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Abstract

This dissertation describes an investigation of jammed packings of frictionless hard particles,

including the computer generation of (nearly) jammed packings, the development of math-

ematical criteria and algorithms to verify jamming, and computational and experimental

studies of disordered and ordered hard-sphere and hard-ellipsoid packings.

In the first part of this dissertation a mathematical framework for understanding jamming

in packings of hard particles is developed. Algorithms to model hard-particle systems, and

in particular, a collision-driven molecular dynamics algorithm for the simulation of dense

packings of hard spheres, ellipsoids and superellipsoids, are designed. This algorithm is used

to implement a generalization of the Lubachevsky-Stillinger algorithm to generate disordered

packings of hard spheres and hard ellipsoids. It is found that the density and average contact

number of the random packings rises sharply, but continuously, as asphericity is introduced,

leading to hypostatic packings much denser than well-known random sphere packings. A

mathematical theory of jamming for packings of spherical and nonspherical particles, as well

as algorithms to test whether a packing is (nearly) jammed are developed, verifying that our

packings are jammed. A molecular-dynamics algorithm to calculate the (non-equilibrium)

free energy of nearly jammed packings of hard particles is designed and implemented.

In the second part of this dissertation the properties of disordered and ordered packings

of hard particles are studied. Investigated are correlations, including short-ranged order in

the pair-correlation function, as well as long-ranged density fluctuations in the structure

factor, for hard sphere packings in both three and higher dimensions. An unusual multitude

of near contacts persistent with dimensionality, as well as a decorrelation for distances be-

yond contact as dimension increases, are found. Comparisons find good agreement between

iii



computational and experimental results for packing of hard ellipsoids in finite containers.

The densest known ordered packing of hard ellipsoids is discovered using molecular dynam-

ics. Finally, the thermodynamics of dense systems of hard-particles is investigated. The

phase-diagram of hard rectangles of aspect ratio two (dominos) is determined. Finally, it is

demonstrated that there is no ideal glass transition for binary systems of hard disks.
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Chapter 1

Introduction and Overview

This Dissertation presents the results of collaborative computational, theoretical, and experimental studies of
dense packings of frictionless impenetrable objects, henceforth, hard particles, in a d-dimensional Euclidean
space Rd, where the particles occupy a certain (covering or volume) fraction (or density) φ of the total
volume. We focus extensively on low dimensions, especially two (d = 2) and three (d = 3) dimensions,
on smooth convex particle shapes, and packings where all particles have the same or very similar shape.
Furthermore, our primary interest is understanding jammed packings, i.e., packings where the particles are
packed tightly and cannot move freely due to the impenetrability constraints.

Although the packings we investigate can be modeled purely within classical geometry, our investigation
focuses on hard-particle packings relevant to material science. Packings of hard particles interacting only
with infinite repulsive pairwise forces on contact are applicable as models of complex many-body systems
because repulsive interactions are the primary factor in determining their structure. Hard-particle pack-
ings are therefore widely used as simple models for granular materials [1, 2, 3], glasses [4], liquids [5], and
other random media[6], to mention a few examples. Furthermore, hard-particle packings, and especially
hard-sphere packings, have inspired mathematicians and been the source of numerous challenging (many
still open) theoretical problems [7, 8, 9, 10]. Of particular interest are jammed hard-particle packings, where
particles become trapped and the packing gains mechanical rigidity and resists further densification and/or
flow. There are still many open theoretical problems in the field, such as the precise identification and quan-
titative description of the maximally random jammed (MRJ) state, the identification of packing structures
with extremal properties (for example, the lowest or highest density jammed packings), understanding the
thermodynamics of model glass formers, the quantification of disorder via order metrics, and others. Ad-
ditionally, the results we obtain can have significant practical applications such as production of advanced
ceramic materials and rocket fuels, developing constitutive equations for the mechanical behavior of granular
media, understanding why eggs are not spherical, and others.

This dissertation is the product of a long-term research program that consists of five main areas, all of
which are represented in subsequent chapters:

• Developing algorithms to generate ordered (crystalline) and disordered (glassy) packings of spherical
and nonspherical particles.

• Understanding the phenomenon of jamming in hard-particle packings and developing algorithms to
test whether a packing is jammed.

• Statistical characterization of the generated jammed packings, including density, correlation functions,
and order metrics.

• Understanding the thermodynamics of nearly jammed packings of hard particles and their relevance
to the glass transition.

Material presented in this Dissertation has previously appeared in the following peer-reviewed publications:
1. A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly. A Linear Programming Algorithm to Test

for Jamming in Hard-Sphere Packings. J. Comp. Phys., 197(1):139–166, 2004.
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2. A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly. Jamming in Hard Sphere and Disk Packings.
J. App. Phys., 95(3):989, 2004.

3. S. Torquato, A. Donev, and F. H. Stillinger. Breakdown of Elasticity Theory for Jammed Hard-Particle
Packings: Conical Nonlinear Constitutive Theory. Int. J. Solids Structures, 40(25):7143 – 7153, 2003.

4. A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M.
Chaikin. Improving the Density of Jammed Disordered Packings using Ellipsoids. Science, 303:990–
993, 2004.

5. A. Donev, P. M. Chaikin, F. H. Stillinger, and S. Torquato. Unusually Dense Crystal Packings of
Ellipsoids. Phys. Rev. Lett., 92:255506, 2004.

6. A. Donev, S. Torquato, F. H. Stillinger, and R. Connelly. Comment on ”Jamming at zero temperature
and zero applied stress: The epitome of disorder”. Phys. Rev. E, 70:043301, 2004.

7. A. Donev, S. Torquato, and F. H. Stillinger. Neighbor List Collision-Driven Molecular Dynamics
Simulation for Nonspherical Particles: I. Algorithmic Details II. Applications to Ellipses and Ellipsoids.
J. Comp. Phys., 202(2):737–764, 765–793, 2005.

8. A. Donev, S. Torquato, and F. H. Stillinger. Pair Correlation Function Characteristics of Nearly
Jammed Disordered and Ordered Hard-Sphere Packings. Phys. Rev. E, 71:011105, 2005.

9. W. Man, A. Donev, F. H. Stillinger, M. Sullivan, William B. Russel, D. Heeger, S. Inati, S. Torquato,
and P. M. Chaikin. Experiments on Random Packing of Ellipsoids. Phys. Rev. Lett., 94:198001, 2005.

10. A. Donev, S. Torquato, and F. H. Stillinger. Unexpected Density Fluctuations in Jammed Disordered
Sphere Packings. Phys. Rev. Lett., 95(9):090604, 2005.

11. A. Donev, J. Burton, F. H. Stillinger, and S. Torquato. Tetratic Order in the Phase Behavior of a
Hard-Rectangle System. Phys. Rev. B, 73:054109, 2006.

12. A. Donev, F. H. Stillinger, and S. Torquato. Do Binary Hard Disks Exhibit an Ideal Glass Transition?
Phys. Rev. Lett., 96:225502, 2006.

13. M. Skoge, A. Donev, F. H. Stillinger, and S. Torquato. Packing Hyperspheres in High-Dimensional
Euclidean Spaces. Submitted to Phys. Rev. E, 2006.

14. A. Donev, F. H. Stillinger, and S. Torquato. Calculating the Free Energy of Nearly Jammed Hard-
Particle Packings Using Molecular Dynamics. Submitted to J. Comp. Phys, 2006.

15. A. Donev, R. Connelly, F. H. Stillinger, and S. Torquato. Hypostatic Jammed Packings of Hard
Ellipsoids. In preparation, 2006.

16. A. Donev, F. H. Stillinger, and S. Torquato. Configurational Entropy of Binary Hard-Disk Glasses.
In preparation, 2006.

In this chapter we present some background material for subsequent chapters, aiming at developing an
intuitive (physical) understanding of the essential underlying concepts and methodology before presenting
a more formal approach. The reader is referred to Ref. [6] for background on the thermodynamics and
statistical characterization of particle media. We also review the main findings of subsequent papers, pointing
to the publications where the results were first published, available in electronic form at http://cherrypit.
princeton.edu/donev (the webpage also contains additional resources related to this work, such as source
codes, animations, etc.). We review some of the notational conventions we use in subsequent chapters at the
end of this chapter.

1.1 Generating Packings using Molecular Dynamics

In this work we focus on computationally-generated (nearly) jammed packings of hard spherical and non-
spherical particles. In this section we give a high-level overview of the molecular dynamics algorithm used
to generate hard-particle packings and study their thermodynamic and kinetic properties.

The hard-particle interaction potential is singular, being zero if the two particles do not overlap, and infi-
nite otherwise. Classical molecular-dynamics methods are not suitable for modeling such singular potentials,
ad we have developed a collision-driven (event-driven) molecular dynamics (MD) algorithm for frictionless
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perfectly-elastic hard particles [11]. The particles move freely inbetween elastic collisions with other particles,
when they simply bounce away immediately, exchanging collisional momentum (impulse) over an infinitesi-
mally short time period. The goal of the MD algorithm is to efficiently predict and process the sequence of
elastic collisions between the particles given their initial positions and velocities.

We have used our collision-driven MD algorithm to implement a generalization of the Lubachevsky-
Stillinger (LS) sphere packing algorithm [12, 13]. The generalization handles nonspherical particles (in
particular, our implementation handles spherical, ellipsoidal, or superellipsoidal particles) and provides nu-
merous improvements to the numerical efficiency of the algorithm and also increases the generality of the
algorithm; however, the fundamental ideas are the same as in original Lubachevsky-Stillinger algorithm. The
method is a hard-particle molecular dynamics algorithm for producing dense disordered as well as ordered
packings. Small particles are randomly distributed and randomly oriented in a box with periodic boundary
conditions and without any overlap. For this purpose one can use random sequential addition (RSA) [14],
where particles are added to the simulation region one by one, ensuring that they do not overlap any of the
previously-added particles. After the initial particle positions are determined, the particles are given (linear
and angular) velocities and their motion followed as they collide elastically and also expand uniformly (i.e.,
preserving their shape) at a certain growth or expansion rate γ, using the MD algorithm.

Asymptotically, as the density increases, a jammed packing with a diverging collision rate and (locally)
maximal jamming density φJ is reached. Intuitively, a jammed (compactly packed, mechanically stable)
packing is one where the particles are locked in their positions despite thermal agitation (shaking) and po-
tentially boundary deformations (external loading). Depending on the boundary conditions and whether
collective particle rearrangements take place, one can define different jamming categories, organized hierar-
chically into local, collective and strict jamming in Ref. [15]. The algorithm never reaches the true jammed
state, and the particles have some free volume to rattle which shrinks as the reduced pressure p = PV/NkT
diverges. Given sufficient computational resources, our careful numerical implementation is able to reach the
jamming point almost within full numerical precision, corresponding to pressures p > 1012.

As the jamming point is approached, each particle i collides repeatedly only with a small set of neighbors
N (i). In the jamming limit, these neighboring particles touch to form the contact network of the packing,
exerting compressive forces on each other but not being able to move despite thermal agitation (shaking).
These forces form a force network, often called force chains in the physics literature [16] due to the distinctive
highly heterogeneous character of the force spatial distribution, concentrated along chains. The net time-
averaged force exerted on each particle is zero, since the particle does not move. By averaging the total
exchanged momentum between each pair of recently collided particles, one obtains a measure of the contact
force between pairs of particles (with some arbitrary proportionality constant). An example of a jammed
packing and its contact network is illustrated in two dimensions for binary hard disks in Fig. 1.1.

Note that the neighbors N (i) included in the contact network at the jamming point are only those
neighbors which touch the particle i in the jamming limit. Often, a geometric definition of first neighbors is
used instead, which considers all particles within a certain cutoff distance to be neighbors. Such a definition is
somewhat arbitrary and is not unique because of its dependence on the cutoff distance. A better definition of
geometric neighbors is to use the Voronoi tessellation of the packing. For a point pattern (or a monodisperse
sphere packing), the Voronoi cell of a given point i is defined as the set of points that are closer (in some
distance metric) to point i than to any other point. If the Euclidean distance metric is used, the cells are
polyhedra and they tessellate, i.e., prefectly tile (partition), Euclidean space into a polyhedral cell complex
known as the Voronoi tessellation. Particles that share faces of their respective Voronoi cells are called
Delaunay neighbours and the set of Delaunay neighbors triangulates space into simplices (triangles in two
dimensions, tetrahedra in three dimensions, etc.). Note that the contact network of the packing is a subset
of the Delaunay triangulation, since every pair of particles that touches is also a pair of Delaunay neighbors.
However, not all Delaunay neighbors are necessarily touching. Note that for polydisperse sphere packings
a slight modification of the ordinary Euclidean distance metric can be used to define a Voronoi tessellation
that is a polyhedral cell complex [17]. For nonspherical particles, however, it is not trivial to generalize the
idea of a Voronoi tessellation [18]; obvious generalizations lead to Voronoi cells that either do not tile space
or they are not connected.

The LS packing protocol we have described has several important tuning parameters that affect the
resulting packings. In particular, the initial configuration, the distribution of velocities, as well as the
particle growth rate, determine what kind of jammed packing is produced. We will discuss these issues
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Figure 1.1: A network of interparticle forces (darker lines indicate stronger forces) in a bidisperse jammed
packing of hard disks, where the larger disks are 1.4 times larger than the small disks. The contact network
was obtained by averaging the total exchanged momentum between colliding particles over a long period of
time during the final stages of the Lubachevsky-Stillinger packing algorithm. Darker particles collide more
frequently then lighter ones.
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shortly, however, first we review some alternative algorithms to generate dense packings of hard particles,
that have appeared in the physics and engineering literature.

1.1.1 Other Packing Algorithms

Many of the tools we develop in this work are relevant to the implementation and analysis of other algorithms
for generating dense packings of hard particles as well. In particular, the algorithms we develop in Chapters
2 and 3 can be used to implement any kind of molecular dynamics (MD) or Monte Carlo (MC) algorithm
for either hard or soft nonspherical particles. The analysis of hard particle packings we perform focuses on
the final (static) jammed packing, and is therefore applicable to any packing regardless of the protocol used
to produce it. It is therefore useful to review some other packing algorithms (for spherical particles, unless
indicated otherwise) that have appeared in various papers. We give a characteristic reference first followed
by a short summary of the algorithm:

[19] Many groups have used a sedimentation packing algorithm, in which spheres are dropped in a gravita-
tional field onto an initial disordered substrate, and each sphere rolls on top of other spheres downhill
until it forms three contacts with spheres below it, which puts in a stable configuration. These kinds of
algorithms are thought to produce a “random-loose packing”, in the sense that these packings are less
dense (approximately 0.6) and are thought to be representative of granular materials when shaking
is not present (i.e., gravity dominates the interparticle forces). The produced packings have strong
vertical anisotropy, and it has been attempted to correct for this by using seed growth algorithms, in
which one adds particles one-by-one to an initial small seed cluster [20]. Ref. [19] combines sedimenta-
tion with rearrangement (shaking), similarly to Ref. [21], in order to achieve states transitioning from
random “loose” to “close-packed” structures.

[22] The algorithm constructs the Voronoi tessellation of a dilute disk packing, and then moves each disk
to the center of the largest inscribed circle in the respective Voronoi polyhedron. The common disk
diameter is increased as much as non-overlap allows, and the process is repeated many times. They
believe their algorithm produces random loose packings (RLP).

[21, 23] In the Jodrey-Tory (JT) algorithm the spheres here have an outer dout and an inner din diameter,
the inner being the physically allowed one of the shortest pair distance, and the outer representing a
repulsive core used to densify the packing. The outer diameter is slowly reduced during the simulation
until it meets the inner, at which point a valid homogeneous isotropic dense packing is produced.
At each step, outer overlaps are eliminated by displacing the spheres. In the original algorithm, a
complicated geometrical scheme was proposed on how to displace the spheres, but later a force-biased
modification was developed and implemented efficiently. It is described well in Ref. [24]. In this
algorithm, a central repulsive force of magnitude

fij = dout
i dout

j

[
4r2ij(

dout
i + dout

j

)2 − 1

]

is imagined to act between the spheres i and j (this form is suitable for polydisperse mixtures as well),
if their outer shells overlap. A simple gradient descent step is taken to move the spheres to a new
position,

ri ← ri +
α

din
i

∑
j

fij

and the process is repeated anew. The force-biased JT algorithm is generalized to binary spheres and
combined with a vibration phase in which random displacements are given to the spheres in Ref. [25]
and is also used in Refs. [24, 26]. The algorithm has been generalized to non-spherical particles as
well [27], and is essentially a coordinate-descent energy minimization algorithm where the interaction
potential is continuously updated by changing the sphere inner and outer diameters.

[27] This paper describes a generalization of the force-biased JT algorithm for producing packings of sphero-
cylinders. For spherocylinders particle overlap is easy to determine by looking at the shortest distance
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between the lines of symmetry of the spherocylinders and comparing it to the diameter D. Repul-
sive forces proportional to the overlap are constructed for contacting particles and then particles are
translated and rotated in the direction of the resultant force in an attempt to eliminate overlap. The
system is compressed uniformly by a small amount, which induces new overlap and the whole process
is repeated many times until overlaps cannot be eliminated.

[28] The Zinchenko algorithm maintains an isostatic contact network and grows the sphere at a uniform rate,
maintaining this list of contacts. Maintaining a disordered contact network suppresses crystallization.
The initial contact network is formed by placing sticky spheres randomly and growing the spheres in
a sticky way, so that contacts are frozen as soon as they are made. When an extra contact is formed
during the growth, a self-stress is determined which resists the further growth of the particles (this is
unique up to scaling). The negative reaction forces correspond to contacts that can be broken in order
to restore isostaticity. When all the contact forces are negative, then no contact can be broken and a
final stat is reached. The algorithm produces disordered jammed packings with a very uniform density
of about 0.637 ≈ 2

π , and is difficult to implement efficiently.

[29] The local minima of an inverse-power repulsive potential is used to find the inherent structures of a
hard-sphere liquid. The order of the limits is that for a fixed number of particles N the power in the
interaction potential is increased to infinity first, and then N is taken to the thermodynamic limit. The
spectrum of the Hessian matrix is analysed as a function of the temperature and melting is related to
the existence of negative eigenvalues.

[30] A search for the densest packings of N disks on a sphere is performed using repulsive potential energy
minimization. The repulsive energy is inverse power (as in Ref. [29])

ε =
∑
ij

(
c

rij

)p

for very large exponents p. In the limit p → ∞ the shortest distance dominates the energy, so the
minimum-energy configuration in fact maximizes the minimum distance between N points on a sphere
(i.e., the densest packing). Random starting points are used in a local search for the global optimum.
A combined gradient descent with Newton’s method is used for the minimization, and the exponent is
increased by doubling from 80 to 1, 310, 720 so that high numerical accuracy is achieved. An important
aspect of this work which is applicable to any similar algorithm is a final “exactification” stage. In this
last stage, the interparticle gaps on the formed contact network are set to 0 to high numerical accuracy.

[31] Infinitely rapid quenching to zero temperature of Hertzian soft spheres is used to produce jammed
binary hard-sphere packings. The quench is really a simple descent energy minimization, in this case
using conjugate gradient methods. The minimal energy is zero if there is no overlap, otherwise it
is positive. If the energy minimum is overlap-free, the sphere diameter is increased and the process
repeated, until a jammed state is reached in which there are very small overlaps between the particles
forming the contact network of the packing.

[32] Molecular dynamics (MD) with both strongly repulsive central and tangential friction contact forces is
used to produce packings of frictional hard spheres in equilibrium under a gravitational field. Since
tangential friction forces are history-dependent, MD is more suitable here then energy minimization.
It is observed that frictionless packings are generically isostatic, but frictional packings transition from
coordination number 6 to about 4.5 (i.e. hyperstatic) smoothly as friction coefficient is increased.

[33] The authors report a full-fledged discrete element method simulation of 10, 000 deformable spheres
interacting with Hertz-Mindlin contact forces. They obtain a packing density of about 0.634(4) for
frictionless packings. The parameters chosen are an estimate of real-life parameters for certain granular
materials. They find that the coordination number goes to 4 as the applied compressive stress vanishes.
They also analyse the force chains in the packing.
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1.1.1.1 Why Lubachevsky-Stillinger?

Given the wealth of algorithms to produce dense packings of hard particles, why choose the LS algorithm?
Before answering this question, it is worth grouping the algorithms described above into categories:

Serial Deposition These algorithms [19, 20, 34, 35] add particles to a system one by one, establishing
contacts between the new particle and as many existing particles as possible, producing inhomogeneous
anisotropic packings.

Overlap Elimination In these algorithms [24, 25, 23, 21, 36, 27] one tries to eliminate geometric overlaps
between the particles by displacing the particles one by one, in the spirit of single-move Monte Carlo
algorithms, until a point where overlaps can no longer be removed (if increasing the density) or the
point when overlaps are first removed (if lowering the density). The particle displacements can either
be random or force-biased.

Energy Minimization In these algorithms [29, 30, 31] one replaces the hard spheres with deformable (soft)
spheres and then looks for potential energy minima (inherent structures). This can either be done for
an interaction potential that is very stiff and mimics the hard-sphere potential, or it can be used in
order to eliminate overlaps by using collective particle motions instead of using single-particle motions.

Molecular Dynamics In these algorithms [12, 13, 37, 33, 32] molecular dynamics on either hard or soft
particles is used to density the system, either by increasing the density or by using dissipative dynamics
in a gravitational field.

Contact Network Based The only packing algorithm in this category that we are familiar is the Zinchenko
algorithm [28], however, this class of algorithms deserves further investigation. The idea is, as in serial
deposition algorithms, to build the packing by maintaining a contact network, however, unlike in
serial deposition, this contact network involves all particles from the start, and is updated globally to
maintain the contacts in question.

We are primarily interested in generating large homogeneous and isotropic systems that are jammed. As
we will demonstrate in this work, jamming is a collective phenomenon and the jamming condition is a very
strict condition. Therefore packing algorithms that are not designed to produce jammed packings, such as
serial deposition algorithms, will typically not produce jammed packings. Single-particle based algorithms,
such as overlap elimination by displacing single particles, will easily get stuck in configurations that are not
jammed, since finding unjamming motions requires collective displacements. This is demonstrated by the
fact that the packings we produce using the LS algorithm are significantly denser that have previously been
obtained for ellipsoids using RSA, sedimentation, or shaking (MC-like) packing protocols [14, 38, 34, 35].
The Zinchenko algorithm itself is very complicated and relies on assumptions that we will show to be violated
for large disordered packings of ellipsoids.

This elimination leaves us with energy-minimization or molecular dynamics algorithms. We will demon-
strate in this work that energy minimization algorithms are indeed appropriate for generating jammed
packings, in that under appropriate conditions they guarantee jamming for the final packings. However,
these algorithms are typically difficult to implement efficiently and also they are rather unphysical. Molecu-
lar dynamics on the other hand is not only a good way to generate packings, since it too produces jammed
packings, but it is also very physical and can be used to study thermodynamics and kinetics in hard-particle
systems. Additionally, we will see that MD can be implemented very efficiently for hard particles, where the
only particle interactions are via particle collisions. The high precision of such collision-driven MD enables us
to reach previously unavailable high densities and to produce tightly jammed ellipsoid packings with several
thousand particles. In the future, algorithms based on energy minimization should also be implemented and
compared to the LS algorithm, especially fo4r nonspherical particles.

1.2 Disordered Jammed Packings of Hard Spheres

The concept of jamming will be defined precisely in subsequent chapters and analyzed in extensive detail.
Another concept that is central to this work, but is not yet well-understood, is that of a disordered, random
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or amorphous packing (we will use all of these terms interchangeably). The problem of random packing is
among the oldest in science and relates to the ancient (economically important) problem of how much grain a
barrel can hold. If the particles are not carefully arranged to achieve the best packing density, but are rather
“randomly”placed in a container and shaken, we expect to obtain a density lower than that of the best ordered
or crystal packing (having a density of φ ≈ 0.74 for spheres [39], as achieved by Barlow packings). There
are many experimental and computational algorithms which produce a relatively robust packing fraction
ϕ ≈ 0.64 for randomly packed monodisperse spheres [40, 41]. This number, widely designated as the random
close packing (RCP) density, is not universal but generally depends on the packing protocol, as discussed
shortly. Illustrations of the difference between disordered and ordered packings of spheres are shown in Fig.
1.2.

Disordered packings correspond to the liquid state, thermodynamically stable at low densities, while
the ordered packings correspond to the crystal state, thermodynamically-stable at higher densities. We
will not review the thermodynamics of hard-sphere systems in detail, and refer the reader to Ref. [6] for
more background and additional references [c.f. Section 3.3 in Ref [6]]. It is important to point out that
hard-particle systems are athermal, and the thermodynamic properties are solely a function of the density
(volume fraction) φ [43]. One must consider a hard-particle system at a positive temperature (kT = 1),
since the free-energy of the hard-sphere system consists entirely of the entropic term, F = −TS. At positive
temperature, the time-averaged thermal motion of the particles leads to a well-defined free energy and its
derivatives with respect to strain, i.e., stress and elastic moduli (bulk and shear modulus for isotropic states),
exist just as for soft-particle systems (where however the limit T → 0 is thermodynamically well-defined).

In three dimensions, extensive computational investigations have found clear evidence for a first-order
phase transition from an isotropic liquid (fluid) phase1 to a crystal (solid) phase corresponding to a Barlow
packing2, with a coexistence region spanning from φ ≈ 0.49 (the freezing point) to φ ≈ 0.55 (the melting
point). In two dimensions, it is not yet known with confidence whether there is also a first-order phase
transition with a freezing point at φ ≈ 0.69 and a very narrow coexistence region, or whether the transition
from the disordered liquid to the ordered triangular (hexagonal) crystal is a continuous transition. An
important theory for such a continuous transition was proposed by Kosterlitz and Thouless and augmented
by Halperin, Nelson and Young (KTHNY), and it predicts that a two-dimensional crystal (possessing quasi-
long-range translational order and long-range orientational order) undergoes a continuous melting transition
via the unbinding of dislocations into a hexatic phase (short-range translational order and quasi-long-range
orientational order), which in turn continuously melts into the disordered liquid (short-range translational and
orientational order) via the unbinding of disclinations [47, 48, 49]. Strong finite-size effects in two dimensions
make it difficult to numerically ascertain the validity of the KTHNY scenario. It is clear however that the
liquid-solid transition for monodisperse hard disks is nearly continuous, and that the liquid crystallizes very
easily, unlike in three dimensions, where there is a nucleation barrier that inhibits the crystallization process.
On the other hand, crystallization is strongly inhibited for sufficiently polydisperse systems of disks [50, 51].

Next we briefly illustrate how the behavior LS algorithm is related to the thermodynamic properties of
the system, for hard spheres in three dimensions. In Fig. 1.3 we show the equation of state (EOS) of a
hard sphere system as the density is increased slowly, through the growth of particles at an expansion rate
γ, starting from a liquid. The pressure of the system is measured in the MD algorithm by averaging over
a time period that is as small as possible but sufficiently large to average over many collisions. Instead of
plotting the reduced pressure p directly, we use the well-known fact that near jamming the reduced pressure
is asymptotically given by the free-volume equation of state [52],

p =
PV

NkBT
=

1
δ

=
d

1− φ/φJ
, (1.1)

which can be inverted to give an estimate φ̃J of the jamming density,

φ̃J =
φ

1− d/p
. (1.2)

1It is technically more appropriate to call this the fluid (gas-liquid) phase, since there is no cohesion for hard particles and
thus no gas-liquid phase transition, however, in analogy with systems of soft particles we refer to the dense fluid as a liquid.

2It is not presently agreed-upon whether the true equilibrium solid phase is the FCC or the HCP crystal, although it is
commonly believed that it is not a random stacking variant of the FCC lattice [44, 45, 46].
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Figure 1.2: (Left) A carefully arranged ordered packing of ball bearings surrounded by a disordered pile of
bearings, taken from Ref. [42]. (Right) [Courtesy of Paul Chaikin] A colloidal system of spherical particles
in an external electric field, causing a density gradient from a less dense disordered liquid structure (right),
to a more dense ordered crystal structure (left).
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Since the pressure increases very rapidly near jamming, it is more convenient to plot the estimated jamming
density φ̃J(φ) instead of the pressure p(φ), and we do this in Fig. 1.3 for several different expansion rates. Of
course, the particles can also shrink (γ < 0) starting from a dense configuration such as the FCC crystal, in
which case the EOS along the crystal branch can be obtained for densities ranging from the crystal jamming
density to the freezing density φ ≈ 0.50.

In the limit γ → 0 we obtain the thermodynamic equilibrium behavior of the hard-sphere system, and for
small enough γ the system is in quasi-equilibrium, in the sense that the rate of density change is slow enough
to allow for full relaxation of the system. For finite γ the system is not in true equilibrium, and in fact, as
the relaxation time of the liquid grows due to the increase in density and increased proximity to jamming,
the system may become trapped in a glassy state. This is exactly what is observed in Fig. 1.3. For small
γ there is a first-order transition from the liquid to the crystal branch around the melting point φ ≈ 0.55,
however, for larger γ there is a kinetic glass transition around φ ≈ 0.6 leading to non-equilibrium glassy states
that eventually produce random jammed packings with jamming density φJ ≈ 0.64. If the expansion rate
is intermediate partial crystallization occurs leading to the formation of small nucleated crystallites inside
a random packing matrix, or the formed polycrystal can be distorted and have multiple grain boundaries
between crystallites with different orientations. In summary, the packings produced by the LS algorithm will
have a density in the range 0.64 − 0.74, depending on the exact parameters used in the packing-generation
protocol. However, a wide range of expansion rates γ take liquid configurations into jammed packings with
density in the range φJ ≈ 0.635 − 0.655, which are disordered packings showing no apparent signs of local
or global ordering.

1.2.1 The Maximally Random Jammed (MRJ) State

Using the variety of algorithms we have described, we can produce a variety of packings, either by using
different algorithms, or by using one algorithm and changing some tunable parameter (such as γ in the LS
algorithm). Focusing just on jammed packings, a challenging problem is their enumeration and classification.
Since one cannot enumerate all possible packings even for a small number of particles, it is desirable to devise
a small set of parameters that can characterize packings well. Two important scalar properties of packings
are the density (packing fraction) φ and order metric ψ. For any two states X and Y , ψX > ψY implies
that state X is to be considered as more ordered than state Y . Candidates for such an order metric include
various translational and orientational order parameters [6], but the search for better order metrics is still
very active [56]. One promising avenue is exploring the connections between entropy (information content)
and packing disorder [57].

We can use a hypothetical scalar order-metric ψ to measure the amount of order in a packing, such
that ψ = 1 corresponds to fully ordered (for example, the perfect FCC crystal), and ψ = 0 corresponds to
perfectly disordered (Poisson distribution of sphere centers) packings. Figure 1.4 from Ref. [58] shows a
conjectured region of feasible hard-sphere packings in the φ−ψ plane. It is clear that only a small subset of
this feasible region will be occupied by jammed packings (for a given jamming category), as schematically
indicated in Fig. 1.4. Several limit points in this region are particularly interesting:

• Point A corresponds to the lowest-density jammed packing, and its location strongly depends on the
jamming category used. It can be shown that there are zero-density locally jammed disk packings
(see references and discussion in Ref. [59]), and the same is true for sphere packings. However, for
collectively and strictly jammed packings, it is not known what are the lowest possible densities.

• Point B corresponds to the most dense jammed packing. It has of course already been identified to be
a triangular packing for disks and the FCC/HCP variant lattice for spheres. But much less is known
about polydisperse packings [7, 59], or packings of nonspherical particles.

• MRJ point represents the maximally random jammed (MRJ) state [58], which has recently supplanted
the ill-defined “random close packed” (RCP) state. The RCP state was widely believed to have a
packing fraction ϕ ≈ 0.63− 0.64 in three dimensions. The MRJ state is the most disordered jammed
packing in a given jamming category (locally, collectively or strictly jammed). The MRJ state is well-
defined for a given jamming category and choice of order metric. This work focuses primarily on the
generation and analysis of packings representative of the MRJ state for collective and strict jamming,
for both spherical and non-spherical particles.
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Figure 1.3: The estimated jamming packing fraction φ̃J as a function of packing fraction φ for d = 3.
Shown are systems of 4096 spheres with various expansion rates, showing the crystallization that occurs
for sufficiently slow particle expansion and the kinetic glass transition for fast particle expansion, leading
to disordered packings. Also shown are results for systems of 10976 spheres placed in an FCC lattice with
negative expansion rates γ = −10−4, −10−5, and −10−6 (last three curves). For comparison, we plot
approximations to the equilibrium EOS for the fluid phase, the coexistence region, and the crystal phase
[53, 54], as well as the Percus-Yevick (PY) [55] EOS for the fluid phase.

1.2.2 Polydisperse Packings

The LS packing algorithm as well as the concept of MRJ can easily be generalized to packings of nonspherical
particles as well as packings of particles of different sizes. We will extensively discuss monodisperse packings
of nonspherical particles in this work, and also occasionally make use of polydisperse packings as well. Here
we briefly comment on the impact polydispersity has on disordered jammed packings of hard spheres, without
trying to give a comprehensive review of the literature.

The impact of polydispersity on packing densities and structure has been studied in the literature primar-
ily for hard spheres. Incorporating polydispersity in the LS algorithm for hard spheres amounts to allowing
each sphere i to have a different diameter Di and to grow at its own rate γi [60]. In order to preserve the
probability distribution of relative particle sizes PD(D/D̄), where D̄ is the average sphere diameter, the LS
algorithm is started with the sphere diameters drawn from the specified distribution PD, and the particle
expansion rates are made proportional to the particle diameters, γi = dDi/dt ∼ Di. The simplest case occurs
when there are only two different sphere diameters of size ratio κ = D1/D2 > 1, i.e., for bidisperse packings.
The statistical properties of the MRJ state, and in particular the jamming density, depends on both the size
dispersity κ, and the composition of the packing, i.e., the fraction of particles that are large, 0 < x < 1.
Several of the packing algorithms discussed in Section 1.1.1 have been used to study random packings of hard
disks and spheres [60, 25, 61, 62, 17, 63, 64, 65, 66]. Amorphous jammed sphere packings with a continuous
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Figure 1.4: A highly schematic plot of the subspace in the density-disorder (φ − ψ) plane where strictly
jammed three-dimensional packings exist. Point A corresponds to the lowest-density jammed packing, and
it is intuitive to expect that a certain ordering will be needed to produce low-density jammed packings. Point
B corresponds to the most dense jammed packing. Point MRJ represents the maximally random jammed
state. This is the most disordered jammed packing. We conjecture that the Lubachevsky-Stillinger packing
algorithm [12, 13] typically produces packings along the right (maximally dense) branch, and we do not know
of an algorithm that produces packings along the left (minimally dense) branch.

distribution of diameters have also been simulated [63, 64, 65]. We note that the generation of packings with
large size dispersity is computationally very challenging (see the discussion in Chapter 3).

Crystal (ordered) binary packings of hard disks and spheres have also been discussed [61, 67, 68], although
little is known rigorously. It is believed that for small size dispersity the crystals are phase-separated, with
the two different particle sizes demixing and forming separate monodisperse crystal structures. In analogy
to the generation of dense packings for monodisperse spheres, using the LS algorithm it is possible to
create amorphous packings of bidisperse spheres at higher packing fractions than the limit of the fluid phase
in the equilibrium system. However, extensive computational and experimental research has shown that
compared to the monodisperse case, hard-sphere systems with sufficient size polydispersity (for example,
κ > 1.2) tend to remain amorphous over a more broad range of packing fractions, and crystallization
(i.e., crystal nucleation) is strongly suppressed [69, 60]. This is especially pronounced in two dimensions,
where monodisperse hard disk systems crystallize readily and do not form amorphous jammed packings. In
three dimensions crystal nucleation is an activated process and amorphous hard sphere packings are easily
generated, however, crystal packings are thermodynamically strongly favored [70]. Bidisperse systems are
thus used as model glass formers [51], and we will study the thermodynamics of binary hard-disk systems
in Chapter 13. For polydisperse systems in which there is a continuous distribution of particle radii, the
phase diagram and the existence and structure of thermodynamic crystal and glassy phases is still actively
debated.

1.3 Summary of Research

In this section we summarize the research that has appeared in publications relating to this Dissertation.
The results of this research are presented in subsequent chapters, with some added technical details.
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1.3.1 Generating Jammed Hard-Particle Packings

We already discussed briefly the modified Lubachevsky-Stillinger algorithm that we use to generate the
packings studied in this work. In Chapter 2 we give technical details on overlap potentials for nonspherical
particles, used extensively in subsequent chapters. In Chapter 3 we discuss our collision-driven MD algorithm
for nonspherical hard-particles, and in particular, hard ellipsoids.

1.3.1.1 Collision-Driven Molecular Dynamics Algorithm

Our collision-driven MD algorithm for hard-particle systems was described in detail in a two-part series of
papers [11] and is presented in Chapter 3. In the first part, we presented in considerable detail a collision-
driven molecular dynamics algorithm for a system of nonspherical particles, within a parallelepiped simulation
domain, under both periodic or hard-wall boundary conditions. The algorithm extends previous event-driven
molecular dynamics algorithms for spheres, and is most efficient when applied to systems of particles with
relatively small aspect ratios and with small variations in size. We presented a novel partial-update near-
neighbor list (NNL) algorithm that is superior to previous algorithms at high densities, without compromising
the correctness of the algorithm. This efficiency of the algorithm was further increased for systems of very
aspherical particles by using bounding sphere complexes (BSC). These techniques will be useful in any
particle-based simulation, including Monte Carlo and time-driven molecular dynamics. Additionally, the
algorithm allows for a non-vanishing rate of deformation of the boundary, which can be used to model
macroscopic strain and also alleviate boundary effects for small systems.

