1 Worksheet 8: Magnetic Field of a Ring

In this worksheet you will use Mathematica and Fortran to calculate the
magnetostatic field of a current-carrying ring by numerically integrating the
Bio-Savart law. You will need to do the bulk of the calculation in both
Mathematica and Fortran, and you will have two weeks to complete this
worksheet. There will be no new Fortran material in this worksheet, and
as usual Mathematica’s on-line help will be enough. Make sure you review
basic magnetostatics, in particular Bio-Savart’s law for the magnetic field of
a current-carrying wire.

1.1 Problem Formulation

Consider current I flowing in a circular ring of radius R = 1 unit. Also
assume that K = % = 1 in these units. Choose the ring so that it is
centered at (0,0,0), and that it lies in the xy plane. Use the Biot-Savart
law to find the magnetic field due to this current ring at an arbitrary point
(x,0,2) in the zz plane (i.e. a plane perpendicular to the plane of the ring).
Note that this gives the field at any point since there is cylindrical symmetry
about the z axis.

A few reminders:

The contribution from a small directed element of length dl of a wire
carrying a current / to the magnetic field at a point 7’is given by Bio-Savart’s
law:

L opldlx 7
db =" ——3 (1)

Thus, to find the total magnetic field at a given point 7em = (2,0, 2)
caused by a current-carrying ring, one needs to integrate the expression in
equation 1 (separately for each component, of course) over elements of the
ring at position Ting, ™ = Tpoint — Tring (draw a figure to help you understand
this). For a unit-radius ring in the zy plane, we can take the integration to
be over the polar angle 6, so that ,,, = (cosf,sinf,0). Also, for such a

ring, dl = (£ X Tying) d, where 2 is the unit vector in the z direction (i.e.
perpendicular to the plane of the ring).

Now you have all the expressions you need to write down (in a few lines
using Mathematica—read next section if you wish) an expression giving dB
from the element of wire at a polar angle . This should have the form

1

dB = By - df. Show your expression for By to your professor or TA before
working on the rest of this worksheet. Then, the total magnetic field at the
point Tpeime is simply the integral:

_, P2

B = By -do (2)
0=0

1.2 Mathematica Solution

Using the above expressions and the cross-product function Cross find the
expression for By as a function of x, z and 6. Then, using the function
Integrate, integrate this expression component-by-component over 6 =
[0,27] to obtain the expression for B. These integrals are so called ellip-
tic integrals and Mathematica can evaluate them. Choose a sample point,
for example x = 0.3 and z = 0.6, and evaluate the magnetic field at that
point.

In many cases an exact integral can not be found and one would then use
numerical integration (NIntegrate). Try this and see if you get the same
result as above. Which result had higher precision? Which do you think was
evaluated faster?

Now you can also plot the magnetic field of this ring in the zz plane as a
vector field. This should be a single line in Mathematica.

1.3 Fortran Solution
1.3.1 Trapezoid-Rule for Numerical Integration

It was purely fortunate (due to the relatively simple geometry) that the
integrals above could be evaluated analytically. In most cases this has do
be done numerically. Fortran libraries by far surpass Mathematica in speed
when it comes to such numerical manipulations, but they are not nearly as
easy to use.

Before we attack the integration problem in eq. 2, we need to generalize
it to a standard problem that can be applied to a variety of problems and
that is well studied in numerical analysis,

I= Lbf(x)dx (3)

where f(z) is more-or-less a well behaved function of x in [a,b]. There
are many so-called quadrature formulae for numerically calculating I, such
as Newton-Cotes, Gauss and Romberg quadrature. A nice desktop refer-
ence for these and many other numerical algorithms is “Numerical Recip-
ies in FORTRAN 77 and Fortran 90”, found at, for example, http://lib-
www.lanl.gov/numerical/.

The simplest, yet robust, quadrature is the trapezoid-rule integration. It
starts by splitting the interval [a, b] into N intervals of equal length h = ‘a%[
with positions x; = a + ih, 0 <7 < N. Then it is true that,

[7@e 1S @)+ 515 + 1)+ 0w ()

where O(h?) denotes error of order h?. It is easy to see that it is not
at all difficult to code 4 in Fortran. Write a function, say Trapezoid, that
integrates a given function f(z) on [a,b]. We've had examples of passing
procedures as arguments to procedures in the graphics routines, and although
this is not in the manual, it’s not hard to understand. All one needs to do is
provide an interface for the procedure:

FUNCTION Trapezoid(f,a,b,N) RESULT(I)
INTERFACE
FUNCTION f(x) RESULT(f_x) ! Function to be integrated
REAL, INTENT(IN) :: x
REAL :: f_x
END FUNCTION f£f
END INTERFACE
REAL, INTENT(IN) :: a,b ! The bounds
INTEGER, INTENT(IN) :: N

...Calculate I here using trapezoid rule using f and a DO loop...

