Flectromagnetism with Fortran and
Mathematica

Aleksandar Donev Dr. Phillip Duxbury
October 2000

We will now start a new series of worksheets dealing with electrostatic
and electrodynamics problems in Fortran 90 and Mathematica. Mathematica
is very often used in order to check the validity of results obtained via alter-
native methods. But Mathematica is also very useful by itself and so these
worksheets will remind you of its syntax and usage in visualization, solving
ODE’s, etc. Remember to look in the on-line help for clues.

In the next two class periods we will plot the electrostatic potential and
field of a set of static charges. Take your time with the worksheet and do
not rush. It is more important that you understand the concepts discussed
than to finish everything, since these will appear frequently throughout the
semester. After you finish this worksheet, we will look at electrodynamics of
charged particles in electromagnetic fields.

1 Worksheet 7: Electrostatic potential and
field of a system of charges

In this worksheet, you should use both Mathematica and Fortran 90 to plot
the electric potential and field of a distribution of n charges with differ-
ent magnitudes ¢; placed in the zy plane at points (z;,y;). The number of
charges, their magnitudes and their positions can either be entered by the
user or you can fix their values in the program. For example, you could
place four unit charges at the corners of a unit square with alternating signs.
Its your choice, but be consistent between your Mathematica worksheet and

Fortran 90 program, so you can compare the solutions. Remeber that the
potential of a single charge is,

Vir)=— (1)
while the electric field is given by:

E(r) — Kqr

r3 (2)

Here bold letters denote a vector, while regular letters are scalars. For
this worksheet, just take K = 1. Also remember that the potential and field
of a group of charges is the sum of the individual potentials and fields.

1.1 Solution in Mathematica

Store the magnitudes of the charges in an array (lists), and store their posi-
tions in a two-dimensional array (nested list). For example:

q={1 ’_2};
r={{1,2},{0,-1}};

Now define a Mathematica function (operator) to evaluate the potential
at a given point (vector) r = (z,y). Try to invise an operator that will work
with any q and r.

Just to remind you, here is an example of defining an operator in Math-
ematica that calculates the square of an expression x:

sqrlx_]:=x"2

You may also need a function to calculate the length of a vector r, r = ||r||.
You can use, for example, a dot product (.) to do this:

magnitude[r_] :=Sqrt[r.r]

Plot the electric potential both as a surface (P1ot3D in Mathematica) and
as a contour plot (ContourPlot) and compare the two. Which one is better
and why? Try to make both plots look as nice as possible. Then plot the
electric field as a vector field (PlotVectorField loaded with the package via
<< Graphics‘PlotField®).

1.2 Fortran solution

Plotting the potential in Fortran involves more work then doing it in Mathe-
matica. However, try to observe the possible advantages of Fortran. We will
not introduce new material in this worksheet. You will need to use simple
arrays extensively though, so review this material (sections 1.9.1, 1.9.2, 2.6.1,
2.6.2, 2.6.3, 2.6.4 and 2.6.9 in the manual. In particular, try to understand
the concept of array constructors, as these can make your life much easier
for this assignment). The positions of the charges will be stored in a two-
dimensional array (matrix), and this is the first time you encounter these in
this class. They are no different from vectors, at least at this level of usage.

1.2.1 Overview of the program: The “big” picture

In the next three worksheets we will not introduce any new Fortran material.
We will in fact use all of the things that we learned with the error function
project to solve some numerical problems in electrostatics. Some of the things
you learned so far are essentials in Fortran 90 and you need to understand
them well. These include variable declaration and basic I/O, the concept
of a main program and what it does, what modules are and how we use
them to encapsulate (organize and protect) global (module) variables and
procedures, how to declare procedures and their arguments (this particularly
encompases understanding which data are private to a procedure and which
are global and why), how to declare and use simple one and two dimensional
(rank-1 and rank-2) arrays, and how to read the documentation (interfaces)
for a ready-made library and use the library to solve a problem. You may
find that additional Fortran 90 features (un)documented in the manual may
make life much easier, but it won’t be necessary to use them.

The physics applications that we will explore in these final worksheets
will all have the same global structure for the Fortran code. The main com-
putational routines, be this plotting or numerical integration or numerical
solution of differential equations, will be ready-made and provided for you
as a very easy-to-use Fortran 90 module with good documentation and ex-
amples. These mini libraries know nothing about physics, they are compu-
tational libraries! If you actually want to learn how these routines work and
how to write them, take Numerical Analysis or PHY480.