In the second part of this series of papers we specialized the algorithm to systems of ellipses and ellipsoids.
The theoretical machinery needed to treat such particles, including the overlap potentials, was developed
in full detail. We described an algorithm for predicting the time of collision for two moving ellipses or
ellipsoids. We presented performance results for our implementation of the algorithm, demonstrating that,
for dense systems of very aspherical ellipsoids, the novel techniques of using neighbor lists and bounding
sphere complexes offer as much as two orders of magnitude improvement in efficiency over direct adapta-
tions of traditional event-driven molecular dynamics algorithms. The practical utility of the algorithm was
demonstrated by presenting several interesting physical applications, including the generation of jammed
packings inside spherical containers, the study of contact force chains in jammed packings, and melting the
densest-known equilibrium crystals of prolate spheroids.

1.3.2 Jamming in Hard-Particle Packings

An essential component of understanding dense hard-particle systems is rigorously understanding the ter-
minal singular states representing ideal jammed packings. Such packings have been called rigid packings in
the mathematics literature, and in fact rigidity theory provides the necessary tools for developing a math-
ematical framework for jamming in hard-particle packings. This framework provides the basis for better
understanding of nearly jammed packings, including their thermodynamics and kinetics, in either thermal
settings such as glasses, or athermal systems such as granular media. In Chapter 4 we discuss jamming in
hard-sphere packings, which will give us the necessary background for extending the theory to packings of
nonspherical particles in Chapter 5.

1.3.2.1 Hard Sphere Packings

Torquato and Stillinger [15] proposed a classification scheme of jammed packings into hierarchical categories
of locally, collectively and strictly jammed configurations. In Ref. [71], we presented a rigorous and practical
algorithm to assess whether an ideal hard-sphere packing in two or three dimensions is jammed according
to the aforementioned categories, as described in detail in Chapter 4. The algorithm is based on linear
programming (LP) and is applicable to regular as well as random packings of finite size with hard-wall
and periodic boundary conditions. If the packing is not jammed, the algorithm yields representative multi-
particle unjamming motions. Furthermore, we extended the jamming categories and the testing algorithm to
packings with significant interparticle gaps. We described in detail two variants of the proposed randomized
linear programming approach to test for jamming in hard-sphere packings. The first algorithm treats ideal
packings in which particles form perfect contacts. Another algorithm treats the case of jamming in packings
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with significant interparticle gaps. This extended algorithm allows one to explore more fully the nature of
the feasible particle displacements. We implemented the algorithms and applied them to ordered as well
as random packings of disks and spheres with periodic boundary conditions and gave some representative
results for large disordered disk and sphere packings.

In Ref. [72] we applied the LP algorithms from Ref. [71] to test jamming categories of ordered lattices as
well as random packings of disks and spheres under periodic boundary conditions. The random packings were
produced computationally with a variety of packing generation algorithms, all of which should, in principle,
produce at least collectively jammed packings. Our results highlighted the importance of jamming categories
in characterizing particle packings. One important and interesting conclusion was that the amorphous
monodisperse sphere packings with density ϕ ≈ 0.64 were for practical purposes strictly jammed in three
dimensions, but in two dimensions the monodisperse disk packings at previously reported “random close
packed” densities of ϕ ≈ 0.83 were not even collectively jammed. On the other hand, amorphous bidisperse
disk packings with density of ϕ ≈ 0.84 were virtually strictly jammed. This clearly demonstrated that one
cannot judge “stability” in packings based solely on local criteria.

1.3.2.2 Hypostatic Packings of Hard Ellipsoids

As discussed in Chapter 5, testing for jamming in packings of nonspherical particles such as ellipsoids is
significantly more difficult than for spheres. The reason is not just the increased complexity of keeping
track of particle orientations, but rather, a fundamental aspect of contacts between nonspherical particles.
Namely, impenetrability constraints are guaranteed to be strictly concave for spheres, which allows for
rigorous linearization sufficiently close to the jamming point. However, this guarantee is not present for
nonspherical particles and in fact the nonlinear character of the constraints needs to be taken into account.
The rigidity class for jammed packings of ellipsoids belongs to the class of prestress stability as defined by
Connelly et al. [73], and testing for it is in general an exponentially hard problem. In Ref. [74] we develop
first- and second-order conditions for jamming, and demonstrate that ellipsoid packings can be jammed even
though they are hypostatic. We apply an algorithm using these conditions to computer-generated hypostatic
ellipsoid and ellipse packings and demonstrate that our algorithm does produce jammed packings, even close
to the sphere point.

1.3.3 Statistical Properties of Random Hard-Sphere Packings

After having generated a nearly jammed packing and verified its jamming category rigorously, the next step
is the analysis of the statistical and macroscopic properties of the jammed state itself. These include the
interparticle force chains which resist particles’ motions, the mechanical properties of the packings, the local
and global geometrical structure of the systems, the correlations between particles, and the nature of the
ordering present. We have performed some important analysis of MRJ packings of hard spheres. In Chapter
9 we focus on short-range particle-particle (pair) correlations by examining the features of the pair correlation
function g2(r) near contact for three-dimensional nearly jammed packings. In Chapter 10 we extend these
studies to long-range correlations by focusing on the structure factor S(k) near the origin. We study pair
correlations in sphere packings in higher dimensions (specifically, d = 4, 5 and 6) in Chapter 11.

1.3.3.1 Correlation Functions

In Ref. [75] we studied the approach to jamming in hard-sphere packings, and, in particular, the pair
correlation function g2(r) around contact, both theoretically and computationally. We present these studies
in Chapter 9. Our computational data unambiguously separated the narrowing delta-function contribution
to g2 due to emerging interparticle contacts from the background contribution due to near contacts. We
also showed that disordered hard-sphere packings are strictly isostatic, i.e., the number of exact contacts in
the jamming limit is exactly equal to the number of degrees of freedom, once rattlers are removed. For such
isostatic packings, we derived a theoretical connection between the probability distribution of interparticle
forces Pf (f) and the contact contribution to g2, and verified this relation computationally. We observed a
clear maximum in Pf and a nonzero probability of zero force, as well as an unusual power-law divergence in
the near-contact contribution to g2, persistent even in the jamming limit. Additionally, we presented high-
quality numerical data on the two discontinuities in the split-second peak of g2, and use a shared-neighbor
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analysis of the graph representing the contact network to study the local particle clusters responsible for the
peculiar features. We also investigated partially crystallized packings along the transition from maximally
disordered to fully ordered packings.

1.3.3.2 Density Fluctuations

Continuing on previous theoretical investigations of local density fluctuations in atomic systems by Torquato
and Stillinger in 2003, we computationally studied jammed disordered hard-sphere packings of as many as
one-million particles in Ref. [76] and we present the results in Chapter 10. We reported on the decay of
the pair correlation function, demonstrating that it is consistent with exponentially damped oscillatory but
without ruling out the possibility of a weak (quasi)long-ranged tail. We showed that local density fluctuations
are suppressed from volume to surface ones, i.e., the generated packings are hyperuniform, with structure
factor which vanishes at the origin to within 10−3. The numerical results suggested a strange non-analytic
linear dependence of the structure factor around the origin, while the direct pair correlation function showed
a significant long-range tail outside the core, unlike the stable liquid. Finally, we demonstrated that the
generated packings are saturated and all voids in the mechanically rigid backbone of the packing are filled
with rattlers. Our results illuminated many open questions about density fluctuations in glassy atomic
systems.

1.3.3.3 Higher Dimensions

In Ref. [77] and Chapter 11 we present the first study of disordered jammed hard-sphere packings in four
and five dimensions using event-driven molecular dynamics. We give the first estimates for the densities of
the maximally random jammed states in four and five dimensions and calculate the pair correlation function
g2(r) and structure factor S(k) for these states. We find that both g2(r) and S(k) are significantly damped
in four and five dimensions compared to three dimensions, consistent with a decorrelation principle recently
proposed Torquato et al. 2005, stating that correlations diminish in very high dimensions. We verify that,
as in three dimensions, the packings show no signs of crystallization, are isostatic, and have a power-law
divergence in g2(r) at contact. Additionally, we obtain estimates of the freezing and melting densities for
the liquid-solid transition.

1.3.4 Jammed Packings of Hard Ellipsoids

Hard sphere packings have been used as model systems extensively primarily because of their simplicity, even
though realistic packings are rarely made of truly spherical particles. The computational investigations we
present in Chapter 5 demonstrate that adding even small asphericity significantly affects disordered jammed
packings, leading to significantly higher densities, contact numbers, and also to a different kind of jamming
than that in sphere packings. Experiments validating some of our computational results are described in
Chapter 7. Crystal packings of ellipsoids are studied in Chapter 8.

1.3.4.1 Computational and Experimental Studies of Disordered Packings

Packing problems, how densely objects can fill a volume, are among the most ancient and persistent problems
in mathematics and science. For equal spheres, it has only recently been proved that the face-centered cubic
lattice has the highest possible packing fraction ϕ ≈ 0.74. It is also well-known that the corresponding
amorphous (MRJ) packings have ϕ ≈ 0.64. We used our MD algorithm to study random (disordered)
packings of hard ellipsoids in Ref. [78], as we detail in Chapters 5 and 7. We showed experimentally and
computationally that ellipsoids can randomly pack more densely; up to ϕ = 0.68 − 0.71 for spheroids with
an aspect ratio close to that of M&M’S Candiesr , and even approach ϕ ≈ 0.74 for general ellipsoids. We
suggested that the higher density relates directly to the higher number of degrees of freedom per particle
and supported this claim by measurements of the number of contacts per particle Z, obtaining Z ≈ 10 for
our spheroids as compared to Z ≈ 6 for spheres.

Continuing on the computational and experimental work on jammed packings of hard ellipsoids in Ref.
[78], in Ref. [74] and Chapter 5 we consider jamming in packings of smooth strictly convex nonspherical hard
particles. We explain why the isostatic conjecture, stating that for large disordered jammed packings the

15



average contact number is twice the number of degrees of freedom per particle, does not apply to nonspherical
particles. We also consider packings that are nearly jammed and draw connections to packings of deformable
(but stiff) particles. Finally, we consider the jamming conditions for nearly spherical particles and explain
quantitatively the behavior we observe in the vicinity of the sphere point.

The simulations in Ref. [78] predicted the ellipsoid shape which gives the highest random packing
density, namely, that ellipsoids with axes ratios near 1.25 : 1 : 0.8 form amorphous packings as dense as
the densest crystal packing (FCC) of spheres. Subsequent experimental work confirmed the predictions [79]
and is presented in Chapter 7. We demonstrated that such dense packings are realizable by manufacturing
ellipsoids using stereolitography and packing them inside spherical containers. The analysis of the packings
required better understanding of finite-size effects, and we used both simulations and novel experimental
methods to understand and minimizes surface effects and to obtain good estimates of bulk packing densities.
We showed that, in a sphere, the radial packing fraction φ(r) can be obtained from V (h), the volume of
added fluid to fill the sphere to height h. We also obtained φ(r) from a magnetic resonance imaging (MRI)
scan. The measurements of the overall density φavg, the radial density distribution φ(r), and the core density
ϕC ≈ 0.740 ± 0.005 agreed with simulations. This verified that idealized computer packings of frictionless
hard particles are relevant to the quantitative understanding of real-life packings of frictional macroscopic
particles in a gravitational field.

1.3.4.2 Crystal Packings

Extensive experience with spheres has shown that for reasonably large packings, sufficiently slowing down
the growth of the density, so that the hard-particle system remains close to the equilibrium solid branch
of the equation of state, leads to packings near the FCC lattice. This however requires impractically long
simulation times for large ellipsoid packings. By running the MD packing algorithm for very small unit
cells, from 4 to 16 particles per unit cell, we were able to identify crystal packings of ellipsoids significantly
denser than the FCC lattice [80], as explained in Chapter 8. Subsequent analytical calculations suggested
by the simulation results led us to discover ellipsoid packings with a remarkably high density of φ ≈ 0.7707.
The family of new packings we discovered are crystal (periodic) arrangements of nearly spherically-shaped
ellipsoids, and always surpass the densest lattice packing. The maximum density of ϕ ≈ 0.7707 is achieved
for both prolate and oblate ellipsoids with aspect ratios of

√
3 and 1/

√
3, respectively, and each ellipsoid

has 14 touching neighbors. These results do not exclude the possibility that even denser crystal packings of
ellipsoids could be found, and that a corresponding Kepler-like conjecture could be formulated for ellipsoids.

1.3.5 Thermodynamics of Hard-Particle Systems

The better understanding of nearly jammed hard-particle packings enables the study of ensembles of pack-
ings, i.e., the thermodynamics of dense hard-particle systems. Hard-particle packings, although completely
dominated by entropic exclusion, provide an incredibly rich phase behavior representative of real phases
found in experimental systems. They capture the essential competition for lower free energy between order
and disorder, namely, between free volume and degeneracy. This competition drives the thermodynamic
liquid-solid phase transitions, and is intimately related to the elusive glass transition. Each of the studies
described in previous sections contributes to better understanding of the thermodynamics of hard-particle
systems, for example, the identification of the densest packings directly determines the high-density crystal
phases. In Chapter 12 we investigate the phase behavior of hard rectangles of aspect ratio two (dominos),
using superellipses in our molecular dynamics algorithm. In Chapter 6 we describe a molecular-dynamics
algorithm to calculate the free energy of nearly-jammed hard particle packings, and then apply this algorithm
to the question of the existence of an ideal glass transition in a binary hard-disk system in Chapter 13.

1.3.5.1 Hard Rectangles (Dominos)

Previous Monte Carlo investigations by Wojciechowski and Frenkel have found two unusual phases in two-
dimensional systems of anisotropic hard particles: a tetratic phase of four-fold symmetry for hard squares,
and a nonperiodic degenerate solid phase for hard-disk dimers. In Ref. [81], we studied a system of hard
rectangles of aspect ratio two, i.e., hard-square dimers (or dominos), and demonstrate that it exhibits a
solid phase with both of these unusual properties, as detailed in Chapter 12. The solid shows tetratic, but
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not nematic, order, and it is nonperiodic having the structure of a random tiling of the square lattice with
dominos. We obtain similar results with both a classical Monte Carlo method using true rectangles and
collision-driven molecular dynamics employing superellipses. Although we have not yet performed exact
free-energy calculations, we expect that the random domino tiling is thermodynamically stabilized by its
degeneracy entropy, well-known to be 1.79kB per particle from previous studies of the dimer problem on
the square lattice. Our numerical observations were consistent with a KTHNY two-stage phase transition
scenario with two continuous phase transitions, the first from isotropic to tetratic liquid, and the second
from tetratic liquid to solid.

1.3.5.2 Free-Energy Calculations via Molecular Dynamics

In Ref. [82] and Chapter 6, we present in considerable detail an event-driven molecular dynamics algorithm
for measuring the free energy of nearly jammed hard-particle packings. This Bounding Cell Molecular
Dynamics (BCMD) algorithm calculates exactly the free-energy of a single-occupancy cell (SOC) model,
as first defined by Kirkwood, in which each particle is restricted to the neighborhood of its initial position
using a hard-wall bounding cell. It is based on previous MD algorithms appearing in the literature, however,
several small but important modifications enable us to apply it to nonspherical particles as well as to measure
the free-energy change during continuous irreversible transformations. Additionally, we point connections to
the well-studied problem of computing the volume of convex bodies in high dimensions using random walks.
We test and verify the numerical accuracy of the method by comparing against rigorous (asymptotic) results
for the free energy of isostatic disordered packings of both hard spheres and ellipsoids, for which the free
energy can be calculated directly as the volume of a high-dimensional simplex. We also compare our results
to previously published Monte Carlo results for hard-sphere crystals and find excellent agreement.

1.3.5.3 Ideal Glass Transition for Binary Disk Mixtures

We have applied the BCMD algorithm described in Section 6.3 to a model glass former, namely, binary disk
mixtures with large-to-small disk stoichiometry of 1 : 2 and diameter ratio κ = 1.4. We summarize the
surprising and important findings from our investigations in Ref. [57], and we give considerable details in
Ref. [83] and Chapter 13. We have produced bidisperse hard disk glasses by compressing liquids at a wide
range of compression rates using event-driven MD. We observe that the density at which the liquid falls out
of equilibrium and becomes glassy increases with decreasing compression rates, and find that the jamming
density of the glass itself continuously increases as the liquid is given more time to equilibrate. Even at the
slowest compression rates equilibration seems unattainable beyond φg ≈ 0.8 with classical methods. Our
free energy calculations give a freezing point of φF ≈ 0.775, and also show that the estimated configurational
entropy near φg is very close to the entropy of mixing, a fact seen in numerous other studies in the literature.
Furthermore, the equilibrated liquids slightly below φg show micro-clustering of the large particles indicating
that supercooled liquids at higher densities would show increased demixing of the two disk species. The
configurational entropy has been postulated to go to zero at the density of an amorphous ideal glass, however,
our numerical observations suggest that the predicted ideal glass is not an amorphous structure but rather
a phase-separated crystal. In fact, we provide an explicit construction (based on discretized leveled random
Gaussian fields) of an exponential number of binary jammed packings with density ranging from that of
the MRJ state to the crystal. This construction clearly demonstrates that there is not a maximally dense
amorphous packing, but rather a continuum of structures from most disordered to most ordered. This work
shows that the very premise of the proposed theories of an ideal glass transition underlying the kinetic one
is flawed.

1.4 Notation

We have tried to develop a clear and consistent notation, however, it is inevitable that some notation has
evolved throughout the duration of this project. In particular, the same Latin or Greek letter may be used
to denote different physical quantities if those quantities are localized in appearance and the context clarifies
their usage. Additionally, the sign convention for positive and negative quantities may be different between
certain chapters. We will alert the reader to any such notational inconsistency.
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1.4.1 Matrix and Vector Notation

We use a notation that tries to distinguish between scalar, vector and matrix (or tensor) quantities, however,
in order to avoid excessive indexing and notation complexity we will often rely on the context for clarity.
The notation is kept independent of the dimensionality d whenever possible.

We will use matrix notation extensively, and denote vectors and matrices with bolded letters, and capi-
talize matrices in most cases. Infinite-dimensional or discrete quantities such as sets or graphs, higher order
matrices (linear operators), or other quantities that are neither scalars nor vectors, will typically be denoted
with script letters. We will often capitalize the letter denoting a vector to denote a matrix obtained from
that vector, for example, a diagonal matrix containing the vector γ on its diagonal will be denoted with Γ
when the context clarifies the meaning. Matrix multiplication is assumed whenever products of matrices or
a matrix and a vector appear. We prefer to use matrix notation whenever possible and do not carefully try
to distinguish between scalars and matrices of one element. We denote the dot product a · b with aT b, and
the outer product a⊗b with abT . We denote a vector with all entries unity (of the appropriate size for the
context) by e = 1, so that

∑
i ai = eT a, and a unit matrix with I.

We consider matrices here in a more general linear operator sense, and they can be of order higher than
two (i.e., they do not necessarily have to be a rectangular two-dimensional array). We refer to differentials as
gradients even if they are not necessarily differentials of scalar functions. Gradients of scalars are considered
to be column vectors and gradients of vectors or matrices are matrices or matrices (linear operators) of
higher rank. More consistent notation with derivatives of vectors and matrices can be developed and should
in principle be employed in calculations to avoid confusions about the order of matrix multiplications and
transpositions [84].

1.4.2 Cross Products

When dealing with non-spherical particles, rotations, and therefore cross products, appear frequently. In
three dimensions (3D), the cross product of two vectors is a linear combination of them that can be thought
of as matrix-vector multiplication

a× b = Ab = −b× a = −Ba (1.3)

where

A = |a|× =

 0 −az ay

az 0 −ax

−ay ax 0

 = −AT

is a skew-symmetric matrix which is characteristic of the cross product and is derived from a vector. We
will simply capitalize the letter of a vector to denote the corresponding cross product matrix (like A above
corresponding to a), or use |a|× when capitalization is not possible. This capitalization may lead to confusion
with other capitalizations of vectors/matrices, however, we hope that in such cases the context will clarify
the notation.

In two dimensions (2D), there are two “cross products”. The first one gives the velocity of a point r in a
system which rotates around the origin with an angular frequency ω (which can also be considered a scalar
ω),

v = ω � r =
[
−ωry

ωrx

]
= Ωr, (1.4)

where

Ω = |ω|� =
[

0 −ω
ω 0

]
= −ΩT

is a cross product matrix derived from ω. The second kind of “cross product” gives the torque around the
origin of a force f acting at a point (arm) r,

τ = f × r = −r× f = [fxry − fyrx] = FLr, (1.5)

where
|f |L× = FL =

[
−fy fx

]
= −

(
|f |R×

)T

= −
(
FR

)T
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is another cross product matrix derived from a vector (the L and R stand for left and right multiplication,
respectively). Note that in three dimensions all of these coincide, FL = FR = F, � ≡ ×, and AB =
baT −

(
aT b

)
I. In two dimensions the two cross products are related via a � b = Ab = −BRa. The wedge

product generalizes the cross product in higher dimensions [85].

1.4.3 Representing Rigid-Body Orientations

Nonspherical particles are rigid bodies and representing their position requires representing their spatial
orientation in addition to the position of their centroid. Representing the orientation of a rigid body in a
computationally convenient way has been a subject of debate in the past [86]. A rigid body has

fR =
d (d− 1)

2
=

{
1 if d = 2
3 if d = 3 (1.6)

rotational degrees of freedom, and this is the minimal number of coordinates needed to specify the configura-
tion of a hard nonspherical particle, in addition to the usual d coordinates needed to specify the position of
the centroid. In two dimensions orientations are easy to represent via the angle ϕ between the major semi-
axes of the ellipsoid and the x axis. But in three dimensions specifying three (Euler) angles is numerically
unstable, and extensive experience has determined that for MD computationally the best way to represent
orientations is via normalized quaternions, which in fact represent finite rotations starting from an initial ref-
erence configuration (but see Ref. [87] for a discussion). In the case of ellipsoids this reference configuration
is one in which all semiaxes are aligned with the coordinate axes. In two dimensions we use a normalized
complex number to represent orientation, but for simplicity we will sometimes use the term “quaternion” in
both two and three dimensions. Higher dimensional generalizations are discussed in Ref. [88].

In three dimensions, normalized quaternions consist of a scalar s and a vector p,

w = [s,p] =
[
cos

ϕ

2
,
(
sin

ϕ

2

)
ϕ̂

]
, (1.7)

where ϕ̂ is the unit vector along the axis of rotation and ϕ is the angle of rotation around this axis, and the
normalization condition

‖w‖2 = s2 + ‖p‖2 = 1

is satisfied. Therefore in three dimensions we use 4 numbers to represent orientation, which seems like
wasting one floating-point number. It is in fact possible to represent the rotation with the oriented angle
ϕ = ϕϕ̂, which is just a vector with 3 coordinates. However, such a representation has numerical problems
when ϕ = 0, and also the representation is not unique3. More importantly, combining rotations (as during
rotational motion) does not correspond (as one may expect) to vector addition of the ϕ’s, but it does
correspond to quaternion multiplication of the w’s, which is fast since there is no need of repeating the
trigonometric evaluations. This is the reason why we also use quaternions in two-dimensions, and represent
the orientation of a particle in the plane with 2 coordinates (components of a unit complex number),

w = [s, p] = [cosϕ, sinϕ] . (1.8)

The orthogonal rotation matrix corresponding to the rotation described by the quaternion (1.7) is given
with

Q = 2
[
ppT − sP +

(
s2 − 1

2

)
I
]

in three dimensions, and

Q =
[

s p
−p s

]
in two dimensions, corresponding to the complex number (1.8). The resulting orientation after first the
rotation Q1 is applied and then the rotation Q2 is applied, Q12 = Q2Q1, is represented by the quaternion
product

w12 = w1w2 = [s1s2 − p1 · p2, s1p2 + s2p1 − p1 × p2] (1.9)
3Note that the quaternion representation is also not unique since −q and q represent the same orientation.
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in three dimensions, and by the complex number product

w12 = w1w2 = [s1s2 − p1p2, s1p2 + s2p1] (1.10)

in two dimensions.
In this work we are interested in particles which move continuously in time. The rate of rotation of a

rigid body is given by the angular velocity ω (which can also be considered a scalar ω in two dimensions),
or equivalently, the infinitesimal change in orientation is given by the infinitesimal rotation dϕ = ωdt. The
instantaneous time derivative of the normalized quaternion is given with

ẇ =
1
2

[
s −p
p sI + P

] [
0
ω

]
in three dimensions, and with

ẇ =
[
s −p
p s

] [
0
ω

]
in two dimensions. The time derivative of the corresponding rotation matrix is

Q̇ = −QΩ,

and this result has was used extensively in deriving the various time derivatives related to the contact
function for ellipsoids, as will be given shortly. In Algorithm 1 we give a numerical prescription for updating
the orientation of a particle rotating with a constant angular velocity for a time ∆t.

1. Calculate the change in orientation w∆t using ϕ∆t = ω∆t in eq. (1.7) or (1.8).

2. Update the quaternion, w← ww∆t, using eq. (1.9) or (1.10).

3. If |‖w‖ − 1| > εW (due to accumulation of numerical errors), renormalize the quaternion, w← w/ ‖w‖.

Algorithm 1: Update the orientation of a particle rotating with a uniform angular velocity ω after a time
step ∆t.

1.4.3.1 Rigid-Body Dynamics

Using quaternions, the equation of motion for a spherically symmetric top

ẅ = |ẇ|2 w +
1
4I

τ̃ ,

where I is the common moment of inertia (along all major axes), and the quaternion “torque”

τ̃ = −∇̃wU

is the negative gradient of the potential energy, projected onto the unit quaternion hypersphere.

1.4.4 Particle Packings

A jammed particle packing has a contact network indicating the touching pairs of particles {i, j}. We will
sometimes talk about a particular particle i or a particular contact {i, j} ≡ ij and we will usually let the
context determine what specific particle or contact is being referred to, or, if deemed necessary, put subscripts
such as i or ij to make it specific what particle or contact is being referred to. The contact ji is physically
the same undirected contact as ij, but the two directed contacts are considered distinct.

There are two primary kinds of vectors x, particle vectors X = (xi) = (x1, . . . ,xN ), which are obtained
by concatenating together the vectors xi (typically of size of the order of the space dimensionality d) corre-
sponding to each of the N particles, and contact vectors y = (yij) = (y1, . . . , yM ), obtained by concatenating
together the (typically scalar) values yij corresponding to each of the M contacts (numbered in arbitrary
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order from 1 to M). Note the capitalization of particle vectors, which we will often do implicitly, to indi-
cate that one can view X as a matrix where each row corresponds to a given particle. If a contact vector
agglomerates a vector quantity attached to each contact, for example, the common normal vector n at the
point of contact of two particles, it too would be capitalized, e.g., N = (nij).

Note that we often use “sphere” and “ellipsoid” in any dimension d, but sometimes we will emphasize
“disk” and “ellipse” in two dimensions for clarity.
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Part I

Jamming: Theory and Algorithms
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Chapter 2

Overlap Potentials for Hard Particles

An essential component to any algorithm aimed at generating hard-particle packings is the verification of the
nonoverlap conditions between pairs of particles. For spheres, testing for overlap is trivial, since two spheres
overlap if and only if the distance between their centers is smaller than the sum of their radii. However,
calculating the distance between nonspherical particles is not trivial. In this Chapter we develop in detail
overlap potentials designed specifically for this purpose. In Section 2.1 we discuss designing overlap potentials
for general convex particle shapes, and then we specifically focus on ellipsoids in Section 2.2. A simple but
powerful generalization of ellipsoids, superellipsoids, is discussed in Section 2.3.

2.1 Nonoverlap Constraints

A packing is a collection of N hard particles in Rd such that no two particles overlap. Each particle i has df

configurational degrees of freedom qi, for a total of Nf = Ndf degrees of freedom. A packing Q = (Q, φ) is
characterized by the configuration Q = (q1, . . . ,qN ) ∈ RNf , determining the positions of the centroid and
the orientations of each particle, and the packing fraction (density), φ, determining the size of the particles.
For spheres Q ≡ R corresponds to only the positions of the centroids, and df = d. For nonspherical
particles without any axes of symmetry there are an additional d(d− 1)/2 rotational degrees of freedom, for
a total of df = d(d + 1)/2 degrees of freedom. In actual numerical codes particle orientation is represented
using unit quaternions, which are redundant representations in the sense that they use d(d − 1)/2 + 1
coordinates to describe orientation. When we focus on displacements of the particles ∆Q from a reference
jammed configuration QJ we will represent particle orientations as a rotational displacement from a reference
orientation ∆ϕ. In two dimensions ∆ϕ = ∆ϕ simply denotes the angle of rotation in the plane, and in three
dimensions the direction of ∆ϕ gives the axis of rotation and its magnitude determines the angle of rotation.
For simplicity, we will sometimes be sloppy and not specifically separate centroid positions from orientations,
and refer to qi as (a generalized) position; similarly, we will sometimes refer to both forces and torques as
(generalized) forces.

2.1.1 The PW Overlap Potential for Convex Particles

In this section we consider a general particle shape given by the inequality ζ (r) ≤ 0, where the shape function
ζ is strictly convex and defined through

ζ (r) = [µ (r)]2 − 1,

where µ is the unique scaling factor by which the particle needs to be resized in order for the point r to lie
on its surface. The unnormalized normal vector to the surface at a given point r, if the particle is rescaled so
that it passes through it, is n(r) = ∇ζ(r). The requirement of having a smooth and convex particle shape
is important in this work because it makes the normal vector n(r) a one-to-one function: There is a unique
normal vector at any point on the surface of a particle, and given a normal vector one can determine the
point on the surface that corresponds to that normal.
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The nonoverlap condition between a pair of particles A and B can be thought of as an inequality between
the positions and orientations of the particles. Define the displacement between the particle centroids
rAB = rA − rB , and the unit vector joining the two particle centroids with uAB = rAB/ ‖rAB‖. For this
purpose, we measure the distance between the two ellipsoids using the overlap potential ζ (A,B) = ζ(qA,qB),
whose sign not only gives us an overlap criterion, ζ (A,B) > 0 if A and B are disjoint

ζ (A,B) = 0 if A and B are externally tangent
ζ (A,B) < 0 if A and B are overlapping,

but which is also at least twice continuously differentiable in the positions and orientations of A and B.
An additional requirement is that ζ(A,B) be defined and easy to compute for all positions and orientations
of the particles. We will also make use of an overlap potential υ(A,B) for the case when ellipsoid A is
completely contained within B (for example, B can be the bounding neighborhood of A, or it can be an
ellipsoidal hard-wall container), υ(A,B) > 0 if A is completely contained in B

υ(A,B) = 0 if A is internally tangent to B
υ(A,B) < 0 if part or all of A is outside B,

and give such a potential below. Such potentials have not been considered before since they do not appear
in other algorithms, however, we will make extensive use of them.

First, we focus on the computation of ζ (A,B). We define and compute the overlap conditions using
a procedure originally developed for ellipsoids by Perram and Wertheim [89]. The Perram and Wertheim
(PW) overlap potential is defined through

ζ = µ2 − 1 = max
0≤λ≤1

min
rC

[λζA (rC) + (1− λ) ζB (rC)] .

For every multiplier λ, the solution of the inner optimization over rC is unique due to the strict convexity
of rC , and satisfies the gradient condition

∆n = λnA (rC) + (1− λ)nB (rC) = 0, (2.1)

which shows that the normal vectors are parallel (with opposite directions). The solution of the outer
optimization problem over λ is given through the condition

ζ = ζA (rC) = ζB (rC) , (2.2)

which means that when the particles are rescaled by a common scaling factor µ = 1+∆µ =
√

1 + ζ they are
in external tangency, sharing a common normal direction n = nA/ ‖nA‖ (i.e., normalized to unit length and
directed from A to B), and sharing a contact point rC . When focusing on one particle we can measure rC

with respect to the centroid of the particle, or otherwise specifically denote rAC = rC−rA and rBC = rC−rB .
This is illustrated for ellipses in Fig. 2.1. If the particles are touching then µ = 1 and the procedure described
above gives us the geometric contact point and therefore the common normal vector. In the case of spheres
of radius O the PW overlap potential simply becomes

ζAB =
(rA − rB)T (rA − rB)

(OA +OB)2
− 1 =

l2AB

(OA +OB)2
− 1, (2.3)

which avoids the use of square roots in calculating the distance between the centers of A and B, lAB , and is
easily manipulated analytically.

The geometrical idea behind the Perram-Wertheim overlap potential, namely, considering scaling the
size of the ellipsoids uniformly until they are in external or internal tangency, can be generalized to different
situations. It is worthwhile to walk through its definition in a more geometrical manner. Consider for example
the case when A and B are disjoint, as illustrated in the leftmost part of Fig. 2.1. If ellipsoid A is scaled by
a nonnegative factor µ(A) such that the centroid of B is still outside it, then there is a corresponding scaling
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of B, µ(B), which brings B into external tangency with A at the contact point rC [µ(A)]. This scaling is
a solution to a simple eigenvalue-like problem involving XA and XB . The normal vectors of A and B at
the contact point are of opposite direction, and by changing the ratio of their lengths from 0 to ∞ we get a
path of contact points going from the center of A to the center of B. It was a wonderful idea of Perram and
Wertheim [89] to parameterize this path with a scalar λ ∈ [0, 1], and then look for the λ = Λ which makes
µ(A) = µ(B), i.e. look for the common scaling factor µAB which brings A and B into external tangency at
the contact point rC (shown in Fig. 2.1), or equivalently, look for the largest common scaling factor which
preserves non-overlap. This approach is very well-suited for the case when both A and B are particles and
thus should be treated equally. Sometimes, however, ellipsoid B has a special status, for example, it may
be the bounding neighborhood of another particle. In this case we look for the scaling factor µB(A) of A
which brings A into external tangency with the fixed B (see second subsection in Section II.C in Ref. [90]),
or equivalently, the largest scaling of A which preserves non-overlap, as illustrated in the middle part of
Fig. 2.1. A similar idea applies to the case when A is contained within B, in which case we look for the
largest scaling νB(A) of A which leaves A contained completely within B, or equivalently, which brings A
into internal tangency with B.

Figure 2.1: Illustration of the scaling µ in the PW contact function: Left : The outer tangency potential
µAB . Middle: The outer tangency potential µB(A). Right: The inner tangency potential νB(A).

Using these scaling factors, we can define several generalized PW overlap potentials,

ζAB(A,B) = µ2
AB − 1 (2.4)

ζ
(B)
AB (A,B) = µ2

B(A)− 1 (2.5)
υB(A,B) = ν2

B(A)− 1, (2.6)

which we will refer to as the Perram-Wertheim (PW), the modified PW overlap potential, and the internal
PW overlap potential respectively. Note that ζ(B)

AB and υB are not defined for all positions of the ellipsoids,
namely, if the center of A is inside B, ζ(B)

AB is not defined, and conversely, if the center of A is outside B, υB

is not defined. Next we focus on evaluating ζ = ζAB (we omit the subscripts for notational clarity) and its
time and configurational derivatives for a general convex particle shape.

2.1.2 Evaluating ζ

Calculating the PW overlap potential can be done by solving for rC(λ) in Eq. (2.1) and then looking for the
λ that solves Eq. (2.2). A rigorous method to solve this problem is to continuously track the solution to Eq.

25



(2.1) as λ goes from 0 to 1, by solving the ODE obtained by differentiating Eq. (2.1) with respect to λ,

M
drC

dλ
=

[
λ∇2ζA + (1− λ) ∇2ζB

] drC

dλ
= ∆g = ∇ζB −∇ζA,

with initial conditions rC = rB and λ = 0. We can then use ODE event location [91] to stop when ζA = ζB .
This method is rigorous in the sense that it can solve for the optimal λ to an arbitrary accuracy, however, it
is inefficient since it requires solving an ODE. If a good-enough initial guess can be provided for λ, one can
directly use Newton’s method on this system of two equations (2.1). The Newton step is the determined by
the step

∆λ =
1
ζλλ

[
(ζB − ζA)−∆gT M−1∆n

]
∆rC = M−1 (∆g∆λ−∆n) ,

where ζλλ = ∆gT M−1∆g. There is no guarantees that this Newton method will converge, however, if it
does, it will identify the unique contact point and the contact λ.

2.1.3 Time Derivatives of ζ

Other than the evaluation of ζ, many of the algorithms described in this work require the evaluation of
time derivatives as the two particles in question move with certain (angular) velocities. The time derivatives
necessary to track λ, rC and ζ when predicting collisions between particles are given with

λ̇ =
1
ζλλ

[
∆gT M−1∆n′ −

(
∂ζB
∂t
− ∂ζA

∂t

)]
ṙC = M−1

(
∆g

dλ

dt
−∆n′

)
ζ̇ =

∂ζA
∂t

+ (∇ζA)T drC

dt
,

where
∆n′ =

∂∆n
∂t

= λ
∂∇ζA
∂t

+ (1− λ)
∂∇ζB
∂t

and we used the standard dot notation for time derivatives.

