Scientific Computing:
Numerical Integration

Aleksandar Donev
Courant Institute, NYU!
donev@courant.nyu.edu

ICourse MATH-GA.2043 or CSCI-GA.2112, Fall 2019

Nov 7th, 2019

A. Donev (Courant Institute) Lecture IX 11/7/2019

Outline

@ Numerical Integration in 1D

© Adaptive / Refinement Methods

© Higher Dimensions

@ Conclusions

A. Donev (Courant Institute) Lecture IX

Numerical Integration in 1D
Numerical Quadrature

@ We want to numerically approximate a definite integral

J= / ()

@ The function f(x) may not have a closed-form integral, or it may
itself not be in closed form.

@ Recall that the integral gives the area under the curve f(x), and also
the Riemann sum:

n—00 4

n
lim Z f(t;)(X;+1 — X,') = J, where x; < t; < Xit+1
i=0

@ A quadrature formula approximates the Riemann integral as a
discrete sum over a set of n nodes:

J=~J, = Zn:a,’f(x,')
i=1

A. Donev (Courant Institute) Lecture IX 11/7/2019 3/27

Numerical Integration in 1D
Midpoint Quadrature

Split the interval into n intervals of width h = (b — a)/n (stepsize), and
then take as the nodes the midpoint of each interval:

xk=a+ (2k—-1)h/2, k=1,...,n

Jn=hY_f(x), and clearly lim Jp = J
k=1

A. Donev (Courant Institute) Lecture IX 11/7/2019 4 /27

Numerical Integration in 1D
Quadrature Error

@ Focus on one of the sub intervals, and estimate the quadrature error
using the midpoint rule assuming f(x) € C(®);

. X;+h/2
el) = / f(x)dx | — hf(x;)
x;i—h/2

e Expanding f(x) into a Taylor series around x; to first order,
1
Fx) = () + F() (x = xi) + 57 [n()] (x =)7,

The linear term integrates to zero, so we get

X,'+h/2
/‘ Fx)(x —x) =0 =
x;i—h/2

. 1 X,'—‘rh/2
) = = / £ n(x)] (x — x;)?dx
2 X,'—h/2

A. Donev (Courant Institute) Lecture IX 11/7/2019 5/27

Numerical Integration in 1D
Composite Quadrature Error

@ Using a generalized mean value theorem we can show
(1) 1" 1 2 h 1"
e =1 [5]5 (x = xi) dxzﬂf [] forsomea< &< b
h

@ Now, combining the errors from all of the intervals together gives the
global error

b n 3 L
5_/ f(X)dX—hZf(Xk):J_Jn:izf//[gk]
a k=1 24 k=1

@ Use a discrete generalization of the mean value theorem to prove
second-order accuracy

Ezhjn(f”[g]): b_a-hz-f”[g] for some a < ¢ < b
24 24

A. Donev (Courant Institute) Lecture IX 11/7/2019 6 /27

Numerical Integration in 1D
Interpolatory Quadrature

Instead of integrating f(x), integrate a polynomial interpolant
¢(x) ~ f(x):

Midpoint rule Trapezoid rule

v
Vi

Simpson's rule Composite Simpson's rule

Figure 6.2. Four quadrature rules.

A. Donev (Courant Institute) Lecture IX 11/7/2019 7/27

Numerical Integration in 1D
Trapezoidal Rule

e Consider integrating an interpolating function ¢(x) which passes
through n + 1 nodes x;:

o(x;) =yi=f(x;) for i =0,2,...,m

o First take the piecewise linear interpolant and integrate it over the
sub-interval l; = [x;_1, x;]:

Yi—)/ifl(

X — Xj)
Xj — Xj—1

W(x) =y +

to get the trapezoidal formula (the area of a trapezoid):

(1) _ fxic1) + ()
[, sy = st)

A. Donev (Courant Institute) Lecture IX 11/7/2019 8 /27

Numerical Integration in 1D
Composite Trapezoidal Rule

\m
(

b ——————

e ———
e = ——

b)-

vt

@ Now add the integrals over all of the sub-intervals we get the
composite trapezoidal quadrature rule:

b h <
/ f(x)dx ~ 5 E [f(xi—1) + f(x;)]
a i=1

- g [£(x0) + 2 (x1) + - -+ + 2f (xp-1) + f(xn)]

with similar error to the midpoint rule.

