1 Worksheet 6: Arrays and Libraries

In this worksheet we will reuse the code from the previous worksheet in which
we timed the execution time of our error function erf(z) for different values
of z. In that worksheet you simply printed the results to standard output in
the form of a table. But of course it would be nice to visualize these results.

We will now plot the execution time of Erf0fReal, t(z), versus x, using
a ready made graphics library called DISLIN and a module that Aleksandar
Donev made with easy-to-use plotting routines. This will introduce you
to using ready-made libraries of Fortran functions. Since the routines in
DISLIN accept arrays and strings as arguments, we will need to introduce
simple arrays, discussed in sections 1.9 (exclude 1.9.3 for now) and 2.6 (read
subsections 1,2,3,4 and 9) in the Fortran manual, as well as section 1.5 on
character strings (not neccessary).

1.1 Arrays

In the previous assignment, we had a DO loop (different people used different
strategies) which invoked the function ErfOfReal for several values of z,
storing the result into a temporary variable erf, printing the result, and
then going on to a new iteration.

Now, assume you really needed to save the results for some post-processing.
Since there are an unknown and possibly large number of values we need to
store, arrays are an obvious task for the choice. So we will declare two new
allocatable arrays, say x_values and elapsed_time, and store the values of
x and the values of ¢(z) in them. Make these arrays single precision since
this is the kind of arrays DISLIN accepts:

REAL (KIND=sp), DIMENSION(:), ALLOCATABLE :: x_values, elapsed_time
ALLOCATE (x(n_points) ,elapsed_time(n_points)) ! Allocate

dx=(x_max-x_min) /REAL(n_points-1) ! The step size
x=x_min ! Initialize
DO i=1,n_points
elapsed_time(i)=ErfTiming(x) ! In us
x_values(i)=x ! Store x in memory
x=x+dx ! Increment

END DO

Now, we have two arrays in memory holding the values x; and ¢(z;), and
we are going to pass them as arguments to plotting routines to vizualize them.
Before you try that though, print your arrays to make sure they contain the
correct numbers, simply using WRITE:

WRITE(*,*) ’’x 1?2 x_values
WRITE(*,*) ’’t(x):’’,elapsed_time

Only after this works, go to the next section.

1.2 Using external libraries

One of the most important things about Fortran is that there are literally
thousands of high-quality libraries of scientific (especially numerical) pro-
cedures written and ready-to-be-used in Fortran. Using these libraries is a
balance between knowledge and ignorance. A beginner need only know how
to use the libraries. In Fortran 90 terms, he needs to know the INTERFACE of
each of the routines in the library—is it a FUNCTION or a SUBROUTINE, how
many and what type arguments does it accept, what does each argument
mean, etc. As you use a library for more and more sophisticated tasks, you
need to learn more about its inner functionings. In this worksheet you will
go through the first two steps in using a library—Ilearning how to call the
routine you need from the provided documentation (in this case HTML),
and then actually using the routine with your Fortran compiler (this requires
linking libraries).

1.3 The SimpleGraphics module

The DISLIN library is a high-level graphics library that has a Fortran 90
interface. However using is not a trivial task. Therefore, we made a simple
module called SimpleGraphics that you need to USE it in your program.
This module has documentation provided in HTML format at:

http://computation.pa.msu.edu/phy201/Simple Graphics.html

Read this documentation and in particular take a look at the example
TestSimple_2D.£90. You need not worry about the 3D routine SurfPlot
at this time. As any documentation, this document may contain information

that you can not understand or need not use at the moment. But it is good
excercise to learn how to extract the relevant info from the document.

We will not give an example of using this library in this worksheet. The
example in the documentation is enough. Just remember which arrays you
need to pass to the routine Plot2D as x and y data points.

1.4 Compiling the program

After you write your program that USEs the module SimpleGraphics and
its routines, you need to compile it. This process is tricky, so we have made
some shortcuts for you.

First, at the Linux command prompt, type:

> source /classes/phy201/SimpleGraphics.init

which will read in an environmental variable $DISLINvf90 which has all
the neccessary commands to link in the appropriate files (if you logged to
gauss using your class account this would have been done automatically!).
Just append $DISLINvE90 at the end of your compilation line, as in:

> f90-vast erf_plot.f90 -o erf_plot.x erf_series.o erf_timing.o $DISLINvI0

The last worksheet explained why you need to link the .o files. Compiled
working programs for both the example TestSimple_2D.f90 and erf_plot.f90
are in our /classes/phy201 directory under the same name but with a .x
extension. Try these programs to see how they work. Notice the proper
labeling of the axis, the labels and the legends on the plots. Add as many of
these embelishments as you have time to.