2.1.4 Configurational Derivatives of ζ

We will frequently need to consider derivatives of the overlap function with respect to the (generalized)
positions of the particles, either first order,

∇qi
ζ = ∇iζ =

(
∂ζ

∂qi

)
,

or second order

∇2
qiqj

ζ = ∇2
ijζ =

[
∂2ζ

∂qi∂qj

]
.

To first order, the particles can be replaced by their (parallel) tangent planes at the point of contact and
the first order derivatives can be expressed in terms of quantities relating to the two tangent planes. To
second order, the particles can be replaced by paraboloids that have the same tangent plane, as well as the
same principal curvature axes and the same radii of curvatures as the two particles at the point of contact.
It is therefore possible to derive general expressions for the derivatives in terms of quantities relating to the
normal vectors and surface curvatures of the particles at the point of contact.

The first order derivatives can easily be expressed in terms of the position of the contact point rC and
the (normalized and outwardly-directed) contact normal vector n. For this purpose, it is easier to measure
the distance between two particles in near contact via the Euclidean interparticle gap h giving the (minimal)

26



surface-to-surface distance between the particles along the normal vector. Moving one of the particles by
∆q = (∆r,∆ϕ) displaces the contact point by ∆rC = ∆r + ∆ϕ � rC and therefore changes the gap by
∆h = −nT ∆rC = −nT ∆r− (rC × n)T ∆ϕ, giving the gradient

∇qh = −
[

n
rC × n

]
.

The relation between the (small) Euclidean gap h and the (small) gap as measured by the PW overlap
potential ζ can be seen by observing that scaling an ellipsoid by a factor µ displaces the contact point by
∆rC = ∆µrC . Therefore, the scaling factor needed to close the interparticle gap is

µ ≈ ζ

2
≈ h

(rBC − rAC)T n
=

h

rT
ABn

,

giving the gradient of the overlap potential ∇qζ = 2 (∇qh) /
(
rT

ABn
)
,

∇A/Bζ = ∓ 2
rT

ABn

[
n

r(A/B)C × n

]
.

For spheres the cross product is identically zero and rotations can be eliminated from consideration.
The second-order derivatives are not as easily evaluated for a general particle shape. In two dimensions, or

in three dimensions when the principal radii of curvatures at the point of contact are equal, one can replace
the particle around the point of contact with a sphere of the appropriate position and radius. However,
when the radii of curvatures are different this is not as easy to do. We will give explicit expressions for the
second-order derivatives of ζ for ellipsoids in Section 2.2.4.2.

2.2 Hard Ellipsoids

In this section, we focus exclusively on ellipsoidal particles, particularly in two (ellipses) and three (ellipsoids)
dimensions. We present all of the necessary tools to evaluate the (three) generalized PW overlap potentials
and its derivatives for a pair of ellipsoidal particles. We first give some introductory material in Section
2.2.1, and then we then focus on calculation of these overlap functions and their time derivatives, which is
used in Section 3.5 to robustly determine the time-of-collision for two moving ellipsoids. We will attempt to
present most of the results so that they generalize to other dimensions as well; however, this is not always
possible. Readers looking for more detailed background information are referred to Refs. [43] and [86].

2.2.1 Ellipsoids

An ellipsoid is a smooth convex body consisting of all points r that satisfy the quadratic inequality

(r− r0)
T X (r− r0) ≤ 1, (2.7)

where r0 is the position of the center (centroid), and X is a characteristic ellipsoid matrix describing the
shape and orientation of the ellipsoid. The case when X = 1

O2 I is a diagonal matrix describes a sphere of
radius1 O, which does not require orientation information. In the general case,

X = QT O−2Q, (2.8)

where Q is the rotational matrix describing the orientation of the ellipsoid, and O is a diagonal matrix
containing the major semi-axes of the ellipsoid along the diagonal. The time derivative of the matrix (2.8)
for an ellipsoid rotating with instantaneous angular velocity ω is

Ẋ = ΩX−XΩ. (2.9)

1We will use the letters r and R to denote positions of points, and therefore resort to using O when referring to radius, o
when referring to the vector containing the semiaxes, and O for the diagonal matrix containing the semiaxes on its diagonal.
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2.2.2 Ellipsoid Overlap Potentials

The problem of determining whether two ellipsoids A and B overlap (have a common point) or not has been
considered previously in relation to Monte Carlo or MD simulations of hard-ellipsoid systems [43]. More than
three decades ago, Vieillard-Baron proposed an overlap criterion based on the number of negative eigenvalues
of a certain matrix [92], and this criterion has been subsequently rediscovered [93]. It easily generalizes to
two dimensions and can be used to obtain an overlap potential. We have implemented and tested this overlap
potential but have found it both computationally and theoretically inferior to the overlap potential proposed
by Perram and Wertheim [89]. We have therefore completely adapted the PW overlap potential and also
extended it to the case of one ellipsoid contained within another. Many other approaches are possible, for
example, an approximate measure of the Euclidean distance between the surfaces of the two ellipsoids can
be used [94, 95, 96, 97]. However, the advantage of the PW approach is its inherent symmetry, dimensionless
character, and most of all, its simple geometric interpretation in terms of scaling factors.

Extensive use of all three of the generalized PW overlap potentials (2.4-2.6) has been made in the
implementation of the algorithms described in this work. The original PW overlap potential (2.4) is the
most efficient in practice and also has the property that it is symmetric with respect to the interchange
of A and B, and is preferred over (2.5) unless µ2

B(A) is needed. In this section we address the issue of
efficiently and reliably calculating the three PW overlap potentials. We base our discussion on outlines of
recipes for calculating ζAB and ζ(B)

AB in the literature [89, 90, 43], but focus on detail and describe a specific
computational scheme based on polynomials. Additionally, contact information such as the point of contact
or the common normal vector at the point of contact can be calculated once the overlap potential is found.

2.2.2.1 Evaluating ζAB

As Perram and Wertheim observed, rC(λ) can be determined analytically for ellipsoids (see below), and
gives

ζ̃AB (λ) = λζA (rC) + (1− λ) ζB (rC) = λ (1− λ) rT
ABY−1rAB , (2.10)

where rAB = rB − rA, and
Y = λX−1

B + (1− λ)X−1
A . (2.11)

It turns out that this function is strictly concave on the interval [0, 1] and thus has a unique maximum at
λ = Λ ∈ [0, 1], from which one can directly calculate the overlap potential

ζAB = ζ̃AB (Λ) = max
0≤λ≤1

ζ̃AB (λ) .

The maximum of ζ̃AB (λ) can easily be found numerically using only polynomial manipulations, by making
extensive use of matrix adjoints (sometimes called adjugates) and determinants (both of which are polyno-
mials in the matrix elements). First rewrite ζ̃AB (λ) as a rational function:

ζ̃AB (λ) =
pAB (λ)
qAB (λ)

=
λ (1− λ)

{
aT

ABadj [λI + (1− λ)AAB ]aAB

}
det [λI + (1− λ)AAB ]

, (2.12)

where
aAB = X1/2

B rAB and AAB = X1/2
B X−1

A X1/2
B .

Note that powers of X are easy to calculate because of the special form (2.8) and orthogonality of Q. We
have made use of the symbolic algebra system Mapler and its code generation abilities to generate inlined
Fortran code to form the coefficients of the polynomial adj [λI + (1− λ)A] and det [λI + (1− λ)A] for a
given symmetric matrix A, and this has found numerous uses when dealing with ellipsoids, such as in
evaluating the coefficients of the polynomials pAB and qAB in eq. (2.12). The unique maximum of ζ̃AB (λ)
can be found by finding the root of its first derivative, which is the same as finding the unique root of the
degree-2d polynomial

hAB = p′ABqAB − pABq
′
AB

in the interval [0, 1], which can be done very rapidly using a safeguarded Newton method.
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A good initial guess to use in Newton’s method is the exact result for spheres

Λ =
OA

OA +OB

,

where O is the largest semiaxis, i.e., the radius of the enclosing sphere for an ellipsoid. Additionally, one
often has a better initial guess for Λ in cases when the relative configuration of the ellipsoids has not changed
much from previous evaluations of ζAB . Finally, a task which appears frequently is to evaluate the overlap
potential between two ellipsoids but only if they are closer than a given cutoff, in the sense that the exact
value is only needed if ζAB ≤ ζ

(cutoff)
AB , or equivalently µAB ≤ µ

(cutoff)
AB . This cutoff can be used to speed

up the process by terminating the search for Λ as soon as a value ζ̃AB (λ) > ζ
(cutoff)
AB is encountered during

Newton’s method. Additionally, one can first test the enclosing spheres for A and B with the same cutoff
and not continue the calculation if the spheres are disjoint even when scaled by a factor µ(cutoff)

AB .
Since almost always the value of λ = Λ is used, henceforth we do not explicitly denote the special value

Λ, unless there is the possibility for confusion. The reader should keep in mind that expressions to follow
are to be evaluated at λ = Λ. The subscript C will be used to denote quantities pertaining to the contact
point. The contact point rC of the two ellipsoids is

rC = rA + (1− λ)X−1
A n = rB − λX−1

B n, (2.13)

where
n = Y−1rAB (2.14)

is the unnormalized common normal vector at the point of contact (once the ellipsoids are scaled by the
common factor µAB), directed from A to B in this case. Here rBC = rC − rB and rAC = rC − rA are the
“arms” from the centers of the ellipsoids to the contact point. An important value is the curvature of ζ̃AB (λ)
at the special point λ = Λ,

ζλλ =
d2ζ̃AB

dλ2
= 2

rT
BCY−1rAC

λ (1− λ)
= −2nT Zn < 0,

where
Z = X−1

A Y−1X−1
B = X−1

B Y−1X−1
A = [λXA + (1− λ)XB ]−1

.

2.2.2.2 Evaluating ζ
(B)
AB and υB

The evaluation of the modified outer and internal tangency PW overlap potentials ζ(B)
AB and υB proceeds in

a similar fashion, but with a differing sign in several expressions. Here the upper sign will denote the case of
internal tangency (υB), and the lower the case of outer tangency (ζ(B)

AB ). We proceed to give a prescription
for evaluation of these potentials without detailed explanations.

Define the parameterized function

fB (λ) = λ2rT
ABY−1X−1

B Y−1rAB , (2.15)

as well as
gB (λ) = (1− λ)2 rT

ABY−1X−1
A Y−1rAB , (2.16)

where
Y = λX−1

B ∓ (1− λ)X−1
A . (2.17)

We then numerically look for the largest λ = Λ in [0, 1] which solves the nonlinear equation

fB (λ) = 1, (2.18)

and then we have the desired scaling factor

υB or ζ(B)
AB = gB (Λ) .
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Additionally, the contact point is

rC = rA ∓ (1− λ)X−1
A n = rB ± λX−1

B n, (2.19)

where the normal vector n is as in eq. (2.14). An additional useful value is the slope

fλ =
dfB

dλ
= 2

rT
BCY−1rAC

(1− λ)
.

We can again use polynomial algebra to efficiently solve eq. (2.18) using a safeguarded Newton method,
by rewriting fB (λ) as a rational function

fB (λ) =

∑d
k=1

[
λp

(B)
k (λ)

]2

q2B (λ)
=
λ2 ‖adj [λI∓ (1− λ)AAB ]aAB‖2

det [λI∓ (1− λ)AAB ]
= 1, (2.20)

where p(B)
k and qB are polynomials, to obtain the equivalent equation

qB (λ)

λ

√∑d
k=1

[
p
(B)
k (λ)

]2
= 1,

which is better suited for numerical solution. The search interval for Λ in this case should be taken to be[
Λ̃, 1

]
, where Λ̃ is the largest root of the degree-d polynomial qB in [0, 1], which can be found exactly in

both two and three dimensions using standard algebraic methods for the solution of polynomial equations
of degree less than 5. A reasonable initial guess when evaluating υB is λ = Λ̃.

Unlike the evaluation of ζAB and ζB
AB , which are both rapid2 and robust, the evaluation of υB poses

numerical difficulties due to the presence of the minus sign in eq. (2.17), which can cause Y to become
singular. This happens when

∥∥Y−1rAB

∥∥ → 0, which does occur when Λ → Λ̃. In this case, since Y is
singular, its adjoint is (almost always) rank-1,

adj [Y]→ uuT ,

where u is some (eigen)vector, and the problem occurs because uT rAB → 0, yielding an apparently in-
determinate 0/0 in eq. (2.20). The limiting value of υB is mathematically well-defined even in this case,
however, its numerical evaluation is unstable, and has been a constant source of numerical problems in our
implementation. One alleviating trick is to avoid explicitly inverting Y and instead the adjoint should be
used, Y−1 = adj [Y] /det [Y], where the determinant of Y can be calculated by using (2.18),

det [Y] = λ
√

ñT
1 X−1

B ñ1,

where ñ1 = adj [Y] rAB . Even with such precautions, we have observed numerical difficulties in the cal-
culations involving inner tangency of A and B. It would therefore be useful to explore alternative overlap
potentials for the case when ellipsoid A is contained within ellipsoid B, or different ways of calculating υB .

2.2.3 Time Derivatives of the Overlap Potentials

When dealing with moving ellipsoids, and in particular, when determining the time-of-collision for two
ellipsoids in motion, expressions for the time derivatives of the contact potentials are needed. We give these
expressions here without a detailed derivation. We have additionally obtained expressions for second order
derivatives, however, these are not needed for the current exposition and are significantly more complicated,
and are not presented here.

2In our numerical experience ζAB and its time derivatives can be evaluated significantly faster, which is one of the reasons
we have chosen to use it.
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2.2.3.1 Derivatives of ζAB

Consider two ellipsoids moving with instantaneous velocities vA and vB and rotating with instantaneous
angular velocities ωA and ωB . For the purposes of the Lubachevsky-Stillinger algorithm, we also want to
allow the ellipsoid semiaxes to change with an expansion/contraction rate ȯ. We have the expected result
that the rate of change of overlap depends on the projection of the relative velocity at the point of contact,
vC , along the common normal vector n,

ζ̇AB = 2λ (1− λ)nT vC , (2.21)

where
vC = [vB + ωB � rBC + ΓBrBC ]− [vA + ωA � rAC + ΓArAC ]

is the relative velocity of the two ellipsoid surfaces at the point of contact (the contact velocity), and we
denoted

Γ = QT
(
O−1Ȯ

)
Q.

One sometimes also needs the time derivative of λ = Λ

λ̇ = − 2
ζλλ

{
ñT

2 vC + nT [λΓBrBC + (1− λ)ΓArAC ] + λ (1− λ)nT Z [(ωB − ωA) � n]
}
, (2.22)

where
ñ2 = λY−1rBC + (1− λ)Y−1rAC .

2.2.3.2 Derivatives of ζ(B)
AB and υB

For the generalized PW overlap potentials, the corresponding time derivatives are given with

ζ̇
(B)
AB or υ̇B = ∓2 (1− λ)nT vC , (2.23)

and

λ̇ = −2λ
fλ

{
rT

BCY−1vC +
[
rT

ACY−1ΓBrBC − rT
BCY−1ΓArAC

]
∓ λ (1− λ)nT Z [(ωB − ωA) � n]

}
. (2.24)

2.2.4 Configurational Derivatives of ζAB

In Section 2.1.4 we obtained the first-order derivatives of ζ = ζAB with respect to the positions of the
particles for general particle shapes. In this section we specialize these to ellipsoids and also give explicit
expressions for the second-order derivatives, whose derivation is very tedious and therefore we only present
the final results here.

2.2.4.1 First-Order Derivatives

In principle the overlap potential is a function of the normalized quaternions describing the particle orienta-
tions, and derivatives of ζ need to be projected onto the unit quaternion sphere, to produce

∇rB
ζ = 2λ (1− λ)n

and

∇̃sB
ζ = −4λ (1− λ)

[
pT

B (rBC × n)
]

∇̃pB
ζ = 4λ (1− λ) [sB (rBC × n)− pB × (rBC × n)] ,

and ∇̃ denotes a projected gradient. Of course, similar expressions apply for derivatives with respect to qA,
but with the sign of n reversed and also λ and (1− λ) swapped.

This projection can be avoided if we do not do a traditional Taylor series in the quaternions, namely an
additive perturbation ∆q, but rather consider a multiplicative perturbation to the quaternions in the form
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of a small rotation from the current configuration ∆ϕ. The gradient of the overlap potential, which enters
in the columns of the rigidity matrix, can be shown to be

∇Bζ = −∇Aζ =
[

∇rB
ζ

∇ϕB
ζ

]
= 2λ (1− λ)

[
n

rBC × n

]
,

as we derived in Section 2.1.4 for a general convex particle shape by using the normalized normal vector
n̂ = n/ ‖n‖ [note that ζ = λ (1− λ) rT

ABn− 1 = 0]. Additionally, it is useful to know the derivatives of λ,

∇rB
λ = − 2

ζλλ
ñ3

∇ϕB
λ = − 2

fλλ
[MBnA − λ (rBC × n)] ,

where
ñ3 = λnB + (1− λ)nA = λY−1rAC + (1− λ)Y−1rBC ,

and
MB = λNLX−1

B + RL
CB .

In these equations capitalizations of vectors such as RL
CB = |rC|L× denote cross-product matrices.

2.2.4.2 Second-Order Derivatives

The explicit expressions for the Hessian of the overlap potential are

∇2
rB
ζ = 2λ (1− λ)Y−1 − 4

fλλ

(
ñ3ñT

3

)
� 0

∇2
ϕBrB

ζ = 2λ (1− λ)MBY−1 + 2
[(

∇ϕB
λ
)
ñT

3

]
and finally

∇2
ϕB
ζ = −fλλ

[(
∇ϕB

λ
) (

∇ϕB
λ
)T

]
+ 2λ (1− λ) ·

{
[
1
2

(
rBCnT + nrT

BC

)
−

(
rT

BCn
)
I
]

+

λNLX−1
B NR + MBY−1MT

B}.

The derivatives with respect to the position and orientation of particle A can be obtained by simply ex-
changing the roles of particles A and B, however, there are also mixed derivatives involving motion of both
particles

∇2
ϕBrA

ζ = −∇2
ϕBrB

ζ

∇2
ϕArB

ζ = −∇2
ϕArA

ζ

∇2
ϕBϕA

ζ = −∇2
ϕB
ζ +

(
∇2

ϕBrB
ζ
)
RR

AB −
1
2

∣∣∇ϕB
ζ
∣∣
× .

For efficiency, it may be preferred to express the second-order derivatives for particle A directly from those
for particle B,

∇2
φA
ζ = ∇2

ϕB
ζ −RL

AB

(
∇2

rB
ζ
)
RR

AB + Symm
[
|∇rBF|L×RR

AB − 2
(
∇2

ϕBrB
ζ
)
RR

AB

]
∇2

ϕArB
ζ = −∇2

ϕBrB
ζ −RL

AB

(
∇2

rB
ζ
)

+ |∇rBF|L× ,

where Symm denotes the operation of symmetrizing a matrix, Symm(A) = (A+AT )/2.
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2.2.5 Surface-Surface Distance

A quantity that is also useful to derive is the true surface-to-surface gap between ellipsoids h, however, an
exact expression for it is difficult to calculate even numerically [98]. When the two ellipsoids are close to
touching, an estimate of h can be obtained as described in Section 2.1.4. A better, geometrically-motivated,
estimate may be obtained by actually calculating the distance between the tangent planes for the ellipsoids
that are parallel to the common tangent plane at rC ,

hlb = rT
ABn̂−

√
n̂T X−1

A n̂−
√

n̂T X−1
B n̂ = rT

ABn̂
(

1− 1
µ

)
which can be shown to be a lower bound on the true surface-to-surface distance. Here we denoted the unit
normal vector at the point with n̂ = n/ ‖n‖. An upper bound is the smallest distance between the two
surfaces along the direction of rAB , hub = ‖rAB‖

(
1− 1

µ

)
[99].

In Section 2.1.4 we obtained the derivatives of h or equivalently ζ with respect to the positions of the
particles, without considering the potential change in particle shape. Uniform scaling of the particle size is
easy to add in the general case, however, for ellipsoids one can consider arbitrary changes of shape, so long
as the particles remain ellipsoidal. To first order, the change in the gap as one of the ellipsoids changes its
axes by ∆o, is

∆h = n̂T (Γ∆t) rC = n̂T QT
(
O−1∆O

)
QrC = ãT ∆o,

where
ã = ∇oh =

(
O−1Qn̂

)
� (QrC) ,

and � denotes an element-wise product of two vectors. Of particular interest is the case when the ellipsoids
just get scaled in size without changing their shape, ∆o = δo, which leads to ∆h =

(
n̂T rC

)
δ from each of

the two ellipsoids, leading to a total gap change of

∆h =
(
n̂T rAB

)
δ.

2.2.5.1 Flat Walls

As a side note, it is sometimes also useful to consider evaluating the distance between planes (flat walls) and
ellipsoids. Consider the tangent plane to an ellipsoid with normal vector n, touching the ellipsoid at the
point rC . We have that

rC = −X−1n
d

,

where d =
√

nT X−1n is the distance from the center to the tangent plane. A suitable overlap potential for
a plane with normal vector n a distance d0 away from the ellipsoid is ζplane = d0− d, and its time derivative
is simply

dζplane

dt
= −nT (v − ω � rC) .

This can be used, for example, to implement molecular dynamics for hard ellipsoids inside a container with
hard walls.

2.2.6 Two Near-Spheres (Nearly) Touching

In what follows we will need first-order approximations of the impenetrability constraints between two nearly
spherical ellipsoids. Assume there are two spheres A and B of radius OA/B touching. Transform the spheres
into ellipsoids with semiaxes OI + ∆O, and orientation described by the rotation matrix Q, and denote
εO = O−1∆O. Finally, define the matrix

T = QT εOQ,

which in the case of turning a disk into an an ellipse with semiaxes O and O(1−ε), i.e., aspect ratio α = 1+ε,
ε� 1, becomes

T = −ε
[

sin2 φ − sinφ cosφ
− sinφ cosφ cos2 φ

]
= −εTφ,
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where θ is the angle of orientation of the ellipse. It can be shown that to first order in ε the new distance
between the ellipsoids is

∆ζ = 2uT
ABSuAB , (2.25)

where
S =

OA

OA +OB
TA +

OB

OA +OB
TB .

Additionally, the perturbed values of λ, the normal vector n, and the contact vector rC , for the case
OA = OB = O, are:

λ ≈ 1
2
− 1

2
uT

ABS̃uAB

O

2
n ≈ uAB − 2SuAB

rBC

O
or

rAC

O
≈ ∓uAB − 2S̃uAB +

(
uT

ABS̃uAB

)
uAB

where S̃ = 1
2 (TB −TA).

2.3 Generalized Ellipsoids

Ellipsoids can be generalized to obtain a very versatile particle shape that can interpolate between a sphere
and a particle with almost flat faces and edges or sharp corners such as a cylinder or cube. This generalization
of quadric shapes known as superquadrics (superellipsoids) have important uses in computer graphics [100,
101], and have also been employed in material modeling as a more general particle shape than spheres
and ellipsoids. In this section we give the necessary expressions to handle this particle shape in molecular
dynamics or Monte Carlo hard-particle algorithms.

2.3.1 Superellipsoids

Superellipsoids [100, 101] are a spherically-symmetric generalization of ellipsoids given by the shape function

ζ (r) = g
[
ζ̃(r̃)

]
− 1,

where r̃ = O−1Q (r− r0) is the relative position rotated and scaled according to the orientation and shape
of the (super)ellipsoid. A single-exponent variant of superellipsoids (one can use two exponents in three
dimensions [101]) uses

g(x) = x1/ε

while
ζ̃(r̃) = eT p = eT f(r̃).

Here f is an element-wise function acting on each of the components of r̃, f(x) = |x|2ε, with derivatives
u = f ′(r̃) and z = f ′′(r̃). The superexponent ε ≥ 1 determines the degree of roundedness of the edges
and faces, ε = 1 being plain ellipsoids (spheres if o = O), and ε → ∞ being a rectangular prism (cubes if
o = O). In three dimensions, it is possible to produce more asymmetric shapes such as cylinders by using
two exponents as in

ζ̃(r̃) =
(
r2ε1
1 + r2ε1

1

)ε2/ε1 + r2ε2
3 ,

which only slightly complicates the derivatives below. Note that powers of the form |x|ε always produce
centrally symmetric shapes. To get shapes like triangles or tetrahedra one can add a term of the form
(x+ |x|)ε for each of the planar faces/edges, where x is the normal distance to the face/edge (note that this
is no longer a strictly convex shape!).
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Figure 2.2: Example of superellipsoid shapes that can be produced by changing the exponents ε1 and ε2. Some
of these are not convex, and the convex shapes interpolate between a sphere and a cube, a cylinder, a double
pyramids, or a double cone. Flat edges and sharp corners are obtained in the limit ε→∞, however, for finite
superexponents the shapes are smooth [Couresy Gordon Kindlmann, see http://teem.sourceforge.net].
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2.3.2 Geometric Properties

A superellipsoid can be enclosed with a sphere of radius Omax = ‖o‖, although one can use a smaller sphere
with extra computation, especially close to the sphere shape. The volume of a superellipsoid is

V =
(∏

oi

)
K,

where

K2 =
2
ε
B

(
1
2ε
,
2ε+ 1

2ε

)
for d = 2

and

K3 = K2(ε1)
1
ε2
B

(
1

2ε2
,
ε2 + 1
ε2

)
for d = 3,

and B(x, y) = Γ(x)Γ(y)
Γ(x+y) is the beta function [101].

2.3.3 Evaluating the Overlap Function

The necessary derivatives to evaluate the PW overlap potential as described in Section 2.1.2 are

∇ζ = g′(F̃ )
(
∇F̃

)
and

∇2ζ = g′(ζ̃)
(
∇2ζ̃

)
+ g′′(ζ̃)

(
∇ζ̃

) (
∇ζ̃

)T

.

Here
∇ζ̃ =

(
O−1Q

)T
u

and
∇2F̃ =

(
O−1Q

)T
Z

(
O−1Q

)
.

We implemented the direct Newton method instead of the ODE approach [c.f. Section 2.1.2], since it was
simple to add to the existing ellipsoid implementation. It was however necessary to allow the specification of
initial guesses for λ and rC in order to ensure convergence of the Newton method and increase computational
efficiency. We found the Newton approach relatively robust for reasonably small values of ε < 10. For higher
values of the exponent alternative implementations of the overlap potentials would be necessary. We have
not yet implemented the inner overlap potential υB for superellipsoids.

2.3.4 Time Derivatives

The time derivatives used in Section 2.1.3, given a linear motion in time with velocities v, angular velocity
ω and expansion rates Γ = QT

(
O−1Ȯ

)
Q, are

∂ζ

∂t
= − (∇ζ)T vC

∂∇ζ

∂t
= ω � (∇ζ)− Γ (∇ζ)−

(
∇2ζ

)
vC ,

where
vC = v + ω � (r− r0) + Γ (r− r0)

is the velocity of the surface of the particle at the point of contact.
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2.4 Conclusions

In this Chapter we demonstrated that the overlap potential originally developed by Perram and Wertheim for
hard ellipsoids can be generalized to any smooth strictly convex shape. We developed in detail the necessary
tools for hard ellipsoids and superellipsoids, and also presented explicit formulas for time and configurational
derivatives, as used in subsequent chapters. Additionally, we showed how to generalize the PW overlap
potential to the case of a particle contained inside another (hard-wall container). This potential, however,
exhibits numerical problems and developing a better inner overlap potential is an important future task.
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Chapter 3

Molecular Dynamics for Nonspherical
Particles

In this chapter we present in considerable detail a collision-driven molecular dynamics algorithm for a sys-
tem of nonspherical particles, within a parallelepiped simulation domain, under both periodic or hard-wall
boundary conditions [11]. The algorithm extends previous event-driven molecular dynamics algorithms for
spheres, and is most efficient when applied to systems of particles with relatively small aspect ratios and
with small variations in size. We present a novel partial-update near-neighbor list (NNL) algorithm that is
superior to previous algorithms at high densities, without compromising the correctness of the algorithm.
This efficiency of the algorithm is further increased for systems of very aspherical particles by using bounding
sphere complexes (BSC). These techniques will be useful in any particle-based simulation, including Monte
Carlo and time-driven molecular dynamics. Additionally, we allow for a non-vanishing rate of deformation
of the boundary, which can be used to model macroscopic strain and also alleviate boundary effects for small
systems. We then apply the algorithm to systems of hard ellipses and ellipsoids. We describe an algorithm
for predicting the time of collision for two moving ellipses or ellipsoids. We present performance results
for our implementation of the algorithm, demonstrating that for dense systems of very aspherical ellipsoids
the novel techniques of using neighbor lists and bounding sphere complexes, offer as much as two orders of
magnitude improvement in efficiency over direct adaptations of traditional event-driven molecular dynamics
algorithms.

3.1 Introduction

Classical molecular dynamics (MD) simulations have been used to study the properties of particle systems
for many decades. The first MD studies used the simplest multi-particle system, the hard-sphere fluid/solid
[102], which is very rich in behavior. Subsequently, methods were developed to follow the dynamics of a
system of soft spheres, i.e., particles interacting with a spherically symmetric and continuous interparticle
potential, usually with a hard cutoff on the range of the interaction. The algorithms needed to simulate
the two types of systems are rather different, and difficult to combine [103]. For soft particles, one needs to
integrate a system of ordinary differential equations given by Newton’s law of motion. However, for hard
particles the interaction potential is singular and the task of integrating the equations of motion becomes
a problem of processing a sequence of binary collisions between the particles1, or collisions of the particles
with the hard walls of a container, if any. In other words, for hard particles, one needs to predict and process
a sequence of discrete events of vanishing duration.

The algorithm for hard particles therefore becomes event-driven, as opposed to the time-driven algorithm
for soft-particle MD in which time changes in small steps and the equations of motion are integrated. Event-
driven algorithms have the task of scheduling a sequence of events predicted to happen in the future. The
simulation is advanced to the time of the event with the smallest scheduled time (the impending event) and
that event is processed. The schedule of events is updated if necessary and the same process is repeated.

1Multi-particle collisions have zero probability of occurring and will not be considered here.
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In molecular dynamics, the primary kind of event are binary collisions, so the simulation becomes collision-
driven. This kind of collision-driven approach was used for the very first MD simulation of the hard-disk
system [102], and has since been extended and improved in a variety of ways, most importantly, to increase the
efficiency of the algorithm. All of these improvements, namely, delayed particle updates, the cell method,
the use of a heap for the event queue, etc., appear in almost any efficient hard-particle MD algorithm.
Systems of many thousands of hard disks or spheres can be studied on a modern personal computer using
such algorithms, and in the past decade the method has been extended to handle more complex simulations,
such as particles in a velocity field [104].

However, we are aware of only one collision-driven simulation in the literature for nonspherical particles,
namely, one for very thin rods (needles) [105]. Other molecular dynamics simulations for hard nonspherical
particles have used a time-driven approach [106], which is simpler to implement than the event-driven
approach but inferior in both accuracy and efficiency (at high densities). Two kinds of smooth shapes are
used frequently to model aspherical particles: spherocylinders (a cylinder with two spherical caps), and
ellipsoids. Both can become spheres in a suitable limit. Spherocylinders are analytically much simpler then
ellipsoids; however, they are always axisymmetric and cannot be oblate.

The primary reason event-driven algorithms have not yet been used for nonspherical particles is that
a high-accuracy collision-driven scheme for nontrivial particle shapes and sufficiently large systems is very
demanding. Computers have only recently reached the necessary speeds, and a proper implementation
involves a significant level of code complexity. In this work, we present in detail a collision-driven molecular
dynamics algorithm for a system of hard nonspherical particles. The algorithm is based on previous event-
driven MD approaches for spheres, and in particular the algorithms of Lubachevsky [37] and Sigurgeirsson
et al. [106]. While in principle the algorithm is applicable to any particle shape, we have specifically tailored
it for smooth particles for which it is possible to introduce and easily evaluate continuously differentiable
overlap potentials. Additionally, it is assumed that the particles have a spherically symmetric moment of
inertia, so that in-between collisions their angular velocities are constant. Furthermore, the algorithm is
most efficient when applied to relatively dense and homogeneous systems of particles which do not differ
widely in size (i.e., the degree of polydispersity is small). We focus in this work on systems with lattice-based
boundaries, under both periodic or hard-wall boundary conditions. The main innovations and strengths of
the proposed algorithm are:

• It specifically allows for non-axially symmetric particles by using quaternions in the representation of
orientational degrees of freedom, unlike previous hard-particle algorithms which have been restricted
just to needles, spherocylinders or spheroids;

• The particle-shape-dependent components of the algorithm are clearly separated from general concepts,
so that it is (at least in principle) easy to adapt the algorithm to different particle shapes; we present
in detail the implementation of these components for ellipses and ellipsoids;

• It explicitly allows for time-dependent particle shapes and for time-dependent shape of the boundary
cell, which enables a range of nonequilibrium applications, such as the generation of packings using the
Lubachevsky-Stillinger algorithm, and also Parinello-Rahman-like [107] constant-pressure molecular
dynamics;

• It corrects some assumptions in traditional hard-sphere algorithms that are not correct for nonspherical
particles or when boundary deformation is included, such as the nearest image convention in periodic
systems and the claim that there must be an intervening collision between successive collisions of a
given pair of particles;

• It is the first rigorous event-driven MD algorithm to incorporate near-neighbor lists, by using the
concept of bounding neighborhoods. This is a very significant improvement for very aspherical particles
and/or at high densities, and has some advantages over the traditional cell method even for hard spheres
because it allows a close monitoring of the collision history of the algorithm;

• It is the first algorithm to specifically address the problem of efficient near-neighbor search for very
elongated or very flat particles by introducing the concept of bounding sphere complexes. The algorithm
also clearly separates neighbor-search in a static environment (where particle positions are fixed) from
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its use in a dynamic environment (where particles move continuously), thus enabling one to easily
incorporate additional neighbor search techniques. We emphasize that the developed near neighbor
search techniques will improve all particle-based simulations, including Monte Carlo and time-driven
molecular dynamics; and

• It is documented in detail with pseudo-codes which closely follow the actual Fortran 95 code used to
implement it for ellipses and ellipsoids.

One motivation for developing this algorithm has been to extend the Lubachevsky-Stillinger sphere-packing
algorithm [12, 13] to nonspherical particles. We have successfully used our implementation to obtain many in-
teresting results for random and ordered packings of ellipses and ellipsoids [78]. We numerically demonstrate
that our novel neighbor-search techniques can speed the simulation by as much as two orders of magnitude or
more at high densities and/or for very aspherical particles, as compared to direct adaptations of traditional
hard-sphere schemes. Executable versions of the Fortran 95 codes implementing the algorithms described in
this chapter, for systems of spheres and ellipsoids in both two and three dimensions and with arbitrary disper-
sity, can be downloaded at http://cherrypit.princeton.edu/Packing/Fortran. Dimension-independent
C++ source codes for a simplified version of the collision driven algorithm we describe here, for monodisperse
systems of hard spheres, can be downloaded at http://cherrypit.princeton.edu/Packing/C++.

We begin by presenting preliminary information and the basic ideas behind the algorithm in Section. 3.2.
We then focus on the important task of improving the efficiency of the algorithm by focusing on neighbor
search in Section 3.3, and present both the classical cell method and our adaptation of near-neighbor lists.
Detailed pseudocodes for all major steps in the algorithm for general nonspherical particles are given in
Section 3.4. We then describe the missing particle-shape-dependent pieces of the algorithm in Section 3.5.
Some performance results for the algorithm are shown in Section 3.6, particularly focusing on the use of our
near-neighbor list and bounding sphere complexes techniques.

3.2 Preliminaries

In this section we give some background information and a preliminary description of the algorithm. First,
we discuss the impact the shape of the particles has on the algorithm. Then we briefly describe the two main
approaches to hard-particle molecular dynamics, time-driven and event-driven. Finally, we discuss boundary
conditions in our event-driven molecular dynamics algorithm and also the possibility of performing event-
driven MD in different ensembles. Bold symbols are reserved for vectors and matrices, and subscripts are used
to denote their components. Matrix multiplication is assumed whenever products of matrices or a matrix
and a vector appear. Subscripts or superscripts are used heavily to add specificity to various quantities, for
example, r denotes position, while rA denotes the position of some particle A. We denote the numerical
precision with ε � 1, and use subscripted ε’s for various user-set (small) numerical tolerances. We often
omit explicit functional dependencies when they are clearly implied by the context and it is not important
to emphasize them, for example, f and f(t) will be used interchangeably.

3.2.1 Particle Shape

We consider a system of N hard particles whose only interactions are given by impenetrability constraints,
although it is easy to allow for additional external fields which are independent of the particles (such as
gravity). Many of the techniques developed here are also used to deal with particles interacting with a soft
potential if there is a hard cutoff on the potential. We discuss the special case of orientation-less particles,
namely spheres, at length, and we use hard ellipsoids to illustrate the extensions to nonspherical particles.
We will use the terms sphere and ellipsoid in any dimension, but sometimes we will be more specific and
distinguish between disk and ellipse in two dimensions, and sphere and ellipsoid in three dimensions.