A. Donev (Courant Institute) Lecture IX 11/7/2019 9 /27

Numerical Integration in 1D
Simpson's Quadrature Formula

@ As for the midpoint rule, split the interval into n intervals of width
h = (b — a)/n, and then take as the nodes the endpoints and
midpoint of each interval:

xx =a-+kh, k=0,...,n
% =a+(2k—1)h/2, k=1,....n
@ Then, take the piecewise quadratic interpolant ¢;(x) in the
sub-interval /; = [xj_1, xj] to be the parabola passing through the
nodes (xi—1,yi-1), (xi,¥i), and (Xi, %)
@ Integrating this interpolant in each interval and summing gives the
Simpson quadrature rule:

Js = 2 [F(x0) + 4F (%) +2f (1) + - - + 2f (xo—1) + 4F (%a) + F(xn)]

(b—a)
2880

A. Donev (Courant Institute) Lecture IX 11/7/2019 10 / 27

e=J—Ji=— Cht) (g,

Numerical Integration in 1D
Gauss Quadrature

@ To reach spectral accuracy for smooth functions, instead of using
higher-degree polynomial interpolants (recall Runge’s phenomenon),
let’s try using n non-equispaced nodes:

J=J,= i W,'f(X,')
i=0

@ It can be shown that there is a special set of n+ 1 nodes and weights,
so that the quadrature formula is exact for polynomials of degree up

tom=2n—-1,
b n
/ pm(x)dx = Z Wi Pm(xi)-
a i=0

@ This gives the Gauss quadrature based on the Gauss nodes and
weights, usually pre-tabulated for the standard interval [—1,1]:

b b—a
/af(x)dx% 5 gw,-f(x,-).

A. Donev (Courant Institute) Lecture IX 11/7/2019 11 /27

Numerical Integration in 1D
Gauss Weights and Nodes

@ The low-order Gauss formulas are:

n:l:/_llf(X)dX%f(‘;g> +f<J1§>
- :/1) gf (‘/51?) +§f(o>+§f (\/ﬁ>

) 5

@ The weights and nodes are either tabulated or calculated to
numerical precision on the fly, for example, using eigenvalue
methods.

@ Gauss quadrature is very accurate for smooth functions even with
few nodes.

e The MATLAB function quadl(f, a, b) uses (adaptive) Gauss-Lobatto
quadrature.

@ An alternative is to use Chebyshev nodes and weights, called
Clenshaw-Curtis quadrature (exact for polynomials of degree n).

A. Donev (Courant Institute) Lecture IX 11/7/2019 12 /27

Adaptive / Refinement Methods
Asymptotic Error Expansions

@ The idea in Richardson extrapolation is to use an error estimate
formula to extrapolate a more accurate answer from less-accurate
answers.

@ Assume that we have a quadrature formula for which we have a
theoretical error estimate:

n
Jh= Zoa,-f(x,-) =J+ah”+0 (hp+1)
i=1
@ Recall the big O notation: g(x) = O (hP) if:
J(ho, C) > 0s.t. |g(x)| < C|h|° whenever |h| < hg
@ For trapezoidal formula

b —

a2 e 2
o7 -h'f[f]—O(h).

E =

A. Donev (Courant Institute) Lecture IX 11/7/2019 13 /27

Adaptive / Refinement Methods

Richardson Extrapolation

@ Now repeat the calculation but with step size 2h (for equi-spaced
nodes just skip the odd nodes):

J(h) = J+ah® + O (h°11)
J(2h) = J + a2PhP + O (hP11)

@ Solve for v and obtain

_ 2PJ(h) — J(2h)

p+1
J= 0 + O (hP*),

which now has order of accuracy p + 1 instead of p.

