbf{x}^*) = \nabla_{\mathbf{x}}^2 f(\mathbf{x}^*) \succ \mathbf{0}$$

which means that the minimum really looks like a valley or a **convex** bowl.

- At any local minimum the Hessian is positive **semi-definite**,
 $\nabla_{\mathbf{x}}^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.
- Methods that require Hessian information converge fast but are expensive (next class).

Mathematical Programming

- The general term used is **mathematical programming**.
- Simplest case is **unconstrained optimization**

$$\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$$

where \mathbf{x} are some variable parameters and $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a scalar **objective function**.

- Find a **local minimum** \mathbf{x}^* :

$$f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \quad \text{s.t.} \quad \|\mathbf{x} - \mathbf{x}^*\| \leq R > 0.$$

(think of finding the bottom of a valley).

- Find the best local minimum, i.e., the **global minimum** \mathbf{x}^* : This is virtually impossible in general and there are many specialized techniques such as **genetic programming**, **simulated annealing**, **branch-and-bound** (e.g., using interval arithmetic), etc.
- Special case: A **strictly convex objective function** has a unique local minimum which is thus also the global minimum.

Constrained Programming

- The most general form of **constrained optimization**

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})$$

where $\mathcal{X} \subset \mathbb{R}^n$ is a **set of feasible solutions**.

- The feasible set is usually expressed in terms of **equality and inequality constraints**:

$$\begin{aligned} \mathbf{h}(\mathbf{x}) &= \mathbf{0} \\ \mathbf{g}(\mathbf{x}) &\leq \mathbf{0} \end{aligned}$$

- The only generally solvable case: **convex programming**
Minimizing a convex function $f(\mathbf{x})$ over a convex set \mathcal{X} : every local minimum is global.
If $f(\mathbf{x})$ is strictly convex then there is a **unique local and global minimum**.

Special Cases

- Special case is **linear programming**:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} \{ \mathbf{c}^T \mathbf{x} \} \\ \text{s.t.} \quad & \mathbf{A} \mathbf{x} \leq \mathbf{b} \quad . \end{aligned}$$

- Equality-constrained **quadratic programming**

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^2} \{ x_1^2 + x_2^2 \} \\ \text{s.t.} \quad & x_1^2 + 2x_1x_2 + 3x_2^2 = 1 \quad . \end{aligned}$$

generalized to arbitrary ellipsoids as:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} \left\{ f(\mathbf{x}) = \|\mathbf{x}\|_2^2 = \mathbf{x} \cdot \mathbf{x} = \sum_{i=1}^n x_i^2 \right\} \\ \text{s.t.} \quad & (\mathbf{x} - \mathbf{x}_0)^T \mathbf{A} (\mathbf{x} - \mathbf{x}_0) = 1 \end{aligned}$$

Necessary and Sufficient Conditions

- A **necessary condition** for a local minimizer:

The optimum \mathbf{x}^* must be a **critical point (maximum, minimum or saddle point)**:

$$\mathbf{g}(\mathbf{x}^*) = \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \left\{ \frac{\partial f}{\partial x_i}(\mathbf{x}^*) \right\}_i = \mathbf{0},$$

and an additional **sufficient condition** for a critical point \mathbf{x}^* to be a local minimum:

The Hessian at the optimal point must be **positive definite**,

$$\mathbf{H}(\mathbf{x}^*) = \nabla_{\mathbf{x}}^2 f(\mathbf{x}^*) = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}^*) \right\}_{ij} \succ \mathbf{0}.$$