Spheres are a very important special case not only because of their simplicity, but also because bounding
spheres are a necessary ingredient when dealing with aspherical particles. A bounding sphere for a particle
is centered at the centroid of the particle and has the minimal possible diameter Dmax = 2Omax so that it
fully encloses the particle itself. Here by centroid we mean a geometrically special point chosen so that the
bounding sphere is as small as possible (i.e., it should be chosen to be as close as possible to the midpoint
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of the longest line segment joining two points of the particle). For example, for an ellipsoid, the bounding
sphere has the same center as the ellipsoid and its diameter is equal to the largest axes of the ellipsoid. The
importance of bounding spheres is that they provide a quick and analytically simple way to test for overlap of
two particles: Two particles cannot overlap if their bounding spheres do not overlap. Occasionally we make
use of contained spheres, which are also centered at the centroid of the particle and have the maximal possible
diameter Dmin = 2Omin so that they are fully within the particle itself. For ellipsoids their diameter is the
smallest axes. Note that two particles must overlap if their contained spheres overlap. The efficiency of the
EDMD algorithm described in this work is primarily determined by the aspect ratio α = Dmax/Dmin. The
greater the deviation of α from unity, the worse the efficiency because the bounding/contained spheres become
worse approximations for the particles and because of the increasing importance of particle orientations. We
propose a novel near-neighbor list technique for dealing with very aspherical particles, in addition to the
standard cell method.

3.2.2 Molecular Dynamics

The goal of our algorithm is to simulate the motion of the particles in time as efficiently as possible, while
taking into account the interactions between the particles. For hard-particle systems, the only interactions
occur during binary collisions of the particles. The goal of hard-particle molecular dynamics (MD) algorithms
is to correctly predict the time-ordered sequence of particle collisions. Additionally, there may be obstacles
such as hard walls with which the particles can collide. Next we briefly introduce the main ideas behind the
two main approaches to hard-particle MD, time-driven and event-driven MD. This preliminary presentation
will be helpful in understanding the rest of this section. Further details on the event-driven algorithm are
given in Section 3.4.

3.2.2.1 Time Driven MD

The Time-Driven Molecular Dynamics (TDMD) approach is inspired by MD simulations of systems of soft
particles (i.e., particles interacting with a continuous interaction potential). It has been adapted also to
the simulation of hard-particle systems, particularly nonspherical particles [106, 108], mainly because of its
simplicity. In this approach, all of the particles are displaced synchronously in small time steps ∆t and
a check for overlap between the particles is done. If any two particles overlap, time is rolled back until
the approximate moment of initial overlap, i.e., the time of collision, and the collision of the particles is
processed (i.e., the momenta of the colliding particles are updated), and the simulation continued. The main
disadvantage of this approach is that it is not rigorous, in the sense that collisions may be missed or the
correct ordering of a sequence of successive collisions may be mis-predicted (particularly in dense systems).
To ensure a reasonably correct prediction of the system dynamics, a very small time step must be used and
this is inefficient. Nonetheless, since only checking for overlap between particles is needed, the simplicity
of the method is a very attractive feature. Additionally, such an approach is parallelizable with the same
techniques as any other MD algorithm (for example, domain decomposition).

3.2.2.2 Event Driven MD

An alternative rigorous approach is to use Event-Driven Molecular Dynamics (EDMD), based on a rather
general model of discrete event-driven simulation. In EDMD, instead of advancing time independently of
the particles as in TDMD, time is advanced from one event to the next event, where an event is a binary
particle collision, or a collision of a particle with an obstacle (hard wall). Other types of events will be
discussed shortly, however, collisions are the central type of event so we label the approach more specifically
as Collision-Driven Molecular Dynamics (CDMD). We will however continue to use the abbreviation EDMD
since the term event-driven is widely used in the literature.

Efficient implementations of EDMD are asynchronous: each particle is at the point in time when the
last event involving it happened. Each particle predicts what its impending event is and when it is expected
to happen. All of these events are entered into a priority event queue (typically implemented by a heap),
which allows for quick extraction of the next event to happen. The positions and momenta of the particles
involved in this event are updated, the particles’ next event predicted, the event queue updated, and the
simulation continued with the next event. Sometimes events may be mis-predicted. For example, a particle
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i may predict a collision with particle j, but another (third party) particle m may collide with j before i
has time to. A special event called a check needs to be introduced, and it amounts to simply (re-)predicting
the impending event for a given particle. Given infinite numerical precision, this kind of approach rigorously
follows the dynamics of the system.

The computationally expensive step in EDMD is the prediction of the impending event of a given particle
i (even though asymptotically the event-queue operations dominate). This typically involves the expensive
(especially for nonspherical particles) step of predicting the time of collision between the particle i and a
set of other particles j. In the simplest approach, one would predict the time of collision between i and
all other particles and choose the smallest one, but a much more efficient approach is described in Section
3.3. For spheres moving along straight lines, predicting the time of collision merely amounts to finding the
first positive root (if any) of a quadratic equation, and is very fast. Therefore, for spherical particles EDMD
always outperforms TDMD by orders of magnitude, and it is rigorous. For nonspherical particles, collision
predictions are much more involved, but for algebraically simple smooth particle shapes it is expected that
EDMD will still outperform TDMD for a wide range of densities. Furthermore, there are systems for which
TDMD is not possible, and one must use EDMD, such as systems of hard line segments [105]. Note however
that the efficiency of the EDMD approach is possible only because the motion of the particles between events
can be predicted a priori, and because binary collisions only affect the two colliding particles. In cases when
these assumptions are not true, TDMD may be the only option. Additionally, it is very important to note
that the EDMD algorithm is inherently non-parallelizable due its sequential processing of the events. Some
attempts have been made to parallelize the method [109] by using the locality of the interactions, and very
recently actual implementations have appeared [110]. We will defer any discussion of parallelization to future
publications.

3.2.3 Boundary Conditions

In this work we consider MD in a simple bounded simulation domain embedded in a Euclidean space Ed

of dimensionality d. In particular, we focus exclusively on lattice-based boundaries. This means that the
simulation domain, which the particles never leave, is a parallelepiped defined by d lattice vectors, λ1, . . . ,λd.
The simulation domain, or unit cell, is a collection of points with d relative coordinates r in the interval [0, 1],
and corresponding Cartesian coordinates

r(E) =
d∑

k=1

rkλk = Λr, (3.1)

where Λ is a square invertible matrix representing the lattice, and contains the lattice vectors as columns.
The volume of the unit cell is given by the positive determinant |Λ|. As illustrated in Fig. 3.1(a), the
parameters describing the geometry of a lattice-based boundary separate into components along different
“dimensions”, meaning along different lattice vectors. For example, there are d perpendicular distances Lk

between the“left” and“right” faces of the parallelepiped along λk (meaning the two (d− 1)-dimensional faces
spanned by all lattice vectors other than λk), one for each dimension k = 1, . . . , d. We assume that in three
dimensions the lattice vectors form a right-handed coordinate system, so each lattice vector can be identified
as defining the x (k = 1), y (k = 2), or z (k = 3) axis.

Additionally, we allow either periodic or hard-wall boundary conditions (BCs) to be specified indepen-
dently along each dimension, that is, the “left” and “right” faces of the unit cell along each dimension can
either be hard walls or periodic boundaries. The most commonly used BCs are fully periodic, and one can
interpret periodic systems as being on a topological torus whose distance geometry is determined by the
metric tensor G = ΛT Λ (a “flat” torus), or one can interpret periodic systems as being infinite and covering
all of Euclidean space with identical copies of the unit cell and the particles in this unit cell. We will refer
to the particles in the unit cell as original particles and simply identify them with an integer i = 1, . . . , N .
There are infinitely many image or virtual particles for every original particle, translated from the original
by an integer number of lattice vectors nc ∈ Z. We identify such an image of particle i with a pair of
integers (i, v), where the image or virtual identifier v denotes the particular image in question, nc = nc(v).
Traditional hard-sphere algorithms have used the so-called nearest image convention, which assumes that
only one (easy-to-identify) image of a given particle j can overlap particle i and thus nc need not be explicitly

42



(a) Lattice-based boundary (b) Periodic BCs

Figure 3.1: Illustration of lattice-based boundaries. The left subfigure shows a unit cell in two dimensions,
along with the length of the unit cell along the x direction, L1, and the left and right “walls” along the x
dimension. Also shown is a particle and its bounding sphere (disk). The right subfigure shows a unit cell
and an original particle (black), along with the first neighbor images and their image identifiers v.

stored. However, this assumption is wrong for nonspherical particles, where several images of a given particle
j can overlap an original particle i.

One almost never needs to worry about any but the 3d (9 in two, and 27 in three dimensions) images
of the unit cell that neighbor the original one (first neighbors, including the cell under consideration).
We number these images with v = −(3d − 1)/2, ..., (3d − 1)/2, so that images with opposite nc’s have
identifiers of equal magnitude but opposite sign, nc(−v) = −nc(v), as illustrated in two dimensions in Fig.
3.1(b). Note that (i, 0) ≡ i. When considering ordered pairs of particles [i, (j, v)], one of the particles, i,
is always original, while the other one, (j, v), can be an image or an original. Due to our choice of image-
numbering, we can alternatively consider every such unordered pair to be composed of particles j and (i,−v),
{i, (j, v)} ≡ {j, (i,−v)}.

3.2.3.1 Boundary Deformation

In our simulations, we use relative coordinates r (i.e., expressed in terms of the lattice vectors), and likewise
relative velocities v, and convert these into their Euclidean representations r(E) and v(E) when necessary.
The relative position of an image particle is r + nc. The conversion between the two representations adds
computational overhead due the matrix-vector multiplication2 in (3.1). Some of this overhead can be avoided
by only using Euclidean positions, however, we have chosen to express all positions relative to the lattice.
The primary reason for this choice is that we allow the lattice to deform, that is, we allow for a lattice velocity
Λ̇. In our algorithms, the lattice can change linearly with time,

∆Λ = Λ̇∆t,

even though a more correct approach is to have a constant strain rate

ε̇ = Λ̇Λ−1, (3.2)
2Note however that when the lattice is Λ = I, which is the usual choice unless a special unit cell is needed, all the matrix-

vector multiplications become trivial. Our implementation has a special mode for this simple but important case.
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that is, to have an exponential time evolution of the lattice,

Λ(t) = exp (ε̇t)Λ(0).

The identification of ε = (∆Λ)Λ−1 with the macroscopic strain [111] is explained in Section 4.4.5.1, and we
choose it to be symmetric, ε̇ = ε̇T , to eliminate rotations of the unit cell.

In our approach, since the positions of the particles are relative to the lattice, the particles move together
with the lattice. This is necessary in order to simulate isotropic systems. Namely, had the positions of the
particles been independent of the lattice and the lattice deformed, for example, uniformly contracted, the
image particles would move with the lattice, but the originals would not, and this would lead to artificial
effects at the boundary of the unit cell. However, using relative positions is not without a cost. Consider
a particle at relative position r which moves with constant relative velocity v. It’s Euclidean position is a
parabola,

r(E)(t) =
(
Λ + Λ̇t

)
(r + vt) = Λr +

(
Λv + Λ̇r

)
t+

(
2Λ̇v

) t2
2
, (3.3)

rather than a straight line. We can identify the instantaneous Euclidean position and velocity as well as the
acceleration to be

r(E) = Λr (3.4)
v(E) = Λv + Λ̇r (3.5)
a(E) = 2Λ̇v. (3.6)

This complicates, for example, the calculation of the time of collision of two moving spherical particles.
Ordinarily a quadratic equation needs to be solved, but when the lattice deforms, a quartic equation needs
to be solved instead. To our knowledge, our algorithm is the first EDMD algorithm to include a deforming
boundary.

In our algorithm, the lattice velocity is an externally imposed quantity, and our goal is to simulate the
motion of the particles as the boundary deforms, for example, in order to study shear banding in systems of
ellipsoids [112]. It is the usual case that the boundary deforms slowly compared to the motion of the particles.
As the boundary deforms, the unit cell becomes less and less orthogonal, and so in long-time simulations
some form of orthogonalization of the unit cell might be necessary (we have not experimented with such
techniques). Previously used constant-shear MD techniques [113] do not have this problem, however, they
are also not capable of simulating arbitrary shears and are plagued with boundary effects.

Unlike in TDMD, in EDMD it is not possible to couple the motion of the boundary to all of the particles,
as is done in Parinello-Rahman MD [107]. This is because the efficiency of the method depends critically
on the fact that particles move independently between collisions and that particle collisions only affect the
colliding particles. However, a pseudo-PRMD approach is possible, in which the lattice velocity is updated
after a certain number of particle collisions, and the simulation is essentially restarted with a new lattice
velocity. We have some preliminary positive experience with such a method, and in particular, we have used
it to implement MD that maintains and approximately constant pressure as the particles change shape. Unit
cell dynamics is also needed to properly study anisotropic liquids, which is very important for nonspherical
particles [114]. A deforming boundary can also be used to model macroscopic strain in multiscale simulations
(for example, to simulate granular flow) in which microscale MD is used to obtain material properties needed
for a macroscopic continuum simulation.

3.2.4 EDMD in Different Ensembles

Molecular dynamics is often performed in ensembles different from the NV E one, and in particular, constant
temperature and constant pressure are often desired. For this purpose, various thermostats have been
developed. However, these are usually designed to be used with time-driven MD and systems of soft particles.
We are in fact aware of no work that explicitly discusses thermostats for event-driven MD.

3.2.4.1 Iso-Temperature Simulations

Hard particle systems are inherently athermal due to the lack of energy scale, and the pressure and time
scaling are therefore arbitrary. Sophisticated temperature or pressure thermostats are thus not usually
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needed. In particular, simple velocity rescaling can be used to keep the temperature at the desired value.
The average translational kinetic energy Ek per particle can be calculated and then both the translational
and angular velocities scaled by the factor s =

√
dkBT/2Ek and the simulation essentially restarted3. This

kind of temperature control is needed when, for example, the particles grow or shrink in size, since this leads
to nonconservative collision dynamics and an overall heating or cooling of the system. Although velocity
rescaling is simple and convenient, it has serious deficiencies [115], and a true canonical thermostat may be
needed in some applications. For this purpose, an Andersen thermostat [116] can be included in collision-
driven algorithms by considering the thermostat as a possible collision partner (with an appropriate Poisson
distribution of collision times). We do not include such a stochastic temperature thermostat in our algorithm
explicitly, since we have not used it.

3.2.4.2 Iso-Stress Simulations

A Parinello-Rahman-like isostress (isopressure) thermostat [107] cannot be directly included in collision-
driven algorithms, since it implicitly couples the motion of all particles via the deformation of the unit
cell and thus destroys the asynchronous efficiency of collision-driven approaches. Such a thermostat is
often needed, even for hard particles, in simulations of crystal phases in order to keep the internal stress
tensor isotropic and to allow for changes of the crystal unit cell. We have used constant shear boundary
deformations, as described in Section 3.2.3.1, to implement a partial isostress thermostat in which the shear
rate is periodically updated to reflect the asymmetry of the stress tensor.

More specifically, the MD algorithm obtains an estimate of the collisional contribution to the internal
stress tensor σc [107] by averaging over all of the collisions between particles i and j during a time interval
∆t,

σc =
1

V∆t
〈
rij∆pT

ij

〉
,

where rij is the center-to-center distance between the colliding particles, ∆pij is the momentum exchange
between the particles during the collision (the impulse [117]), and V is the volume of the unit cell. The
interpretation of this expression as a stress tensor is discussed in the jamming limit in Sections 4.4.5.3 and
4.4.6.2. Note that there is an additional term in the stress tensor due to temperature [107], however, at
high densities, and especially in the jamming limit, the collisional contribution dominates. For an isotropic
system at applied external pressure P , the internal stress tensor is σ = P I.

The goal of the isostress MD is to keep the collisional stress as close to P0I as possible, by changing the
lattice vectors in order to accommodate for the particles. We have used a simple scheme in which the strain
rate ε̇ is updated periodically to be proportional to the stress imbalance (that is, the lattice deforms under
the influence of the internal stress),

Λ̇ = W−1(σc − P0I)Λ,

where W is the mass-matrix for the unit cell, usually chosen to be a multiple of the identity matrix. If
the pressure itself is not fixed externally, for example, if it grows due to an increase in the density, then
the target pressure can be set to be P0 = Trace(σc)/d, so that the MD simulation will try to keep the
off-diagonal components of the internal stress tensor to be zero, i.e., it will try to keep the internal stress
isotropic 4.4.5.3. This approach has had a mixed success and additional work is required to improve it,
especially for anisotropic systems of (aspherical) particles [114].

3.3 Speeding Up the Search for Neighbors

Identifying the near-neighbors of a given particle has the most important impact on efficiency in almost all
simulations of particle systems, particularly when the interparticle interactions are short-range. In both MC
and TDMD algorithms it is important to quickly identify only the particles that are within the interaction
cutoff distance lcutoff (here distance is measured in the metric appropriate for the interaction) from a given
particle and only evaluate the force or interaction energy with these particles. Since the number of such
near neighbors is typically a small constant (of the order of 5 − 20, strongly increasing with increasing

3Equipartition of energy is usually maintained by the collision dynamics, and therefore we usually do not use a different
scaling for the angular velocities.
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dimensionality d), this ensures that the computational effort needed to evaluate the forces on the particles
or potential energy scales linearly with the number of particles N , as opposed to the quadratic complexity
of checking all pairs of particles. In EDMD algorithms, it is useless to predict collisions between all pairs of
particles since only nearby particles are actually likely to collide, and in fact N logN scaling can be obtained
in EDMD by only predicting collisions between a given particle and a bounded (small) number of near
neighbors.

In this section we describe the traditional cell method for speeding up neighbor search, and its imple-
mentation for lattice-based boundaries. We then propose a novel method based on the familiar concept
of near-neighbor lists, which offers significant computational savings over the pure cell method for very
aspherical particles, as we demonstrate numerically.

3.3.1 The Cell Method

One traditional method for neighbor search in particle systems is the so-called cell method (see for example
Ref. [86]). It consists of partitioning the simulation domain into Nc disjoint cells and maintaining for each
cell a list of all the particles whose centroids are within it. Then, for a given particle i, only the particles j
in the neighboring cells (including periodic images of cells) of i’s cell are considered neighbors of particle i.
The shape of the cells can be chosen arbitrarily, so long as the union of all cells covers the whole simulation
domain, and so long as for any given cell c one can (easily) identify all neighbor cells cn that contain a point
within Euclidean distance lcutoff from a point in c. This enables a rigorous identification of all particles whose
centroids are within a given cutoff distance from the centroid of a given particle. The essential aspect of the
cell method is that the partitioning into cells is independent of the motion of the particles, so that even as
the particles move one can continue to rely on using the cells to rigorously identify neighbors in constant
time. This is a unique and necessary strength of the cell method, and all of our simulations use the cell
method in some form, to ensure correctness while maintaining efficiency.

Figure 3.2: The cell method : A small disk packing and the associated grid of cells, to be used in searching
for possibly overlapping particles. Dark-shaded disks are original particles and light-shaded ones are images.

For maximal efficiency, it seems that it is best to choose the cells as small as possible, but ensuring that
only cells which actually share a boundary (i.e., are adjacent) need to be considered as neighbors. While
this is obvious for MC or TDMD simulations, it is not so obvious for EDMD. For event-driven algorithms,
it can be theoretically predicted and verified computationally that it is best to choose the number of cells to
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be of the order of the number of particles [104], and computational experiments suggest that there should
be about one particle per cell. For moderately to very dense systems, one should therefore choose the cells
so that the maximal Euclidean distance between two points in the same cell, Lc, is as close to the largest
enclosing sphere diameter Dmax as possible,

Lc = (1 + εL)Dmax.

We have verified this choice to be optimal in our extensive computational experience and consistently try to
maximize the number of cells in all our simulations.

We note that in some simulations the shape of the particles changes. For example, the Lubachevsky-
Stillinger algorithm [12] generates dense packings of particles by performing an EDMD simulation while the
particles expand uniformly (for example, for spheres the radius O changes linearly with time with a constant
expansion rate γ, O(t) = O+ γt). In such cases one must ensure that a sphere of diameter Dmax can always
enclose any of the particles in the system. A suitable value for Dmax can be found, for example, by assuming
that the final packing is the densest possible (or fills space completely if an exact result for the maximal
density is not known). It is also important to note that it is sometimes needed to find all particles whose
centroids are within a distance larger then Dmax from the centroid of a given particle. This is not a problem
for the cell method, as one can simply include as many additional cells in the search as needed to guarantee
that the search is rigorous. For example, one may need to include neighbor cells of the neighbor cells (i.e.,
second-neighbor cells).

The need to adjust the partitioning of Euclidean space into cells to the shape of the simulation domain
is the most difficult aspect of using the cell-method. Most simulations in the literature have been done with
spherical particles and in cubic simulation domains, and the partitioning of the simulation domain is a simple
Cartesian grid (mesh) of cells, where each cell is a cube (this is probably an optimal shape of the cells). For
other boundary shapes, one has two options:

1. Continue using a partitioning of Euclidean space that is independent of the shape of the boundary.
This would likely involve enclosing the simulation domain with a cube and then partitioning the cube
into cells (some cells would be outside the domain and thus wasted). It is even possible to use the cell
method with an infinite simulation domain if hashing techniques are employed [118].

2. Use a cell shape that conforms to the shape of the boundary in some simple way. The shape of the
cells will thus change if the boundary deforms during the simulation.

Both options have their pros and cons. It may not be possible to use the second one for very complex boundary
shapes. We have used the first approach to generate packings of ellipsoids in a spherical container (useful
in comparing with experimental results), by enclosing the spherical container in a cube and partitioning
that cube into cells. However, for lattice-based boundaries, we have chosen to use a partitioning of the
unit cell into a possibly non-orthogonal Cartesian grid that conforms to the shape of the unit cell. This is
illustrated in two dimensions in Fig. 3.3. The unit cell is partitioned into N (c)

k slabs along each dimension
k = 1, . . . , d , to obtain a total of Nc =

∏d
k=1N

(c)
k identical and consecutively (first along dimension 1, then

along dimension 2, etc.) numbered parallelepiped cells. We typically maximize N (c)
k along each dimension

such that the distance between the two parallel faces of the cells along any dimension is larger then the extent
of the largest particle, Lc = mink Lk > Dmax. Operations in the cell method for lattice-based boundaries
basically remain operations on Cartesian grids, just as if the simulation domain had been cubic. Note that
each cell has 3d neighbors (including itself), which is only 9 in two, but 27 in three dimensions. As noted
earlier, sometimes more then 3 slabs may need to be checked along certain dimensions, depending on the
Euclidean cutoff distance for the neighbor search. For completely periodic boundary conditions, there are
other schemes for partitioning into cells which preserve the orthogonality and compactness of the unit cell
[119], by using alternative choices of the simulation domain. In simulations where the lattice deforms by large
amounts, one can alternatively periodically recompute a well-conditioned basis for the lattice and restart the
simulation with a new choice of lattice vectors.

3.3.1.1 The Cell Method in EDMD

It is useful to briefly sketch the basic ideas of how the cell method is integrated in event-driven algorithms.
The cell partitioning is used to speed up the prediction of the next event to happen. This event may be a
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Figure 3.3: The partitioning of a lattice-based simulation box into cells (dark lines). The Cartesian grid
of cells deforms in unison with the lattice, as illustrated by a snapshot of the box and its partitioning at a
latter time. Particles also move together with the lattice, even if they are at “rest”, v = 0, as shown for an
ellipsoid in the (1, 3) cell.

boundary event, which can be a collision of a particle with a hard-wall, or a particle leaving the unit cell in a
periodic system. The event may also be a binary collision, and each particle predicts collisions only with the
particles in the (first) neighboring cells of its current cell. It is clear that a binary collision cannot occur with
a particle not in a neighboring cell until the particle leaves its current cell. Therefore, a boundary event may
be a transfer, where a particle’s centroid leaves its current cell and goes into another cell. The algorithm
predicts and processes transfers in time order with the other events.

Whenever a particle undergoes a transfer, it must correct its event prediction. In particular, it must
predict binary collisions with all the particles in the new neighbor cells. If one maintains separately the
prediction for the next boundary and the next binary collision, then upon a transfer one can reuse the old
binary collision prediction and only calculate the collision time with particles in the neighbor cells which
were not checked earlier [104]. This cuts the number of neighbor cells to process from 3d to 3d−1, which
can save up to 2/3 in computational effort in three dimensions. In our algorithm we originally maintained
the binary collision prediction separately and reused it whenever possible, however, since the neighbor-list
method described next is usually superior in practice, we no longer try to reuse previous binary collisions.

3.3.2 The Near-Neighbor List (NNLs) Method

The cell method is the method used in all EDMD algorithms that we are aware of. An exception is the
algorithm of Ref. [120], but this algorithm is rather different from the classical EDMD algorithms (and from
our algorithm) in more than this respect. There is a preference for the cell method in EDMD because it is
very easy to incorporate it into the algorithm, while still maintaining a rigorously provable correct execution
of the event sequence, given sufficient numerical precision. For monodispersed (equal) spherical particles,
particularly at moderate densities, the cell method is truly the best approach. However, for aspherical
particles whose aspect ratio is far from 1, the cell method becomes inefficient. This is because one cannot
choose the cells small enough to ensure an average of about 1 particle per cell. Instead, due to the large
Dmax, there need to be very few (large) cells which contain many particles and so little computational effort
is saved by using the cells. The same is true even for spheres when large polydispersity is present since the
cells need to be at least as large as the largest sphere in the system, and therefore there can be many small
spheres inside one cell. A more complicated hierarchical cell structure (quadtree or octree) can be used for
very polydisperse packings, but such an approach does not directly generalize to nonspherical particles.

In TDMD, a more widely used neighbor search method is the method of near-neighbor lists (NNLs) (see
for example Ref. [86]). In this method, each particle has a list of its near neighbors, i.e., particles which
are in close proximity (for example, within the cutoff for the interaction potential). As the particles move
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around the lists need to be updated, and this is often done heuristically. Since the particles displace little
from time step to time step in TDMD, the lists need to be updated only after many time steps (especially for
dense systems). NNLs are not easy to use within EDMD because of the necessity to ensure correctness of the
algorithm rigorously. If the order of events is not predicted correctly, the algorithm will typically fail with
error conditions such as endless collision cycles between several particles. However, it is easily recognized
that in order to efficiently treat nonspherical particles it is necessary to combine neighbor lists with the cell
method. We now describe how this can be accomplished while maintaining a provably correct prediction of
the collision sequence.

Figure 3.4: Illustration of NNLs for a system of disks (left) and ellipses (right). Particles are darker, and
their bounding neighborhoods are lighter (it is easy to see which neighborhood goes with which particle). For
disks the system is binary (bidisperse), and the neighborhoods are disks and the pairs of near-neighbors are
shown as dark lines. For ellipses the neighborhoods are ellipses themselves and the interactions are shown
as dark triangles whose vertices are given by the centroids of the two ellipses and the point of contact of the
ellipses.

The main drawback of the cell method is that the shape of the cells is not adjusted to the shape of the
particles, for example, elongated or squashed particles, but cubic cells. The main advantage, on the other
hand, is that the partitioning into cells is static and independent of the motion of the particles. To correct
for the drawback, we must compromise on the advantage: The partitioning into “cells” must be updated
from time to time to reflect the motion of the particles, if we are to have any hope of having cells which
take into account the shape of the particles. The idea is the following: Surround each particle i with a
bounding neighborhood N (i), so that the particle is completely inside its bounding neighborhood, and the
shape of the neighborhood is in some sense sensitive to the position and shape of the particle (for example,
it should be elongated approximately along the same direction as the ellipsoid). Then, consider any two
particles whose neighborhoods overlap to be near neighbors, and only calculate interaction potentials or
check for collisions between such pairs. Each particle then stores a list of interactions in its near-neighbor
list NNL(i), which is equivalent to each bounding neighborhood storing a list of neighborhoods with which
it overlaps. This is illustrated for disks by using disks as the bounding neighborhoods in Fig. 3.4. Note
that the cell method, as described earlier, must be used when (re-)building the NNLs, since overlap between
neighborhoods cannot be checked efficiently otherwise. Building and maintaining the NNLs is expensive and
dominates the computation for very aspherical particles. Finally, we note that the choice of the shape of the
bounding neighborhoods and the exact way one constructs the NNLs is somewhat of a design choice. The
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necessary invariant is that each particle be completely contained inside its bounding neighborhood and that
there be an interaction in the NNLs for each pair of overlapping neighborhoods.

In this work we describe a specific conceptually simple approach which applies to hard particles of any
shape and has worked well in practice. In our algorithm, the shape of N (i) is the same as the shape of
particle i, but scaled uniformly with some scaling factor µneigh > 1. Additionally, N (i) has the same centroid
as i, at least at the instant in time when NNL(i) is constructed (after which the particle may displace). This
is illustrated for ellipses in Fig. 3.4. One wants to have the bounding neighborhood N (i) as large as possible
so that there is more room for the particle i to move without the need to rebuild its NNL. However, the
larger the neighborhood, the more neighbors there will be to examine. We investigate the optimal balance,
as determined by the choice of µneigh, shortly. It is important to note that it would most likely be better
to consider N (i) to be the set of all points that are within a given distance from the surface of particle i,
especially for very nonspherical particles. This is because scaling a very elongated particle by a given factor
µ produces unnecessarily long neighborhoods, which increases the cost of using the cell method to construct
the neighbor lists. However, evaluating point-to-surface or surface-to-surface distances is quite nontrivial
even for ellipsoids, and also the geometrical reasoning is obscured. On the other hand, using a bounding
neighborhood which has the same shape as the particle is very intuitive and also efficient for ellipsoids.

3.3.2.1 The NNL Method in EDMD

Once the NNLs are built, one no longer needs to use the cell method, so long as all particles are still
completely contained within their bounding neighborhoods. As time progresses, a particle may protrude
outside its neighborhood, and in this case the NNLs need to be updated accordingly, using the fail-safe cell
method. Details of this update will be given later. Therefore, when using NNLs, instead of transfers, another
kind of event needs to be included: a“collision”with its bounding neighborhood. When using NNLs, transfers
do not need to be handled at all. Namely, instead of using the cell method for the particles themselves, it
should be used on the bounding neighborhoods. Each cell keeps a list of the bounding neighborhoods whose
centroids it contains. Hard-walls are handled by including hard walls as neighbors in the NNLs of the particles
whose bounding neighborhoods intersect a hard wall. At present we do not try to reuse any previous binary
collisions when rebuilding neighbor lists because dealing with such reuse is rather complicated.

An additional complication when using NNLs arises when the boundary is deforming. Since in our
approach all positional coordinates are expressed in relation to the (possibly deforming) lattice, the neigh-
borhoods are not stationary but move together with the boundary. This may lead to originally disjoint
neighborhoods overlapping later on. In order to ensure correctness of the neighbor search in such cases, one
can add a “safety cushion” around each bounding neighborhood N (i). Specifically, two particles are to be
considered neighbors if their bounding neighborhoods overlap when scaled by a common scaling factor 1+εN ,
where εN > 0 is the relative size of the safety cushion. The NNLs need to be rebuilt completely whenever
the boundary deformation becomes too large, because of the possibility of new neighborhood overlap. In this
context, a measure of how much the boundary has deformed is given by the relative amount that Euclidean
distances have changed due to the boundary deformation.

Consider a periodic system and two points with relative displacement r, measured in lattice vectors. The
Euclidean distance between them is l2 = rT Gr, where G = ΛT Λ is a metric tensor. At a later time ∆t, the
distance changes, and the largest relative contraction in Euclidean distance between any two points is given
by:

min
r

[
(l + ∆l)

l

]2

= min
rE

rT
E (I + ε∆t)T (I + ε∆t) rE

rT
ErT

E

= λmin

[
(I + ε∆t)2

]
,

where rE = Λr and λmin denotes the minimal eigenvalue of a symmetric matrix. Therefore, the Euclidean
distance between the centroids of two neighborhoods would not have contracted by more then a factor of
λmin

[
(I + ε∆t)2

]
. In light of this observation, a reasonable heuristic approach is to periodically check the

magnitude of the smallest eigenvalue of (I + ε∆t)2, and rebuild the NNLs completely whenever it deviates
from unity by more then a few (as determined heuristically via experimentation) multiples of εN . Since it
is reasonable to assume that the boundary deforms slowly compared to the particles, these kinds of updates
will happen infrequently. This approach seems to work well in practice. In EDMD a rigorous approach is
also possible, by predicting the first instance in time when two non-overlapping bounding neighborhoods first
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overlap, and including this as a special event in the event queue. When this event is at the top of the queue,
the simulation is essentially restarted from the current point in time. However, such an approach does not
work in TDMD, and we have not found the practical need for such a complicated scheme either.

3.3.3 Very Aspherical Particles

Using the traditional cell method when rebuilding the NNLs is the computational bottleneck for very as-
pherical particles. To really obtain a fast yet rigorously correct event-driven algorithm for very aspherical
particles the traditional cell method needs to be either abandoned or modified. It is clear that any neighbor
search mechanism which only uses the centroids cannot be efficient. Although in a sense Ref. [121] studies
the worst case of α→∞ (needles, and similarly for platelets), it does not mention any additional techniques
to handle the fact that as many as 50 needles can be in one cell in the reported simulations. This is probably
because at that time only small systems (N = 100− 500) could be studied, for which the cell method does
not offer big savings even for spheres.

Figure 3.5: A small periodic packing of ellipses of aspect ratio α = 10 illustrating the use of bounding sphere
complexes. Each particle i (darkest shade) is bounded by its neighborhood (lighter shade) N (i), which is
itself bounded by a collection of 10 disks BSC(i). A bounding neighborhood N (j) may overlap with N (i)
if some of the bounding disks of particles j and i overlap. Therefore the usual cell grid (also shown) can be
used in the search for neighbors to add to NNL(i). Image particles are shown in a lighter shade.

The approach we have implemented is to use several spheres to bound each particle, instead of just one
large bounding sphere. We will refer to this collection of bounding spheres as the bounding sphere complex
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(BSC). For the purposes of neighbor search, we still continue to use the cell method, however, we use the
cell method on the collection of bounding spheres, not on the particles themselves. That is, we bin all of the
bounding spheres in the cells, and the minimal Euclidean length of a cell is at least as large as the largest
diameter of a bounding sphere. By increasing the number of bounding spheres per particle one can make the
cells smaller. When searching for the neighbors of a given particle, one looks at all of its bounding spheres
and their neighboring bounding spheres, and then checks whether the particles themselves are neighbors.
This slightly complicates the search for neighbors, but the search can be optimized so that a given pair of
particles is only checked once, rather then being checked for every pair of bounding spheres that they may
share. It is hard to maintain the binning of the bounding spheres in cells as particles move. It is therefore
essential to combine using BSCs with using NNLs. Each bounding neighborhood N (i) is bounded by BSC(i),
that is, N (i) is completely contained in the union of the bounding spheres in BSC(i). The binning of the
bounding spheres is only updated when NNL(i) is updated, and particle i is free to move inside N (i) without
possibility of overlapping with a particle not in NNL(i). Using BSCs in two dimensions is illustrated in Fig.
3.5.

In our implementation, we use relative positions and radii for the spheres in BSC(i), expressed in a
coordinate system in which particle i’s orientation is aligned with the global coordinate system and the
radius of its bounding sphere is unity. This enables us to not have to update the above quantities as the
particle moves and changes shape, and also to share them between particles of identical shapes using pointers.
When updating N (i), we can easily calculate the absolute (Euclidean) positions and radii of the bounding
spheres from the relative ones.

In two dimensions, for very elongated objects, it is relatively easy to construct bounding complexes,
however, this is not so easy in three dimensions, even though there are general methods (taken from com-
putational geometry) for finding a good approximation to a particle shape with a few spheres [122]. We
expect that there will be an optimal number of spheres NS to use, this number increasing as the aspect ratio
increases, however, it is not clear how to construct optimal BSCs. The approach we have implemented is
to first bound each ellipse or ellipsoid in an orthogonal parallelepiped (rectangle in two dimensions), and
then use a subset of a simple cubic lattice cover (a collection of identical spheres whose union covers all of
Euclidean space) to bound (cover) the orthogonal parallelepiped. This kind of approach is far from optimal
(for example, the lowest density sphere cover in three dimensions is given by a body-centered lattice of
spheres), but it is very simple and works relatively well for sufficiently aspherical particles. This is illustrated
in three dimensions for prolate and oblate ellipsoids in Fig. 3.6. As can be seen from the figure, it seems
hard, if not impossible, to construct BSCs with few small spheres for flat (oblate) particles. Future research
is needed to find a way to speed neighbor search for very oblate particles, and a promising direction to
investigate is hierarchical bounding sphere complexes. Later we demonstrate that using BSCs in conjunction
with NNLs significantly improve the speed of the EDMD algorithm for very elongated (prolate) particles.
Note that using a large number of small bounding spheres (for very aspherical particles) requires a significant
increase in the number of cells, and to save memory hashing may need to be used when manipulating the
cell partitioning [123].

