

Numerical Calculation of $\text{erf } x$

Aleksandar Donev Dr. Phillip Duxbury

September 2000

In many physics applications involving the normal probability distribution function integrals of the form $\int_{-x}^x e^{-t^2/2} dt$ appear. This integral can not be solved in terms of standard transcendental and algebraic functions, so a new special function called the *error function* is introduced:

$$\text{erf } x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \quad (1)$$

The next few worksheets in this class will involve different ways of evaluating this function using Fortran 90. We will consider *truncated power series* as a means of evaluating 1. Notice that the argument of the error function can be a complex number, in which case the integral needs to be done in the complex plane.

1 Worksheet 1: Truncated Power Series

1.1 Mathematical Background

In this worksheet, you will write a Fortran program that will evaluate the error function of a real or complex number. You will use *Mathematica* to check your answers, because it has this function built in.

For small argument x , a good and efficient way to evaluate $\text{erf } x$ is to use the truncated power series:

$$\text{erf } x = \frac{2x}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)k!} x^{2k} \approx \frac{2x}{\sqrt{\pi}} \sum_{k=0}^{N-1} \frac{(-1)^k}{(2k+1)k!} x^{2k} \quad (2)$$

Equation 2 is a so called alternating power series and is theoretically convergent for all x . If one truncates the series at some high order term $N-1$, the error ε that is made is smaller the first discarded term:

$$\varepsilon \leq \frac{(-1)^N}{(2N+1)N!} x^{2N} \quad (3)$$

If x is significantly larger than 1 (5 or larger) that the series in 2 will converge very slowly. Other series expansions (asymptotic series) can be used in that case. You need not worry about this. If $|x| > 5$, assume that $\text{erf } x \approx 1$ and return this value without calculating the sum!

1.2 Fortran Implementation

The main characteristic of this first “real” Fortran code that you will write is that it will be an unstructured program—there will be no modules or procedures. For this assignment, you should read sections 1.1-1.4, 1.6-1.7 (exclude 1.6.4) in the FORTRAN 77 part of the manual and sections 2.1-2.3 (exclude 2.2.3) and 2.5 in the Fortran 90 manual. *Please make sure you have read through these carefully before coming to lab*—examples can be found there and will not be given to you unless they have new information in them.

You will receive more information on editing and compiling programs with a new Fortran 90 compiler that we just obtained, as well as some UNIX basics in class. You will be expected to use the more modern Fortran 90 syntax when applicable.

1.2.1 Summation Using DO Loops

In worksheet 1 you learned how to evaluate a sum of the form $\sum_{k=0}^N E(k)$, where $E(k)$ is some expression depending on k , using Fortran:

```
sum=E(0)
DO k=1,N
    sum=sum+E(k)
END DO
```

The only difference between this worksheet and the previous one is that the expression to sum is more complicated. Complication comes because of the presence of a factorial, which is not a built in function in Fortran. However, even if there were a factorial function in Fortran, the best way to evaluate $E(k)$ is not to directly compute $E(k) = \frac{(-1)^k}{(2k+1)k!}x^{2k}$. Rather, you can use the following recursive relation (which is very easy to derive from eq.1) giving the ratio $R(k)$ of two consecutive terms in the power series:

$$\frac{E(k)}{E(k-1)} = R(k) = -\frac{(2k-1)x^2}{(2k+1)k}, \text{ where } E(0) = 1 \quad (4)$$

Therefore, one can compute the expression $E(k)$ with the following simple loop:

```
expression=E(0)
DO k=1,N
    expression=expression*R(k)
END DO
```

Notice that we already needed the same loop to do the summation. So in fact we can merge the two DO loops into one loop from $k = 1$ to $k = N$. Do not forget to initialize the sum to the zeroth-order term $sum = E(0) = 1$. Look through the formulas given above to see what equations you need to put in the loop for calculating $E(0)$ and $R(k)$.

1.2.2 Convergence

One issue was saliently forgotten in the discussion above. What should the value of N be? You might say 100 terms should be enough to calculate the sum with sufficient accuracy. Try this for different values of x .

But the efficient and preferred approach is to calculate at each step of the `DO` loop an estimation of the truncation error as the value of the first discarded value, given in equation 3. To do this, use an infinite `DO` loop (section 2.5.2) of the manual and at each iteration calculate the absolute value of the next term to be added, $|E(k)|$. `EXIT` the loop if this value is smaller than a certain precision ε .

Most programs like this also should contain a guard against runaway endless loops. If the number of iterations becomes larger than a certain maximal number of iterations, you should exit the loop and print an error message. For example:

```

INTEGER, PARAMETER :: max_iterations=100 ! Max # of iterations
REAL(KIND=wp) :: epsilon ! Error allowed
...
k=0
Summation: DO
    k=k+1
    ... ! Calculate E(k)
    IF( ABS(E(k)) < epsilon ) THEN
        WRITE(UNIT=*,FMT=*) ''Convergence was achieved!''
        EXIT Summation
    ELSE IF( k >= max_iterations ) THEN
        WRITE(UNIT=*,FMT=*) ''Convergence not achieved!''
        STOP ! Or EXIT if you can figure out how?
    ELSE
        ... ! Calculate the sum here
    END IF
END DO

```

1.2.3 Program Design

Let the user enter the value of x and print the result on the screen. Compare the answer to what *Mathematica* gives. You will find information on how to write algebraic expressions in Fortran in section 1.4. Sections 1.3 and 2.2.1 on variables are essential to understand as well since everything in Fortran is about variables. You will also need to understand in detail `DO` and `IF` constructs, described in sections 1.7.1, 1.7.2 and 2.5.2. The function `ABS` gives the absolute value (modulus) of a number.

Also, look in section 2.2.2 to see how you can easily and efficiently declare the precision—single (4 bytes, 7 digits) or double precision (8 bytes, 15 digits) for your **REAL** or **COMPLEX** variables using parametrized kind values. We expect to see a **KIND=wp** attribute in all declarations of floating-point numbers. Then it is very easy to change the precision of the program variables by simply changing the value of the kind integer **wp**. Fortran works with complex numbers in the exact same way as with real numbers, so you shouldn't need to change anything in your program but switch **REAL** to **COMPLEX** in the declaration part. Save both versions of the program if you finish on time.

In the next worksheet we will significantly improve the design of this program by packaging and structuring the program and we will also use the program to actually plot the error function.

1.3 Compiling with Fortran 90

We now have a Fortran 90 educational compiler that you can use on `gauss.pa.msu.edu`. *Please use this compiler only for this class and work related to it!* This compiler is envoked in the same way as `g77`, and is called `f90-vast`. Suffix your files with the extension `.f90`, and preferably your executables with `.x`. For example:

```
> f90-vast YourProgram.f90 -o YourProgram.x
```

This compiler translates Fortran 90 programs into `g77` programs. Remember that Fortran 90 has free-form syntax, so you do not need to worry about counting columns and spaces.

Compiled executables for worksheets can be found in the public directory `/classes/phy201/` for our class on `gauss`. All solutions, examples and libraries will be put in this location, so explore it every now and then! Also, remember to ask your instructor or TA when you need help.