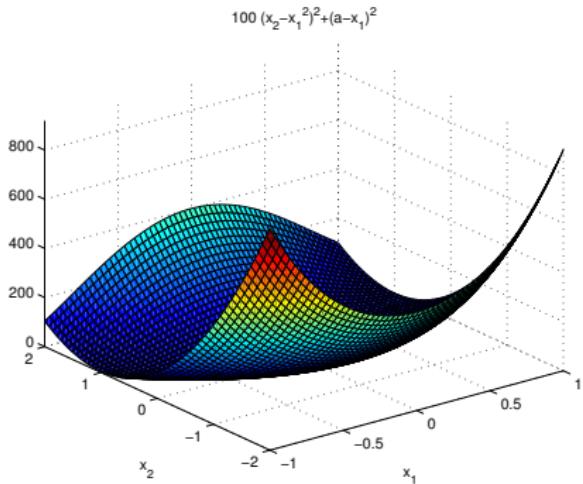
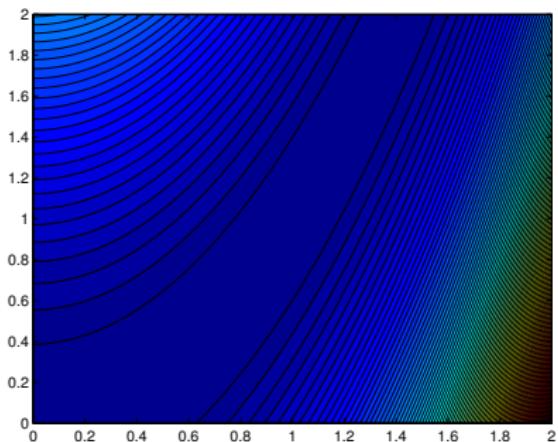
which means that the minimum really looks like a valley or a **convex** bowl.

Direct-Search Methods

- A **direct search method** only requires $f(\mathbf{x})$ to be **continuous** but not necessarily differentiable, and requires only **function evaluations**.
- Methods that do a search similar to that in bisection can be devised in higher dimensions also, but they may fail to converge and are usually slow.
- The MATLAB function *fminsearch* uses the Nelder-Mead or **simplex-search** method, which can be thought of as rolling a simplex downhill to find the bottom of a valley. But there are many others and this is an active research area.
- **Curse of dimensionality:** As the number of variables (dimensionality) n becomes larger, direct search becomes hopeless since the number of samples needed grows as 2^n !

Minimum of $100(x_2 - x_1^2)^2 + (a - x_1)^2$ in MATLAB

```
% Rosenbrock or 'banana' function:  
a = 1;  
banana = @(x) 100*(x(2)-x(1)^2)^2+(a-x(1))^2;  
  
% This function must accept array arguments!  
banana_xy = @(x1,x2) 100*(x2-x1.^2).^2+(a-x1).^2;  
  
figure (1); ezsurf(banana_xy, [0,2,0,2])  
  
[x,y] = meshgrid(linspace(0,2,100));  
figure (2); contourf(x,y,banana_xy(x,y),100)  
  
% Correct answers are x=[1,1] and f(x)=0  
[x,fval] = fminsearch(banana, [-1.2, 1], optimset('TolX',1e-8))  
x = 0.999999999187814 0.99999998441919  
fval = 1.099088951919573e-18
```

Figure of Rosenbrock $f(\mathbf{x})$ 

Descent Methods

- Finding a local minimum is generally **easier** than the general problem of solving the non-linear equations

$$\mathbf{g}(\mathbf{x}^*) = \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}$$

- We can evaluate f in addition to $\nabla_{\mathbf{x}} f$.
- The Hessian is positive-(semi)definite near the solution (enabling simpler linear algebra such as Cholesky).
- If we have a current guess for the solution \mathbf{x}^k , and a **descent direction** (i.e., **downhill** direction) \mathbf{d}^k :

$$f(\mathbf{x}^k + \alpha \mathbf{d}^k) < f(\mathbf{x}^k) \text{ for all } 0 < \alpha \leq \alpha_{max},$$

then we can move downhill and get closer to the minimum (valley):

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha_k \mathbf{d}^k,$$

where $\alpha_k > 0$ is a **step length**.

