Numerical Methods |
Mathematical Programming (Optimization)

Aleksandar Donev
Courant Institute, NYU!
donev@courant.nyu.edu

IMATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 23rd, 2014

A. Donev (Courant Institute) Lecture VII 10/2014 1/30



utline

@ Mathematical Background
© Smooth Unconstrained Optimization
© Constrained Optimization

@ Conclusions

A. Donev (Courant Institute) Lecture VII 10/2014 2 /30



Mathematical Background
Formulation

@ Optimization problems are among the most important in engineering
and finance, e.g., minimizing production cost, maximizing profits,
etc.

120 "6

where x are some variable parameters and f : R" — R is a scalar
objective function.
@ Observe that one only need to consider minimization as

max f(x) = — min [~f(x)]

@ A local minimum x* is optimal in some neighborhood,
f(x)<f(x) ¥x st. [x—x*|<R>0.

(think of finding the bottom of a valley)
@ Finding the global minimum is generally not possible for arbitrary
functions (think of finding Mt. Everest without a satelite).
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Mathematical Background

Connection to nonlinear systems

@ Assume that the objective function is differentiable (i.e., first-order
Taylor series converges or gradient exists).

@ Then a necessary condition for a local minimizer is that x* be a
critical point

g (x*) = Vyf (x*) = {g)’; (x*)}i -0

which is a system of non-linear equations!

@ In fact similar methods, such as Newton or quasi-Newton, apply to
both problems.

@ Vice versa, observe that solving f (x) = 0 is equivalent to an
optimization problem

min [f (x)Tf(x)}
X
although this is only recommended under special circumstances.
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Mathematical Background

Sufficient Conditions

@ Assume now that the objective function is twice-differentiable (i.e.,
Hessian exists).

@ A critical point x*is a local minimum if the Hessian is positive
definite
H(x*) = V2f (x*) = 0
which means that the minimum really looks like a valley or a convex
bowl.

@ At any local minimum the Hessian is positive semi-definite,
V2f (x*) = 0.

@ Methods that require Hessian information converge fast but are
expensive (next class).
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Mathematical Background
Mathematical Programming

@ The general term used is mathematical programming.
@ Simplest case is unconstrained optimization
min f(x
xeR" ( )
where x are some variable parameters and f : R” — R is a scalar

objective function.
o Find a local minimum x*:

f(x*)<f(x) ¥x st [x—x"|<R>0.

(think of finding the bottom of a valley).

o Find the best local minimum, i.e., the global minimumx*: This is
virtually impossible in general and there are many specialized
techniques such as genetic programming, simmulated annealing,

branch-and-bound (e.g., using interval arithmetic), etc.

@ Special case: A strictly convex objective function has a unique

local minimum which is thus also the global minimum.
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Mathematical Background
Constrained Programming

@ The most general form of constrained optimization

)

where X C R" is a set of feasible solutions.

@ The feasible set is usually expressed in terms of equality and
inequality constraints:

h(x)

0
g(x) <0
@ The only generally solvable case: convex programming

Minimizing a convex function f(x) over a convex set X: every local
minimum is global.

If f(x) is strictly convex then there is a unique local and global
minimum.
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Mathematical Background
Special Cases

@ Special case is linear programming:

MiNycRn {ch}
s.t. Ax <b

@ Equality-constrained quadratic programming

Mminycg2 {x12 + x22}
s.t. X12 + 2x1x0 + 3X22 =1

generalized to arbitary ellipsoids as:

mincers { F(x) = x|} = x-x = X7, ¢}
s.t. (x—x0)  A(x—x0) =1
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Smooth Unconstrained Optimization

Necessary and Sufficient Conditions

@ A necessary condition for a local minimizer:
The optimum x* must be a critical point (maximum, minimum or
saddle point):

of
5(x) = Vs (<) = { 5 ()| —0.
Xi i
and an additional sufficient condition for a critical point x* to be a
local minimum:
The Hessian at the optimal point must be positive definite,

Hoe) = w2 () = {2 eyl o
x*) = Vif (x*) = Pt . )

which means that the minimum really looks like a valley or a convex
bowl.
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Smooth Unconstrained Optimization
Direct-Search Methods

e A direct search method only requires f(x) to be continuous but
not necessarily differentiable, and requires only function evaluations.

@ Methods that do a search similar to that in bisection can be devised
in higher dimensions also, but they may fail to converge and are
usually slow.

@ The MATLAB function fminsearch uses the Nelder-Mead or
simplex-search method, which can be thought of as rolling a simplex
downhill to find the bottom of a valley. But there are many others
and this is an active research area.