3.4 EDMD Algorithm

In this section, we describe our EDMD algorithm in significant detail, in the hope that this will prove very
useful to other researchers implementing similar methods. Starting from a brief history of the main ideas
used in the algorithm and a description of the basic notation, we proceed to give detailed descriptions of
each step in the algorithm in the form of pseudo-codes. We first explain the top level event loop and its most
involved step of predicting the impending event for a given particle. We then focus on binary collisions and
boundary events separately, and finally describe algorithms for maintaining NNLs in a dynamic environment.
Some of the steps of the algorithm, such as predicting the time of collision of two particles or processing
a binary collision, depend on the particular particle shape in question and are illustrated specifically for
ellipsoids in Section 3.5.
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Figure 3.6: Bounding sphere complexes for spheroids of aspect ratio α = 5. The prolate particle has 5
bounding spheres, but the oblate one has 25 bounding spheres.

3.4.1 History

We briefly summarize some of the previous work on EDMD algorithms. Although this has been done in
other publications, we feel indebted to many authors whose ideas we have used and combined together to
produce our algorithm, and would like to acknowledge them.

The very first MD simulation used an event-driven algorithm [102], and since those early attempts the
core of an efficient EDMD algorithm for spherical particles, entailing a combination of delayed updates for
the particles, the cell method and using a priority queue for the events, has been developed [124, 125]. Our
approach borrows heavily from the EDMD algorithm developed by Lubachevsky [37]. We do not use a
double-buffering technique as does Lubachevsky, following Ref. [126], and incorporate additional techniques
developed by other authors.

One of the controversial questions in the history of EDMD is how many event predictions to retain for
each particle i? As Ref. [126] demonstrates, it is best to use a heap (complete binary search tree) for the
priority event queue, and we follow this approach. It seems clear that only the impending prediction for
each particle should be put in the event queue (i.e., the size of the heap is equal to N), but this prediction
may be invalidated later (due to a third-party event, for example). In such cases, it may be possible to
reuse some of the other previously-predicted binary collisions for i, for example, the one scheduled with the
second-smallest time [127, 128]. This requires additional memory for storing more predictions per particle
and adds complexity to the algorithm. We have adapted the conclusion of Ref. [104] that this complexity is
not justified from an efficiency standpoint. Ref. [128] makes the important observation that after a transfer
fewer cells need to be checked for collisions. The authors of Ref. [104] thus predict and store separately the
next binary collision and the next transfer for each particle, and only insert the one with the smaller time
into the event heap. More exotic EDMD algorithms, for example, aimed at increased simplicity or ease of
vectorization [120], have been developed. We build on these previous developments and combine neighbor-list
techniques traditionally used in TDMD to develop a novel EDMD algorithm specifically tailored to systems
of nonspherical particles at relatively high densities.

3.4.2 Notation

As explained above, the EDMD algorithm consists of processing a sequence of time-ordered events. Each
particle must store some basic information needed to predict and process the events. An event (te, pe) is
specified by giving the predicted time of occurrence te and the partner pe. A special type of an event is a
binary collision [tc, (pc, vc)], determined by specifying the time of collision tc ≡ te and the partner in the
event (pc ≡ pe, vc). The primary use of the image (virtual) identifier vc is to distinguish between images of a

53



given particle when periodic boundary conditions are used. Note that the collision schedules must be kept
symmetric at all times, that is, if particle i has an impending event with (j, v), then particle j must have an
impending event with (i,−v). Although the cell a particle belongs to can be determined from the position
of its centroid, this is difficult to do exactly when a particle is near the boundary of a cell due to roundoff
errors (possible tricks to avoid such problems include adding a cushion around each cell and not considering
a transfer until the particle is sufficiently outside the cell [126]). We have chosen to explicitly store and
maintain the cell that a particle, a bounding neighborhood of a particle, or a bounding sphere, belongs to
(as determined by the corresponding centroid).

In summary, for each particle i = 1, . . . , N , we store:
1. The predicted impending event (te, pe, vc) along with any other information which can help process the

event or collision more efficiently should it actually happen later.

2. The last update time t.

3. The state of the particle at time t, including:

(a) Its configuration, including the relative position of the centroid r and any additional configuration
(such as orientation) q, as well as the particle shape (such as radius, semiaxes, etc.) O. Note that
O may be shared among many particles using pointers (for example, all particles have the same
shape at all times in a monodisperse packing) and thus not be updated to time t but still be at
time zero4.

(b) The particle motion, including the relative velocity of the centroid v = ṙ and additional (such as
angular) velocity ω representing q̇. Also included in the motion is the rate of deformation of the
particle shape Γ (possibly shared among different particles).

(c) The particle cell c, to which r belongs, if not using NNLs.

4. Dynamical parameters, such as particle mass or moment of inertia (possible shared with other particles).

5. If using NNLs, the configuration of the (immobile) bounding neighborhood N (i), rN and qN , its shape
ON , as well as the cell c to which rN belongs.

6. If using BSCs in addition to NNLs:

(a) The relative positions rBS
j and relative radii OBS

j , j = 1, . . . , NBS , of its NBS bounding spheres,
along with the largest BS radius OBS

max = maxj O
BS
j . These are expressed relative to the position

and size of N (i).
(b) The cell cBS

j that rBS
j belongs to, j = 1, . . . , NBS .

For each of these quantities, we will usually explicitly indicate the particle to which they pertain, for example,
t(i) will denote the time of particle i.

3.4.2.1 Event Identifiers

Each particle must predict its impending event, and there are several different basic types of events: bi-
nary collisions (the primary type of event), wall collisions (i.e., collisions with a boundary of the simulation
domain), collisions with a bounding neighborhood (i.e., a particle leaving the interior of its bounding neigh-
borhood), transfers (between cells), and checks (re-predicting the impending event). Additionally, several
different types of checks can be distinguished, depending on why a check was required and whether the
motion of the particle changed (in which case old predictions are invalid) or not (in which old predictions
may be reused). We consider transfers and wall collisions together as boundary events (or boundary “col-
lisions”), since their prediction and processing is very similar (especially for periodic BCs). The exact cell
wall through which the particle exits the (unit) cell, or the wall with which the particle collides, is identified
with an integer w, which is negative if the event is with a wall of the unit cell (boundary).

In our implementation, the type of a predicted event for a particle i is distinguished based on the event
partner p (possibly including an image identifier v):

4We have implemented a different approach for systems with a few types of particles (monodisperse, bidisperse, etc.), for
which we store the particle shape information separately from the particles and share it among them, and polydisperse systems
in which each particle has a (potentially) different shape, for which we store the particle shape together with the rest of the
particle state.
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0 ≤ p ≤ N A binary collision between particles i and (p, v), where v is the virtual identifier of the partner.

p = −∞ A check (update) after an event occurred that did not alter the motion of i.

p > 2N Transfer between cells, i.e., “collision” with wall w = p− 2N , w > 0.

p < −2N Wall collision with wall w = p+ 2N , w < 0, which can be a real hard wall or the boundary of the
unit cell.

N < p ≤ 2N Check after binary collision with partner (j,−v), where j = p − N (the motion of particle i
has changed).

p = 0 Check for particle i after an event occurred which altered the motion of i.

p =∞ Collision with the bounding neighborhood N (i).

The range −2N ≤ p < 0 is reserved for future (parallel implementation) uses. Of course, one can also store
the partner as two integers, one indicating the type of event and the other identifying the partner, however,
the above approach saves space.

3.4.3 Processing the Current Event

Algorithm 2 represents the main event loop in the EDMD algorithm, which processes events one after the
other in the order they occur and advances the global time t accordingly. It uses a collection of other auxiliary
steps, the algorithms of which are given in what follows. Note that when processing the collision of particle i
with particle (j, v), we also update particle j, and later, when processing the same collision but as a collision
of j and (i,−v), we skip the update. Also, note that when using NNLs, there are two options: Completely
rebuild the NNLs as soon as some particle i collides with its neighborhood, or, rebuild only the neighbor
list NNL(i). We discuss the advantages and disadvantages of each approach and compare their practical
performance in latter sections.

Algorithm 2: Process the next event in the event heap.

1. Delete (pop) the top of the event queue (heap) to find the next particle i to have an event with pe(i) at te(i).

2. Perform global checks to ensure the validity of the event prediction. For example:

(a) If the boundary is deforming, and if at time te(i) the cell length Lc is not larger then the largest enclosing
sphere diameter Dmax, Lc [te(i)] ≤ Dmax [te(i)], then restart the simulation:

i. Synchronize all particles (Algorithm 3).
ii. Repartition the simulation box to increase the length Lc (for example, for lattice boundaries, increase

the appropriate N
(c)
k ).

iii. Re-bin the particles into the new cells based on the positions of their centroids.
iv. Reset the event schedule (Algorithm 4).
v. Go back to step 1.

(b) If using NNLs and the NNLs are no longer valid (for example, due to boundary deformation), then:

i. Synchronize all particles.
ii. Rebuild the NNLs (Algorithm 9).
iii. Reset the event schedule.
iv. Go back to step 1.

3. If the boundary is deforming, update its shape. For example, for lattice-based boundaries, set Λ ← Λ +
Λ̇ [te(i)− t].

4. Advance the global simulation time t← te(i).

5. If the event to process is not a check after a binary collision, then update the configuration of particle i to time
t (for example, r(i)← r(i) + [t− t(i)]vi), and set t(i)← t.

6. If using NNLs and event is a collision with a bounding neighborhood, then:

(a) If completely rebuilding NNLs, then declare NNLs invalid and execute step 2b.

55



(b) Else, record a snapshot of the current shape of particle i (recall that this may be shared with other
particles) in Oi and rebuild the NNL of particle i (Algorithm 10).

7. If the event is a wall collision or cell transfer, then:

(a) If pe(i) > 0 then set w ← pe(i)− 2N (transfer).

(b) Else set w ← pe(i) + 2N (wall collision).

(c) Process the boundary event with “wall” w (Algorithm 8).

8. If the event is a binary collision, then:

(a) Update the configuration of particle j = pe(i) to time t and set t(j) ← t and pe(j) ← N + i (mark j’s
event as a check).

(b) Process the binary collision between i and j (see specific algorithm for ellipsoids 11).

9. Predict the next collision and event for particle i (Algorithm 5).

10. Insert particle i back into the event heap with key te(i).

11. Terminate the simulation or go back to step 1.

Because EDMD is asynchronous, it is often necessary to bring all the particles to the same point in time
(synchronize) and obtain a snapshot of the system at the current time t. This is done with Algorithm 3. Note
that we reset the time to t = 0 after such a synchronization step. Another step which appears frequently is
to reset all the future event predictions and start afresh, typically after a synchronization. In particular this
needs to be done when initializing the algorithm. The steps to do this are outlined in Algorithm 4.

1. If t = 0 then return.

2. For all particles i = 1, . . . , N do:

(a) Update the configuration of particle i to time t.
(b) Set te(i)← te(i)− t, tc(i)← tc(i)− t and t(i)← 0.

3. Update the shapes of all particles to time t.

4. Store the total elapsed time T ← T + t and set t← 0.

Algorithm 3: Synchronize all particles to the current simulation time t.

1. Reset the event heap to empty

2. For all particles i = 1, . . . , N do:

(a) Set pe(i), pc(i)← 0 and te(i), tc(i)← 0.
(b) Insert particle i into the event heap with key te(i).

Algorithm 4: Reset the schedule of events.

3.4.4 Predicting The Next Event

The most important and most involved step in the event loop is predicting the next event to happen to a given
particle, possibly right after another event has been processed. Algorithm 5 outlines this process. Note that
it is likely possible to further extend and improve this particular step by better separating motion-altering
from motion-preserving events and improving the reuse of previous event predictions.

Algorithm 5: Predict the next binary collision and event for particle i, after an event involving i
happened.

1. If not using NNLs, then:

56



(a) Initialize tw ←∞ and t̃w ←∞ and set w ← 0.

(b) Predict the next boundary event (wall collision or transfer) time tw and partner “wall” w for particle i, if
any, by looking at all of the boundaries of c(i) (Algorithm 7). If an exact prediction could not be made
(for example, if a hard wall was involved and the search was terminated prematurely), calculate a time
t̃w up to which a boundary event is guaranteed not to happen and set w ← 0.

(c) If w = 0, then force a check at time t̃w, pe(i)← −∞ and te(i)← t̃w,

(d) else predict te(i)← tw and:

i. If w < 0 then set pe(i)← w − 2N ,
ii. else set pe(i)← w + 2N .

(e) If a hard-wall prediction was made, store any necessary information needed to process the collision more
efficiently later (for example, store λ in the case of ellipsoids).

(f) For all particles (j, v) in the cells in the first neighborhood of c(i), execute step 4,

2. else if using NNLs, then:

(a) Predict the time tN particle i will protrude outside of (collide with) its bounding neighborhood N (i),
limiting the length of the search interval to te(i). If an exact prediction is not possible, calculate a time
t̃N before which i is completely contained in N (i).

(b) If tN was calculated and tN < te(i), then record:

i. Set pe(i)←∞ and te(i)← tN .
ii. Potentially store any additional information about this collision for particle i,

(c) else if t̃N was calculated and t̃N < te(i) then force a new prediction for particle i at time t̃N , pe(i)← −∞
and te(i)← t̃N .

(d) For all hard walls w in NNL(i), predict the time of collision tw. If an exact prediction could not be made,
calculate a time t̃w up to which the collision is guaranteed not to happen.

(e) If tw was calculated and tw < te(i), then record:

i. Set te(i)← tw and pe(i)← w − 2N .
ii. Potentially store any necessary information needed to process the wall collision more efficiently later,

(f) else if t̃w was calculated and t̃w < te(i), then force a check pe(i)← −∞ and te(i)← t̃w.

(g) For all particles (j, v) in NNL(i), execute step 4,

3. Skip step 4.

4. Predict the time of collision between particles i and (j, v):

(a) Predict if i and (j, v) will collide during a time interval of length min [te(i), te(j)] and if yes, calculate
the time of collision tc, or calculate a time t̃c < tc before which a collision will not happen (see specific
algorithm for ellipsoids 11).

(b) If tc was calculated and tc < min [te(i), te(j)], then record this collision as the next predicted binary
collision for particle i:

i. Set pe(i)← j, v(i)← v and te(i)← tc.
ii. Potentially store any additional information about this collision for particle i (for example, λ in the

case of ellipsoids),

(c) else if t̃c was calculated and t̃c < te(i) then force a new prediction for particle i at time t̃c, pe(i) ← −∞
and te(i)← t̃c.

5. If 0 < pe(i) ≤ N then let j = pe(i) (a new collision partner was found), and:

(a) If the involved third-party m = pe(j) is a real particle, 0 < m ≤ N and m 6= i, then invalidate the third
party collision prediction, pe(m)← −∞.

(b) Ensure that the collision predictions are symmetric by setting pe(j)← i, v(j) = −v(i) and te(j)← te(i).
Also copy any additional information about the predicted collision to particle j as well (in the case of
ellipsoids, this involves storing (1− λ) for particle j).

(c) Update the key of j in the event heap to te(j).

3.4.5 Binary Collisions

The two main steps in dealing with binary collisions is predicting them and processing them. Processing
a collision is inherently tied to the shape of the particle. We give a generic specification of how to predict
binary collisions between particles in Algorithm 6, and a specific implementation for ellipsoids is given later.
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1. Convert v into a virtual displacement of particle j in terms of unit cells, ∆rj ≡ nc, as discussed in
Section 3.2.3.

2. Calculate the current configuration of the particles i and j, for example, the positions of their centroids,

ri ← r(i) + [t− t(i)]vi

rj ← r(j) + [t− t(j)]vj + ∆rj ,

and their current orientations for nonspherical particles.

3. If the shape of the particles is changing, calculate the current shape of i and j.

4. Eliminate any further use of relative positions in the procedure by calculating the current Euclidean
positions, velocities and accelerations of the particles using Eqs. (3.4-3.6) and the above ri and rj .

5. Calculate the collision time tc or t̃c of two moving and possibly deforming particles of the given initial
shapes and configurations and initial Euclidean positions, velocities and accelerations, assuming a
force-free motion starting at time zero. Optionally collect additional information needed to process the
collision faster if it actually happens. See the specific algorithm for ellipsoids 11.

6. Correct the prediction to account for the current time, tc ← tc + t or t̃c ← t̃c + t.

Algorithm 6: Predict the (first) time of collision between particles i and (j, v), tc. If prediction cannot be
verified, return a time t̃c before which a collision will not happen. Possibly also return additional information
about the collision.

3.4.6 Boundary Events

In this section we focus on lattice-based boundaries and give a prescription for predicting and processing
boundary events (transfers and wall collisions).

3.4.6.1 Prediction

When NNLs are not used, one must check all the boundaries of the current particle cell c(i) and find the
first time the particle leaves the cell or collides with a hard wall, if any. We do not give details for predicting
or processing hard-wall collisions. For lattice based boundaries, the prediction of the next boundary event
proceeds independently along each dimension, and then the smallest of the d event times is selected, as
illustrated in Algorithm 7.

3.4.6.2 Processing

Processing the boundary events amounts to little work when the event is a transfer from one cell to another.
For periodic BCs however, additional work occurs when the particle crosses the boundary of the unit cell
(i.e., the simulation domain), since in this case it must be translated by a lattice vector in order to return
it back into the unit cell. Considerably more complicated is the processing of collisions with hard walls,
especially for nonspherical particles or when the lattice velocity is nonzero, however, we do not give the
details of these steps in Algorithm 8.

3.4.7 Building and Updating the NNLs

In our implementation, all of the NNLs are implemented as an optimized form of linked lists. Each interaction
[(j, v) , p] in NNL(i) stores the partner (j, v) and a priority p. We usually prescribe a fixed upper bound on
the number of neighbors (interactions) Ni that a particle can have (this allows us to preallocate all storage
and guarantee that additional memory will not be used unless really necessary), which can vary between
particles if necessary. Only the Ni interactions with highest priority are retained in NNL(i). This kind of
NNL can be used for a variety of tasks, including finding the first few nearest neighbors of any particle. We
allow the NNLs to asymmetric, i.e., just because particle i interacts with particle (j, k), it is not implied that
particle j interacts with (i,−k), but rather, the reverse interaction must be stored in NNL(j) if needed. In
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1. Convert the cell identifier 1 ≤ c(i) ≤ Nc into a d-dimensional vector giving the positions of the cell in
the Cartesian grid of cells, 1 ≤ g(c) ≤ N(c).

2. For all dimensions, k = 1, . . . , d, do:

(a) Predict the time when the particle centroid will cross a wall of c(i) along dimension k:
i. If vk(i) = [v(i)]k > 0 (particle will exit on the “right” side of the bin), then

A. Set wk ← 2 (k − 1) + 2 and

tk ←
[
g(c)

k −N
(c)
k rk(i)

]
/

[
N

(c)
k vk(i)

]
.

B. If boundary is periodic along dimension k and g(c)
k = N

(c)
k , then set wk ← −wk,

ii. else if vk(i) < 0 (particle will exit on the “left” side of the bin), then
A. Set wk ← 2 (k − 1) + 1, and

tk =
[
N

(c)
k rk(i)− g(c)

k + 1
]
/

[
N

(c)
k vk(i)

]
.

B. If boundary is periodic along dimension k and g(c)
k = 1, then set wk ← −wk,

iii. else set tk ←∞ and wk ← 0.
(b) If boundary is not periodic along dimension k, then also predict the time of collision with the

hard wall boundaries along dimension k, assuming that the particle starts from zero time:

i. If g(c)
k = N

(c)
k , predict time of collision with the “right” hard wall along dimension k, t(hw)

k . If
t
(hw)
k < tk, then set tk ← t

(hw)
k and wk ← − [2 (k − 1) + 2].

ii. If g(c)
k = 1, predict time of collision with the “left” hard wall along dimension k, t(hw)

k . If
t
(hw)
k < tk, then set tk ← t

(hw)
k and wk ← − [2 (k − 1) + 1].

3. Find the dimension k̃ with the smallest tk and return tw = t(i) + tk̃ and w = wk̃.

Algorithm 7: Predict the next wall event with “partner” w for particle i moving with relative velocity v(i)
and the time of occurrence tw, for a lattice-based boundary. The sign of w determines the type of event:
w > 0 specifies that particle i leaves its cell c(i) through one of the cell boundaries, while w < 0 specifies
that the particle collides with one of the hard walls or crosses one of the boundaries of a unit cell and leaves
its bin, for a periodic system. The value of |w| determines the exact cell boundary or wall.

the particular use of NNLs for neighbor search, the priorities are the negative of the “distances” between the
particles, so that only the closest Ni particles are retained as neighbors.

There are two main ways of updating the NNLs after a particle collides with its bounding neighborhood.
One is to completely update the NNLs of all particles and start afresh, and the other one is to only update
the NNL of the particle in question. We next discuss these two forms of NNL updates, complete and partial,
and compare them practically in Section 3.6 to conclude that it is in general preferable to use partial updates
(however, there are situations when it is best to use complete updates). As explained earlier, we focus on the
case when the bounding neighborhoods are scaled versions of the particles. In addition to limiting the number
of near-neighbors of any particle to Ni, we limit the maximum scaling of the neighborhood with respect to
the particle itself to µcutoff ≥ µneigh > 1, and count as overlapping any neighborhoods which overlap when
scaled by an additional factor (1 + εµ), where εµ ≥ 0 is a safety cushion used when the boundary deforms.
Henceforth, denote µmax = (1 + εµ)µcutoff.

3.4.7.1 Complete Updates

A simpler form of update is after a complete resetting of the NNLs, i.e., building the NNLs from scratch.
Algorithm 9 gives a recipe for this. The aim of the algorithm is to try to make the bounding neighborhoods
have a scale factor of µmax and add all overlapping neighborhoods in the NNLs. This will always be possible
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1. From w, find the dimension k along which the event happens and the side (“left” or “right”).

2. If this is a boundary event, w < 0, then:

(a) If the boundary is periodic along k, then:
i. Shift the particle by a unit cell, rk(i)← rk(i) + 1 if particle is exiting its cell to the right, or
rk(i)← rk(i)− 1 if exiting to the left.

ii. Let j = pc(i). If 0 < j ≤ N , correct the virtual identifiers for the predicted collision between
i and j, v(i) and v(j), to account for the shift in step 2(a)i.

iii. Pretend that this is a simple transfer, w ← 2N − w,
(b) else, process the collision of the particle with the hard-wall. This will typically involve calculating

the Euclidean position and velocity of the particle, calculating the exchange of momentum between
the particle and the wall, calculating the new Euclidean velocity of the particle v(E) (and also ω
if necessary), converting back to relative velocity, and updating the velocity v (and ω).

3. If this is a transfer (note step 2(a)iii above), w > 0, then update the cell of the particle c(i) and move
the particle from the linked list of its previous cell to the list of the new cell.

Algorithm 8: Process the boundary event (transfer or collision with a hard-wall) of particle i with wall w,
assuming a lattice-based boundary.

if Ni is large enough. However, we allow one to limit the number of near neighbors. This is useful when
there is not a good estimate of what a good µcutoff is.

The algorithm is significantly more complicated when BSCs are used since the search for possibly over-
lapping bounding neighborhoods needs to be done over pairs of bounding spheres. To avoid checking a given
pair of bounding neighborhoods for overlap multiple times, we use an integer mask M(i) for each particle,
which we assume is persistent, i.e., stored for each particle between updates. In our algorithm, a hard wall
can be a neighbor in NNL(i) if N (i) is intersected by a hard-wall boundary. For simplicity, we do not present
pseudocode for adding these hard-wall neighbors, however, it is a straightforward exercise to add these steps
to the algorithms below.

Algorithm 9: Completely update the near-neighbor lists (NNLs) by rebuilding them from scratch.
Assume all particles have been synchronized to the same point in time.

1. For all particles, i = 1, . . . , N , reset NNL(i) to an empty list.

2. For all particles, i = 1, . . . , N , reduce r(i) to the first unit cell, and if r(i) is no longer inside c(i), then remove
i from the linked list of c(i), update c(i), and insert i in the list of the new c(i).

3. If using BSCs, then initialize the largest (absolute) radius of a bounding sphere O
(E)
max ← 0, and for all particles,

i = 1, . . . , N , do:

(a) Set the bounding neighborhood of i to have the same centroid, orientation and shape as i but be scaled
by a factor µmax, rN (i)← r(i), qN (i)← q(i) and ON (i)← µmaxO(i).

(b) For all bounding spheres of i, k = 1, . . . , NBS(i), do:

i. Remove the sphere from the linked list of cell cBS
k (i).

ii. Calculate the new absolute position of its center and the cell it is in, update cBS
k (i) accordingly, and

insert the sphere into the linked list of cBS
k (i).

iii. Calculate the absolute radius O
(E)
k of the bounding sphere and set O

(E)
max ← max

n
O

(E)
max, O

(E)
k

o
.

(c) Initialize the mask M(i)← 0.

4. else let O
(E)
max ← µmax {maxi [Omax(i)]} be the largest possible radius of an enclosing sphere of a bounding

neighborhood.

5. For all particles, i = 1, . . . , N , do:

(a) If using BSCs, then for all bounding spheres of i, k = 1, . . . , NBS(i), do:

i. For all cells ci in the neighborhood of cBS
k (i) of Euclidean extent 2O

(E)
max, and for all bounding spheres

in ci belonging to some particle (j, v), do:
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A. If j ≥ i and M(j) 6= sign(v) (|v|N + i), then execute step 7,
B. else mark this pair of particles as already checked, M(j)← sign(v) (|v|N + i).

(b) else, for all cells ci in the neighborhood of c(i) of Euclidean extent 2O
(E)
max (note that his may involve

higher-order neighbors of c(i)), do:

i. For all particles (j, v) ∈ ci such that j ≥ i, execute step 7.

6. Skip step 7.

7. If the largest common scaling factor which leaves i and (j, v) disjoint, µij ≤ µmax, then:

(a) Calculate µij exactly.

i. Insert the interaction [(j, v) ,−µij ] in NNL(i). Note this may remove some previous entries in NNL(i)
if it is already full.

ii. Insert the interaction [(i,−v) ,−µij ] in NNL(j).

8. For all particles, i = 1, . . . , N , do:

(a) Initialize the minimal scaling of i which makes it overlap with the bounding neighborhood of a non-
neighbor particle, µnon-neigh

min ← µmax.

(b) If NNL(i) is not full, then initialize the maximal scaling of i which leaves it disjoint from at least one of
the bounding neighborhoods of a neighbor particle, µneigh

max ← µmax, otherwise initialize µneigh
max ← 0.

(c) For all interactions [(j, v) , p] in NNL(i), ensure that they are bi-directional:

i. If −p > µneigh
max , then set µneigh

max ← −p.
ii. If there is no interaction with particle (i,−v) in NNL(j), then:

A. If −p > µnon-neigh
min , then set µnon-neigh

min ← −p.
B. Delete the interaction [(j, v) , p] from NNL(i).

iii. If −p < µneigh, then set µneigh ← −p.

(d) Set µneigh ← min
“
µnon-neigh

min , µneigh
max

”
. Note that if NNL(i) never filled up then µneigh = µmax.

(e) If µneigh < µmax, then set ON (i)← µmaxO(i).

(f) If using BSCs and µneigh < µmax, then for all bounding spheres of i, k = 1, . . . , NBS(i), do:

i. Remove the sphere from the linked list of cell cBS
k (i).

ii. Calculate the new absolute position of its center and the cell it is in, update cBS
k (i) accordingly, and

insert the sphere into the linked list of cBS
k (i).

9. If the boundary is deforming, record the current shape of the boundary to be used later to verify the validity
of the NNLs (see Section 3.3.2.1).

3.4.7.2 Partial Updates

A considerably more complex task is updating NNL(i) while trying to leave the lists of other particles intact,
other than possibly adding or deleting an interaction involving i. We give a prescription for this in Algorithm
10, but do not give many details, as understanding each step is not necessary to get an idea of the overall
approach. For simplicity, we do not present the case when BSCs are used, as the modifications to allow for
bounding complexes closely parallel those in Algorithm 9 and it is a straightforward exercise for the reader
to modify the algorithm below accordingly.

Algorithm 10: Update the near-neighbor list of particle i, NNL(i). Assume that the current shape of i is
passed in Oi.

1. For all interactions with (j, v) in NNL(i), delete the reverse interaction with (i,−v) in NNL(j).

2. Initialize the minimal scaling of i which makes it overlap with the bounding neighborhood of a non-neighbor
particle, µnon-neigh

min ← µmax, as well as the maximal scaling of i which leaves it disjoint from at least one of the
bounding neighborhoods of a neighbor particle, µneigh

max ← µmax.

3. For all cells ci in the neighborhood of c(i) of Euclidean extent Oneigh
max + µmaxOi, where Oi is the radius of the

bounding sphere of i and Oneigh
max is the radius of the largest enclosing sphere of a particle neighborhood, do:

(a) For all bounding neighborhoods Nj in the list of ci, c(j) = ci, do:

i. If the largest scaling factor which leaves i disjoint from the neighborhood of (j, v), µneigh
ij < µmax,

then calculate µneigh
ij exactly, else continue with next particle (j, v).
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ii. If there is room in NNL(j), then insert the interaction
h
(j, v) ,−µneigh

ij

i
in NNL(i),

iii. else if µneigh
ij < µnon-neigh

min then set µnon-neigh
min ← µneigh

ij .

iv. If µneigh
ij < µneigh

max then set µneigh
max ← µneigh

ij .

4. For all interactions [(j, v) , p] in NNL(i), do:

(a) Insert the interaction [(i,−v) ,−p] in NNL(j).

(b) If −p > µneigh
max then set µneigh

max ← −p.

5. If NNL(i) is full, then set µneigh ← µnon-neigh
min ,

6. else set µneigh ← min
“
µnon-neigh

min , µneigh
max

”
.

7. Set rN (i)← r(i), qN (i)← q(i) and ON (i)← µneighO(i), and also update Oneigh
max ← max

ˆ
Oneigh

max , µneighOi

˜
.

3.4.8 Strengths of the Algorithm

Collision-driven molecular dynamics can be used to generate tightly jammed packings of ellipsoid with
densities far surpassing previously achieved ones. Several features of the molecular dynamics algorithm are
necessary for the success of this packing protocol. First, provisions need to be made to allow time-dependent
particle shapes, and we have explicitly included them in the treatment in Section 2.2.3. Most importantly,
a very high accuracy collision resolution is necessary at very high densities, especially near the jamming
point. For this reason, a time-driven approach cannot be used to generate jammed packings, and special
care needs to be taken to ensure high accuracy of the overlap potentials and the time-of-collision predictions,
as is done with Newton refinement in our algorithms. Finally, the use of neighbor lists significantly improves
the speed of the algorithm since most computation is expended on the last stages of the algorithm when the
particles are almost jammed and the use of neighbor lists is optimal (particularly combined with adaptive
strategies for controlling µcutoff). Including a deforming boundary in the algorithm additionally allows for a
Parinello-Rahman-like adaptation of the shape of the unit cell (as described in Section 3.2.4.2), which leads
to better (strictly jammed [15, 71]) packing of the particles [80].

In this work, we have mostly focused on using near neighbor lists as a tool to improve the efficiency of
the collision-driven algorithm. However, using neighbor lists has additional advantages as well. The most
important one is that it allows one to monitor the collision history of each particle or a pair of particles. This
is especially useful for dense hard-particle packings near the jamming point. In the very limit of a jammed
packing, each particle has a certain number of contacting geometric neighbors, and cannot displace from
its current position [71]. The network of interparticle contacts forms the contact network of the packing,
and this contact network can carry positive contact forces. For packings of soft spheres, interacting with a
differentiable potential, it is easy to obtain contact forces near a jamming point and observe the resulting
force chains and the distribution of contact forces, which has been noted to have an exponential tail in a
variety of models of granular materials [16].

3.5 Ellipses and Ellipsoids

Having developed the necessary tools for dealing with overlap between ellipses and ellipsoids in Chapter 2,
we can now complete the description of the EDMD algorithm for ellipses and ellipsoids. We first discuss
the fundamental step of predicting collisions between moving ellipsoids, and then explain how to process a
binary collision between two ellipsoids.

3.5.1 Predicting Collisions

The central step in event-driven MD algorithms is the prediction of the time-of-collision for two moving
particles, as well as the time when a particle leaves its bounding neighborhood. This is also the most
time-consuming step, especially for nonspherical particles. Although general methods can be developed for
particles of arbitrary shape [129], efficiency is of primary concern to us and we prefer specialized methods
which utilize the properties of ellipsoids, in particular, their smoothness and the relative simplicity of the
time derivatives of the overlap potentials given in Section 2.2.3. In three dimensions, we restrict consideration
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to ellipsoids with a spherically symmetric moment of inertia, i.e., ellipsoids with equal moment of inertia
around all axes. This is because the force-free motion of general ellipsoids, as well as their binary collisions,
are very complex to handle. For example, the angular velocity is not constant but oscillates in a complex
manner. It is not hard to adapt the algorithms presented here to ellipsoids with several different moments
of inertia, at least in principle.

Essentially, predicting the collision time tc between two moving ellipsoids A(t) and B(t) consists in finding
the first non-zero root of the overlap potential ζ (t) = ζ [A (t) , B (t)], where ζ can be either one of ζAB , ζ(B)

AB

or ζB , depending on the type of collision and the choice of the potential. Formally:

tc = min t
such that ζ (t) = 0 and t ≥ 0, (3.7)

where ζ(t) is a smooth continuously differentiable function of time, as illustrated in Fig. 3.7. This kind of
first root location problem has wide applications and has been studied in various disciplines. For a general
non-polynomial ζ(t), its rigorous solution is a very hard problem and requires either interval methods [121]
or rigorous under/over estimation of ζ(t) based on knowledge of exact bounds on the Lipschitz constant of ζ̇
(and possibly of ζ) [130]. These methods are rather complex and are focused on robustness and generality,
rather than efficiency. For particular forms of ζ(t), rigorous algebraic methods may be possible, such as
for example the prediction of time of collision of two needles (infinitely thin hard rods) [105], and possibly
spherocylinders. However, this requires a considerable algebraic complexity and is not easy to adapt to a
new particle shape, especially ellipsoids, for which there is not even a closed-form expression for the overlap
potential.

In particular, the very elegant method for determining the time of collision of two needles proposed in
Ref. [105] is related to the one proposed in Ref. [130], and at its core is the need to determine a good
local or global estimate of the Lipschitz constant of ζ̇ [130], i.e., an upper bound on

∣∣∣ζ̈∣∣∣ [these are used to
construct rigorous under- or over-estimators of ζ(t))]. Such a global upper bound has been derived for the
case of needles [c.f. Eq. (20) in [105]], but for ellipsoids the expression for ζ̈ (which we do not give here) is
very complex and we have not been able to generalize the approach in Ref. [105]. As discussed in Ref. [130],
significantly better results are obtained when local estimates of the Lipschitz constant of ζ̇ are available (i.e.,
upper bounds on

∣∣∣ζ̈∣∣∣ over a relatively short time interval), and this seems an even harder task. Nevertheless,
it is a direction worth investigating in the future.

For the purpose of EDMD, it is sufficient only to ensure that an interval of overlap [tc, tc + ∆tc] is not
missed if

min
tc≤t≤tc+∆tc

ζ (t) < −εF ,

where εF is some small tolerance, typically 10−4− 10−3 in our simulations, or alternatively, if ∆tc > εt. The
use of εF is preferable because it is dimensionless with a scale of order 1. This essentially means that it is
permissible to miss grazing collisions, i.e., collisions in which two ellipsoids overlap for a very small amount
and/or for a very short time. It certainly is not productive to try to decide if two nearly touching particles
are actually overlapping more accurately then the inherent numerical accuracy of ζ(t). The choice of εF is
determined by the relative importance of correctness versus speed of execution, as well as the stability of
the simulation. A large εF can lead to unrecoverable errors in the event-driven algorithm, such as runaway
collisions or increasing overlap between particles.

Homotopy methods can be used to solve problems such as (3.7). They typically trace the evolution of the
root of an equation (starting from t = 0 in this particular case) as the equation is deformed from an initial
simple form to a final form which matches ζ(t) = 0 [131]. An ordinary differential equation (ODE) solver
can be used for this purpose. An essential component in these methods is event location in ODE s, namely,
methods which solve an ODE for a certain variable f(t) and determine the first time that f(t) crosses zero
[91, 132]. We have tested a (simple) ODE-based homotopy method for solving (3.7), however, since the
problem at hand is one-dimensional, one can directly apply ODE event location to f(t) ≡ ζ(t), using an
absolute tolerance of εF for the ODE solver, and locate the first root tc directly more efficiently.

The ODE to solve is given by eq. (2.21) or (2.23). However, also needed is λ(t), and one has the option
of either explicitly evaluating λ at each time step (reusing the old value of λ as an initial guess), or also
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Figure 3.7: The time evolution of the overlap function ζAB(t) during an ellipse collision. The overlap function
is evaluated on an adaptive grid, which has a smaller time step when ζAB changes rapidly, and a larger step
when it is relatively smooth. The tracing stops when a zero crossing is detected.

including λ(t) in a system of ODEs using eq. (2.22) or (2.24). The second option has the advantage that
one no longer needs to explicitly evaluate λ (other than at the beginning of the integration), however, it has
the additional cost of two variables instead of one in the ODE solver, which additionally leads to smaller
time steps in the ODE integrator. Our numerical experiments have indicated that at least in two and three
dimensions it is somewhat advantageous to explicitly evaluate λ and only include ζ(t) in the ODE. This
may be reversed for different particle shapes, depending on the relative complexity of evaluating λ versus
evaluating λ̇.