Now, all of these ready-made routines will accept some input argument
from the user that contains the physics of the process. We have chosen to

make this a procedure (usually a FUNCTION) that calculates some physical
quantity (this is a frequent situation). For example, in today’s worksheet
you will need to write a function V' that calculates the electric potential at a
given point (x,y), next time you will need to write a function that evaluates
the Bio-Savart contribution to the magnetic field at a given point, after that
you will need to write a function that evaluates the force on a particle moving
in an electromagnetic field, etc. Please review your basic electrostatics and
magnetostatics for this before coming to lab.

The main point is that this function that you will write will contain all
the relevant physics to the problem. As such, this function should be placed
in a separate module which should also contain in it the relevant physical
variables (such as charges, currents, fields, etc.) that this procedure will
need. Then the main program will USE this module and assign values to these
physical variables (say the user will enter them). You should always make
only those variables that both the procedure and the main program access
global (module) variables—the rest should be private to the function or the
main program. Finally, the main program will call the calculation/plotting
ready-made routines and print the results if necessary.

We hope this gives you an idea of how this works in Fortran. Mathematica
is a great tool, but most people use it without ever understanding its inner
workings and thus use it inefficently. But with Fortran everything is trans-
parent and you need to have a clear picture of what and why you are doing.
Finally, we should emphasize that we chose to stick with the methodology
outlined in this section in all of the remaining worksheets not because it will
always be the best choice, but simply so that we do not overload you with
many different strategies.

1.2.2 Methodology

We will do the plotting in Fortran similarly to the way we did it in Mathe-
matica. In particular, you should make a new module and place a function in
it that gives the electrostatic potential at a certain point (x,y). The interface
of this function (the name is irrelevant) should be:

FUNCTION V(x,y) RESULT(U)
REAL (KIND=sp), INTENT(IN) :: x,y
REAL(KIND=sp) :: U
...Calculate U=V(x,y) here...

...5um the potential contributions from each charge...
END FUNCTION V

It is up to you to devise a way of calculating the potential inside this
function. The best and recommended approach is to make arrays that will
hold the magnitudes and positions of the charges, just like we did in Math-
ematica, and then sum the individual contributions to the potential from
each charge. To insure that you never divide by zero, add a small constant ¢,
called TINY(0.0_sp) in Fortran 90, to the denominator in equations 1 and
2.

This function V will need to know the positions and magnitudes of the
charges. Since these can not be passed to the procedure (because the plotting
routine described below only accepts functions with the above interface), you
should make these global (module) variables in the module where you put
the function V(x,y). That way the main program can work with these arrays
as well. Now, pass tthe function V as an argument to the plotting routines
described in the next section, which will calculate this function at a grid of
points and invoke the DISLIN graphics library to render the plot.

After this works and you get what you consider to be a good plot of
the potential, move to plotting the electric field. You will need to make a
function, for example E, that returns the two components of the electric field
E(z,y) for given x and y. The result should in fact be an array of length 2,
in the form (/E;,E,/):

FUNCTION E(x,y) RESULT(E_)
REAL (KIND=sp), INTENT(IN) :: x,y
REAL (KIND=sp) , DIMENSION(2) :: E_
...Calculate E_=E(x,y) here...
END FUNCTION V

There is many possibilities for coding equations 1 and 2 in Fortran, some
faster than others, some more elegant than others. For those that like try-
ing new things, we would suggest reading section 2.6.5 and 2.6.6. Using
array operations in Fortran 90, it is possible to code the above formulas so
they almost fully resemble the Mathematica coding, but since the number of
dimensions is fixed, faster solutions exist.

1.2.3 Extra Help: The Module Charges

The first and most challenging task in this worksheet is to write the module
that will contain the function V' (z,y). First, you need to decide what vari-
ables this procedure will need other than its input arguments x and y and
decide on how you are going to represent these variables. Surely the program
will need to know the number of charges, their magnitudes and their posi-
tions. The number of charges n_charges is a simple integer, the magnitudes
can be easily represented by a simple one-dimensional array of real numbers
q(n_charges), but the the positions of the charges give you more room to
experiment. For example, you can have two (three) arrays holding the = and
y coordinates of each charge, x(n_charges) and y(n_charges), or you can
merge these two into a two-dimensional array r(2,n_charges), where the
first row will be the x and the second row the y coordinates.

You can make all the arrays either allocatable (in which case the main
program can do the allocation). If you want to make them of fixed size, make
sure that simply changing n_charges will be enough to work with a different
number of charges:

INTEGER, PARAMETER :: n_charges=2 ! Change this later
REAL (KIND=wp) , DIMENSION(n_charges) :: q ! This stays the same

Here is an outline of a possible module Charges:

MODULE Charges
PUBLIC
INTEGER :: n_charges ! The number of charges present
! In this program, q is of shape [n_charges],
! while r is of shape [2,n_charges]

REAL (KIND=wp) , ALLOCATABLE, DIMENSION(:) :: q ! The magnitudes
REAL (KIND=wp) , ALLOCATABLE, DIMENSION(:,:) :: r ! The positions

CONTAINS
I This function gives the potential at the point <x,y> by
! summing over the contributions from the individual charges:
FUNCTION V(x,y) RESULT(U)
REAL (KIND=wp), INTENT(IN) :: x,y

REAL (KIND=wp) :: U
END FUNCTION V

! This function gives the electric field at the point <x,y>:
FUNCTION E(x,y) RESULT(E.)