END FUNCTION Trapezoid

Test this procedure on some simple example you already know the ana-
lytical answer for. Next we describe a ready-made quadrature library. You
don’t have to use it, but it isn’t much different from using Trapezoid.

1.3.2 Advanced: Module Numerical_Integration

As usual, we made a simple wrapper routine for numerical integration, AdaptiveIntegral,
which in turn calls a ready-made adaptive quadrature Fortran library taken
from Adam Miller’s Fortran 90 website. The function is in the module
Numerical_Integration, which is in our class directory and you must USE
in your program. This function accepts a user function f to be integrated
in a given finite range [a,b] and returns the integral to within the desired
relative or absolute precisions relative_error and absolute_error (these
are both optional, so you don’t need to specify them). An estimate of the
error in the result is returned in the argument error_estimate, and the
function also returns an error signal if the integration failed (this is placed
in the module variable error_flag and you need not worry about it)
The interface to this function and the module variables are given here:

module Numerical_Integration
use Precision, only: wp ! wp=dp in the module Precision
use Adapt_Quad ! Read-made library

private

public :: Adaptivelntegral ! The main routine

integer, save, public :: error_flag=0 ! An error flag (0 is success)
contains

function Adaptivelntegral(f,a,b,error_estimate, &
relative_error,absolute_error) &
result(integral)

! £ is the function we want to integrate:
interface
function f(x) result(f_x)
use Precision, only: wp
real (kind=wp), intent(in) :: x
real (kind=wp) :: f_x
end function f
end interface
real (kind=wp), intent(in) :: a,b ! The interval of integration
real (kind=wp), intent(out) :: error_estimate ! Estimate of error
! The desired errors (they are optional):

4

real (kind=wp), intent(in), optional :: relative_error,absolute_error
real (kind=wp) :: integral ! The result of the integration

end function AdaptivelIntegral

end module Numerical_Integration

It is important to point that in the module Precision it is defined that
wp=dp, so you need to use double precision in your main program as well (this
library only came in double precision). There will be no examples given of
how to call this routine. You should be able to read the above specifications
and call this function without any problems.

1.3.3 The Module B_theta

Just like the plotting routines in the FunGraphics module, the above inte-
gration routine needs to be supplied with a user function to integrate. In
our case, this function will be related to ég, since this is the integrand we
need to integrate. Use the expression that Mathematica gave you for By to
write two functions, say dBx and dBy, that have the same interface as the
function £ in the routine AdaptiveIntegral (see above) and return the x
and z components of By respectively.

These will accept € as an input argument (why?), but will need to know
the values of x and 2. By placing the routines in a module, say B_theta, and
making x and z global public variables in this module, the main program
can set these values (say the user enters them) before calling the routine
AdaptivelIntegral, and all should work well. Re-read the description of this
methodology given in the last worksheet so you understand how it works.

Now compile and run your program and evaluate the magnetic field at
the same point as you did in your Mathematica worksheet. Compare the two
results.

1.3.4 Plotting the Magnetic Field in Fortran

Once you make the above work, if you have time and will, you can plot
the magnetic field from within Fortran using the FunContourP1lot2D routine
from the last worksheet. If you want some Fortran challenge, do this and
we will help you. One thing to carry in mind is that the plotting routines
accept only single precision arguments, while the integration routines above

accept only double precision variables. So you need to be more careful this
time than the usual REAL (KIND=wp) in all declarations.
You will get extra credit applied toward your final exam if you do this!

1.3.5 Compiling the Program

As usual, the ready-made files are in our class directory. Before you compile
your code, execute:

source /classes/phy201/Integration.init

and then append a $ADQDvEOO0 (stands for adaptive quadrature with
VAST {90) to every compilation line. If you use the graphics modules as well
source the file SimpleGraphics.init as well and append a $DISLINvE90 as
well.