Gradient Descent Methods

- For a differentiable function we can use Taylor's series:

$$f(\mathbf{x}^k + \alpha \mathbf{d}^k) \approx f(\mathbf{x}^k) + \alpha_k \left[(\nabla f)^T \mathbf{d}^k \right]$$

- This means that **fastest local decrease** in the objective is achieved when we move opposite of the gradient: **steepest or gradient descent**:

$$\mathbf{d}^k = -\nabla f(\mathbf{x}^k) = -\mathbf{g}_k.$$

- One option is to choose the step length using a **line search** one-dimensional minimization:

$$\alpha_k = \arg \min_{\alpha} f(\mathbf{x}^k + \alpha \mathbf{d}^k),$$

which needs to be solved **only approximately**.

Steepest Descent

- Assume an exact line search was used, i.e., $\alpha_k = \arg \min_{\alpha} \phi(\alpha)$ where

$$\phi(\alpha) = f(\mathbf{x}^k + \alpha \mathbf{d}^k).$$

$$\phi'(\alpha) = 0 = [\nabla f(\mathbf{x}^k + \alpha \mathbf{d}^k)]^T \mathbf{d}^k.$$

- This means that steepest descent takes a **zig-zag path** down to the minimum.
- Second-order analysis shows that steepest descent has **linear convergence** with convergence coefficient

$$C \sim \frac{1-r}{1+r}, \quad \text{where} \quad r = \frac{\lambda_{\min}(\mathbf{H})}{\lambda_{\max}(\mathbf{H})} = \frac{1}{\kappa_2(\mathbf{H})},$$

inversely proportional to the **condition number** of the Hessian.

- Steepest descent can be very slow for ill-conditioned Hessians: One improvement is to use **conjugate-gradient method instead** (see book).

Newton's Method

- Making a second-order or quadratic model of the function:

$$f(\mathbf{x}^k + \Delta \mathbf{x}) = f(\mathbf{x}^k) + [\mathbf{g}(\mathbf{x}^k)]^T (\Delta \mathbf{x}) + \frac{1}{2} (\Delta \mathbf{x})^T [\mathbf{H}(\mathbf{x}^k)] (\Delta \mathbf{x})$$

we obtain **Newton's method**:

$$\mathbf{g}(\mathbf{x} + \Delta \mathbf{x}) = \nabla f(\mathbf{x} + \Delta \mathbf{x}) = \mathbf{0} = \mathbf{g} + \mathbf{H}(\Delta \mathbf{x}) \Rightarrow$$

$$\Delta \mathbf{x} = -\mathbf{H}^{-1} \mathbf{g} \Rightarrow \mathbf{x}^{k+1} = \mathbf{x}^k - [\mathbf{H}(\mathbf{x}^k)]^{-1} [\mathbf{g}(\mathbf{x}^k)].$$

- Note that this is **exact for quadratic objective functions**, where $\mathbf{H} \equiv \mathbf{H}(\mathbf{x}^k) = \text{const.}$
- Also note that this is identical to using the Newton-Raphson method for solving the nonlinear system $\nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}.$

Problems with Newton's Method

- Newton's method is exact for a quadratic function and converges in one step!
- For non-linear objective functions, however, Newton's method requires solving a linear system every step: **expensive**.
- It may not converge at all if the initial guess is not very good, or may converge to a saddle-point or maximum: **unreliable**.
- All of these are addressed by using variants of **quasi-Newton methods**:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha_k \mathbf{H}_k^{-1} [\mathbf{g}(\mathbf{x}^k)],$$

where $0 < \alpha_k < 1$ and \mathbf{H}_k is an approximation to the true Hessian.