Once λ is evaluated however, very little extra effort is needed to evaluate ζ explicitly, so it seems somewhat
pointless to solve an ODE for ζ(t). We have developed a method with a similar structure to ODE integration,
but which uses explicit evaluation of both ζ and ζ̇. The basic idea is to take a small time step ∆t, evaluate
both ζ and ζ̇ at the beginning and end of the step, and use these values to form a cubic Hermite interpolant
ζ̃(t) of ζ(t) over the interval ∆t. A theoretically-supported estimate for the absolute error of the interpolant
can be obtained by comparing the interpolant ζ̃ and ζ at the midpoint of the time step, and this error can be
used to adaptively increase or decrease the size of the step so as to keep the absolute error within εF . This is
illustrated in Fig. 3.7. When the interpolant crosses the ζ = 0 axes, the first root of the interpolant is used as
an initial guess in a safeguarded Newton algorithm to find the exact root tc. The initial time step ∆t needs
to be sufficiently small to make the initial error estimate valid, and can easily be obtained by estimating a
time-scale for the collision from the sizes and velocities of the particles involved in the collision. Even if this
initial guess is conservative, the algorithm quickly increases the step to an appropriate value. We will refer
to this algorithm as trace event location, since the function ζ(t) is explicitly traced until a zero-crossing is
found.

There are several details one needs to be attentive to when predicting collisions inside an EDMD al-
gorithm. For example, some pairs of particles may already be overlapping by small amounts after having
collided. In this case one can look at the sign of ζ̇ to decide whether the two particles are about to have a
collision or just had a collision. Two particles can have a collision after having collided without an intervening
collision with third party particles. This can always happen for aspherical particles, as noted in Ref. [105],
and it can also happen for spheres when boundary deformations are present (since the particles travel along
curved paths), however, it cannot happen for spheres in traditional EDMD algorithms. If the initial ζ is
very close to zero, an additional safety measure is to add a small positive correction to ζ to ensure that it
is sufficiently far from zero at the beginning of the search [as compared to the accuracy in the evaluation of
ζ(t)]. In particular, such precautions are necessary at very high densities (i.e., near jamming).
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3.5.1.1 Predicting Collisions for Ellipsoids

We sketch the procedure for predicting collisions between two moving ellipsoids in Algorithm 11. Features in
Algorithm 11 include limiting the number of steps in the event location algorithm to avoid wasting resources
on predicting collisions that may never happen, as well as allowing the exact prediction to fail. This algorithm
first uses collision prediction for the bounding (or contained) spheres, in order to eliminate obvious cases
when the particles do not collide, and to identify a short search interval for the event location by calculating
the time interval during which the enclosing spheres overlap. Recall that when the boundary is not deforming
this step entails solving a quadratic equation, while it involves solving a quartic equation when the lattice
velocity is nonzero. In this context not only the first root of this quadratic/quartic equation needs to be
determined, but also the second one, giving the interval of overlap. It may be possible to further improve
the initial collision prediction step by using a bounding body other than spheres, for example, oriented
bounding boxes (orthogonal parallelepipeds) [133, 134]. However, orientational degrees of freedom need to
be eliminated since they are too hard to deal with because of the appearance of trigonometric functions. For
example, the bounding body can be a cylinder whose axis is the axis of rotation of the ellipsoid and whose
radius and length are sufficient to bound the rotating ellipsoid for all angles of rotation.

An important problem we have encountered in practice is the numerical evaluation of ζB when predicting
the time of collision of an ellipsoid with its bounding neighborhood. Namely, as the particles move, it is
highly likely that a point where Y is singular will be encountered. At such points the evaluation of ζB is
numerically unstable and often leads to unacceptably small time steps. We have dealt with this problem
in an ad hoc manner, by simply trying to skip over such points, so that the search for a collision can be
continued, but a more robust and systematic approach may be possible.

1. For all intervals of overlap of the bounding spheres of A and B (or for all intervals during which the
bounding sphere of A intersects the shell between the contained and bounding sphere of its bounding
neighborhood B), [tstart, tend], starting from t = 0 and in the order of occurrence, do:

(a) If tstart > T , return reporting that no collision can happen.
(b) Set tend ← min {T, tend}.
(c) Update the ellipsoids to time tstart, and evaluate the initial ζ and λ.
(d) If ζ < ε (ellipsoids are overlapping or nearly touching), then evaluate ζ̇ and:

i. If ζ̇ ≥ 0 then set ζ ← ε (the ellipsoids are moving apart),
ii. Else return tc = tstart (the ellipsoids are approaching).

(e) Use trace event location to obtain a good estimate of the first root of ζ(t) during the interval
[tstart, tend], putting a limit on the number of time steps (for example, in the range 100− 250). If
no root crossing is predicted, continue with the next interval in step 1. If the search terminated
prematurely, then return the last recorded time t̃c = t.

(f) Bracket the estimated first root of ζ(t) and refine it using a safeguarded Newton’s method (this
may fail sometimes).

(g) If the root refinement failed, set tend ← 1
2 (tstart + tend), repeat step 1c and go back to step 1e

(attempt to at least find a valid t̃c).

2. Return reporting that no collision will happen.

Algorithm 11: Predict whether two moving ellipsoids overlap during the time interval [0, T ] by more than εF ,
and if yes, calculate the time of collision tc ∈ [0, T ]. Essentially the same procedure can be used to determine
the time a particle A collides with its bounding neighborhood B. If the prediction cannot be verified, return
a time t̃c < tc before which a collision will not happen. Also return λ at the time of collision if desired.

3.5.2 Processing Binary Collisions

The steps necessary to process a binary collision between two hard particles are similar for a variety of
particle shapes, and essentially involves exchanging momentum between the two particles. We give a recipe
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for colliding ellipsoids with a spherically symmetric moment of inertia in Algorithm 12. To determine things
like the pressure it is useful to maintain the collisional contribution to the stress σc [107], which is a suitable
average of the exchange of momentum over all collisions.

1. Calculate the Euclidean positions and velocities of particles rA, rB , vA and vB , as well as their angular
velocities ωA and ωB .

2. Find the contact point rC and normal velocity at the point of contact vn = n̂T vC , using the supplied
λ.

3. If vn > 0, then return without further processing this (most likely grazing) mis-predicted collision.

4. Calculate the exchange of momentum between the particles ∆pAB = ∆pABn̂,

∆pAB = 2vn

(
1
mA

+
1
mB

+
‖rCA × n̂‖

IA
+
‖rCB × n̂‖

IB

)−1

,

where m denotes mass and I moment of inertia.

5. Calculate the new Euclidean velocities of the particles,

vA ← vA −
∆pAB

mA
n̂

vB ← vB +
∆pAB

mB
n̂,

as well as the new angular velocities

ωA ← ωA −
∆pAB

IA
(rCA × n̂)

ωB ← ωB +
∆pAB

IB
(rCB × n̂) .

Optionally update any averages that may need to be maintained (such as average kinetic energy) to
reflect the change in the velocities.

6. Record the collisional stress contribution

σc ← σc −∆pAB

(
rABn̂T

)
.

7. If using NNLs, record information about the collision that is being collected for the interaction between i
and (j, v), such as an accumulation of the total exchanged momentum for this interaction, total number
of collisions for this interaction, etc.

Algorithm 12: Process a binary collision between ellipsoids i and (j, v). Assume that the particles have
already been updated to the current time t, and that λ at the point of collision is supplied (i.e., it has been
stored for particle i , and also 1− λ in particle j, when this collision was predicted).

3.6 Performance Results

In this section we present some results for the performance of the algorithm. Many previous publications have
given performance results for EDMD for spheres, and most of these results apply to our algorithm. Exact
numbers depend critically on details of the coding style, programming language, compiler, architecture, etc.,
and are not reported here. Rather, we try to get an intuitive feeling of how to choose the various parameters of
the simulation to improve the practical performance. Our main conclusion is that using NNLs is significantly
more efficient than using just the cell method for particles with aspect ratio significantly different from one
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(greater than 2 or so) or at sufficiently high densities. Additionally, using BSCs offers significant efficiency
gains for very prolate particles, for which good bounding sphere complexes can easily be constructed.

As derived in Ref. [104], when only the cell method is used, optimal complexity of the hard-sphere EDMD
code is obtained when the number of cells is of the order of the number of particles, Nc = Θ(N), with asymp-
totic complexity O(logN) per collision, which comes from the event-heap operations. In practice however
the asymptotic logarithmic complexity is not really observed, and instead to a very good approximation the
computational time expanded per processed binary collision is constant for a given aspect ratio α at a given
density, for a wide range of relative densities (volume fractions) ϕ. Even though in principle the basic EDMD
algorithm remains O(logN) per collision, our aim is to improve the constants in this asymptotic form, and
in particular, their dependence on the shape of the particle (in particular, the aspect ratio α).

It is important to note that on modern serial workstations, the EDMD algorithm we have presented here
is almost entirely CPU-limited, and has relatively low memory requirements, even when using NNLs and
BSCs. Floating point operations dominate the computation, but memory traffic is also very important. In
our implementation, simulating ellipsoids is about an order of magnitude slower than simulating spheres,
even for nearly spherical ellipsoids, simply due to the high cost of the collision prediction algorithm (the
same observation is reported in Ref. [105]) and increased memory traffic. For example, on a 1666 MHz
Athlon running Linux, our Fortran 95 implementation uses about 0.1ms per sphere collision for a wide range
of system sizes and densities. With all the improvements described in this work, and in particular, the use
of NNLs and BSCs, our implementation uses about 2ms per ellipsoid collisions for prolate spheroids, and
about 2− 4ms for oblate spheroids at moderate densities for a wide range α = 1− 10. Including boundary
deformations, i.e., solving quartic instead of quadratic equations when predicting binary collisions, slows
down the simulation for spheres by about a factor of 2.5 (we use a general quartic solver, and better results
may be obtained for a specialized solver).

3.6.1 Tuning the NNLs

We have performed a more detailed study of the performance of the algorithm when NNLs are used, since
this is a novel technique and has not been analyzed before. We perform an empirical study rather then a
theoretical derivation because such a derivation is complicated by the fact that the neighborhoods evolve
together with the particles, and because the numerous constant factors or terms hidden in the asymptotic
expansions of the complexity actually dominate the practical performance.

Computationally, we have observed that it is good to maximize the number of cells Nc, even at relatively
low density ϕ ≈ 0.1, especially for rather aspherical particles. This is because binary collision predictions
become much more expensive than predicting or handling transfers, and so the saving in not predicting
collisions unnecessarily offsets the higher number of transfers handled. Consistent with the results reported in
[104], we observe that the number of checks due to invalidated event predictions is comparable and sometimes
slightly larger than the number of collisions processed, and this suggests that additional improvements in
this area might increase performance noticeably.

We have tested both methods for updating the neighbor lists, the complete and the partial update. A
complete update/rebuild of the near neighbor lists after they become invalid is the traditional approach in
most TDMD algorithms appearing in the literature. Since MD is usually performed on relatively homo-
geneous systems, when one particle displaces by a sufficient amount to protrude outside of its bounding
neighborhood, most particles will have displaced a significant amount, and so rebuilding their NNLs is not so
much of a waste of computational effort. The main advantage of this approach is that it can be used to build
NNLs when a good estimate of µcutoff is not available, but rather a bound on the number of neighbors per
particle Ni is provided (this is very useful, for example, in the very early stages of the Lubachevsky-Stillinger
algorithm, when particles grow very rapidly). Additionally, the algorithm for rebuilding the lists is simpler
and thus more efficient. Finally, a complete rebuilding of the NNLs yields neighbor lists of higher quality,
in the sense that the structure of the network of bounding neighborhoods is better adapted to the current
configuration of the system and thus the size of the neighborhoods is maximal.

The algorithm for partial updates on the other hand is more complicated, and to our knowledge has not
been used in MD codes. It requires using dynamic linked lists, and it will in general yield smaller average
neighborhood size than a complete update, since the particle whose NNL is being updated must adjust its list
without perturbing the rest of the NNLs. Note that at the beginning the NNLs must be initialized by using
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a complete update. The main advantage of the partial update scheme is that it is more flexible in handling
nonisotropic systems or the natural fluctuations in an isotropic one. Just because one particle happened to
move fast and leave its neighborhood does not mean that all particles move that fast. This is especially true
at lower densities where clustering happens. In clusters particles have more collisions per unit time and thus
require fewer updates of the NNLs, but outside clusters particle move large distances without collisions and
thus require more frequent updates of their NNLs. In this sense partial updates are local in nature while
complete updates are global. We have indeed observed that in most cases it is advantageous to use partial
updates, rather then the traditional complete updates.

The first and most important test is to determine whether using near neighbor lists offers any advantages
over using just the cell method. The following intuitive arguments seem clear:

• At very high densities, when the system of particles is nearly jammed [15], using NNLs is optimal,
regardless of the aspect ratio of the particles. This is because the particles move very little while they
collide with nearly the same neighbor particles over and over again (see Fig. 1.1). Therefore near
jamming the NNLs are rarely updated and by predicting the collisions only with the particles with
which actual collisions happen significant savings can be obtained. However, as the density is lowered,
the lists need to be updated more frequently and the complexity of using NNLs becomes significant.

• At very low densities the cell method is faster, even for very aspherical particles. This is because
a particle will have many collisions with the bounding neighborhoods before it undergoes a binary
collision, so that the cost is dominated by the cost of maintaining the NNLs instead of processing
collisions.

• The more aspherical the particles, the more preferable the NNL method becomes compared to the
cell method. This is because for very elongated particles at reasonably high densities there will be
many particles per cell so using the cell method will require predicting many binary collisions that will
never happen, while the NNL method will predict collisions with significantly fewer (truly) neighboring
particles. For large α, the dominating cost is that of rebuilding the NNLs (since this step uses the
cells), and therefore the primary goal becomes to minimize the number of NNL updates per number of
binary collisions processed, as well as to improve the efficiency of the NNL rebuild, i.e., using BSCs.

Our experimental results shown in Fig. 3.8 support all of these conclusions. We show the ratio of the
CPU time expanded per processed binary collision for the NNL method and for the traditional cell method.
We show results for equilibrium systems of prolate spheroids of aspect ratios α = 1, 3 and 5 at densities
ϕ = 0.1, 0.3, 0.5 and 0.6. Note that hard spheres jam in a disordered metastable state at around ϕ = 0.64,
and that for the case α = 5 we use ϕ = 0.55, since the jamming density is slightly lower than 0.6 for this
aspect ratio [78]. In Fig. 3.8(a) we show the relative slowdown caused by using NNLs for the systems for
which using the cell method is better. In Fig. 3.8(b) we show the relative speedup obtained by using NNLs
for the systems for which it is better to use NNLs. Both the results of using partial and complete updates
are shown.

As explained earlier, we use two techniques to limit the number of neighbors that enter in the NNLs.
The first one is to simply use the upper bound on the number of neighbors (interactions) Ni to choose only
the nearest Ni neighbors per particle, and the second one is to choose a relatively small cutoff µcutoff for the
maximal size of the bounding neighborhood N (i) (compared to the size of the particle i). In practice, only
the second approach can be used with partial updates. This is because partial updates must work under the
limitations of doing as little change to the NNLs as possible, and this requires that there be enough room to
add and remove interactions from the lists as necessary. So when using partial updates one must set µcutoff

to a reasonable value and then set Ni to be larger then the maximal number of neighbors a particle will have
given the cutoff µcutoff and an unlimited Ni. Reasonable values for spheres and not too aspherical particles
are to set µcutoff so that on average each particle has about 5 − 7 neighbors in two or 11 − 15 neighbors in
three dimensions (the kissing number for spheres is 6 in two and 12 in three dimensions), while setting Ni

at about 10 in two and 20 in three dimensions.
Since we wish to compare partial and complete updates, we change µcutoff and always set Ni to a

sufficiently high number (which grows sharply with µcutoff), and compare partial and complete updates in
Fig. 3.8. As expected, there is an optimal value of µcutoff which is larger for complete updates (for which
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Figure 3.8: Performance results for using NNLs in addition to the traditional cell method for a variety of
aspect ratios α and densities ϕ for prolate spheroids, with both partial (P) or complete (C) updates.
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NNL updates are significantly more expensive) and also at lower densities. Note however that sometimes
the computation speed may change discontinuously as µcutoff is increased because at some point more than
first-neighbor cells need to be searched during the NNL update. Important observations to note include
the fact that tuned partial NNL updates almost always outperform tuned complete updates, and are thus
preferred. Another useful observation is that the computation time is not very sensitive to the exact value of
µcutoff. Finally, note that as much as an order of magnitude of improvement is achieved for rather aspherical
particles at high densities by using the NNLs. This would be even more pronounced for larger aspect ratios
such as α = 10.

For large aspect ratios, the dominant cost is that of rebuilding the NNLs, during which many particle pairs
need to be tested for neighborhood. Therefore, the most important factor for the speed of the simulation is
how many particles need to be examined as potential near neighbors of a given particle i when rebuilding
NNL(i). If bounding spheres are not used, this number is proportional to the number of particles that can fit
in a cell of length α, i.e., a cube of volume α3. For prolate spheroids this number is proportional to α2, but
for oblate ones it is only proportional to α. Therefore the simulation of, for example, α = 10, is prohibitively
expensive for prolates, but not for oblates. As the results in Fig. 3.9 demonstrate, using BSCs significantly
increases the speed of processing collisions for very prolate spheroids. In this figure we show the approximate
speedup obtained by using BSCs for tuned partial updates for a range of moderate densities and a range of
aspect ratios. As expected, at large densities there are very few updates to the NNLs and therefore using
BSCs does not offer a large speedup. For oblate spheroids in the same range of aspect ratios, using BSCs
does not offer computational savings, and therefore we do not show any performance results. However, it is
important to note that when using NNLs (at sufficiently high densities) and BSCs (at sufficiently high aspect
ratios) the actual (tuned) processing time per collision is approximately the same for any ellipsoid shape
in this range of aspect ratios, somewhere in the range 1 − 5ms per binary collision in our implementation.
Therefore, for practical purposes, we feel that the algorithms presented here can handle a wide range of
ellipsoid shapes very well.
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Figure 3.9: Performance results for using BSCs for prolate spheroids at low to moderate densities. Using
BSCs does not appear to offer computational savings for oblate spheroids in the same α range.

With the use of BSCs, prolate ellipsoids are handled much better and the scaling reduced to nearly
independent of α (note that one needs to examine α bounding spheres per particle, which is much less
expensive than looking at neighbor particles, but still not free), as we have demonstrated above. It remains
a challenge to find a technique that will also reduce the scaling to nearly independent of α for oblates as
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well. Additionally, it is important to develop a theoretical analysis of the performance of the novel steps in
the algorithm, and in particular, to give estimates of the number of particles which need to be examined
when building the NNLs (per particle), the number of NNL updates which need to be processed per binary
collision (per particle).

3.6.1.1 Automatic Tuning of µcutoff

It is important to note that it is possible to automatically tune µcutoff during the course of the simulation,
at least in a rough way, so that the optimal computation speed is approached. This is very important in
the Lubachevsky-Stillinger packing algorithm, since there the density is not constant but rather increases
until jamming is reached. Clearly in the beginning a larger µcutoff is needed, while near the jamming point
µcutoff can be set very close to 1. By monitoring the fraction of events which are collisions with a bounding
neighborhood, and other statistics, one can periodically adaptively increase or decrease µcutoff during the
course of the simulation. We have successfully used such techniques to speed the process of obtaining hard-
particle packings, for both spheres and ellipsoids, especially for elongated ellipsoids, but do not report details
here.

3.7 Conclusions

We presented a serial collision-driven molecular dynamics algorithm for nonspherical particles, with a specific
focus on improving the efficiency by developing novel techniques for neighbor search. In particular, we
developed a rigorous scheme that incorporates near-neighbor lists into event-driven algorithms, and further
improved the handling of very elongated objects via the use of (non-hierarchical) bounding sphere complexes.
We gave detailed pseudocodes to illustrate the major steps of the algorithm. We have proposed a general
method for determining the time of collision of two particles of any shape for which a smooth overlap potential
can be constructed and easily differentiated. The application to ellipses or ellipsoids has been developed in
detail.

We have identified a number of important directions for future investigation, which can lead to signifi-
cantly faster algorithms for very aspherical particles. First, predicting the time of collision of two moving
particles can be improved, either by using techniques other than bounding spheres in order to narrow the
search intervals during which a collision may happen, or by improving the algorithm to search those in-
tervals for a collision. In particular, a new overlap potential for the case of one small ellipsoid contained
within another large ellipsoid is needed. The practical handling of bounding sphere complexes can further
be improved. More importantly, it is an open challenge to develop an algorithm to improve the efficiency of
building the near-neighbor lists for very oblate particles.
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Chapter 4

Jamming in Hard-Sphere Packings

Jamming in hard-particle packings has been the subject of considerable interest in recent years. In a paper
by Torquato and Stillinger [15], a classification scheme of jammed packings into hierarchical categories of
locally, collectively and strictly jammed configurations has been proposed. They suggest that these jamming
categories can be tested using numerical algorithms that analyze an equivalent contact network of the packing
under applied displacements, but leave the design of such algorithms as a future task. In this chapter, we
present a rigorous and practical algorithm to assess whether an ideal hard-sphere packing in two or three
dimensions is jammed according to the aforementioned categories [71]. The algorithm is based on linear
programming and is applicable to regular as well as random packings of finite size with hard-wall and
periodic boundary conditions. If the packing is not jammed, the algorithm yields representative multi-
particle unjamming motions. Furthermore, we extend the jamming categories and the testing algorithm to
packings with significant interparticle gaps. We describe in detail two variants of the proposed randomized
linear programming approach to test for jamming in hard-sphere packings. The first algorithm treats ideal
packings in which particles form perfect contacts. Another algorithm treats the case of jamming in packings
with significant interparticle gaps. This extended algorithm allows one to explore more fully the nature of
the feasible particle displacements.

We have implemented the algorithms and applied them to ordered as well as random packings of disks and
spheres with periodic boundary conditions [72]. The random packings were produced computationally with
a variety of packing generation algorithms, all of which should, in principle, produce at least collectively
jammed packings. Our results highlight the importance of jamming categories in characterizing particle
packings. One important and interesting conclusion is that the amorphous monodisperse sphere packings
with density ϕ ≈ 0.64 were for practical purposes strictly jammed in three dimensions, but in two dimensions
the monodisperse disk packings at previously reported “random close packed” densities of ϕ ≈ 0.83 were not
even collectively jammed. On the other hand, amorphous bidisperse disk packings with density of ϕ ≈ 0.84
were virtually strictly jammed. This clearly demonstrates one cannot judge “stability” in packings based
solely on local criteria. Numerous interactive visualization models are provided online [135].

In this chapter we focus on the special case of hard spheres, for which impenetrability constraints between
the particles can be written analytically and it is not necessary to introduce overlap potentials. In the next
chapter we will generalize the concept of jamming and extend this work to nonspherical particles. Much of
the concepts and details presented here apply in that case as well and we will not repeat them. However,
we will see that one of the properties used extensively in this chapter, namely, that first-order expansion of
the impenetrability constraints is sufficient, does not extend to nonspherical particles and is responsible for
some surprising properties of jammed packings of ellipsoids.

4.1 Introduction

We focus our attention on the venerable idealized hard-sphere model, i.e., the only interparticle interaction
is an infinite repulsion for overlapping particles. The idealized hard-sphere model is in a sense the Ising
model for modeling a variety of hard-particle physical systems, and the importance of understanding it in
detail cannot be overstated. The singular nature of the interaction potential enables us to be precise about
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the important concept of “jamming.” In particular, a hierarchical classification scheme for jammed packings
into locally, collectively and strictly jammed packings was proposed in Ref. [15]. This classification is closely
related to the concepts of rigid and stable packings found in the mathematics literature [136, 137]. The
term jamming is used in a different sense in the modeling of granular media, which includes effects such as
friction, adhesion, particle deformability, etc., and, by definition, hard-sphere systems do not include these
effects. It is also important to note that we do not discuss dynamical effects in hard-particle packings. In the
present work, hard-sphere jamming is presented from a rigorous perspective that focuses on the geometry of
the final packed states. The ideas that we employ here are drawn heavily from the mathematics literature
[138, 136, 73, 137].

In Section 4.2, we present the conceptual theoretical framework underlying this work. Specifically, we
review and expand on the hierarchical classification scheme for jammed packings into locally, collectively and
strictly jammed packings proposed in Ref. [15]. In Section 4.3, we present a randomized linear programming
algorithm for finding unjamming motions within the approximation of small displacements, focusing on
periodic boundary conditions in section 4.4.3. This algorithm is rigorous when applied to ideal packings,
where interparticle gaps are very small. In section 4.3.3, we extend the concepts of jamming and the
randomized linear programming algorithm to packings that have significant interparticle gaps and do not fit
well in the rigorous framework suitable for ideal packings. We also introduce a randomized sequential loading
algorithm to study nonideal packings. We discuss the two algorithms in detail in Section 4.6, and give some
representative illustrations and timing statistics in order to illustrate the utility of the proposed algorithms.
In Section 4.7 we discuss the numerical implementation, and provide results for ordered periodic lattice
packings and random packings. Through numerical investigations, we show here that several previously
used packing algorithms generate collectively jammed packings under appropriate conditions. In particular,
we study in detail monodisperse sphere as well as monodisperse and bidisperse disk packings produced
by the Lubachevsky-Stillinger packing algorithm [12]. We also tested a sample of monodisperse sphere
and bidisperse disk packings produced by the algorithm described in Ref. [31], as well as monodisperse
sphere packings produced by the Zinchenko packing algorithm [28], and observed similar behavior as for the
Lubachevsky-Stillinger packings.

Our testing of these packings enables us to arrive at several important conclusions. First, we find that
the amorphous monodisperse sphere packings (with covering fraction, or density, ϕ ≈ 0.64) and bidisperse
disk packings (ϕ ≈ 0.84) are practically strictly jammed (though not in the ideal sense). Second, we observe
that large monodisperse disk packings are invariably highly crystalline (ϕ ≈ 0.88) and are only collectively
jammed. Previously reported [41] low covering fractions for “random close packed” disks of ϕ ≈ 0.82− 0.84
were not even found to be collectively jammed. This conclusion clearly demonstrates that the distinctions
between the different jamming categories are important and one cannot judge “stability” in packings based
solely on local criteria, as has been done extensively in the literature [139, 140, 141].

4.2 Jamming in Hard-Sphere Packings

The physical intuition behind the word jamming is strong: It connotes that a given configuration is “frozen”
or “trapped”. Two main approaches can be taken to define jamming, kinematic or static. In the kinematic
approach, one considers the motion of particles away from their current positions, and this approach is for
example relevant to the study of flow in granular media (in particular, the cessation of flow as jamming is
approached). The term jammed seems most appropriate here. In the static approach, one considers the
mechanical properties of the packing and its ability to resist external forces (in particular, the infinite elastic
moduli near jamming). The term rigid is often used among physicists in relation to such considerations.
However, due to the correspondence between kinematic and static properties, i.e. strains and stresses, these
two different views are largely equivalent. The different perspectives on jamming are revisited in Chapter 5.

We largely adopt a kinematic approach, as we focus on the geometry of packings, but the reader should
bear in mind the inherent ties to static approaches. We first give a general approach to jamming in hard-
particle packings in Section 4.2.1, and then focus on the fundamental and rigorous case of packings with
ideal interparticle contacts (i.e., no interparticle gaps) in Section 4.2.2, studied both in the physics and
mathematics literature. Finally, we connect these definitions to the kinematic concept of unjamming motion
in section 4.2.3, and also to static concepts in section 4.2.4. Since we are attempting to bring together several
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apparently different approaches and terminologies, as well as generalize to packings with interparticle gaps,
the exposition will be gradual and more detailed discussion, illustrations and proofs are delayed to later parts
of this Chapter.

4.2.1 Jamming as Isolation in Configuration Space

A hard-particle packing P(R) is characterized by the positions and orientations ofN nonoverlapping particles,
which give the configuration R. In particular, a sphere packing in a finite region in d-dimensional Euclidean
space <d is characterized only by the positions of the sphere centers R = (r1, . . . , rN ),

P(R) =
{
ri ∈ <d, i = 1, . . . , N : ‖ri − rj‖ ≥

Di +Dj

2
∀j 6= i

}
,

where the diameter of the ith sphere is Di. Two configurations are identical if all interparticle distances are
the same, i.e., if the configurations are related via a rigid-body motion (and possibly a mirror inversion in
addition). We focus here on monodisperse (i.e., Di = D = const.) hard-sphere packings for simplicity, but
the conclusions are applicable to polydisperse sphere packings as well.

Our perspective on jamming focuses on the set J∆R of configurations around a particular initial config-
uration R reachable via continuous displacements ∆R of the spheres, subject to nonoverlapping constraints
and certain boundary conditions. An illustration of this is provided in Fig. 4.1 for a very simple case in which
only one disk is free to move, i.e., there are only two degrees of freedom. If J∆R is isolated in configuration
space, we call it a jamming basin, and the configuration R ∈ J∆R determines a jammed packing P(R). To
relate this to the physical intuition of jamming, we must further ask that the extent of J∆R be small, in the
sense that only small continuous displacements of the particles from their initial configurations are possible
for all R ∈ J∆R. The natural length scale defining the meaning of “small” is the typical size of the particles,
and also the typical size of the interparticle gaps. A more strict mathematical definition of jamming considers
packings that have M perfect interparticle contacts, which we will call ideal packings. For a jammed ideal
packing R is an isolated point in configuration space, i.e., J∆R = {R}, so that the particles cannot at all
be displaced continuously from their current configuration (modulo trivial rigid-body motions). We focus
first on ideal packings, and we will return to the issue of interparticle gaps later. By changing the boundary
conditions, we get several different categories of jamming, namely local, collective and strict jamming.

4.2.2 Three Jamming Categories

First we repeat, with slight modifications as in Ref. [111], the definitions of several hierarchical jamming
categories as taken from Ref. [15], and later we make them mathematically specific and rigorous for several
different types of sphere packings. When defining jamming, one must be very specific about the type of
boundary conditions imposed on the packing, for example, the packing may be contained inside a hard-wall
container. For now we simply assume that some boundary conditions are imposed, and we specialize the
meaning of the terms boundary and boundary deformation for specific types of packings in the next section.

A finite system of spheres is:

Locally jammed Each particle in the system is locally trapped by its neighbors, i.e., it cannot be translated
while fixing the positions of all other particles. This definition is analogous to the definition of 1-stability
in Ref. [136]. Because of its simplicity, this definition has been overused to obtain theoretical estimates
of the density of random packings [22, 139].

Collectively jammed Any locally jammed configuration in which no subset of particles can simultaneously
be continuously displaced so that its members move out of contact with one another and with the
remainder set. An equivalent definition is to require that all finite subsets of particles be trapped by
their neighbors. Compare this to the definition of finite stability in Ref. [136].

Strictly jammed Any collectively jammed configuration that disallows all globally uniform volume-nonincreasing
deformations of the system boundary. Note the similarity with collective jamming but with the ad-
ditional provision of a deforming boundary. This difference and the physical motivations behind it
should become clearer in section 4.4.5. Compare this to the definition of periodic stability in Ref. [136]
for packings with periodic boundary conditions.
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Figure 4.1: The region of allowed displacements J∆R for a locally jammed disk (light gray) trapped among
three (left) or six (right, as in the triangular lattice) fixed disks (dark gray). The exclusion disks (dashed
lines) of diameter twice the disk diameter are drawn around each of the fixed disks, delimiting J∆R. Also
shown are the linearized versions of these constraints (red), which are simply tangents to the circles at the
point of closest approach, as well as the jamming polytope P∆R they enclose (black). For the isostatic case
on the left this polytope is a triangle (a simplex in two dimensions), and a hexagon for the hyperstatic case
on the right.

Observe that these are ordered hierarchically, with local being implied by collective and similarly collective
being implied by strict jamming. We point out that these do not exhaust all possibilities and various
intricacies can arise, especially when considering infinite packings [136].

4.2.3 Unjamming Motions

Note that the mathematics literature often uses the term rigid or stable packing for what we call a jammed
packing in section 4.2.2. It can be shown [73] that to assess jamming for a given sphere packing, one need only
look for the existence of analytic continuous displacements of the particles from their current configuration1.
An unjamming motion ∆R(t) = (∆r1(t), . . . ,∆rN (t)), where t is a time-like parameter, t ∈ [0, 1], is a
continuous analytic displacement of the spheres from their current position along the path R + ∆R(t),
starting from the current configuration, ∆R(0) = 0, and ending at the final configuration R+ ∆R(1), while
observing all relevant constraints along the way. This means that impenetrability and any other particular
(boundary) conditions must be observed, i.e. P(R + ∆R(t)) is a valid packing for all t ∈ [0, 1]. If such
an unjamming motion does not exist, we say that the packing is jammed. By changing the (boundary)
constraints we get different categories of jamming, such as local, collective and strict.

It can be shown (see references in Ref. [73]) that an equivalent definition2 is to say that a packing is
jammed if it is isolated in the allowed configuration space, i.e., there is no valid packing within some (possibly
small) finite region around R that is not equivalent (congruent) to P(R). In the language of section 4.2.1,
J∆R = {R}.

Furthermore, it is a simple yet fundamental fact that we only need to consider first derivatives V =
d
dt∆R(t), which can be thought of as velocities, and then simply move the spheres in the directions V =
(v1, . . . ,vN ) to obtain an unjamming motion ∆R(t) = Vt. Therefore, henceforth special consideration will
be given to the final displacement ∆R(1), so that we will most often just write ∆R = ∆R(1). The formal

1This is the third definition (definition c) in section 2.1 of Ref. [73].
2This is the first definition (definition a) in section 2.1 of Ref. [73].
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statement is that a sphere packing is rigid if and only if it is infinitesimally rigid, see Refs. [138, 142]
and Section 4.3.1. Although the proofs of this statement published in the mathematics literature consider
packings of equal spheres in a hard-wall container, the proof carries directly to the case of collective jamming
with periodic boundary conditions (i.e., packings on a flat torus), as well as packings of unequal spheres. As
discussed in Section 4.4.5, the statement is also true for strict jamming with periodic boundary conditions.

A sphere packing is not jammed if and only if one can give the spheres velocities V 6= 0 such that no two
contacting spheres i and j, ‖ri − rj‖ = ‖rij‖ = rij = D, have a relative speed vij toward each other3,

vij = (vi − vj)
T uij ≥ 0, (4.1)

where
uij =

ri − rj

‖ri − rj‖
is the unit vector connecting the two spheres. Of course, some special and trivial cases like rigid body
translations (V = constant) or rigid body rotations need to be excluded since they do not really change the
configuration of the system. We will elaborate on this “linearized” perspective in the context of packings
with interparticle gaps in section 4.3.1.

We will plot unjamming motions as “velocity” fields, and occasionally supplement such illustrations with
a sequence of frames from t = 0 to t = 1 showing the unjamming process. Note that the lengths of the vectors
in the velocity fields have been scaled to aid in better visualization. For the sake of clear visualization, only
two-dimensional examples will be used, however, all of the techniques described here are fully applicable
to three-dimensional packings as well. Interactive Virtual Reality Modeling Language (VRML) animations
which are very useful in getting an intuitive feeling for unjamming mechanisms in sphere packings can be
viewed on our webpage [135].

4.2.4 Jamming and Forces

We have defined jamming above using kinematic concepts and focused on the positions of the particles, i.e.,
on the geometry of the packings. It is very instructive to discuss briefly the relations between contact forces
and applied loads in the context of jamming. This is crucial because of the physical importance of statical
considerations in the study of granular materials and the preponderance of force-based discussions in the
physics literature. Furthermore, forces play a very important role in the analysis of the configuration-based
definitions given above as dual variables associated with impenetrability constraints [143], and have appeared
prominently in the mathematics literature as well [73].

Consider a configuration belonging to a basin of jamming, R ∈ J∆R, and an applied load B =
(b1, . . . ,bN ) on the particles. In the case of spheres, bi is just the total force acting on sphere i (for
example, due to thermal or mechanical vibrations or externally-applied fields). In the case of nonspherical
particles, it would also contain the total torque acting on each particle. Assume for simplicity that this load
is independent of the configuration. Under this load, the particles will displace to a new configuration of
minimal energy,

max∆R BT ∆R for virtual work
such that R + ∆R ∈ J∆R for impenetrability. (4.2)

Since the packing is jammed, the program (4.2) will have a bounded solution which lies on the boundary of
J∆R, i.e., some particles will be in contact in the new configuration. The Lagrange multipliers associated
with the impenetrability constraints are in fact the reaction contact forces which resist the applied load B.

We thus see the meaning of the three jamming categories in the static context: In a locally jammed
packing each particle i can support any load bi if its neighbors are fixed. A collectively jammed packing can
resist (support) any loading without rearrangements of the particles as long as the boundary is held fixed
externally. Strictly jammed packings on the other hand can support any load with a compressive global
(boundary) component (i.e., positive macroscopic pressure). Note however that a packing may be able to

3See section 2.2 of Ref. [73].
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support all compressive global loads even though it is not strictly jammed, as it may be unstable due to the
existence of collective unjamming mechanisms4.

