[ODE Fall 2012, A. Donev, CIMS
Using the symbolic algebra package Maple to solve ODEs analytically and
_numerically

> restart:

> with(plots):

> ODE := diff(theta(t),t,t) + gamma*diff(theta(t),t) + omega”2*sin
(theta(t))=0; # Equations

_ & d 2 _
ODE = 2 0(¢) +y( P e(z)) +® sin(0(z)) =0 D)
"> ICs :=theta(0)=Theta, D(theta)(0)=Omega; # Initial conditions
ICs:=6(0) =6,D(08) (0) =Q 2

> dsolve({ODE, ICs}, theta(t)); # Try to compute closed-form
solution (no answer is returned)

:1. Linearized ODE

The linearized ODE in which sin(theta) is replaced by theta can be solved analytically using the

methods we discussed in class.

| Maple knows all of the recipies we discussed and can do the calculations without making mistakes:

> LinearODE := diff(theta(t),t,t) + gamma*diff(theta(t),t) +
omega”2*theta(t)=0; # Linearization for small theta

Li 0DE'=d—29(t)+ 49 +0 00 =0 3)
] inear ay Y(dl ) 0]
> solution:=simplify(dsolve({LinearODE, ICs}, theta(t)));
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;Now let's plug in some specific numbers for which complex numbers will be required:
> numbers:={gamma=1, omega=sqrt(5/4), Theta=Pi/4, Omega=2};

numbers = {QZZ,@Z%R,YZL(DZ%\/?} (5)

solution = 0(t) =

Q

;Plug these numbers into the solution:
> eval(solution,numbers);
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_By default Maple does not perform complex number simplifications, we need to use the evalc (evaluate
| using complex arithmetic) function, and then simplify:
> approx_solution:=simplify(evalc(eval(solution,numbers)));




|
-1
approx_solution := 0(t) :% e 2 (2 cos(t) T+ 16 sin(t) + msin(¢)) )

Let us now plot the approximate (linearized) solution theta(t):
> pl:=plot(eval(theta(t),approx_solution), t=0..15, color=red):
> display(pl);
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=2. Phase Plot

Let us now plot the trajectory in phase space, where the coordinates are [theta(t), theta'(t)]

> yl:=eval(theta(t),approx_solution); # Position (angle) of

pendulum theta(t)
1

%e 2 (2 cos(t) T+ 16 sin(¢) + wsin(¢)) 8
> y2:=simplify(eval(diff(theta(t),t), approx_solution)); #
Velocity of pendulum theta'(t)
1!
y2 = 16e

vl =

(16sin(¢) +5msin(z) —32 cos(t)) 9

> Pl —plot([yl y2, t=0..15], color="red', labels=["theta(t)",

"theta'(t)"]) :
> display(P1);
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=3. Numerical Solution

Finally, let's solve the true nonlinear ODE numerically using Maple's default numerical method (called
_IIRK4II)

[> num_solution:=dsolve(eval({ODE, ICs}, numbers), theta(t), type=
‘'numeric’', range=0..15);

num_solution := proc(x_rkf45) ... end proc (10)
> p2:=odeplot(num_solution, color="blue’, style="point"):

_Let's compare the numerical solution to the approximate (linearized) solution:
> display(pl,p2);




| And let's also compare the true phase plot to the approximate one:

> P2:=odeplot(num_solution, [theta(t), diff(theta(t), t)], color=
| 'blue’, style="point’) :

> display(P1,P2);
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