General Formulation

- Consider the **constrained optimization problem**:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t.} \quad & \mathbf{h}(\mathbf{x}) = \mathbf{0} \quad (\text{equality constraints}) \\ & \mathbf{g}(\mathbf{x}) \leq \mathbf{0} \quad (\text{inequality constraints}) \end{aligned}$$

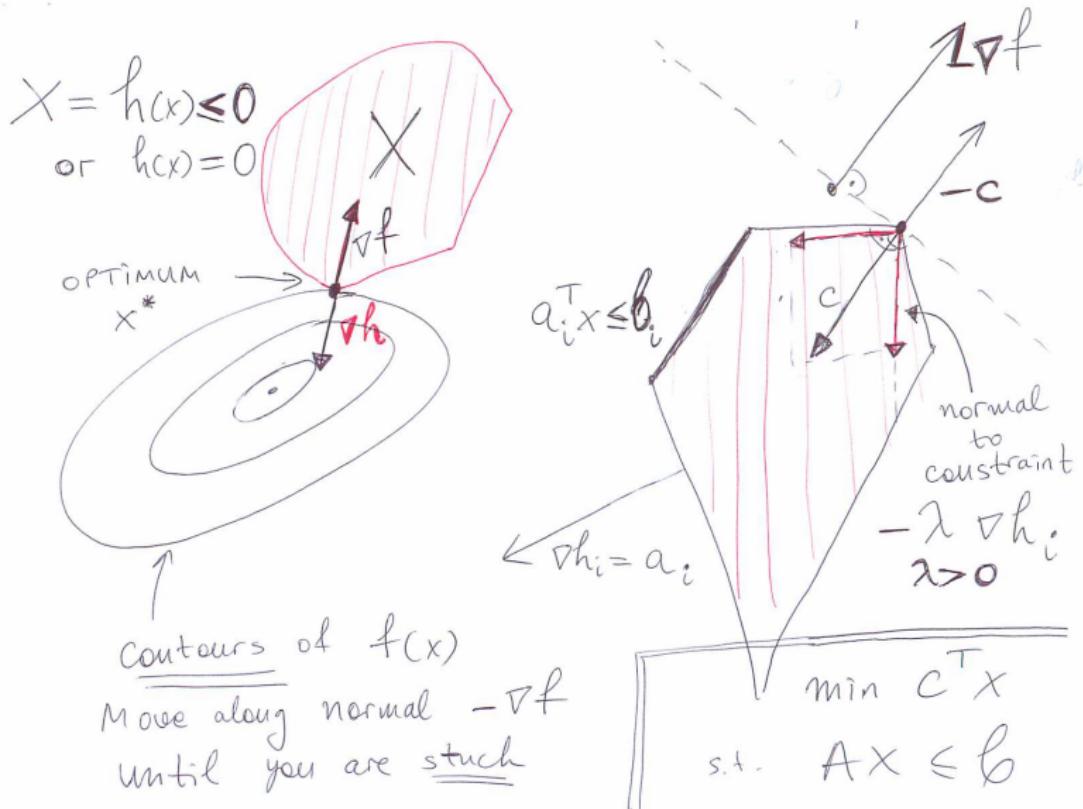
- Note that in principle only inequality constraints need to be considered since

$$\mathbf{h}(\mathbf{x}) = \mathbf{0} \quad \equiv \quad \begin{cases} \mathbf{h}(\mathbf{x}) \leq \mathbf{0} \\ \mathbf{h}(\mathbf{x}) \geq \mathbf{0} \end{cases}$$

but this is not usually a good idea.

- We focus here on **non-degenerate cases** without considering various complications that may arise in practice.

Illustration of Lagrange Multipliers



Linear Programming

- Consider **linear programming** (see illustration)

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} \{ \mathbf{c}^T \mathbf{x} \} \\ \text{s.t.} \quad & \mathbf{A} \mathbf{x} \leq \mathbf{b} \end{aligned} .$$

- The feasible set here is a **polytope** (polygon, polyhedron) in \mathbb{R}^n , consider for now the case when it is bounded, meaning there are at least $n + 1$ constraints.
- The optimal point is a **vertex** of the polyhedron, meaning a point where (generically) n constraints are **active**,

$$\mathbf{A}_{act} \mathbf{x}^* = \mathbf{b}_{act}.$$

- Solving the problem therefore means finding the subset of active constraints:

Combinatorial search problem, solved using the **simplex algorithm** (search along the edges of the polytope).

