1 Worksheet 2: Program Organization

1.1 Reading

In this worksheet you will continue the work started in worksheet 1—evaluating
the error function of a real or complex number using truncated power series.
You will reuse much of the code written before. Use the Copy-Paste features
of the text editor to speed the process.

The main feature of your new program should be that it is well struc-
tured and organized. Two main features of Fortran will help you in that,
modules and procedures (functions and subroutines). Read sections 2.1 and
2.4 carefully.

In the next worksheet we will introduce arrays and file I/O, and plot the
error function using these new Fortran features.

1.2 Program Organization
1.2.1 Procedures

The main defficiency of the code you wrote in the first worksheet was that
the error function was not really a function. What we really want is to have
a function called Erf which we can simply envoke like the other intrinsic
Fortran functions, as in:

WRITE(*,*) Erf(1.0_wp)

Your first task therefore is to convert the previous code for evaluating the
error function into a procedure, preferably a FUNCTION. This implies that x
needs to be a dummy argument to this procedure, and the result should be
erf(x). You should have two different procedures, one for REAL and one for
COMPLEX arguments!. For example, the REAL function might start as:

FUNCTION ErfOfReal(x) RESULT (erf)
REAL (KIND=wp), INTENT(IN) :: x
REAL (KIND=wp) :: erf

END FUNCTION ErfOfReal

1 As you may notice, there is some redundant typing here since both routines have an
almost identical body. There is a good way of dealing with this using a tool called a text
preprocessor, but using Copy-Paste shoudl be enough for you.



The body of the function should be very similar to your previous code.
However, there are several important differences. First, remove all I/O state-
ments (such as WRITE). The user may call this function many times (in large
calculations) and does not want to see huge printouts. All the printing should
be done from the main program, while the procedure should provide enough
information to the caller so that a suitable action can be taken in case of
error, for example.

1.2.2 Modules

Now we have to introduce modules to make the above procedure complete.
In Fortran 90, all procedures should be packaged in modules. So make a new
MODULE in which you will place the above routine. It is also advisable that any
data shared by several procedures in the module and/or the main program,
such as the precision variable wp, the desired precision €, or the maximum
number of iterations, be placed in the module as module variables. That way
all the program units that USE the module and all the procedures inside the
module will be able to manipulate these variables. Remember that procedure
declarations come in the module after a CONTAINS statement.

Finally, a tricky point arises with the possibility that the truncated series
does not converge to within the desired accuracy. Two approaches are used
to flag such an error. The first makes the above FUNCTION into a pseudo
subroutine, and returns a logical variable which tells whether the summation
converged or not. This is essentially an approach widely used in C:

FUNCTION ErfOfReal(x, erf) RESULT(converged)
REAL (KIND=wp) , INTENT(IN) :: x
REAL (KIND=wp) , INTENT(OUT) :: erf
LOGICAL :: converged

IF(...) THEN

converged=.TRUE. ! If converged
ELSE

converged=.FALSE. ! If not converged
END IF

END FUNCTION ErfOfReal

This approach is elegant and allows better modular approach, but has

2



some deficiences (such as an extra argument passed each time). Another
simpler approach that is used often in scientific programming is to make a
global (module) logical variable, called a flag, and set the flag to .FALSE.
(raise the flag in case of error). Choose whichever approach you prefer, but
make sure you understand both. With the second approach your module
might look like:

MODULE Erf_Series
PUBLIC ! For now, use this statement
INTEGER, PARAMETER :: sp=KIND(0.0EO0), dp=KIND(0.0DO)
INTEGER, PARAMETER :: wp=sp ! Or wp=dp
INTEGER, PARAMETER :: max_iterations=100
REAL (KIND=wp) :: epsilon
LOGICAL :: converged=.TRUE.
CONTAINS
FUNCTION ErfOfReal(x) RESULT(erf)

END FUNCTION ErfOfReal
FUNCTION ErfOfComplex(x) RESULT(erf)

END FUNCTION ErfOfComplex
END MODULE Erf_Series

1.2.3 Main Program

The main program will now be much shorter, since all the computation is in
the above routines. The main program should prompt the user to enter z,
then call the function ErfOrReal or Erf0fComplex, and print the result. It
should also check if an error occured and print a message. For example:

PROGRAM Erf_Numerical
USE Erf_Series

REAL (KIND=wp) :: x, erf ! These are actual arguments
erf=Erf0fReal(x) ! Or complex

IF(.NOT.converged) &
WRITE(UNIT=*,FMT=*) ‘‘The result below has not converged’’

3



WRITE (UNIT=%,FMT=%) erf

END PROGRAM Erf_Numerical

1.3 Advanced: Generic Procedure Interfaces

To make the above program fully Fortran 90 powered, one can use generic
interfaces (these are not covered in the manual as they are more advanced
features). If you feel like you learned enough in this worksheet already, then
do not go throught his section!

In the above program we could not call Erf0fReal with a complex ar-
gument. What we want is a function like SIN, which can be called with
an arbitrary precision/type of the argument. To do this, one needs to write
into the module procedures for different combinations of types and precisions
(kinds) of the arguments, and than make a wrapper generic routine that en-
compasses all different cases. In the example above, this is done by putting
the following INTERFACE in the body of the module (before CONTAINS):

INTERFACE Erf
MODULE PROCEDURE ErfOfReal
MODULE PROCEDURE ErfOfComplex
I Other types of arguments
END INTERFACE Erf

Now in the main program one can write:

WRITE(*,*) Erf(1.0_wp) ! REAL argument
WRITE(*,*) Erf((1.0_wp,0.0_wp)) ! COMPLEX argument

1.4 Double Precision in g77 and f90-vast

Final note should be made that the above files are in double precision and
were compiled with £90-vast. However, as you should have noticed, when
you tried to set wp=dp and print the results, they still print with 7-8 digits.
This is because in g77 an explicit format descriptor (other than FMT=x) is
needed to print these correctly. See section 1.6.3 in the manual for details.
For example, FMT=¢ ¢ (D21.15) >’ can be used in this case.



1.5 Advanced: Notes on compiling

A quick note about something that came up in class and the manual also
emphasizes: Include the statement,

IMPLICIT NONE

in all your programs and modules after any potential USE statements
(which should come first always). This way the compiler will check and
make sure you have declared all your variables correctly.

By now you probably realized that you need to put all modules USEd by
other modules at the top of the file, before they are USEd. This is because
the compiler needs to compile these first, generate the needed information
and then USE it. In larger projects, like our now month-old error function
series is slowly becoming, it is wise to keep each module in a separate file
and compile it individually. Although it is not neccessary you do this, it will
be much easier and you will avoid a lot of copying and pasting and repetitive
work

This is how that is done: Assume we have a file Module.f90 which con-
tains a module used in the main program or another module that is in the
file Program.£90. First, just compile, and don’t produce any executables,
(the switch is —c) the module file:

> f90-vast -c Module.f90 -o Module.o

This will produce something called an object file Module.o from all the
subroutines in the module and make a file in the current directory Module.vo
with information about the module. These files will be used by all compila-
tions that use the module. Make sure you stay in the same directory if you
like your life to be easier. Now, you can compile the executable, and link the
produced object file:

> f90-vast Program.f90 Module.o -o Program.x

Compiler usage is not trivial, especially with Fortran 90, but the same
principles apply to any programming language, so it is well worth your time
to play with this compiler!