4.2.4.1 Jammed Subpackings

It should be mentioned that jammed random particle packings produced experimentally or in simulations
typically contain a small population of rattlers, i.e., particles trapped in a cage of jammed neighbors but
free to move within the cage. For present purposes we shall assume that these have been removed before
considering the (possibly) jammed remainder. This idea of excluding rattlers can be further extended to
rattling clusters of particles, i.e., groups of particles that can be displaced collectively even though the
remainder of the packing is jammed. In fact, one can consider any packing which has a jammed subpacking
(collectively or strictly as defined above, with identical boundary conditions) to be jammed. This subpacking
is the force-carrying backbone of the packing.

The physical meaning and mathematical basis for such a modified approach is more evident from the
static perspective. Specifically, as long as there is a jammed subpacking, this subpacking will resist (support)
global loads (stresses), and furthermore, this jammed subpacking is also able to resist local loads, such as, for
example, induced by vibrations (shaking) in granular materials, therefore making the whole packing stable
and rigid.

4.3 Linear Programming Algorithm to Test for Jamming

Given a sphere packing, we would often like to test whether it is jammed according to each of the categories
given above, and if it is not, find one or several unjamming motions ∆R(t). We now describe a simple
algorithm to do this that is exact for gap-less (ideal) packings, i.e., packings where neighboring spheres touch
exactly, and for which the definitions given earlier apply directly. However, in practice, we would also like
to be able to study packings with small gaps, such as produced by various heuristic compression schemes
like the Lubachevsky-Stillinger algorithm [12], and we will consider these along with ideal packings. In this
case the meaning of unjamming needs to be modified so as to fit physical intuition. We do this using what
Roux [143] calls the approximation of small displacements (ASD), and propose an algorithm based on linear
programming that can test whether a finite packing is jammed.

We believe that computer-generated packings which are almost ideal are often actually very close in
configurational space to an ideal packing. This cannot be verified exactly in most cases, though some support
for this claim can be obtained by setting the numerical precision of the generation algorithm to higher and
higher values (for example, by increasing the number of collisions per particle in the Lubachevsky-Stillinger
algorithm [12]) and verifying that the interparticle gaps monotonically decrease toward zero [75]. It is possible
though that gaps are natural and essential in certain applications, such as for example, the study of particle
rearrangement in granular materials, and we therefore separately study packings which need not be (close to)
ideal, using mathematical programming as the fundamental tool. When the configuration is known exactly,
often the case for small ordered packings, jamming may be analyzed analytically.

4.3.1 Approximation of Small Displacements

As already explained, an unjamming motion for a sphere packing can be obtained by giving the spheres
suitable velocities, such that neighboring spheres do not approach each other. Here we focus on the case
when ∆R(t) = Vt + O(t2) are small finite displacements from the current configuration. We will drop
the time designation and just use ∆R for the displacements from the current configuration R to the new
configuration R̃ = R + ∆R. We defer discussion of packings with significant interparticle gaps to section
4.3.3.

In this ASD approximation, we can linearize the impenetrability constraints

‖r̃i − r̃j‖2 = ‖(ri − rj) + (∆ri −∆rj)‖2 ≥ D2 (4.3)

4An example is the Kagomé lattice disk packing, which can support all compressive global loads (sometimes called “loads at
infinity” in the engineering literature), but is not collectively jammed with periodic boundary conditions.
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by expanding to first order in ∆R, to get the condition for the existence of a (first-order) feasible displacement
∆R,

∆rT
ijuij ≥ −hij for all {i, j} , (4.4)

where {i, j} represents a potential contact between nearby spheres i and j, and hij = rij−D is the interparticle
gap (or interstice). The set of contacts {i, j} that we include in (4.4) form the contact network of the packing,
and they correspond to a subclass of the class of fascinating objects called tensegrity frameworks, namely
strut frameworks (see Ref. [73] for details, and also [144] for a treatment of more general packings). We
only consider potential contacts {i, j} between nearby, and not all pairs of spheres, that is we only consider
a contact if

rij ≤ (1 + δ)D, (4.5)

where δ � 1 is a chosen gap tolerance. Figure 4.8 shows a random bidisperse (containing two different kinds
of particles) disk packing and the associated contact network.

For a gap-less packing, we have ∆l = 0 and the condition (4.4) reduces to (4.1), and the packing is
jammed if and only if the only nontrivial solution to (4.4) is ∆R = 0. For packings with finite but small
gaps though, condition (4.4) is only a first-order approximation. By transforming Eq. (4.3) we obtain the
nonlinear analog of Eq. (4.4):

∆rT
ijuij +

∆rT
ij∆rij

2rij
≥ −

r2ij −D2

2rij
= −hij +

h2
ij

2rij
for all {i, j} . (4.6)

We rewrote the impenetrability constraints in this form so that it can be seen more clearly that any dis-
placement feasible under the linearized constraints (4.4) will also be feasible under the full nonlinear impen-
etrability constraints (4.6). To see this, consider how far one can move the particles along a unit ∆̂rij before
being blocked by the linearized constraint, ∆rij = −∆r(L)

ij ∆̂rij ,

∆r(L)
ij = − hij

∆̂rij

T
uij

=
hij

cos θij
≥ hij .

In reality however, the particles can displace more, since the true nonlinear constraint only blocks the motion
after a displacement

∆r(NL)
ij = rij cos θij −

√
(rij cos θij)

2 + h2
ij − 2hijrij ≥ ∆r(L)

ij .

In other words, within the ASD, J∆R is approximated with the inscribed polyhedral set P∆R ⊆ J∆R of
feasible (linearized) displacements, as determined by the system of linear inequalities (4.4), as illustrated
in Fig. 4.2. This is a very special and most useful property of sphere packings which does not generalize
to other convex particle shapes. The formal statement is that a sphere packing is rigid if and only if it is
infinitesimally rigid [138]. Note also that to first order in hij , ∆r(NL)

ij ≈ ∆r(L)
ij , a fact that was used in Ref.

[145] to conclude that the volume of J∆R asymptotically tends to the volume of P∆R in the jamming limit
(we will use this in subsequent chapters).

Also note that for any nontrivial (i.e., ∆ri 6= ∆rj) solution to (4.4) the nonlinear inequality (4.6) is
satisfied as a strict inequality, which means that particles i and j lose contact, even if the inequality is active
to first order. This is an important property which shows that by scaling a first-order feasible displacement
∆R appropriately one can always obtain a nontrivial feasible displacement which separates some of the
contacting particles. This property does not directly generalize to other smooth strictly convex particle
shapes, and in particular, it does not apply to packings of ellipsoids. Comparison of (4.4) and (4.6) also
suggests that the linearized constraints become too strict as the magnitude of the displacements becomes
comparable to the size of the particles ‖∆rij‖ ≈ D. The complicated issue of how well the ASD approximation
works when the gaps are not small enough is illustrated in Fig. 4.2.

By putting the uij ’s as columns in a matrix of dimension [Nd×M ], we get the important rigidity matrix5

of the packing A. This matrix is sparse and has two blocks of d non-zero entries in the column corresponding
5This is in fact the normalized negative transpose of what is usually taken to be the rigidity matrix, and is chosen to fit the

notation in Ref. [146], and also because it resembles the node-arc incidence matrix of the (directed) graph corresponding to
the contact network.
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Figure 4.2: Feasible displacements polyhedron. The figures show three stationary (dark gray) disks surround-
ing a mobile disk (light gray), as in the left part of Fig. 4.1. The (nonconvex) region of configuration space
excluded to the mobile disk J∆R (purple) is the complement of the union of disks of radius D surrounding
each stationary disk (dark circles), and is surrounded by unreachable regions of configuration space (yellow).
Also shown are the linearized versions of these constraints (dark lines), as well as the region P∆R (shaded
gray) they bound.
This region is a polyhedral set, and in the left figure it is bounded, meaning that within the approximation of
small displacements (ASD) the mobile disk is locally jammed (trapped) by its three neighbors, while on the
right it is unbounded, showing the cone of locally unjamming motions (escape routes). Notice that with the
true nonlinear constraints, the mobile disk can escape the cage of neighbors in both cases, showing that the
ASD is not exact. However, it should also be clear that this is because we have relatively large interparticle
gaps here and a near flat angle between the two nearly vertical contacts (contrast this to Fig. 4.1).

to the particle contact {i, j}, namely, uij in the block row corresponding to particle i and −uij in the block
row corresponding to particle j. Represented schematically:

A =

{i, j}
↓

i→

j →



...
uij

...
−uij

...


For example, for the four-disk packing shown in Fig. 4.2, and with the numbering of the disks depicted in
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Figure 4.3: The packing from Fig. 4.2 shown again with a numbering of the disks. Di denotes particle i and
Eij denotes the contact between the i-th and j-th particles, i.e., the contact {i, j}.

Fig. 4.3, we have the following rigidity matrix:

E12 E13 E14

A =

D1

D2

D3

D4


u12 u13 u14

−u12

−u13

−u14

 .
Using this matrix, we can rewrite the linearized impenetrability constraints as a simple system of linear
inequality constraints

AT ∆R ≥ −h. (4.7)

4.3.1.1 The Jamming Polytope P∆R

The polyhedral set P∆R is necessarily bounded for a jammed configuration, i.e., it is a convex polytope (see
the more detailed discussion in Section 4.3.2.3), which we refer to as the jamming polytope. The jamming
polytope will take a very prominent place in the theories developed in this work.

The fact that P∆R is a bounded convex polytope implies that A is of full rank [71], and that the
number of faces bounding P∆R, i.e., the number of interparticle contacts M , is at least one larger than the
dimensionality Nf of the configuration space6, M ≥ Nf +1. For collective jamming the boundary conditions
are fixed and with periodic boundary conditions there are d trivial translational degrees of freedom, so
Nf = (N − 1)d. If hard wall boundary conditions are employed then Nf = Nd and one should also count
contacts with the hard walls among the M constraints. For strict jamming the boundary is also allowed to
deform and this introduces additional degrees of freedom. For example, with periodic boundary conditions
a symmetric non-expansive macroscopic strain tensor is added to the configuration parameters, as discussed
in detail in Section 4.4, giving Nf = (N − 1)d+ d(d− 1)/2 + (d− 1) degrees of freedom. Isostatic packings
are jammed packings which have the minimal number of contacts, namely, for collective jamming

M =
{

2N − 1 for d = 2
3N − 2 for d = 3 (4.8)

6The additional +1 comes because we are considering inequality constraints, rather than equalities. One can also think of
this extra degree of freedom as representing the density, i.e., the size of the particles. For example, looking at the left panel of
Fig. 4.1 we see that at least 3 linear inequalities are necessary to bound a polytope in 2 dimensions.
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and for strict jamming

M =
{

2N + 1 for d = 2
3N + 3 for d = 3 , (4.9)

with periodic boundary conditions. For isostatic packings, the jamming polytope is a simplex7, and this will
be used frequently in theoretical calculations since simplices are much simpler to manipulate analytically
than general polytopes. Packings having more contacts than necessary are hyperstatic, and packings having
less contacts are hypostatic (we will see that hypostatic sphere packings cannot be jammed). For the trivial
example of local jamming and N = 1, all particles but one are frozen in place and the free particle must have
at least d+ 1 contacts. Figure 4.1 shows the polytope P∆R for a locally jammed disk, for both an isostatic
and a hyperstatic case.

4.3.2 Randomized Linear Programming (LP) Algorithm

The question of whether an ideal packing is jammed, i.e., whether the system (4.7) is feasible for some
∆R 6= 0, can be answered rigorously by using standard linear programming (LP) techniques, as described
in Section 4.3.2.1. If a packing is jammed, then this LP test is enough. However, for packings that are
not jammed, it is more useful to obtain a representative collection of unjamming motions, rather then use a
binary classification into packings which are jammed and ones which are not jammed. A random collection
of such unjamming motions is most interesting, and can be obtained easily by solving several linear programs
with a random cost vector.

We adapt such a randomized LP algorithm to testing for jamming, namely, we solve the following LP in
the displacement formulation

max∆R BT ∆R for virtual work
such that AT ∆R ≥ −h for impenetrability (4.10)

|∆R| ≤ ∆Rmax for boundedness,

for a random load B, where ∆Rmax � D is used to prevent unbounded solutions and thus improve numerical
behavior8. The physical interpretation of B as an external load was elucidated in section 4.2.4. Trivial
solutions, such as uniform translations of the packing ∆R = const. for periodic boundary conditions, can
be eliminated a posteriori, for example by reducing ∆R to zero mean displacement. Alternatively, trivial
motions can be handled by introducing extra constraints in (4.10), for example, by fixing the position of
one of the spheres, though we have found this less attractive, particularly for packings with gaps. Finally,
trivial components of ∆R can also be avoided by carefully choosing B to be in the null-space of A, which
usually means it needs to have zero total sum and total torque (see chapter 15 in Ref. [146]). We will discuss
numerical techniques to solve (4.10) in Section 4.6.

The reason we have included possibly non-zero gaps h in (4.10) is that computer-generated packings,
which we analyze, are never ideal and there are always small interparticle gaps between some particles9,
typically much less than a percent of the typical particle size D. One can safely consider such packings
purely within the ASD. However, we need to modify our definition of jamming to allow for very small
particle rearrangements at the application of the load B, i.e., we consider a solution to (4.10) an unjamming
motion only if some particle is displaced a significant distance:

∃i such that ‖∆ri‖ ≥ ∆rlarge � h,

where h � D is the typical size of the interparticle gap. Even though any solution to AT ∆R ≥ 0 is also
a solution to AT ∆R ≥ −h, the latter may have other solutions with large components, corresponding to
elongated corners of the polyhedron of feasible displacements P∆R (see Fig. 4.2), which should also be
treated as unjamming motions. Therefore, the primary purpose of including the exact interparticle gaps in

7A simplex is a closed convex polytope that has ν + 1 faces and ν + 1 vertices in ν-dimensional space (i.e., a triangle in two
or a tetrahedron in three dimensions).

8In our tests we usually set ∆Rmax ∼ 100D.
9These gaps may be an inherent and essential feature of disordered packings in general.
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(4.10) is to ensure proper handling of degenerate cases, such as a near-180-degree angle between two contacts
in 2D (see Fig. 4.3).

In summary, we treat any solution ∆R to (4.10) with components significantly larger than h as an
unjamming motion. For each B, if we fail to find an unjamming motion, we apply −B as a loading also,
for reasons we detail in Section 4.3.2.3. We stress that despite its randomized character, this algorithm is
almost rigorous when used as a test of jamming, in the sense that it is strictly rigorous for gap-less packings,
and also likely to work well if the interparticle gaps are sufficiently small, as explained in more detail in
Section 4.3.2.3. We will discuss more complicated adaptations of the randomized LP algorithm to nonideal,
i.e., packings with larger gaps, in section 4.3.3.

4.3.2.1 Non-Randomized LP Testing for Jamming

Determining whether the linear system of inequalities (4.7) with h = 0 has nontrivial solutions is an interest-
ing mathematical programming problem. One approach is the following: Solve the following linear program
aimed at maximizing the sum of the (positive) gap dilations,

max∆R

[∑
{i,j}(A

T ∆R)ij = (Ae)T ∆R
]

such that AT ∆R ≥ 0, (4.11)

and if this returns ∆R = 0 as one of the optimal solutions, test the rigidity matrix A for rank-deficiency,
i.e., look for nontrivial solutions of AT ∆R = 0. If this also fails to find an unjamming motion, the packing
is jammed. Notice that this will usually produce a single unjamming motion.

4.3.2.2 Kinematic/Static Duality

The subject of kinematic/static duality and its physical meaning and implications have been discussed
in numerous previous works [143, 73, 138, 137, 15]. The dual of the displacement formulation LP (4.10)
(excluding the additional practical safeguard constraint ∆R ≤ ∆Rmax), is the force formulation LP

minf hT f for virtual work
such that Af = −B for equilibrium (4.12)

f ≥ 0 for repulsion only,

and gives the interparticle repulsive10 force fij between spheres i and j as the dual variable associated with the
impenetrability constraint (4.4). The displacement- and force-based LP’s are of great importance in studying
the stress-strain behavior of granular materials, and since they are equivalent to each other, we can call them
the ASD stress-strain LP. We have emphasized the displacement formulation (4.10) simply because we based
our discussion of jamming on a kinematic perspective, but a parallel static interpretation can easily be given.
For example, a random B used in the randomized LP algorithm that finds an unbounded unjamming motion
physically corresponds to a load that the packing cannot support, i.e., the force formulation (dual) LP is
infeasible, implying that the displacement formulation (primal) LP is unbounded.

In general the stress-strain LP will be highly degenerate and its primal and/or dual solution not unique.
However, as Roux points out [143], the existence of small gaps in random packings is very important in this
context. Namely, if h is random and nonzero (even if small), and B is also random, both the primal and
dual solutions will likely be non-degenerate (see the references in Ref. [146]), and we have indeed observed
this in practice for random packings. A non-degenerate (basic or vertex) solution to (4.12) corresponds to
an isostatic force-carrying contact network [137, 143].

4.3.2.3 The Geometry of the Set of Unjamming Motions

The linearized impenetrability constraints AT ∆R ≥ −h define a polyhedral set P∆R of feasible (linearized)
displacements. Every such convex polyhedron consists of a finite piece Phull

∆R , a convex polytope given by
the convex hull of its extreme points, and possibly an unbounded piece C∆R, a finitely generated polyhedral

10Note that a negative sign has been used for repulsive forces in the mathematical literature [73].
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cone. In some cases this cone will be empty (i.e., C∆R = {0}), but in others it will not, as can be seen in Fig.
4.2. The full nonlinear impenetrability constraints given by (4.6) define the true set of feasible displacements
PNL

∆R = J∆R − {R}, which always relaxes the linearization, P∆R ⊆ PNL
∆R. A mathematically well defined

definition of jamming is to take any ray in the cone C∆R as an unjamming motion, and exclude others,
however, as Fig. 4.2 shows, the elongated corners of P∆R are in fact very likely to be unbounded in the
true non-linear feasible set of displacements PNL

∆R, so we prefer to take any “long” direction in P∆R as an
unjamming motion.

We note that the randomized LP algorithm proposed here strictly answers the question of whether the
polyhedral set of feasible displacements contains an unbounded ray (i.e., whether C∆R 6= {0}) just by
applying two (nonzero) loads b and −b. This is because an attempt to find such a ray will be unsuccessful
only if −b ∈ C∗∆R, where C∗∆R is the dual (conjugate) cone of C∆R, and in this case b /∈ C∗∆R, so that using
the load −b will find a ray if such a ray exists. We note that one cannot hope to fully characterize the cone
of first-order unjamming motions C∆R (i.e. find its convex hull of generating rays), as this is related to the
hard problem of fully enumerating the vertices of a polyhedron. Our randomized approach essentially finds
a few sample rays in C∆R.

It would be interesting to consider the behavior of the randomized LP quantitatively for the case when
P∆R is a closed polytope, and determine the probability that a certain vertex of the polytope is found by
the LP for a random load B.

4.3.3 Dealing with Interparticle Gaps

We originally motivated our perspective on jamming in section 4.2.1 by looking at the set of available
(reachable) configurations J∆R around a particular initial configuration R, and have since focused mostly
on ideal packings, though allowing for sufficiently small interparticle gaps. For these packings, J∆R is very
localized around R, and this makes it possible to define the three jamming categories meaningfully and
rigorously, and also allows for a simple randomized linear programming testing algorithm. A somewhat
ambitious but desirable goal is to efficiently obtain a grasp on the character and extent of J∆R, and use
this to judge whether the packing should be considered jammed or not. However, since J∆R is a very high-
dimensional and nonconvex set, it is a very complex object to describe or understand. We discuss the full
geometry of J∆R in more detail in Section 4.5.

However, the either-or character of the jamming criteria for ideal packings is often too restrictive or
specialized when analyzing large disordered packings with possibly larger interparticle gaps, where particle
displacements may be comparable to the typical particle size. Furthermore, even very close to the jamming
point, unjamming motions exist for very large packings. This is easy to appreciate by noting that one can
push one half of the particles to the left, and the other to the right, eliminating the small (but non-zero)
interparticle gaps, and forming a large void in the packing where arbitrary particle rearrangements can occur.
In other words, for sufficiently large packings large density fluctuations (formation of large voids) is always
possible (though unlikely) at densities below the jamming point.

We could focus instead on trying to judge the extent of J∆R by trying to displace the spheres away
from their current position by as much as possible. This can be done with a sequential random loading
algorithm: Repeatedly solve the LP (4.10), displace the spheres in the direction of ∆R by as much as
possible while still avoiding overlap, until the particles rearrange and form contacts that actually support
the applied load B. This should be repeated for several random loads, in the hope of exploring J∆R along
several directions. We give an outline of an algorithm to do this along with representative results in Section
4.6.2. The important point here is that for packings which are almost jammed, mathematical programming
is needed in order to efficiently find a direction in which the particles can be displaced by significant amounts.
Traditional heuristics such as Monte Carlo schemes in which particles are displaced one-by-one simply get
trapped easily, and algorithms which search for collective particle rearrangements are needed.

4.3.3.1 Shrink-And-Bump Heuristic

The following heuristic test for collective jamming has been suggested in Ref. [12]: Shrink the particles by a
small amount δ and then start the Lubachevsky-Stillinger molecular dynamics algorithm with random veloc-
ities, and see if the system gets unjammed. One would also slowly enlarge the particles back to their original
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size while they bump around, so as to allow finite termination of this test (within numerical accuracies).
We call this the shrink-and-bump heuristic. The idea is that the vector of velocities takes on random values
in velocity space and if there is a direction of unjamming, it will be found with a high probability and the
system will unjam. Animations of this process can be found at Ref. [135], and applications to testing for
jamming in very large packings of hard spheres are described in Chapter 9.

This kind of heuristic has the advantage of being very simple and thus easy to implement and use (and
also incorporates nonlinear effects), and it is also efficient, though still significantly slower than the linear
programming algorithm since typically many collisions per particle are needed to significantly displace the
particles due to the high density11. By incorporating deformations of the lattice in the Lubachevsky-Stillinger
algorithm, one can also use this test to test for strict jamming [72]. Its disadvantages are its non-rigorous
character and indeterminacy, artificial introduction of dynamics into a geometrical problem, and most of all,
its strong dependence on the exact value of δ. For example, animations showing how the Kagomé lattice
inside a container made of fixed spheres (as in Fig. 4.5) can be unjammed with a large-enough δ, even though
it is actually collectively jammed under these boundary conditions, can be found at our webpage [135]. In
fact, many jammed large packings will appear unstable under this kind of test, as motivated with the notion
of uniform stability, defined in Ref. [136]. The reader should also note the discussion in Section 4.5.

4.4 Boundary Conditions

Boundary conditions are very important when considering jamming, since some kind of container is necessary
to make a finite packing jammed. In fact, we can consider the different jamming categories to be variations
in the boundary conditions applied when looking for unjamming motions. First, the configuration, i.e., the
positions of all the particles, and the shape of the container, need to be specified. Then the allowed motions
of the particles and the container need to be prescribed. We will usually work with periodic boundary
conditions (in order to minimize finite-size effects), which we formally describe next, although sometimes we
use hard-wall containers (in order to compare to experiments).

4.4.1 Repetitive (Periodic) Packings

Large or infinite packings are most easily created by periodically repeating a certain finite (and possibly
small) known packing. A repetitive packing P̂(R) is generated by replicating a finite generating packing
P(R̂) on a lattice Λ = {λ1, . . . ,λd}, where λi are linearly independent lattice vectors and d is the spatial
dimensionality. The positions of the spheres are generated by

rbi(nc)
= r̂i + Λnc and nc is integer, nc ∈ Zd, (4.13)

where we think of the lattice Λ as a matrix with d2 elements having the lattice vectors as columns and nc

is the number of replications of the unit cell along each basis direction. Note that in subsequent chapters
the letter n will be used heavily to denote normal vectors at the point of contact, not to be confused with
number of unit cells as used in this Chapter. The sphere î (nc) is the familiar image sphere of the original
sphere i ≡ î (0), and of course for the impenetrability condition only the nearest image matters. Notice
that condition (4.13) only gives the positions of the spheres, and additional boundary conditions need to be
specified before applying the jamming definitions from Section 4.2.2.

4.4.2 Boundary Conditions for Unjamming Motions

As previously mentioned, the boundary conditions imposed on a given packing are very important, especially
in the case of strict jamming. Here we consider two main types of boundary conditions, hard-wall and periodic
boundary conditions, focusing on finite packings. Infinite packings are discussed in Ref. [136].

Hard-wall boundaries The packing P(R) is placed in an impenetrable concave hard-wall container K (see
Ref. [138]). Figure 4.4 shows that the honeycomb lattice can be unjammed inside a certain hard-wall

11In Chapter 9 we monitor the pressure in order to more efficiently detect unjamming motions, visible through the decay in
the pressure.
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container. We can also make an effective container out of a certain number of fixed spheres whose
positions cannot change. This is because it is often hard to fit a packing into a simple container such
as a square box, while it is easy to surround it with other fixed spheres, particularly if a periodic lattice
is used to generate the packing. Specifically, one can take a finite sub-packing of an infinite repetitive
packing and freeze the rest of the spheres, thus effectively making a container for the sub-packing. An
example is depicted in Fig. 4.5. Note that hard-wall containers do not allow any trivial unjamming
motions.

Periodic boundaries Periodic boundary conditions are often used to emulate infinite systems, and they fit
the algorithmic framework of this work very nicely. To obtain a periodic packing we wrap a repetitive
packing P̂(R) around a flat torus, i.e. we ask that whatever happens to a sphere i also happens to all
of the image spheres î (nc), with the additional provision that the lattice may also change by ∆Λ,

∆rbi(nc)
= ∆r̂i + (∆Λ)nc. (4.14)

When the lattice is fixed (∆Λ = 0), periodic boundary conditions allow for trivial rigid body trans-
lations of the packing, but trivial rotations only exist if the lattice is allowed to change. The trivial
translations can be most easily eliminated by fixing (freezing) the position of one of the particles. If the
lattice also changes, then we consider the configuration of the packing Q = (R,Λ) to also include the
lattice vectors. By imposing a suitable condition on the deformation of the lattice ∆Λ, as described in
Section 4.4.5, one can eliminate the trivial rigid-body rotations of the packing.

4.4.2.1 Using Simple Lattices to Generate Packings

Familiar lattices with a simple basis (unit cell), such as the triangular, honeycomb, Kagomé and square
in two dimensions, or the simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC) and
hexagonal-close packed (HCP) in three dimensions, can be used to create a (possibly large) packing taking a
subsystem of size Nc unit cells along each dimension from the infinite lattice packing. The properties of the
resulting system can be studied with the tools developed here, provided that we restrict ourselves to finite
Nc. Moreover, it is important to specify which lattice vectors are to be used. We will usually take them to
be primitive vectors (for which there is one particle per unit cell), but sometimes it will be more convenient
to use conventional ones, as used in the physics literature (usually representing a cubic unit cell having more
then one particle per unit cell for variations on the cubic lattice).

For hard-wall boundary conditions, we can take an infinite packing generated by these simple lattices
and then freeze all but the spheres inside the window of Nc unit cells, thus effectively obtaining a hard-wall
container. Figure 4.5 illustrates an unjamming motion for the honeycomb lattice under these conditions.

For periodic boundary conditions, the generator P(R̂) can itself be generated using Nc unit cells of
a simple lattice12. In this case the lattice Λ is a sub-lattice of the underlying (primitive) lattice Λ̃, i.e.,
Λ = Λ̃Diag{Nc}, where Diag{Nc} denotes a diagonal matrix whose diagonal is Nc. This is not only a
convenient way to generate simple finite periodic packings, but it is in general what we mean when we ask,
for example, to analyze the jamming properties of the Kagomé lattice under periodic or hard-wall boundary
conditions. Figure 4.6 shows a periodic unjamming motion for the Kagomé lattice. Notice though that the
jamming properties one finds depend on how many neighboring unit cells Nc are used as the“base”region (i.e.,
the generating packing), and therefore, we will usually specify this number explicitly. Some properties may
be independent of Nc (for example, the triangular lattice packing is strictly jammed for all Nc) and tailored
mathematical analysis can be used to show this [142, 136]. More systematic approaches based on Bloch wave
(Fourier) decompositions of the set of feasible motions should be investigated for repetitive packings13. We
will not consider these issues in detail here, but rather focus on algorithmic approaches tailored for finite and
fixed systems (i.e., Nc is fixed and finite), which is important when studying disordered particle packings,
i.e., packings where the generator P(R̂) is itself a large disordered packing.

12This closely resembles the Born-von Karman boundary conditions used in solid-state physics models of lattice vibrations.
13The difficulty with using standard Bloch wave (Fourier) decompositions is that here we are dealing with inequalities, rather

than equalities, which cannot easily be decomposed into inequalities for each of the wavevectors using standard orthogonality
relations. However, as will see in Chapter 5, both the self stresses and the floppy modes in a packing are solutions to systems
of equalities and they can be decomposed into Fourier components.
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Figure 4.4: Unjamming the honeycomb lattice. A subpacking of size Nc = (3, 2) unit cells of the infinite
honeycomb lattice disk packing is placed inside a hard-wall rectangular container. The arrows in the figures
given here show the direction of motion of the spheres V in the linear unjamming motion, scaled by some
arbitrary constant to enhance the figure.

4.4.3 Rigidity Matrix for Periodic Boundary Conditions

In this section we give more details on using the randomized linear programming approach to test for local,
collective and strict jamming in ideal packings with periodic boundary conditions. An outline of the actual
computational algorithm along with representative results is given in Section 4.6.1.

The boundary conditions enter in our formulation through the rigidity matrix A, which is in general of
dimension [Nf ×M ], where Nf is the total number of degrees of freedom (including boundaries), and M
is the total number of constraints. Fixing (freezing) particles (degrees of freedom) is easily done by simply
deleting the rows of the rigidity matrix corresponding to those particles (degrees of freedom). For hard-wall
boundaries, we add a potential contact to the contact network from each sphere close to a wall to the closest
point on the wall, and fix the endpoint on the wall. Such fixed points of contact and fixed spheres j, called
fixed nodes in tensegrity terminology, are simply handled by transferring the corresponding term ∆rT

j uij to
the right-hand side of the constraints in (4.7).

Periodic BCs are best handled by considering the unit cell of the packing and considering each contact
between an original i and an image particle ĵ (nij) to be a contact between particles i and j. The vector of
d integers nij specifies how many unit cells the contact {i, j} “crosses” over (see also Section 3.2.3). If we
think of the periodic packing as being embedded in a flat torus defined by the lattice Λ, the integer data
N = (nij) is now to be considered part of the contact network (i.e., the connectivity information for the
graph representing the contact network), and specifies how the network wraps around the torus. The entries
in the rigidity matrix in column {i, j} corresponding to particles i and j are just as for two particles at a
relative position

rij = ri − rj + Λnij .

If the lattice Λ changes, as when considering strict jamming, there are additional rows in the rigidity matrix
corresponding to those degrees of freedom, and there is a column corresponding to the condition that the
boundary deformation be volume non-increasing. We discuss these in details shortly.
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Figure 4.5: Unjamming the honeycomb lattice. A subpacking of size Nc = (3, 3) of an infinite honeycomb
packing is pinned by freezing all neighboring image disks. A representative unjamming motion is shown as
a sequence of several frames between times t = 0 and t = 1 (in the order top left, top right, bottom left and
bottom right). The unshaded disks represent the particles in the generating packing P(R̂), while the shaded
ones are image disks that touch one of the original disks.
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Figure 4.6: Unjamming the Kagom é lattice. Periodic boundary conditions are used with Nc = (2, 2).

4.4.3.1 Local Jamming

Recall that the condition for a packing to be locally jammed is that each particle be fixed by its neighbors.
This is easy to check. Namely, each sphere has to have at least d + 1 contacts with neighboring spheres,
not all in the same d-dimensional hemisphere. This can be tested in any dimension by solving a small linear
program, and in two and three dimensions one can use more elementary geometric constructions.

We prefer the LP approach because it is in the spirit of this work and because of its dimensional inde-
pendence, and so we present it here. Take a given sphere i and its set of contacts {ui,∗}, and put these as
rows in a matrix AT

i . Then solve the local portion of (4.11) (using the simplex algorithm),

max∆ri(Aie)T ∆ri

such that AT
i ∆ri ≥ −hN (i). (4.15)

The local load bi = Aie can be replaced with two random loads of opposite direction, which is more suitable
when larger gaps are present. When testing for jamming in ideal packings, we remove the rattlers from the
packing before proceeding with tests for collective or strict jamming. Notice that checking each sphere for
local jamming using (4.15) only once is not enough under this removal scheme. Namely, once a rattling sphere
is removed, this removes some contacts from the packing and can make other spheres not locally jammed.
We have observed that sometimes, particularly in two-dimensional systems, all disks can be removed on the
basis of just the local jamming testing.

Of course we can define higher orders of local jamming by asking that each set of n spheres be fixed by
its neighbors, called n-stability in Ref. [136]. However, for n > 1 it becomes combinatorially too difficult to
check for this because the number of subsets to be tested grows exponentially. Computationally, we have
found testing for local jamming using (4.15) to be quite efficient and simple.

4.4.4 Collective Jamming

The randomized LP algorithm was designed to test for collective jamming in large packings, and in this case
the linear program (4.10) that needs to be solved is very large and sparse. Notice that boundary conditions
are only involved when making the list of contacts in the contact network and deciding if certain spheres
or contact points are fixed. In the case of periodic boundary conditions, we simply add the usual contacts
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between original spheres near the boundary of the unit cell and any nearby periodic image spheres, and also
fix ∆Λ = 0 in Eq. (4.14).

4.4.5 Strict Jamming

To extend the notion of collective jamming to strict jamming we introduced deformations of the boundary.
In the case of periodic packings, the lattice Λ is the boundary. Therefore, the only difference with collective
jamming is that we will now allow the lattice to change while the spheres move, i.e., ∆Λ 6= 0 in (4.14). The
lattice deformation ∆Λ will become part of the unknowns in (4.10), but since it too enters linearly in (4.14),
we still get a linear program, only with coefficient matrix A augmented with new (denser) rows. These rows
have nonzero entries in the columns corresponding to contacts across the periodic boundary, i.e., contacts
with nonzero nij [147]. Note that one could express the positions of the particles relative to the unit cell, as
we did in Chapter 3, however, this makes the motions of the particles parabolic when the lattice deforms,
and we are focusing here on linear programming and linear (straight-line) displacements of the particles.

4.4.5.1 Macroscopic Strain

Obviously, we cannot allow the volume of the unit cell to enlarge, since the unit cell is in a sense the
container holding the packing together. Therefore, we only consider volume-non-increasing continuous lattice
deformations ∆Λ(t), ∣∣∣Λ̃∣∣∣ = |Λ + ∆Λ(t)| ≤ |Λ| , for t > 0, (4.16)

where || denotes determinant. We now think of [∆R(t),∆Λ(t)] as an unjamming motion and focus on linear
motions ∆Λ(t) = Wt, W = const. and the final small deformations ∆Λ = ∆Λ(1), and consider first-order
linearizations of the non-expansion nonlinear constraint (4.16).

The linearized version of (4.16) is
Trace[(∆Λ)Λ−1] ≤ 0, (4.17)

and this is just one extra linear constraint to be added to the linear program (4.10). The matrix inside the
trace can be interpreted as a (macroscopic) strain tensor ε,

ε = (∆Λ)Λ−1. (4.18)

To see this, note that the deformation of the lattice causes a displacement of the lattice point p (this is a
vector of integer lattice coordinates) positioned at rp = Λp of

∆rp = (∆Λ)p =
[
(∆Λ)

(
Λ−1

)]
rp,

which gives the strain (tensor)
ε = ∇r (∆r) = (∆Λ)Λ−1.

The strain tensor should be symmetric, εT = ε. It turns out that this condition eliminates rotations of
the lattice, since rotations of the lattice produce skewsymmetric strains. Because rotations of the lattice
belong to the category of trivial motions, which we want to eliminate from the onset, we will use the strain
ε as a variable instead of the deformed lattice (I + ε)Λ. This is only strictly valid for infinitesimal lattice
deformations; finite lattice deformations in this model are to be considered as an integral of infinitesimal
deformations with symmetric strain.

With this in mind, it is best to use the symmetric strain tensor as a variable, that is, to represent motions
with ∆Q = (∆R, ε). In order to simplify matrix algebra later on, we will need to represent the strain as
a vector ε̂ with d (d+ 1) /2 coordinates containing only the lower or only the upper triangle of the strain
components. How we order the triangle into the vector is immaterial and a matter of convention (e.g.,
ordering by diagonals starting from the main diagonal or ordering by columns). This ordering establishes a
correspondence s ≡ (p, q) between component ε̂s and component εp,q = εq,p = ε̂s. The usual convention (in
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three dimensions) is to use the column vector of strains

ε̂ =


ε1,1

ε2,2

ε3,3

2ε2,3

2ε1,3

2ε1,2

 ,

which contains additional factors of 2 (see section 4.4.5.3). Using this notation, the distance between the
centroids of two particles as the particles move and the lattice deforms is given with

lij = ‖rij + (∆ri −∆rj) + εΛnij‖ = ‖rij + Tij∆r + Sij ε̂‖ ,

where Tij is a [d×Nd] matrix (with simple structure) and Sij is a
[
d× d(d+1)

2

]
matrix. The condition

(4.17) simply becomes
d∑

s=1

ε̂s ≤ 0, (4.19)

and can be included as an extra column (constraint) in the rigidity matrix.
The motivation for the category of strict jamming and its above interpretation in the periodic case should

be clear: Changing the lattice in a volume non-increasing way models macroscopic non-expansive strain (i.e.,
a compressive macroscopic stress) and is therefore of great relevance to studying the macroscopic mechanical
properties of random packings (see Ref. [111]). We also again point out that strict jamming is (significantly)
stronger than collective jamming for periodic boundary conditions, particularly in two-dimensional packings.
This point is illustrated in Fig. 4.7, which shows an unjamming motion involving a deformation of the
lattice, even though this lattice packing is collectively jammed. Periodic boundary conditions are often used
to model infinite systems, in the hope that a jammed periodic packing will produce a “jammed” infinite
packing (for example, in the sense of uniform stability [136]) when periodically replicated in all directions. A
simple counting argument demonstrates that isostatic collectively jammed periodic packings cannot generate
“jammed”infinite packings because they have too few contacts, but isostatic strictly jammed periodic packings
can since they have enough contacts (due to the inclusion of additional degrees of freedom for the deforming
lattice). We give those counting arguments at the end of this section.