@ Curse of dimensionality: As the number of variables
(dimensionality) n becomes larger, direct search becomes hopeless
since the number of samples needed grows as 2"!
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Smooth Unconstrained Optimization

Minimum of 100(x; — x?)? + (a — x1)? in MATLAB

% Rosenbrock or ’'banana’ function:
a=1;
banana = ©@(x) 100%(x(2)—x(1)"2)"2+4+(a—x(1))"2;

% This function must accept array arguments/!
banana_xy = ©@(x1,x2) 100%(x2—x1.72)."24(a—x1)."2

figure (1); ezsurf(banana_xy, [0,2,0,2])

[x,y] = meshgrid(linspace (0,2,100));
figure (2); contourf(x,y,banana_xy(x,y),100)

% Correct answers are x=[1,1] and f(x)=0

[x,fval] = fminsearch(banana, [—1.2, 1], optimset(’'TolX',1e—38))
X = 0.999999999187814 0.999999998441919

fval = 1.099088951919573e—18
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Smooth Unconstrained Optimization
Descent Methods

@ Finding a local minimum is generally easier than the general problem
of solving the non-linear equations

g(x*)=Vif(x*)=0

o We can evaluate f in addition to V,f.
o The Hessian is positive-(semi)definite near the solution (enabling
simpler linear algebra such as Cholesky).

o If we have a current guess for the solution x*, and a descent
direction (i.e., downhill direction) d:

f (xk + adk) <f (xk) for all 0 < a < Amax,
then we can move downhill and get closer to the minimum (valley):
x 1 = xk 1 qyd”,

where ay > 0 is a step length.
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Smooth Unconstrained Optimization

Gradient Descent Methods

e For a differentiable function we can use Taylor's series:
(X + ad) ~ £ (x) +ai [ (V)T d*]

@ This means that fastest local decrease in the objective is achieved
when we move opposite of the gradient: steepest or gradient
descent:

d“ = —Vf (x*) = —g,.

@ One option is to choose the step length using a line search
one-dimensional minimization:

ag = argmin f (xk + adk) ,
(6%

which needs to be solved only approximately.
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Smooth Unconstrained Optimization
Steepest Descent

@ Assume an exact line search was used, i.e., ay = arg min, ¢(a)) where

p(a) = f (x* + ad¥).

-
¢'(@) =0=[VFf (x*+ad")] d*.
@ This means that steepest descent takes a zig-zag path down to the
minimum.
@ Second-order analysis shows that steepest descent has linear
convergence with convergence coefficient
1—r Amin (H) 1

Co """ wh _ _
11 " T N (H)  Ra(H)’

inversely proportional to the condition number of the Hessian.

@ Steepest descent can be very slow for ill-conditioned Hessians: One
improvement is to use conjugate-gradient method instead (see
book).
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Smooth Unconstrained Optimization
Newton's Method

@ Making a second-order or quadratic model of the function:
1
F(x + Ax) = F(x) + [g ()] " (A%) + 5 (%) [H (x)] (a%)
we obtain Newton’s method:

g(x+Ax)=Vf(x+Ax)=0=g+H(Ax) =

Ax=-Hlg = x1=xk_[H(x)] " [g(x})].

@ Note that this is exact for quadratic objective functions, where
H = H (x*) = const.

@ Also note that this is identical to using the Newton-Raphson method
for solving the nonlinear system V,f (x*) = 0.
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Smooth Unconstrained Optimization

Problems with Newton's Method

@ Newton's method is exact for a quadratic function and converges in
one step!

@ For non-linear objective functions, however, Newton's method requires
solving a linear system every step: expensive.

@ It may not converge at all if the initial guess is not very good, or may
converge to a saddle-point or maximum: unreliable.

@ All of these are addressed by using variants of quasi-Newton

methods:
R = o g ().

where 0 < a, < 1 and Hy is an approximation to the true Hessian.
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Constrained Optimization
General Formulation

o Consider the constrained optimization problem:

Minyern f(X)
st.  h(x)=0 (equality constraints)
g(x) <0 (inequality constraints)

@ Note that in principle only inequality constraints need to be
considered since

but this is not usually a good idea.

@ We focus here on non-degenerate cases without considering various
complications that may arrise in practice.
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Constrained Optimization
[llustration of Lagrange Multipliers
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Constrained Optimization
Linear Programming

e Consider linear programming (see illustration)
MiNycRn {ch}
s.t. Ax <b

@ The feasible set here is a polytope (polygon, polyhedron) in R”,
consider for now the case when it is bounded, meaning there are at
least n 4+ 1 constraints.

@ The optimal point is a vertex of the polyhedron, meaning a point
where (generically) n constraints are active,

*
AactX = bact-

@ Solving the problem therefore means finding the subset of active
constraints:
Combinatorial search problem, solved using the simplex algorithm
(search along the edges of the polytope).

o Lately interior-point methods have become increasingly popular
(move inside the polytope).
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Constrained Optimization
Lagrange Multipliers: Single equality

@ An equality constraint h(x) = 0 corresponds to an
(n — 1)—dimensional constraint surface whose normal vector is Vh.

@ The illustration on previous slide shows that for a single smooth
equality constraint, the gradient of the objective function must be
parallel to the normal vector of the constraint surface:

Vf | Vh = 3Ast VF+AVh=0,

where ) is the Lagrange multiplier corresponding to the constraint
h(x) = 0.

