

Numerical Methods I

Singular Value Decomposition

Aleksandar Donev

*Courant Institute, NYU*¹

donev@courant.nyu.edu

¹MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014

October 9th, 2014

Outline

- 1 Review of Linear Algebra: SVD
- 2 Computing the SVD
- 3 Principal Component Analysis (PCA)
- 4 Conclusions

Formal definition of the SVD

Every matrix has a **singular value decomposition**

$$\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^* = \sum_{i=1}^p \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

$$[m \times n] = [m \times m] [m \times n] [n \times n],$$

where **U** and **V** are **unitary matrices** whose columns are the left, \mathbf{u}_i , and the right, \mathbf{v}_i , **singular vectors**, and

$$\boldsymbol{\Sigma} = \text{Diag} \{ \sigma_1, \sigma_2, \dots, \sigma_p \}$$

is a **diagonal matrix** with real positive diagonal entries called **singular values** of the matrix

$$\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_p \geq 0,$$

and $p = \min(m, n)$ is the maximum possible rank of the matrix.

Comparison to eigenvalue decomposition

- Recall the eigenvector decomposition for diagonalizable matrices

$$\mathbf{A}\mathbf{X} = \mathbf{X}\Lambda.$$

- The singular value decomposition can be written similarly to the eigenvector one

$$\mathbf{A}\mathbf{V} = \mathbf{U}\Sigma$$

$$\mathbf{A}^*\mathbf{U} = \mathbf{V}\Sigma$$

and they both **diagonalize A**, but there are some important **differences**:

- 1 The SVD exists for any matrix, not just diagonalizable ones.
- 2 The SVD uses different vectors on the left and the right (different basis for the domain and image of the linear mapping represented by \mathbf{A}).
- 3 The SVD always uses orthonormal basis (unitary matrices), not just for unitarily diagonalizable matrices.

Relation to Hermitian Matrices

- For **Hermitian (symmetric) matrices**,

$$\mathbf{X} = \pm \mathbf{U} = \pm \mathbf{V}$$

and

$$\boldsymbol{\Sigma} = |\Lambda|,$$

so there is **no fundamental difference** between the SVD and eigenvalue decompositions.

- The squared singular values are **eigenvalues of the normal matrix**:

$$\sigma_i(\mathbf{A}) = \sqrt{\lambda_i(\mathbf{A}\mathbf{A}^*)} = \sqrt{\lambda_i(\mathbf{A}^*\mathbf{A})}$$

since

$$\mathbf{A}^*\mathbf{A} = (\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^*)(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^*) = \mathbf{V}\boldsymbol{\Sigma}^2\mathbf{V}^*$$

is a similarity transformation.

Similarly, the singular vectors are the corresponding eigenvectors up to a sign.

Rank-Revealing Properties

- Assume the rank of the matrix is r , that is, the dimension of the range of \mathbf{A} is r and the dimension of the null-space of \mathbf{A} is $n - r$ (recall the fundamental theorem of linear algebra).
- The SVD is a **rank-revealing** matrix factorization because only r of the singular values are nonzero,

$$\sigma_{r+1} = \cdots = \sigma_p = 0.$$

- The left singular vectors $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ form an **orthonormal basis for the range** (column space, or image) of \mathbf{A} .
- The right singular vectors $\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ form an **orthonormal basis for the null-space** (kernel) of \mathbf{A} .

The matrix pseudo-inverse

- For square non-singular systems, $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

Can we generalize the matrix inverse to non-square or rank-deficient matrices?

- Yes: **matrix pseudo-inverse** (Moore-Penrose inverse):

$$\mathbf{A}^\dagger = \mathbf{V}\boldsymbol{\Sigma}^\dagger\mathbf{U}^*,$$

where

$$\boldsymbol{\Sigma}^\dagger = \text{Diag} \left\{ \sigma_1^{-1}, \sigma_2^{-1}, \dots, \sigma_r^{-1}, 0, \dots, 0 \right\}.$$

- In numerical computations very small singular values should be considered to be zero (see homework).
- Theorem: The **least-squares solution** to over- or under-determined linear systems $\mathbf{A}\mathbf{x} = \mathbf{b}$ is

$$\mathbf{x} = \mathbf{A}^\dagger\mathbf{b}.$$

Proof of Least-Squares (1)

$$\min_x \|Ax - b\|_2 \leftarrow \text{LEAST SQUARES}$$

such that $\|x\|_2$ is minimal

$$(Ax - b)^* (Ax - b) = x^* (A^* A)x - 2x^* A^* b + \dots$$

$$\text{USING SVD : } x^* A^* A x = x^* V \Sigma^2 \underline{\underline{V^* x}}$$

$$\text{AND } x^* A^* b = b^* (Ax) = (U^* b) \underline{\underline{V^* x}}$$

DENOTING

$$\begin{cases} V^* x = w & \leftarrow \text{NEW VARIABLE} \\ U^* b = c & \leftarrow \text{CONSTANT} \end{cases}$$