- Lately **interior-point methods** have become increasingly popular (move inside the polytope).

Lagrange Multipliers: Single equality

- An equality constraint $h(\mathbf{x}) = 0$ corresponds to an $(n - 1)$ -dimensional **constraint surface** whose normal vector is ∇h .
- The illustration on previous slide shows that for a single smooth equality constraint, the gradient of the objective function must be parallel to the normal vector of the constraint surface:

$$\nabla f \parallel \nabla h \Rightarrow \exists \lambda \text{ s.t. } \nabla f + \lambda \nabla h = \mathbf{0},$$

where λ is the **Lagrange multiplier** corresponding to the constraint $h(\mathbf{x}) = 0$.

- Note that the equation $\nabla f + \lambda \nabla h = \mathbf{0}$ is in **addition** to the constraint $h(\mathbf{x}) = 0$ itself.

Lagrange Multipliers: m equalities

- When m equalities are present,

$$h_1(\mathbf{x}) = h_2(\mathbf{x}) = \cdots = h_m(\mathbf{x})$$

the generalization is that the descent direction $-\nabla f$ must be in the span of the normal vectors of the constraints:

$$\nabla f + \sum_{i=1}^m \lambda_i \nabla h_i = \nabla f + (\nabla \mathbf{h})^T \boldsymbol{\lambda} = \mathbf{0}$$

where the **Jacobian** has the normal vectors as rows:

$$\nabla \mathbf{h} = \left\{ \frac{\partial h_i}{\partial x_j} \right\}_{ij}.$$

- This is a first-order **necessary optimality condition**.

Lagrange Multipliers: Single inequalities

- At the solution, a given inequality constraint $g_i(\mathbf{x}) \leq 0$ can be

active if $g_i(\mathbf{x}^*) = 0$

inactive if $g_i(\mathbf{x}^*) < 0$

- For inequalities, there is a definite sign (direction) for the constraint normal vectors:

For an active constraint, you can move freely along $-\nabla g$ but not along $+\nabla g$.

- This means that for a single active constraint

$$\nabla f = -\mu \nabla g \quad \text{where} \quad \mu > 0.$$

Lagrange Multipliers: r inequalities

- The generalization is the same as for equalities

$$\nabla f + \sum_{i=1}^r \mu_i \nabla g_i = \nabla f + (\nabla \mathbf{g})^T \boldsymbol{\mu} = \mathbf{0}.$$

- But now there is an inequality condition on the Lagrange multipliers,

$$\begin{cases} \mu_i > 0 & \text{if } g_i = 0 \text{ (active)} \\ \mu_i = 0 & \text{if } g_i < 0 \text{ (inactive)} \end{cases}$$

which can also be written as

$$\boldsymbol{\mu} \geq \mathbf{0} \text{ and } \boldsymbol{\mu}^T \mathbf{g}(\mathbf{x}) = 0.$$

KKT conditions

- Putting equalities and inequalities together we get the **first-order Karush-Kuhn-Tucker (KKT) necessary condition**:
There exist **Lagrange multipliers** $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^r$ such that:

$$\nabla f + (\nabla \mathbf{h})^T \lambda + (\nabla \mathbf{g})^T \mu = \mathbf{0}, \quad \mu \geq \mathbf{0} \text{ and } \mu^T \mathbf{g}(\mathbf{x}) = 0$$

- This is now a system of equations, similarly to what we had for unconstrained optimization but now involving also (constrained) Lagrange multipliers.
- Note there are also **second order necessary and sufficient conditions** similar to unconstrained optimization.
- Many numerical methods are based on Lagrange multipliers (see books on Optimization).

