Numerical Calculation of erf z

Aleksandar Donev Dr. Phillip Duxbury
September 2000

In many physics applications involving the normal probability distribu-
tion function integrals of the form [7, e~¥/2dt appear. This integral can not
be solved in terms of standard transcendental and algebraic functions, so a
new special function called the error function is introduced:

erfx = % /Oac eV dt (1)

The next few worksheets in this class will involve different ways of evalu-
ating this function using Fortran 90. We will consider truncated power series
as a means of evaluating 1. Notice that the argument of the error function
can be a complex number, in which case the integral needs to be done in the
complex plane.

1 Worksheet 1: Truncated Power Series

1.1 Mathematical Background

In this worksheet, you will write a Fortran program that will evaluate the
error function of a real or complex number. You will use Mathematica to
check your answers, because it has this function built in.

For small argument z, a good and efficient way to evaluate erf z is to use
the truncated power series:

2r & (*1)k 2% 2_5CN71 (*1)k 2%

ﬁz(zkﬂ)k!x N\/Trkz:(:)(%+1)k!x @)

k=0

erf x =

Equation 2 is a so called alternating power series and is theoretically
convergent for all x. If one truncates the series at some high order term
N — 1, the error € that is made is smaller the first discarded term:

S
S aNTO N 3)

If x is significantly larger than 1 (5 or larger) that the series in 2 will
converge very slowly. Other series expansions (asymptotic series) can be
used in that case. You need not worry about this. If |z| > 5, assume that
erf z =~ 1 and return this value without calculating the sum!

1.2 Fortran Implementation

The main characteristic of this first “real” Fortran code that you will write
is that it will be an unstructured program—there will be no modules or
procedures. For this assignment, you should read sections 1.1-1.4,1.6-1.7
(exclude 1.6.4) in the FORTRAN 77 part of the manual and sections 2.1-2.3
(exclude 2.2.3) and 2.5 in the Fortran 90 manual. Please make sure you have
read through these carefully before coming to lab—examples can be found
there and will not be given to you unless they have new information in them.

You will receive more information on editing and compiling programs
with a new Fortran 90 compiler that we just obtained, as well as some UNIX
basics in class. You will be expected to use the more modern Fortran 90
syntax when applicable.

1.2.1 Summation Using DO Loops

In worksheet 1 you learned how to evalute a sum of the form Y8, E(k),
where F(k) is some expression depending on k, using Fortran:

sum=E (0)

DO k=1,N
sum=sum+E (k)

END DO

The only difference between this worksheet and the previous one is that
the expression to sum is more complicated. Complication comes because
of the presence of a factorial, which is not a built in function in Fortran.

However, even if there were a factorial function in Fortran, the best way to
_1Nk

= Cerm?

use the following recursive relation (which is very easy to derive from eq.1)

giving the ratio R(k) of two consecutive terms in the power series:

evaluate E(k) is not to directly compute E(k) 2k Rather, you can

E(k) (2k — 1) 22

E(k—1) 2k + 1)k

Therefore, one can compute the expression E(k) with the following
simple loop:

=R(k)=— , where F(0) =1 (4)

expression=E(0)

DO k=1,N
expression=expression*R (k)

END DO

Notice that we already needed the same loop to do the summation. So in
fact we can merge the two DO loops into one loop from k£ =1 to k = N. Do
not forget to initialize the sum to the zeroth-order term sum = E(0) = 1.
Look through the formulas given above to see what equations you need to
put in the loop for calculating F(0) and R(k).

1.2.2 Convergence

One issue was saliently forgotten in the discussion above. What should the
value of N be? You might say 100 terms should be enough to calculate the
sum with sufficient accuracy. Try this for different values of .

But the efficient and preferred approach is to calculate at each step of
the DO loop an estimation of the truncation error as the value of the first
discarded value, given in equation 3. To do this, use an infinite DO loop
(section 2.5.2) of the manual and at each iteration calculate the absolute
value of the next term to be added, |E(k)|. EXIT the loop if this value is
smaller than a certain precision ¢.

Most programs like this also should contain a guard against runaway
endless loops. If the number of iterations becomes larger than a certain
maximal number of iterations, you should exit the loop and print an error
message. For example:

INTEGER, PARAMETER :: max_iterations=100 ! Max # of iteratioms
REAL(KIND=wp) :: epsilon ! Error allowed
k=0
Summation: DO
k=k+1
! Calculate E(k)
IF(ABS(E(k)) < epsilon) THEN
WRITE(UNIT=%,FMT=%) ’’Convergence was achieved!’’
EXIT Summation
ELSE IF(k >= max_iterations) THEN
WRITE(UNIT=%,FMT=*) ’’Convergence not achieved!’’
STOP ! Or EXIT if you can figure out how?
ELSE
! Calculate the sum here
END TIF
END DO

1.2.3 Program Design

Let the user enter the value of x and and print the result on the screen.
Compare the answer to what Mathematica gives.You will find information
on how to write algebraic expressions in Fortran in section 1.4. Sections 1.3
and 2.2.1 on variables are essential to understand as well since everything in
Fortran is about variables. You will also need to understand in detail DO and
IF constructs, described in sections 1.7.1, 1.7.2 and 2.5.2. The function ABS
gives the absolute value (modulus) of a number.

Also, look in section 2.2.2 to see how you can easily and efficiently declare
the precision—single (4 bytes, 7 digits) or double precision (8 bytes, 15 dig-
its) for your REAL or COMPLEX variables using parametrized kind values. We
expect to see a KIND=wp attribute in all declarations of floating-point num-
bers. Then it is very easy to change the precision of the program variables by
simply changing the value of the kind integer wp. Fortran works with com-
plex numbers in the exact same way as with real numbers, so you shouldn’t
need to change anything in your program but switch REAL to COMPLEX in the
declaration part. Save both versions of the program if you finish on time.

In the next worksheet we will significantly improve the design of this
program by packaging and structuring the program and we will also use the
program to actually plot the error function.

1.3 Compiling with Fortran 90

We now have a Fortran 90 educational compiler that you can use on gauss.pa
Please use this compiler only for this class and work related to it! This com-
piler is envoked in the same way as g77, and is called £90-vast. Suffix your
files with the extension .£90, and preferably your executables with .x. For
example:

> £90-vast YourProgram.f90 -o YourProgram.x

This compiler translates Fortran 90 programs into g77 programs. Re-
member that Fortran 90 has free-form syntax, so you do not need to worry
about counting columns and spaces.

Compiled executables for worksheets can be found in the public direc-
tory /classes/phy201/ for our class on gauss. All solutions, examples and
libraries will be put in this location, so explore it every now and then! Also,
remember to ask your instructor or TA when you need help.

.msu.edu.

