1 Worksheet 5: Benchmarking Fortran Rou-
tines

In this worksheet you will use the previously developed module Erf_Series
for calculating erf(z) via a Taylor series. You will probably find it useful to
also reuse pieces of the your code from worksheet 4. In this section we will
learn how to time the execution time for a Fortran routine such as Erf0fReal.
Also, since our project is already getting big and we are reusing a lot of code,
you will learn how to compile modules separately and then link them. Along
the way, you will hopefully learn something about compiler optimization
switches as well.

You will need to read section 2.7.2 from the manual and review all the
previous material until you understand it. The next worksheet will introduce
arrays for the first time and we will use them to plot the results from this
worksheet using a Fortran graphics library called DISLIN.

1.0.1 Fortran 90 timing subroutine SYSTEM_CLOCK

The Fortran manual you got does not discuss this routine, but it is a simple
and very useful routine. The syntax of this subroutine is,

SYSTEM_CLOCK ([COUNT=clock_count] , [COUNT_RATE=clock_rate],...)

where both the COUNT and the COUNT_RATE arguments are optional. Each
computer and compiler have their own fast clock. This clock is ticking from
the start of the routine at a given number of ticks per second. The value of
this counting rate is returned in the integer clock_rate, while the current
value of the clock counter is returned in the integer clock_count.

This will become clear via an example. Let’s assume you want to calculate
the time it takes for a given action to complete. Then you would use:

INTEGER :: clock_start,clock_end,clock_rate
REAL (KIND=sp) :: elapsed_time

CALL SYSTEM_CLOCK(COUNT_RATE=clock_rate) ! Find the rate

CALL SYSTEM_CLOCK(COUNT=clock_start) ! Start timing
...Do your calculation here, for example:...
...erf=Erf0fReal(x)...

CALL SYSTEM_CLOCK(COUNT=clock_end) ! Stop timing

I Calculate the elapsed time in seconds:

elapsed_time=REAL((clock_end-clock_start)/clock_rate,sp)

1.1 Timing the Erf function

One of the difficulties of timing a rouine like Erf is that it is very fast—of the
order of several microseconds (us). Most clocks can only resolve milliseconds
or tens of milliseconds. The basic strategy in this case is to call the routine
n_repetitions times in a DO loop and time the total time for the execution.

Write a new module called, for example, Erf _Timing, that will contain a
single routine inside, say ErfTiming, which will take x as an argument and
return the time (in seconds) it took for the routine to execute (per instance).
Put this module in a separate file.

Your function may look something like (by now you should know how to
place this in a module and properly declare the arguments):

FUNCTION ErfTiming(x) RESULT(elapsed_time)

CALL SYSTEM_CLOCK(COUNT=clock_start)
DO i=1,n_repetitions
erf=ErfSeries(x)

END DO

CALL SYSTEM_CLOCK(COUNT=clock_end)

...Return the elapsed time in us...

.. .Remember to divide by n_repetitioms!...
END FUNCTION ErfTiming

Play with the value of n_repetitions. Reasonable values are anywhere
from 10,000 to 1,000,000. You will know whether the value is large enough if
the results of your program do not fluctuate when you execute the program
several times. You will know it is too large if you have to wait for more than
a few minutes for your program to complete.

1.2 Advanced: Compiler optimization and timing

The above will work OK in most cases, but it has some dangers that need to
be pointed out. Namely, smart compilers will see that the body of the DO loop
above does not change and so will not execute the loop many times but only
once. This falls under the great Fortran strength of compiler optimization
and is discussed in section 2.7.2 of the manual. This is especially likely in

Fortran 90, where the compiler can be informed (say by the PURE attribute)
that the Erf routine is “harmless”—it has no outside effects.

To ammend this, a common strategy is to turn compiler optimization off
when compiling only the timing routine (ErfTiming). On many compilers
this is done by adding a -00 switch when compiling (in words, set optimiza-
tion level to 0). For example:

> f90-vast -00 timing.f90 ...

1.3 The main program

Last time you wrote a program in which you calculated the error function
for n_points values in the interval [x_min,x_max] and wrote it to a file. This
time just remove the file I/O statements and replace the call,

erf=Erf0fReal(x) ! Or erf=ErfSeries(x)
with
elapsed_time=ErfTiming(x)

Then print the value of x and the elapsed time in microseconds (of course,
of you want to, you can simply write these to a file and do as least modifi-
cations as possible). Again, let the user enter the number of output points
n_points, x_min and x_max, and the precision €. For example, the output
of your code may look like:

[donev@gauss erf]$./erf_timing.x
Enter: x_min, x_max, n_points and error: 0.0,4.5,5,1E-6

x= 0.0000 time = 1.0000 us

x= 1.1250 time = 4.5000 us
X= 2.2500 time = 7.7000 us
X= 3.3750 time = 14.600 us
xX= 4.5000 time = 22.500 us