Lagrangian Function

$$\nabla f + (\nabla \mathbf{h})^T \boldsymbol{\lambda} + (\nabla \mathbf{g})^T \boldsymbol{\mu} = \mathbf{0}$$

- We can rewrite this in the form of stationarity conditions

$$\nabla_{\mathbf{x}} \mathcal{L} = \mathbf{0}$$

where \mathcal{L} is the **Lagrangian function**:

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i h_i(\mathbf{x}) + \sum_{i=1}^r \mu_i g_i(\mathbf{x})$$

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \boldsymbol{\lambda}^T [\mathbf{h}(\mathbf{x})] + \boldsymbol{\mu}^T [\mathbf{g}(\mathbf{x})]$$

Equality Constraints

- The **first-order necessary conditions** for equality-constrained problems are thus given by the stationarity conditions:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) + [\nabla \mathbf{h}(\mathbf{x}^*)]^T \boldsymbol{\lambda}^* = \mathbf{0}$$
$$\nabla_{\boldsymbol{\lambda}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{h}(\mathbf{x}^*) = \mathbf{0}$$

- Note there are also **second order necessary and sufficient conditions** similar to unconstrained optimization.
- It is important to note that the solution $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ is **not** a minimum or maximum of the Lagrangian (in fact, for convex problems it is a saddle-point, min in \mathbf{x} , max in $\boldsymbol{\lambda}$).
- Many numerical methods are based on Lagrange multipliers but we do not discuss it here.

Penalty Approach

- The idea is to convert the constrained optimization problem:

$$\begin{aligned} & \min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x}) \\ \text{s.t. } & \mathbf{h}(\mathbf{x}) = \mathbf{0} \end{aligned} .$$

into an unconstrained optimization problem.

- Consider minimizing the **penalized function**

$$\mathcal{L}_\alpha(\mathbf{x}) = f(\mathbf{x}) + \alpha \|\mathbf{h}(\mathbf{x})\|_2^2 = f(\mathbf{x}) + \alpha [\mathbf{h}(\mathbf{x})]^T [\mathbf{h}(\mathbf{x})],$$

where $\alpha > 0$ is a **penalty parameter**.

- Note that one can use **penalty functions** other than sum of squares.
- If the constraint is exactly satisfied, then $\mathcal{L}_\alpha(\mathbf{x}) = f(\mathbf{x})$.

As $\alpha \rightarrow \infty$ violations of the constraint are penalized more and more, so that the equality will be satisfied with higher accuracy.

Penalty Method

- The above suggest the **penalty method** (see homework):
For a monotonically diverging sequence $\alpha_1 < \alpha_2 < \dots$, solve a **sequence of unconstrained problems**

$$\mathbf{x}^k = \mathbf{x}(\alpha_k) = \arg \min_{\mathbf{x}} \left\{ \mathcal{L}_k(\mathbf{x}) = f(\mathbf{x}) + \alpha_k [\mathbf{h}(\mathbf{x})]^T [\mathbf{h}(\mathbf{x})] \right\}$$

and the solution should converge to the optimum \mathbf{x}^* ,

$$\mathbf{x}^k \rightarrow \mathbf{x}^* = \mathbf{x}(\alpha_k \rightarrow \infty).$$

- Note that one can use \mathbf{x}^{k-1} as an initial guess for, for example, Newton's method.
- Also note that the problem becomes more and more ill-conditioned as α grows.
A better approach uses Lagrange multipliers in addition to penalty (**augmented Lagrangian**).

Conclusions/Summary

- Optimization, or **mathematical programming**, is one of the most important numerical problems in practice.
- Optimization problems can be **constrained** or **unconstrained**, and the nature (linear, convex, quadratic, algebraic, etc.) of the functions involved matters.
- Finding a **global minimum** of a general function is virtually **impossible** in high dimensions, but very important in practice.
- An unconstrained local minimum can be found using **direct search**, **gradient descent**, or **Newton-like methods**.
- Equality-constrained optimization is **tractable**, but the best method **depends on the specifics**.

We looked at penalty methods only as an illustration, not because they are good in practice!

- Constrained optimization is tractable for the convex case, otherwise often hard, and even **NP-complete** for **integer programming**.