REAL (KIND=wp), INTENT(IN) :: x,y

REAL (KIND=wp) , DIMENSION(2) :: E_

END FUNCTION E

END MODULE Charges

We have not given the body of the function V(z,y) and E(m, y) here.
There are a lot of options. You know that you need to perform a sum over
the contributions from different charges (probably using a DO loop). You can
calculate the magnitude (distance) r appearing in V' = £ in different ways.
For example, here is the distance from the observation point (x,y) to the 't
charge:

dr = SQRT((x-r(1,i))**2 + (y-r(2,i))**2) + TINY(0.O0_wp)

1.3 The main program

In the main program, you will need to assign values to the magnitudes
and positions of the charges. For the magnitudes, you can use element-
by-element assignment (see below) or array-constructors. For the positions
of the charges, you can first set all of them to zero, and then do an element-
by-element assignment to the non-zero entries (see below). You can also use
array constructors for the positions as well. However, array constructors al-
ways return rank-1 arrays. You can use the intrinsic function RESHAPE to
make this a rank-2 array:

r = RESHAPE(SOURCE = (/ (/1.0,2.0/), (/-1.0,0.0/), &
(/-.5,-1.0/), (/2.0,-1.0/) /), &
SHAPE = (/2,n_charges/))

Other approaches include letting the user enter these with READ (in column-
wise order for rank-2 arrays) or assigning random numbers (for 10 charges
this may be a choice):

CALL RANDOM_NUMBER(r) ! Intrinsic function for random numbers
For example, one possible strategy is:

PROGRAM Electrostatics
USE Charges

n_charges=2

ALLOCATE(q(n_charges) ,r(2,n_charges))

I A dipole:

q(1)=1.0_wp

q(2)=-1.0_wp

! Positions:

r=0.0_wp

r(1,1)=-1.0_wp

r(1,2)=1.0_wp ! What are the positions of the charges? Picture?

CALL FunPlot3D(f_xy=V,...)

END PROGRAM Electrostatics

After these values have been assigned, the main program needs to call
the plotting routines from the FunGraphics module and pass the functions
V and E from the module Charges as arguments. The examples in the
documentation are sufficient help for this.

Please ask your TA or instructor if this is unclear. The remaining two
worksheets will follow the exact same strategy, only with different physics.
Understanding this one one will save us all time and frustrations, even if you
need an extra week to finish it.

1.3.1 The FunGraphics module

In the last worksheet you learned how to make a simple 2D plot with the
SimpleGraphics module. In 3D, making all the required arrays manually
and assigning their values is more cumbersome, so we made a new module
with pre-compiled routines that will plot a function instead of an array, thus
simplifying the usage significantly. This FunGraphics module is documented
in:

http:/ /computation.pa.msu.edu/phy201/FunGraphics.html

You should now get a feeling of how these routines work and be able to
use the routines FunP1ot3D and/or FunPlotContour (we recommend the one
you determined to be nicer in your Mathematica code) to plot the potential
V(z,y) and the routine FunVectorPlot2D to plot the electric field. The
example given in the above wepage, FunPlot_3D.f90, is very helpful. The
executable of the example is in the file /classes/phy201/FunPlot_3D.x,
and the code is also there. You only need to change some of the numbers
and pass the functions you just made as an argument, as in:

CALL FunPlot3D(f_xy=V,xy_range=(/x_min,x_max,y_min,y_max/),...

The same goes for the contour and vector plot as well. Play with the plots
until they at least partially resemble the Mathematica plots and compare the
two. If you need more time to finish this worksheet, talk to us.

1.3.2 Miscellaneous

Notice that we do not give a lot of pseudocode here. This is because you
should already have an understanding of how to make a module and encap-
sulate functions in it and then USE the module in a program. The example
file erf_fun_plot.f90 in /classes/phy201 solves last week’s assignment
using the FunGraphics module and can be very helpful to look at. The ex-
ecutable solution to this worksheet is in the file charges.x. The procedure
for compiling and linking the program is the same as in the last worksheet.

Notice how we have used all the things we learned so far (with the error
function project), only now in a physics context. Tell us how you feel about
these worksheets!