@ Note that the equation Vf 4+ AV h = 0 is in addition to the
constraint h(x) = 0 itself.
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Constrained Optimization

Lagrange Multipliers: m equalities

@ When m equalities are present,
hl(x) = h2(x) — .. = hm(x)
the generalization is that the descent direction —Vf must be in the
span of the normal vectors of the constraints:
m
Vi+> AVh=Vi+(Vh) A=0
i=1

where the Jacobian has the normal vectors as rows:

Vh:{am}.
BXJ-,.J.

@ This is a first-order necessary optimality condition.
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Constrained Optimization

Lagrange Multipliers: Single inequalities

@ At the solution, a given inequality constraint gj(x) < 0 can be

active if gi(x*) =0
inactive if gj(x*) <0
e For inequalities, there is a definite sign (direction) for the constraint
normal vectors:
For an active constraint, you can move freely along —V g but not
along +Vg.

@ This means that for a single active constraint

Vf=-uVg where p>0.
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Constrained Optimization

Lagrange Multipliers: r inequalities

@ The generalization is the same as for equalities

Vi+Y uiVe=VFi+(Ve) p=0.
i=1

@ But now there is an inequality condition on the Lagrange multipliers,

wi >0 if gt =0 (active)
wi =0 if gi <0 (inactive)

which can also be written as

>0 and p"g(x) = 0.
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Constrained Optimization
KKT conditions

@ Putting equalities and inequalities together we get the first-order
Karush-Kuhn-Tucker (KKT) necessary condition:
There exist Lagrange multipliers A € R™ and p € R” such that:

Vi+ (V)" A+(Vg) n=0, p>0and p'g(x)=0

@ This is now a system of equations, similarly to what we had for
unconstrained optimization but now involving also (constrained)
Lagrange multipliers.

@ Note there are also second order necessary and sufficient
conditions similar to unconstrained optimization.

@ Many numerical methods are based on Lagrange multipliers (see
books on Optimization).
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Constrained Optimization
Lagrangian Function

Vi+(Vh) A+ (Vg) n=0
@ We can rewrite this in the form of stationarity conditions
ViL=0

where L is the Lagrangian function:

L(x, A\, p)=Ff(x)+ Z Aihi(x) + Z 14i8&i(x)
i=1

i=1

L(x, A p) = f(x) + X7 [h(x)] + 1" [g(x)]
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Constrained Optimization
Equality Constraints

@ The first-order necessary conditions for equality-constrained
problems are thus given by the stationarity conditions:

VL (x*, X)) = VFA(x*) 4+ [Vh(x*)]" A* =0
VAL (x* A )=h(x*)=0

@ Note there are also second order necessary and sufficient
conditions similar to unconstrained optimization.

@ It is important to note that the solution (x*, A*) is not a minimum or
maximum of the Lagrangian (in fact, for convex problems it is a
saddle-point, min in x, max in A).

@ Many numerical methods are based on Lagrange multipliers but we do
not discuss it here.
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Constrained Optimization
Penalty Approach

@ The idea is the convert the constrained optimization problem:

Minyegrn f(X)
st. h(x)=0

into an unconstrained optimization problem.

o Consider minimizing the penalized function
La(x) = £(x) + o [|h(x)]3 = f(x) +a[h(x)]" [(x)],

where o > 0 is a penalty parameter.
@ Note that one can use penalty functions other than sum of squares.

o If the constraint is exactly satisfied, then £,(x) = f(x).
As o — oo violations of the constraint are penalized more and more,
so that the equality will be satisfied with higher accuracy.
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Constrained Optimization
Penalty Method

@ The above suggest the penalty method (see homework):
For a monotonically diverging sequence oy < aip < -- -, solve a
sequence of unconstrained problems

X = x (ax) = argmin { Li(x) = F(x) + ax [h(x)] " [h(x)] }

and the solution should converge to the optimum x*,

k *

X = x* = x(ax — 00).

o Note that one can use xk~1
Newton's method.

as an initial guess for, for example,

@ Also note that the problem becomes more and more ill-conditioned as
o grows.
A better approach uses Lagrange multipliers in addition to penalty
(augmented Lagrangian).
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Conclusions
Conclusions/Summary

@ Optimization, or mathematical programming, is one of the most
important numerical problems in practice.

@ Optimization problems can be constrained or unconstrained, and
the nature (linear, convex, quadratic, algebraic, etc.) of the functions
involved matters.

e Finding a global minimum of a general function is virtually
impossible in high dimensions, but very important in practice.

@ An unconstrained local minimum can be found using direct search,
gradient descent, or Newton-like methods.

e Equality-constrained optimization is tractable, but the best method
depends on the specifics.

We looked at penalty methods only as an illustration, not because
they are good in practice!

o Constrained optimization is tractable for the convex case, otherwise
often hard, and even NP-complete for integer programming,.
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