(1)

Proof of Least-Squares (2)

$$\|Ax - b\|_2^2 = w^* \sum w - 2 c^* \sum w + \dots$$

$$= \sum_{i=1}^r \sigma_i^2 w_i^2 - 2 \sum_{i=1}^r (\sigma_i w_i) c_i^*$$

$$= \sum_{i=1}^r |\sigma_i w_i - c_i|^2 + \text{constants}$$

which is minimized if

$$\sigma_i w_i = c_i \Rightarrow w_i = \frac{c_i}{\sigma_i}$$

or

$$(V^* x)_i = \frac{(U^* b)_i}{\sigma_i}, \quad i \leq r$$

②

Proof of Least-Squares (3)

How about w_{r+1}, \dots, w_m ?

$$\|x\|_2^2 = \|Vw\|_2^2 = w^* (V^* V) w^* \\ = \|w\|_2^2 = \sum |w_i|^2$$

So the norm of x is minimized if the norm of w is minimized.

$$\Rightarrow \boxed{\underbrace{w_{r+1} = \dots = 0}}$$

$$\Rightarrow x = Vw = V \sum^+ c = \\ = (V \sum^+ u^*) b = \cancel{A^+} b$$

QED (3)

Sensitivity (conditioning) of the SVD

- Since unitary transformations preserve the 2-norm,

$$\|\delta \Sigma\|_2 \approx \|\delta A\|_2.$$

- The SVD computation is always **perfectly well-conditioned!**
- However, this refers to absolute errors: The **relative error** of small singular values will be large.
- The **power of the SVD** lies in the fact that it always exists and can be computed stably...but it is **expensive to compute**.

Computing the SVD

- The SVD can be computed by performing an eigenvalue computation for the **normal matrix $\mathbf{A}^* \mathbf{A}$** (a positive-semidefinite matrix).
- This squares the condition number for small singular values and is **not numerically-stable**.
- Instead, one can compute the eigenvalue decomposition of the **symmetric indefinite $2m \times 2m$ block matrix**

$$\mathbf{H} = \begin{bmatrix} \mathbf{0} & \mathbf{A}^* \\ \mathbf{A} & \mathbf{0} \end{bmatrix}.$$

- The cost of the calculation is $\sim O(mn^2)$, of the same order as eigenvalue calculation, but in practice **SVD is more expensive**, at least for well-conditioned cases.

Reduced SVD

The **full (standard)** SVD

$$\mathbf{A} = \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^* = \sum_{i=1}^p \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

$$[m \times n] = [m \times m] [m \times n] [n \times n],$$

is in practice often computed in **reduced (economy) SVD** form, where $\boldsymbol{\Sigma}$ is $[p \times p]$:

$$[m \times n] = [m \times n] [n \times n] [n \times n] \quad \text{for } m > n$$

$$[m \times n] = [m \times m] [m \times m] [m \times n] \quad \text{for } n > m$$

This contains all the information as the full SVD but can be **cheaper to compute** if $m \gg n$ or $m \ll n$.

In MATLAB

- $[U, \Sigma, V] = \text{svd}(A)$ for **full SVD**, computed using a QR-like method.
- $[U, \Sigma, V] = \text{svd}(A, 'econ')$ for **economy SVD**.
- For rank-deficient or under-determined systems the backslash operator (*mldivide*) gives a **basic solution**.
Basic means \mathbf{x} has at most r non-zeros (not unique).
- The **least-squares solution** can be computed using *svd* or *pinv* (pseudo-inverse, see homework).
- A rank- q approximation can be computed efficiently for **sparse matrices** using

$$[U, S, V] = \text{svds}(A, q).$$

Low-rank approximations

- The SVD is a decomposition into **rank-1 outer product matrices**:

$$\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^* = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^* = \sum_{i=1}^r \mathbf{A}_i$$

- The rank-1 components \mathbf{A}_i are called **principal components**, the most important ones corresponding to the larger σ_i .
- Ignoring all singular values/vectors except the first q , we get a **low-rank approximation**:

$$\mathbf{A} \approx \hat{\mathbf{A}}_q = \mathbf{U}_q \Sigma_q \mathbf{V}_q^* = \sum_{i=1}^q \sigma_i \mathbf{u}_i \mathbf{v}_i^*.$$

- Theorem: This is the **best approximation** of rank- q in the Euclidian and Frobenius norm:

$$\left\| \mathbf{A} - \hat{\mathbf{A}}_q \right\|_2 = \sigma_{q+1}$$

Applications of SVD/PCA

- **Statistical analysis** (e.g., DNA microarray analysis, clustering).
- Data **compression** (e.g., image compression, explained next).
- **Feature extraction**, e.g., face or character recognition (see Eigenfaces on Wikipedia).
- **Latent semantic indexing** for context-sensitive searching (see Wikipedia).
- **Noise reduction** (e.g., weather prediction).
- One example concerning language analysis given in homework.