@ The composite trapezoidal quadrature gives J(h) with order of
accuracy p =2, J(h) = J+ O (h?).

A. Donev (Courant Institute) Lecture IX 11/7/2019 14 /27

Adaptive / Refinement Methods
Romberg Quadrature

@ Assume that we have evaluated f(x) at n = 2" + 1 equi-spaced
nodes, h = 2~™(b — a), giving approximation J(h).

@ We can also easily compute j(2h) by simply skipping the odd nodes.
And also J(4h) , and in general, J(29h), g =0,..., m.

@ We can keep applying Richardson extrapolation recursively to get
Romberg’s quadrature:
Combine J(29h) and J(2971h) to get a better estimate. Then

combine the estimates to get an even better estimates, etc.

J,,()::/(b_a>, r=0,...,m

2I’

4q+1Jr7q — rilaq

Jrg+1 = 20+ 1 , =0,....m—1 r=q+1,....m

o The final answer, Jym=J+ O (h2(m+1)) is much more accurate
than the starting Jy0 =J+ O (h2), for smooth functions.

A. Donev (Courant Institute) Lecture IX 11/7/2019 15 / 27

Adaptive / Refinement Methods

Adaptive (Automatic) Integration

@ We would like a way to control the error of the integration, that is,
specify a target error ¢, and let the algorithm figure out the
correct step size h to satisfy

‘5’ SJ Emax;

where ¢ is an error estimate.

e Importantly, h may vary adaptively in different parts of the
integration interval:
Smaller step size when the function has larger derivatives.

@ The crucial step is obtaining an error estimate: Use the same idea as
in Richardson extrapolation.

A. Donev (Courant Institute) Lecture IX 11/7/2019 16 / 27

Adaptive / Refinement Methods

Error Estimate for Simpson’s Quadrature

@ Assume we are using Simpson's quadrature and compute the integral
J(h) with step size h.

@ Then also compute integrals for the left half and for the right half
with step size h/2, J(h/2) = Jy(h/2) + Jr(h/2).

1

—— . p5.F4)

2880 ()
h*

= J(h/2) - % v F@ (&) + @ (¢r)| .

@ Now assume that the fourth derivative varies little over the interval,
) (&) = f4) (&) = £(4) (&), to estimate:

1
%'hs f(4)() 7[J() — J(h/2)]

J=J(h) -

J(h)2) — Jm e = R [J(h) — J(h/2)].

A. Donev (Courant Institute) Lecture IX 11/7/2019 17 / 27

Adaptive / Refinement Methods
Adaptive Integration

@ Now assume that we have split the integration interval [a, b] into
sub-intervals, and we are considering computing the integral over the
sub-interval [a, 8], with stepsize

h=p3—a.

@ We need to compute this sub-integral with accuracy
1
= — —_ <
(e B)] = 7 I1U(K) — J(h/2)) < =

@ An adaptive integration algorithm is J ~ J(a, b, €) where the
recursive function is:
J(h/2) if |J(h)—J(h/2)] < 16e
(. B,¢) = ath ¢ a+f :
J(o, 555, 5) + J(%57,8,5) otherwise

h
_a.

@ In practice one also stops the refinement if h < h;;, and is more
conservative e.g., use 10 instead of 16.

A. Donev (Courant Institute) Lecture IX 11/7/2019 18 / 27

Adaptive / Refinement Methods

Piecewise constant / linear basis functions

2 80 - - -
1.5 0coo 0 o o 70
1 i 60
s
°
0.5 g 50
5
°
0] 40
3
-0.5 o 30
°
°
=9 § 20
-1.5¢0000000 10
-2 0
-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3 4

Fig. 9.4. Distribution of quadrature nodes (left); density of the integration stepsize
in the approximation of the integral of Example 9.9 (right)

Donev (Courant Institute) Lecture IX 11/7/2019 19 / 27

Higher Dimensions
Regular Grids in Two Dimensions

o A separable integral can be done by doing integration along one
axes first, then another:

J= /Xlo /ylo f(x,y)dxdy = /Xlo dx [/ylo f(x,y)dy]

o Consider evaluating the function at nodes on a regular grid

xij ={xi,yj}, fij=f(xij).
@ We can use separable basis functions:

#ij(x) = di(x)9;(y)-

A. Donev (Courant Institute) Lecture IX 11/7/2019 20 / 27

Higher Dimensions

Bilinear basis functions

Bilinear basis function dz50na 5x5 grid

A. Donev (Courant Institute) Lecture IX 11/7/2019 21 /27

Higher Dimensions
Piecewise-Polynomial Integration

e Use a different interpolation function ¢(; ;) : €;; — R in each
rectange of the grid

Qjj = [xi xia] ¥ Iy yjal,

and it is sufficient to look at a unit reference rectangle
=[0,1] x [0,1].
@ Recall: The equivalent of piecewise linear interpolation in 1D is the
piecewise bilinear interpolation

b1y (0 ¥) = B3 (x) - 6 (v),

where gb%i and ¢(y) are linear function.
@ The global mterpolant can be written in the tent-function basis

X, y) = Z fijoij(x,y).
iJ

A. Donev (Courant Institute) Lecture IX 11/7/2019 22 /27

Higher Dimensions
Bilinear Integration

© The composite two-dimensional trapezoidal quadrature is then:
1 1
J=~ / 0/ 0¢(X,Y)dxdy = Z ﬁJ//qu;J(X,y)dxdy = Z wi

e Consider one of the corners (0, 0) of the reference rectangle and the
corresponding basis qbo o restricted to $:

oo(%,9) = (1 =%)(1~9)

@ Now integrate $0,0 over €2:

@ Since each interior node contributes to 4 rectangles, its weight is 1.
Edge nodes contribute to 2 rectangles, so their weight is 1/2.
Corners contribute to only one rectangle, so their weight is 1/4.

A. Donev (Courant Institute) Lecture IX 11/7/2019 23 /27

Higher Dimensions

Adaptive Meshes: Quadtrees and Block-Structured

| T ol
[EHAFAFFRFRRE T
FENI. BEE BEE
: R o=l o= Tl
+ w‘"ll“‘:‘??# LAERE] IAE RERE BE BE | LEE BE BE |
LTI
‘ LB R R] LEE NE NE NE NE | LEE NE NE

A. Donev (Courant Institute) Lecture IX 11/7/2019 24 /27

Higher Dimensi ions

Irregular (Simplicial) Meshes

Any polygon can be triangulated into arbitrarily many disjoint triangles.
Similarly tetrahedral meshes in 3D.

11/7/2019

In MATLAB

e The MATLAB function quad(f,a, b,) uses adaptive Simpson
quadrature to compute the integral.

@ The MATLAB function quad/(f, a, b,e) uses adaptive Gauss-Lobatto
quadrature.

o MATLAB says: “The function quad may be more efficient with low
accuracies or nonsmooth integrands.”

@ In two dimensions, for separable integrals over rectangles, use

J= db/quad(f, Xmins Xmaxs Ymins Ymax, 5)

J = dblquad(f, Xmin, Xmax Ymin, Ymax, €, @quadl)

@ There is also triplequad.

A. Donev (Courant Institute) Lecture IX 11/7/2019 26 / 27

Conclusions
Conclusions/Summary

o Numerical integration or quadrature approximates an integral via a
discrete weighted sum of function values over a set of nodes.

@ Integration is based on interpolation: Integrate the interpolant to get
a good approximation.

@ Piecewise polynomial interpolation over equi-spaced nodes gives the
trapezoidal and Simpson quadratures for lower order, and higher
order are generally not recommended.

@ In higher dimensions we split the domain into rectangles for regular
grids (separable integration), or triangles/tetrahedra for simplicial
meshes.

@ Integration in high dimensions d becomes harder and harder because
the number of nodes grows as N9: Curse of dimensionality. Monte
Carlo is one possible cure...

A. Donev (Courant Institute) Lecture IX 11/7/2019 27 / 27

	Numerical Integration in 1D
	Adaptive / Refinement Methods
	Higher Dimensions
	Conclusions