Image Compression

```
>> A=rgb2gray(imread('basket.jpg'));
>> imshow(A);
>> [U,S,V]=svd(double(A));
>> r=25; % Rank-r approximation
>> Acomp=U(:,1:r)*S(1:r,1:r)*(V(:,1:r))';
>> imshow(uint8(Acomp));
```

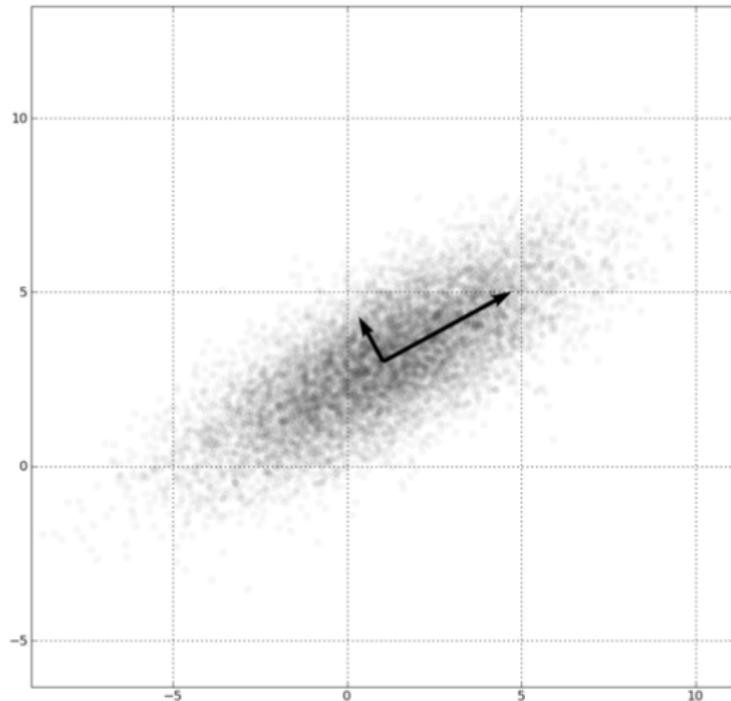
Compressing an image of a basket

We used only 25 out of the ~ 400 singular values to construct a rank 25 approximation:

Principal Component Analysis

- **Principal Component Analysis (PCA)** is a term used for low-rank approximations in statistical analysis of data.
- Consider having m empirical data points or **observations** (e.g., daily reports) of n **variables** (e.g., stock prices), and put them in a **data matrix $\mathbf{A} = [m \times n]$** .
- Assume that each of the variables has **zero mean**, that is, the empirical mean has been subtracted out.
- It is also useful to choose the units of each variable (normalization) so that the **variance is unity**.
- We would like to find an **orthogonal transformation** of the original variables that accounts for as much of the variability of the data as possible.
- Specifically, the first principal component is the direction along which the variance of the data is largest.

PCA and Variance



PCA and SVD

- The **covariance matrix** of the data tells how correlated different pairs of variables are:

$$\mathbf{C} = \mathbf{A}^T \mathbf{A} = [n \times n]$$

- The largest eigenvalue of \mathbf{C} is the direction (line) that minimizes the sum of squares of the distances from the points to the line, or equivalently, **maximizes the variance** of the data projected onto that line.
- The SVD of the data matrix is $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$.
- The eigenvectors of \mathbf{C} are in fact the columns of \mathbf{V} , and the eigenvalues of \mathbf{C} are the squares of the singular values,

$$\mathbf{C} = \mathbf{A}^T \mathbf{A} = \mathbf{V} \mathbf{\Sigma} (\mathbf{U}^* \mathbf{U}) \mathbf{\Sigma} \mathbf{V}^* = \mathbf{V} \mathbf{\Sigma}^2 \mathbf{V}^*.$$

Note: the singular values necessarily real since \mathbf{C} is positive semi-definite.

Clustering Analysis

- Given a new data point \mathbf{x} , we can **project** it onto the basis formed by the principal component directions as:

$$\mathbf{V}\mathbf{y} = \mathbf{x} \quad \Rightarrow \quad \mathbf{y} = \mathbf{V}^{-1}\mathbf{x} = \mathbf{V}^*\mathbf{x},$$

which simply amounts to taking dot products $y_i = \mathbf{v}_i \cdot \mathbf{x}$.

- The first few y_i 's often provide a good a **reduced-dimensionality representation** that captures most of the variance in the data.
- This is very useful for **data clustering** and analysis, as a tool to understand empirical data.
- The PCA/SVD is a linear transformation and it **cannot capture nonlinearities**.

Conclusions/Summary

- The **singular value decomposition** (SVD) is an alternative to the eigenvalue decomposition that is **better for rank-deficient and ill-conditioned matrices** in general.
- Computing the SVD is **always numerically stable** for any matrix, but is typically more expensive than other decompositions.
- The SVD can be used to compute **low-rank approximations** to a matrix via the principal component analysis (PCA).
- PCA has many practical applications and usually **large sparse matrices** appear.