4.4.5.2 Rigidity Matrix

The column of A corresponding to the contact {i, j} is nothing more than the gradient of the distance
between particles i and j with respect to the degrees of freedom in the packing

Aij = ∇Q (lij) =

 A(R)
ij

−
A(ε)

ij


The first piece of this is the corresponding column of the usual rigidity matrix

A(R)
ij = ∇R (lij) =

i→

j →



...
uij

...
−uij

...


,

and the second piece is due to the periodicity of the contact network

A(ε)
ij = ∇bε (lij) = {∇bε [ε (ε̂)Λnij ]}uij ,
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Figure 4.7: Example of a lattice deformation. The above periodic packing (packing 3 in Ref. [142]) is
collectively jammed, but not strictly jammed. It can be continuously sheared toward the triangular lattice
by deforming the lattice in a volume non-decreasing manner, as shown here.

which we can also write in indicial form suitable for computational use as [recall that s ≡ (p, q) determined
how the vectorization of the upper/lower triangle of ε was done to obtain ε̂](

A(ε)
ij

)
s

=
1
2

[
(Λnij)p (uij)q + (Λnij)q (uij)p

]
, (4.20)

or in matrix form,
A(ε)

ij = Symm
{
uij (Λnij)

T
}
. (4.21)

We have not yet derived second-order order derivatives with respect to the lattice degrees of freedom, as
these are significantly more complicated and are not used in this work. It is however worth carrying out the
explicit calculation.
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4.4.5.3 Macroscopic Stress

The condition of mechanical equilibrium at zero external load

Af = 0,

reduces to the Nd microscopic force balances for each particle∑
j∈N (i)

fijA
(R)
ij = 0,

as well as the d (d+ 1) /2 conditions that there be no residual non-isotropic macroscopic stresses

σ̂ =
1
|Λ|

∑
ij

fijA
(ε)
ij = pÎ, (4.22)

where the pressure p ≥ 0 is the Lagrange multiplier (“force”) for the strain constraint (4.19). Here σ̂ is the
vectorized version of the upper or lower triangle of the symmetrized macroscopic stress (tensor) σ, and we
normalized with the reciprocal unit cell volume |Λ| in order to get the correct units of stress. This is expected
since stress is the strain gradient of the energy density, and not of energy. The stress tensor is given by

σ =
1
|Λ|

∑
ij

fij

{
Symm

[
uij (Λnij)

T
]}

, (4.23)

which more clearly displays the tensor character through the use of the diadic product uij (Λnij)
T .

4.4.5.4 Linearization of Strain Condition

In Section 4.3.1 we demonstrated that the linearization of the impenetrability condition was in a certain
sense rigorous for hard spheres: Any motion that satisfies the linearizing constraints satisfies also the true
non-linear constraints. This is an important property of sphere packings that is used heavily in this Chapter,
and it is therefore important to demonstrate that it continues to be true even if we allow the periodic
lattice to change. In practice this means that any (first-order) solution obtained by the linear programming
algorithm can be appropriately scaled to obtain a truly feasible displacement in which some particles strictly
lose contact and the volume of the unit cell strictly decreases.

Motivated by Ref. [148], we consider the nonlinear corrections to (4.17) by expanding (4.16) to second
order, to get

|Λ + ∆Λ| = |Λ| |I + ε| =

|Λ|
d∏

i=1

(1 + λi) = |Λ|

∑
i

λi +
∑
i>j

λiλj + higher order terms

 ,

where λi are the eigenvalues of the strain, which are all real because of its symmetry and also have a
nonpositive sum due to (4.17). If Tr (ε) =

∑
λi < 0, then the first order term will dominate for sufficiently

small deformations and the nonlinear constraint (4.16) will be satisfied. Furthermore, if Tr (ε) = 0, then we
have that ∑

i>j

λiλj = −1
2

∑
i

λ2
i < 0

for any nontrivial deformation, which shows that the second-order term is of the correct sign and the volume
of the unit cell strictly decreases for sufficiently small deformations (i.e., it strictly decreases at the second-
order level).
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4.4.6 Strict Jamming and Macroscopic Rigidity

The interpretation of the conditions for strict jamming in terms of a macroscopic stress and strain tensor is
physically important, and in this section we elaborate on some technical details related to this interpretation.
In order to justify the interpretation of ε = (∆Λ)Λ−1 as a macroscopic strain and of σ =

∑
ij fij

[
uT

ij (Λnij)
]

as a (un-symmetrized) macroscopic stress we look at the infinite periodic packing obtained by replicating
the generating packing along all dimensions (i.e., unwrapping the torus), and consider whether these tensors
are invariant to the choice of the unit cell.

In particular, a unit cell may be chosen to be larger and contain several multiples Nc of the unit cell
used when testing for jamming. This new enlarged packing may not be jammed even if the smaller packing
was jammed, due to the existence of unjamming motions involving large numbers of particles. A reasonable
first definition of jamming appropriate for infinite repetitive packings is that every finite subpacking of the
infinite packing be jammed. This is the definition of finite stability in Ref. [136], and in that reference some
shortcomings are discussed an a stronger uniform stability condition is defined. Here we consider counting
arguments for jamming when the unit cell is enlarged, demonstrating that the collective jamming condition
is insufficient to give finite stability for hard sphere packings, where as the strict jamming condition may be
sufficient.

4.4.6.1 Invariance of the Macroscopic Strain

The unit cell of a periodic system is not uniquely defined. For example, one may take a larger unit cell as
the reference cell, i.e., take the lattice to be a sublattice of the original lattice

Λ′ = ΛNc,

where Nc is a diagonal matrix with positive integer entries. Now consider a lattice deformation with peri-
odicity determined by Λ in the primed notation, where ∆Λ′ = (∆Λ)Nc. The macroscopic strain is

ε′ = (∆Λ)Λ−1 = (∆Λ)
(
NcN−1

c

)
Λ−1 = ε,

i.e., the strain is independent of the exact choice of the unit cell. This is a very important invariance property
which makes our results more physical.

4.4.6.2 Invariance of the Macroscopic Stress

The expression for the macroscopic stress (4.22) appears to be invariant with respect to choosing a different
unit cell as the reference cell, as it should on physical grounds. However, this is difficult to show in general
as the nij ’s depends non-trivially on the choice of the cell.

Take a contact {i, j} carrying force fij and having nij = 〈1, 1〉 when the lattice is Λ. Now take [Nx ×Ny]
unit cells put together as a new unit cell, i.e., take Λ′ = ΛNc with

Nc =
[
Nx

Ny

]
as the new lattice. With this new choice of lattice, the original contact gets replaced with Nx − 1 contacts
with ni′j′ = 〈0, 1〉, Ny − 1 contacts with ni′j′ = 〈1, 0〉, and 1 contact with ni′j′ = 〈1, 1〉. All of these image
contacts carry the same force fij and have the same direction vector uij . Looking at equations (4.21) and
(4.22), we see that the portion in the expression for the macroscopic stress which depends on the choice of
the unit cell, Λnij , gets replaced with

Λ′

NxNy

∑
{i′,j′}

ni′j′ = Λ
{

(Nx − 1)
NxNy

Nc

[
0
1

]
+

(Ny − 1)
NxNy

Nc

[
1
0

]
+

1
NxNy

Nc

[
1
1

]}
= Λnij .

This vector is therefore unchanged by the change of the unit cell, and therefore the macroscopic stress is
invariant under this change of unit cells, as it should be. This is not quite a polished proof, but indicates
that expression (4.22) is physical.
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The relation between microscopic forces and the macroscopic stress in a force network has been considered
in the granular materials community, and various related expressions of different generality have been derived
[149, 150, 151, 152]. Expression (4.22) for the macroscopic strain in a periodic network has not been previously
derived in this form to our knowledge. However, it is closely related to results based on averaging that have
been obtained and used in the context of disordered contact networks, as we demonstrate next. Consider
the form of the stress tensor given in Eq. (4.23). First, notice that only the bars with nonzero nij contribute
to the macroscopic stress, i.e., only the bars that cross the “boundary” of the unit cell contribute. Compare
this to the expressions found in Ref. [149] for the macroscopic stress in a disordered network (recast into a
form more suitable for our presentation)

σ =
1
V

∑
{i,j}∈V

fij lij
(
uijuT

ij

)
=

1
V

∑
i∈V, j /∈V

fij

(
uijrT

i

)
, (4.24)

the second of which also only involves microscopic forces crossing the boundary of a given reference (aver-
aging) volume V , i.e. only the bars {i, j} ∈ ∂V . For a periodic system it is natural to take the unit cell
as the averaging volume. Consider a contact {i, j} with nonzero nij . It will appear twice in the sum in
Eq. (4.24), once as the “original” with direction uij , and once as an “image” {i′, j′} with ui′j′ = −uij and
ri′ = ri −Λnij + lijuij . Therefore the contribution from this bar to the averaged macroscopic stress in Eq.
(4.24) is

1
|Λ|

fij

[
uT

ij (Λnij)
]
− 1
|Λ|

fij lij
(
uijuT

ij

)
.

The first term in this expression is identical to the one in Eq. (4.23). If we take a large unit cell, in the spirit
of the averaging in Eq. (4.24), the second term will become negligible.

4.4.6.3 Counting Contacts for Repetitive Packings

Unlike local jamming, both collective and strict jamming are global properties of the packing, and impose
constraints on the total number of contacts needed in order to ensure jamming (we are focusing here on ideal
packings, for which contacts can be counted exactly). Namely, the number of impenetrability constraints
(contacts) must be larger than the number of degrees of freedom by at least one. This is because k + 1
inequality constraints are needed to eliminate k degrees of freedom (just as d+ 1 neighbours are needed for
local jamming). Such counting arguments have been used frequently since Maxwell employed them to study
bar frameworks; see, for example, Ref. [137].

We apply here such counting arguments to repetitive packings obtained by periodically repeating a
generating packing P (R̂) on a lattice Λ (see section 4.4). Assume first that with imposed periodic boundary
conditions (4.14) for a given choice of unit cell, which contains N spheres and M interparticle contacts, the
packing is collectively jammed. Furthermore, assume that the packing is isostatic, i.e., it has the minimal
number of contacts needed for jamming. It is expected that such isostaticity is a generic property of disordered
polydisperse packings (see, for example, Ref. [143] for a discussion of randomly perturbed triangular lattice
disk packings), since additional contacts imply some degeneracy in the packing, as we discuss in detail in
Section 5.4.

In Section 4.3.1.1 we gave the counting constraints for periodic boundary conditions, Eq. (4.8) for
collective jamming and Eq. (4.9) for strict jamming. What does jamming for this particular choice of unit
cell (i.e., torus) imply about the infinite repetitive (cover) packing? This is an important question because
periodic boundary conditions are used to emulate infinite (or very large) systems, rather than to study
packings on a flat torus. This question is difficult and has not yet been fully answered. However, some
important conclusions are simple to deduce. For example, any unjamming motion for a particular choice of
unit cell is also an (repetitive) unjamming motion of the infinite packing, and also for all integer-multiples
of unit cell, Λ̃ = ΛNc, where Nc = det (Nc) > 1.

However, the converse is not true: In other words, the fact that a packing is jammed with one choice of
unit cell does not imply that it will be so for other choices. In fact, for collectively jamming it is guaranteed
that the packing will not be jammed for larger unit cells. Specifically, Eq. (4.8) becomes

M̃ = NcM = dNcN − (d− 1)Nc < dÑ − (d− 1),
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which shows that the packing cannot be jammed with the new choice of unit cell. For strict jamming,
however, this is not the case, and it is possible that the packing is strictly jammed for all choices of unit cell,
as seen by writing constraint (4.9) for the new boundary conditions:

M̃ = NcM =

{
2NcN +Nc > 2Ñ + 1 for d = 2
3NcN + 3Nc > 3Ñ + 3 for d = 3

.

This shows that the packing has redundant contacts with the new boundary conditions. This does not prove
that the packing is jammed with the new choice of unit cell, but it may be.

This argument demonstrates that strictly (but not collectively) jammed isostatic periodic packings are
candidates for“jammed” infinite packings. In this work we have focused on finite systems, and generalizations
to infinite packings are discussed in Ref. [136]. In particular, uniformly stable infinite packings can be
considered the analog of strictly jammed finite packings.

4.5 Beyond the ASD: Transition States and Paths

In this section we more formally explore the issue of unjamming motions in the presence of nonzero interpar-
ticle gaps, i.e., for non-ideal packings. Assume that a configuration RJ represents a jammed ideal packing of
N particles with packing fraction φJ , where there are M interparticle contacts. Next, decrease the density
slightly by reducing the scaling the particle sizes by a factor µ = 1−δ, so that the packing fraction is lowered
to φ = φJ (1− δ)d. The definition of jamming (rigidity) we used for ideal packings is that in the limit
δ → 0 the jamming basin J∆R → {RJ}. Here, we define a jammed packing as one in which growth of the
particles must eventually lead to the unique jamming point under consideration, regardless of the (thermal)
motions of the particles. That is, the jamming basins correspond to pockets of the feasible (available) region
of configuration space that are not connected to other basins. In this sense, every jammed packing has a
maximal allowed dilution δmax > 0 beyond which transitions to other basins become possible. Our goal in
this section is to identify the transition states and transition paths between basins explicitly, given a jammed
ideal packing. Work is underway to implement and apply the algorithm described in this section for small
packings of binary hard disks.

4.5.1 Vertices of J∆R

The jamming basin itself is a region in configuration space bounded by the impenetrability conditions, which
are quadratic inequalities that prohibit the configuration point from entering a hypercylinder. Formally, that
is, the feasible region is the complement of the union of hypercylinders, or the set of solutions to a collection
of N(N − 1)/2 inequalities (one for each pair of particles {i, j}). At a given δ, only a subset of M + ∆M
of these inequalities will be active, reducing to the M true contacts in the jamming limit. For sufficiently
small δ, the jamming basin approaches the jamming polytope (a closed polyhedron in arbitrary dimension)
P∆R ⊆ J∆R [52, 145], as discussed in Section 4.3.1.1.

Each face of the polytope P∆R corresponds to one of the contacts being active, i.e., the two particles
involved touching exactly. The configurations where as many contacts are active as possible, that is, any
motion of the particles must break some of the active contacts, are the vertices of P∆R. When the curvature
of the constraints is taken into account, the faces of the polytope become curved (outward, i.e., concave),
however, the combinatorial structure still remains like that of a polytope. In particular the vertices become
stretched and more pointed as δ increases. At the critical δ = δmax, it is exactly one of these vertices that
opens up. That is, the transition state is a vertex of J∆R, and the transition path is a motion whose linear
component (velocity) V = Ṙ is perpendicular to all of the normal vectors of the constraints active at the
vertex. It is now clear how to identify transition states and paths: Track a vertex of J∆R as δ grows away
from 0, and identify the point where the vertex becomes open. Do this for all vertices, and this will identify
all the transition states and paths. Note that new vertices may appear for δ > 0 due to the presence of
near-contacts in the packing that are not active at δ = 0.
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4.5.1.1 Tracking the Vertices

We make the following non-degeneracy assumption: At every vertex of J∆R there are exactly Nf = (N−1)d
active contacts. This is not true for certain regular arrangements such as crystal packings, however, it should
be true for “ disordered” packings. It is not necessary that the jammed packing under consideration be
isostatic, rather, it is required that the polytope P∆R be a simple polytope. If the packing does happen to
be isostatic, then P∆R is also simplicial, i.e., it is a simplex, as illustrated in Fig. 4.1.

Under this assumption, it is possible to change δ by shrinking all the particles uniformly, while maintaining
in contact all of the contacts in the contact network at the vertex in question. This is the same idea used
in the Zinchenko algorithm [28], where the spheres are grown in order to produce a jammed packing instead
of being shrunk away from a jammed packing. The motion/velocities of the particles i and i necessary to
maintain the contact {i, j} closed are determined from the conditions

vT
ijuij = −δ̇D̃ij ,

where D̃ij = (Di +Dj)/2. In matrix form, this gives the linear system of equations

BT V = −δ̇D̃,

where B is the submatrix of A formed by the columns corresponding to the contacts (constraints) that
are closed (active) at the vertex in question. Our non-degeneracy assumption means that the matrix B is
invertible, and the velocities are simply

V = −δ̇B−T D̃.

Tracking a vertex fails when the matrix B becomes non-invertible, and this is exactly the point when the
vertex becomes a transition state. Since B is not invertible, it has a null vector U, and this null vector is
in fact exactly the transition path, i.e., the particle velocities that lead to escape from the jamming basin
through the vertex in question. At this point one simply stops tracking this vertex, and records the transition
state and path that were just identified. The same transition state and path should be identified for one
of the other jammed states as well, since after passing through the transition state the configuration point
moves into another basin.

Tracking the vertex also fails when during the tracking process a new contact forms, i.e., one of the near
contacts becomes active. At this point, the vertex splits into a number of new vertices, each of which needs
to be tracked separately, so that all vertices are found and thus all transition states are identified. At the
point of formation of the extra contact, the packing is isostatic, and there exist a set of interparticle forces
f satisfying force balance. Let the column of the rigidity matrix corresponding to the newly formed contact
be Aij (see also the useful expressions in Section 6.2.2.1). If we put a force fij on the newly formed contact,
then the forces on the other contacts are determined from

Bf = −fijAij ⇒ f = −fijB−1Aij .

If we make the forces unique by normalizing them, D̃T f + fijD̃ij = 1, we get

fij =
1

D̃ij − D̃T B−1Aij

.

At the same time, the total contact velocity for contact ij is negative (since the contact closed)

vij = δ̇D̃ij + vT
ijuij = δ̇D̃ij + VT Aij =

δ̇

fij
< 0,

that is fij < 0 (since δ̇ > 0). The newly formed contact must be kept if one wants to continue decreasing δ,
and the argument above shows that the contacts with negative forces may not be broken, while any of the
forces with positive forces may be broken in order to have δ̇ > 0 and maintain nonoverlap. This was derived
in an alternative way in Ref. [28], where the opposite situation δ̇ < 0 was considered since the particles grow
in size in the Zinchenko algorithm, until a jammed point where all interparticle forces are positive is reached.
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In essence, the algorithm described above is the inverse of the Zinchenko packing algorithm [28]. By
following the vertices away from the jamming point one is following a possible path in the Zinchenko algorithm
from the liquid phase to the jamming point under consideration. Our algorithm is slightly more involved
since in the Zinchenko algorithm one makes an arbitrary choice of which contact to break when a new contact
forms. Here we are trying to track all vertices and thus all possibilities need to be taken into account. The
algorithm is however very well-suited for implementation using recursion, since the set of vertices being
tracked with possible splittings into new vertices forms a tree. In Ref. [28], it is mentioned that every now
and then the algorithm ran unto “singular points” which caused very large transverse displacements of the
particles. It is interesting that he notes that these singular points were observed in the density interval
0.52− 0.58, which is often quoted as the location of the kinetic glass transition for hard spheres.

4.5.1.2 Numerical Details

When tracking a vertex, an ODE needs to be solved, and the rigidity sub-matrix B inverted. Also, the points
where B becomes singular, |B| = 0, or when new contacts form, need to be identified so that the ODE solver
can be stopped or restarted with a new contact network. Technically, this kind of problem is known as event
location in ODEs [91, 131] and there are algorithms that incorporate such event-location into ODE solvers.
This extra complication may not actually be necessary, and simpler schemes (requiring smaller steps in the
ODE solver) may be sufficient in practice.

An additional important numerical detail is the handling of the inversion of B, especially due to the
possibility of singularities. For large packings, sparse-matrix technology and iterative solvers need to be
invoked, and some of this is discussed by Zinchenko (although a lot more developments have occurred
since 1990 in this field of applied mathematics). But for small problems dense linear algebra will suffice.
Additionally, the inverse of B does not need to be formed, instead, only the adjoint

adj (B) = |B|B−1,

which is well-behaved even for a singular matrix. In fact, under non-degeneracy assumptions, near a singular
point the adjoint becomes of rank-1, adj (B) ∼ UUT , and in fact U ∼ V‖ is the transition path. Therefore,
the recommended ODE to solve is

Ṙ = −adj
(
BT

)
D̃

δ̇ = |B| , (4.25)

where it is assumed that the signs are chosen so that |B| > 0 when the vertex is first formed. Note that
B changes as the configuration R changes. As it can be seen from Eq. (4.25), the transition point, when
|B| = 0, corresponds to a point where δ̇ switches sign, that is, it goes from increasing to decreasing. One
can in fact continue solving the ODE past the transition location comfortably, without encountering any
singularities, and come to another jammed packing, namely, the other end of the transition path. During
this process, however, some contacts may disappear when new ones are formed, and the algorithm becomes
exactly like the Zinchenko algorithm.

4.5.2 The Salsburg Approach

In Ref. [52], a simplified approach to finding out when the jamming polytope becomes open is taken. Namely,
only contacts that were exactly closed at close packing are considered, and also only unjamming motions
that pass through the origin are considered. That is, to test whether the curved polytope is closed, Salsburg
considers starting at the origin and pushing the particles in a given direction ∆̂R, until a wall of the curved
polytope is encountered. If no such wall is encountered, that is, if none of the (original) contacts resists the
motion of the particles, than this is considered an unjamming motion. This of course neglects the possibility
that new contacts form and resist the motion, and also does not really identify the transition states since it
only considers motions away from the origin (the true escape path will actually be curved itself). We give
the mathematics of this approach here because it may be useful for large isostatic packings in identifying
the “weak” vertices, that is, directions in which the polytope is very elongated. This is alike identifying soft
modes of the Hessian for soft-particle systems without taking into account anharmonic effects.
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Substituting hij = δD in Eq. (4.6) we get the impenetrability constraint

−
∆rT

ijuij

D
−

∆rT
ij∆rij

2D2
= δij(∆R) ≤ δ

(
1− δ

2

)
The jamming gap at which a given displacement ∆R becomes feasible for this particular constraint is thus δ =
1−

√
1− δ2ij(∆R) ≈ δij(∆R) and therefore one can define a potential function δ̃(∆R) = max{i,j} δij(∆R)

the contours of which reveal the feasible regions at different jamming gaps (approaching the polytope of
course as δ → 0). Now consider ∆R = s∆̂R, where ∆̂R is a given unit vector,

∥∥∥∆̂R
∥∥∥ = 1, along which one

tries to move away from the origin. Then we have a δij(s) that is an inverted parabola, with a maximum of
height √

δij(∆̂R) = −
∆̂r

T

ijuij
√

2
∥∥∥∆̂rij

∥∥∥ ,
which is the largest jamming gap that a particular contact can support for this chosen direction of particle
motion. Note that here the scalings due to s cancel in the numerator and the denominator. Therefore, the
largest jamming gap at which the curved polytope is closed is given by

√
2δmax = min

∆R
max
{i,j}

−∆rT
ijuij

‖∆rij‖
= min

∆R
max
{i,j}

cos θij ,

where θij is the angle between the relative displacement and the contact vector for neighbor particles i and
j. The condition δ ≤ δmax is necessary for the curved polytope to be closed. Considering the fact that
all polytope faces are an equal distance 1 away from the origin, for a point on the surface of the polytope,
∆rT

ijuij = −δD, so that cos θij ∼ ‖∆rij‖−1. The minimum above is achieved at one of the vertices of the
polytope, since otherwise one could move the ray and make a more oblique angle with the faces that contain
the point of intersection of the ray with the polytope surface. Therefore, one could look at each of the vertices
of the polytope and calculate

√
2δvertex = max{i,j} cos θij over all the active contacts (at that vertex), and

identify the vertex with the smallest δvertex as the weakest one. For an isostatic packing the polytope is
a simplex and the vertices can easily be calculated even for large packings, see Section 6.2.2.1. It would
be interesting to consider the behavior of the randomized LP algorithm for such a simplex polytope, and
determine the probability that the weakest vertex, or at least a good approximation of the smallest δvertex,
is found by the LP for a random load B.

4.6 Algorithmic Details

In this section we outline in detail two algorithms to test for jamming in hard-sphere packings. The first
one is applicable to ideal packings, while the second one deals with non-ideal packings. Although the core
concept used in both is the randomized linear programming algorithms presented in Sections 4.3 and 4.4.3,
the two differ in their goals and the way they process the results of the linear programming step: The first
one attempts to give a binary classification of packings into jammed and not jammed, while the second tries
to explore the extent of J∆R by trying to continuously displace the particles as much as possible, as discussed
in Section 4.3.3.

4.6.1 Algorithm: Ideal Packings

We summarize the proposed algorithm to test for collective or strict jamming in ideal packings, applicable
also to packings with very small interparticle gaps (Algorithm 13). This algorithm removes spheres which are
not locally jammed. Once a rattling sphere is removed, this removes some contacts from the packing, which
can make other spheres not locally jammed. Therefore an implementation in which neighbors of rattlers are
recycled on a stack of spheres to be checked is needed. This algorithm also classifies packings which have an
ideal jammed subpacking as jammed, even if they have some rattling particles or rattling clusters of particles.
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Algorithm 13: Randomized Linear Programming Algorithm
1. If testing for collective jamming, fix the strain ε = 0.

2. Choose a suitable gap tolerance δ, δD ∼ ∆rlarge, in Eq. (4.5) and add all potential contacts {i, j}
between neighboring particles to the contact network.

3. If there are no spheres in the packing, declare the packing as not jammed and terminate.

4. Test for local jamming (rattlers):

(a) Make a stack of all the spheres.
(b) Remove the top (pop) sphere i from the stack and solve the LP (4.15) with bi = Aie using the

simplex algorithm. If ‖∆ri‖ ≥ ∆rlarge, remove the sphere from the packing, push all its neighbors
not on the stack back on the stack, and remove all its contacts from the contact network.

(c) Go back to step 4a if the stack is not empty.
(d) Repeat step 3.

5. Choose a random load B.

6. Solve the LP (4.10) along with constraint (4.17) (if testing for strict jamming).

7. Remove all spheres i displaced by the load from the packing, ‖∆ri‖ ≥ ∆rlarge.

8. Repeat steps 3-4, reverse the direction of B, B← −B, and repeat steps 6-7.

9. If no spheres were displaced by either load, declare the (sub)packing jammed and terminate. Otherwise
go back to step 3.

4.6.2 Algorithm: Nonideal Packings

When dealing with nonideal packings, one has to abandon the binary “jammed” versus “not jammed” binary
classification. Instead we focus on trying to judge the extent of J∆R by trying to displace the spheres away
from their current position by as much as possible. We first give the algorithm to do this in Algorithm 14
and then we discuss specific steps and the choices one can make in each step. Some illustrative results are
given in Section 4.7.

We discuss the different steps of this algorithm separately in the following subsections. Note that the
proposed algorithm is not as efficient as possible, mostly because not all linear programs need to be solved
to full accuracy. Linear optimizers, and in particular interior-point algorithms, spend most of their effort in
the final stages of the optimization, looking for the exact optimal vertex (or face) of the feasible polytope.
Therefore, early termination is most desirable, and in future work we will develop specialized implementations
that will replace step 5 with several Newton steps of a feasible interior-point algorithm. In a sense, the above
algorithm resembles a Sequential Linear Programming (SLP) algorithm for finding equilibrium configurations
of packings under applied loads. It remains to be explored whether including information about the curvature
of the nonlinear impenetrability constraints, as is done in most modern nonlinear optimization algorithms,
will be useful in light of the increased complexity of the linear algebra involved. For packings of nonspherical
particles, such as packings of ellipsoids, including second-order information is necessary in order to find
feasible directions of displacements. Numerous optimizations related to reuse of information in the iterative
process and linear solvers as well as parallelization will also be investigated.

We stress that one cannot directly use off-the-shelf nonlinear optimization software to explore J∆R,
since feasibility must be strictly maintained throughout the process. Furthermore, efficiency also demands
a specialized implementation. This is why we present in this work algorithms based on linear programming,
which allows one to use any of the numerous linear programming libraries available today without the
complexity of dealing with nonlinear programming algorithms.

4.6.2.1 Choosing the Gap Tolerance

First, we discuss the choice of the gap tolerance δ. The larger this tolerance, the more possible particle
contacts we will add to the set of constraints, and thus the more computational effort we need. Further-
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Algorithm 14: Sequential Random Loading Algorithm
1. If testing for collective jamming, fix the strain ε = 0.

2. Choose a suitable gap tolerance δ, δD ∼ ∆rlarge, in Eq. (4.5) and add all potential contacts {i, j}
between neighboring particles to the contact network.

3. Test for rattlers:
For all spheres i, solve the LP (4.15) using the simplex algorithm and two randomly chosen loads bi

of opposite direction. If ‖∆ri‖ ≥ ∆rlarge, mark the sphere as a rattler.

4. Choose a random load B and set bi = 0 for rattling particles.

5. Solve the LP (4.10) along with constraint (4.17) to obtain a linearized unjamming motion ∆R.

6. Find the largest scaling τ > 0 for the displacements so that no spheres overlap for displacements from
0 to τ∆R and also require that the volume of the unit cell does not increase, det [I + τε] ≤ 1. Displace
the spheres to a new configuration, R ← R + τ∆R, Λ ← (I + τε)Λ. Note that this changes the
rigidity matrix A of the packing and requires updating the contact network.

7. If any particle was displaced by a significant amount, τ ‖∆ri‖ > βD, go back to step 5. Also keep
statistics of τ ‖∆ri‖ over all spheres, such as average ‖∆ri‖ and maximum value max ‖∆ri‖.

8. Optionally repeat step 3 and set bi = 0 for (new) rattling particles.

9. Reverse the direction of B and repeat steps 5-7.

10. If the average or maximal particle displacement exceed thresholds, declare packing as not “jammed”
and terminate. Otherwise go back to step 4 until convinced packing is “jammed”.

more, we are including more redundant and/or stricter-than-necessary linearized impenetrability constraints.
Choosing a very small tolerance makes it hard to treat systems with moderately large interparticle gaps (say
of the order of δ = 0.1D), since crucial constraints which become relevant as soon as the magnitude of the
displacements becomes comparable to δD are omitted. We have found values of δ ≈ 0.1D−1.0D reasonable,
depending on the dimensionality and type of packing. The general rule is that the contacts of each sphere
with all spheres in (only) its first coordination shell should be included, and of course physical intuition and
close examination of the results are very helpful.

4.6.2.2 Testing for Rattlers

Unlike the case of ideal packings, where we permanently remove rattlers from the packing, here we simply
avoid placing a load on the rattlers, but still consider them as part of the packing, as they may provide
important constraints as the spheres displace. It is desirable not to place a load on rattlers because for
some smaller gap tolerances δ, the contact network may not provide sufficient constraints to locally trap all
particles. The particles that are not locally trapped will displace by very large distances under any nonzero
load, leading to a very small scaling τ and very slow progress of the algorithm. Unfortunately, some linear
programming solvers may return a large displacement for a rattler even if no load is applied on it, as most
solvers initialize the variables independently of the user. In practice, step 3 of the algorithm only helps in
cases when there is a small number of clear rattlers, as it enables one to use a smaller gap tolerance δ and
thus reduce the size of the linear programs, and in such cases the first test for rattlers will already identify
the troublesome particles. In other cases, one simply must use a sufficiently large δ.

4.6.2.3 Scaling the Displacements

We emphasized in Section 4.3.1 that any solution of the linearized impenetrability constraints is also a solution
to the full nonlinear impenetrability constraints. However, there are several reasons why it is important to
choose an appropriate scaling for the displacements τ . First, we do not include all pairs of particles in the
constraints, and therefore any ∆R for which some particle displaces by more than δD is not necessarily a
feasible displacement, and may need to be scaled down appropriately. Furthermore, the linearized constraints
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are significantly stricter than the nonlinear ones for larger displacements, and therefore it is often possible
to scale up the displacements by a significant factor without violating feasibility.

Since our aim is to displace the particles as much as possible from their initial configuration, we choose
the largest scaling factor possible. To find this scaling, one thinks of ∆R as a vector of particle velocities
and finds the time of the first interparticle collision τ . This can be found with exactly the same procedure as
used to build collision schedules in the Lubachevsky-Stillinger packing algorithm [12]. For highest efficiency,
the computational domain is partitioned into cells and only collisions between particles in neighboring cells
are considered, along with transfers of the particles between the cells. The same partitioning is used when
building the contact network of the packing after displacing the particles, though depending on the value of
the gap tolerance δ more than just the neighboring cells might need to be searched. One should also ensure
that the volume of the unit cell does not increase during the deformation of the lattice when testing for strict
jamming.

4.6.2.4 Termination Criteria

We do not give detailed criteria on when to terminate the iterated linear programming in step 7, since these
should really be adapted to a nonlinear feasible interior-point algorithm to be used in place of the linear
optimizer. Typically β ≈ 0.01− 0.1. When none of the particles can be displaced further despite repeating
step 5, the dual variables obtained by the LP solver will become (close to) the true interparticle forces
that resist the load. A primal-dual nonlinear solver would also terminate at such a point and return the
appropriate Lagrange multipliers. However, outside the ASD these forces are no longer unique [143], nor is
it guaranteed that a packing that can support a random load B and −B can support all loads. Therefore,
we need to use several random loads. We do not have estimates or bounds on how many loads need to be
used, however, experience has shown that only a few (3− 5) loads are sufficient to find large displacements
if such displacements exist.

4.6.2.5 Interpreting the Results

Processing the results of the above algorithm is somewhat of an art. However, by observing the statistics of the
multiple particle displacements, and especially by visualizing the path traversed by the particles during the
loading, one can get a sense of the character of J∆R. Particularly useful is observing the average magnitude
of the particle displacements, and we use this metric in reporting some results for disordered computer-
generated packings in Section 4.7.2. It may also be useful to observe the distribution of displacement
magnitudes among the particles.

In general, it is best to first try the algorithm of this section, and then use a visualization tool (like our
VRML animations) or a histogram of the magnitudes of the particle displacements to judge whether there
appears to be a jammed subpacking (to within a tight tolerance), or whether all particles seem to be able to
displace significantly. If the former is the case, then using the algorithm of Section 4.6.1 one can identify such
a jammed subpacking if it exists within the tolerances used. This is illustrated in Fig. 4.8, where we show the
results of applying the algorithm to test for collective jamming in ideal packings to an equimolar bidisperse
disk packing of 250 disks (ϕ = 0.846) . A gap tolerance of δ = 0.01 was used, and all disks that displaced by
more than ∆rlarge = 10−3 were removed to leave a jammed subpacking of 232 disks, for which the average
displacement during the test was ‖∆ri‖/D ≈ 7 ·10−7 and the maximal was maxi ‖∆ri‖ ≈ 2 ·10−5, indicating
a high numerical accuracy in the packing algorithm (about 20, 000 collisions per particle were used). If the
rattling particles or rattling clusters of particles were not removed, the displacements observed would have
been higher, as, for example, in Table 4.2. On the other hand, if overly strict tolerances were chosen in
the algorithm of section 4.6.1 (for example, ∆rlarge = 10−4), then no jammed subpacking would have been
found. With reasonably tight tolerances, there is no strictly jammed subpacking of this packing. Note that
it may be possible to remove some of the disks from the collectively jammed subpacking and still maintain
the jamming property.

4.6.3 Numerical Implementation

We have developed a practical numerical implementation of the randomized LP algorithms using a primal-
dual interior-point linear optimizer. We have applied the algorithms to test for the different jamming
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Figure 4.8: Results from the algorithm of Section 4.6.1 (Algorithm 13). The algorithm identified a collectively
jammed subpacking, after removing the rattlers (black disks). The dotted disks represent periodic images.
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categories in practice and verified their utility and efficiency. Illustrations of results obtained using our
implementations are given throughout, and results from the application of the algorithm of Section 4.6.2 to
large computer-generated monodisperse and bidisperse disk and sphere packings are given in Ref. [72].

We have implemented an efficient numerical solution of (4.10) using the primal-dual interior-point al-
gorithm in the LOQO optimization library [153]. Both Fortran 95 codes which directly invoke the LOQO
library, and Algebraic Modeling Programming Language (AMPL) models have been developed, along with
VRML visualization tools. The AMPL models are particularly simple to use and modify, and are available on
our website [135]. We wish to emphasize that by using primal-dual interior point algorithms we automatically
get both forces and displacements using the same implementation. For example, both LOQO and PCx (see
Ref. [153]) return both primal and dual solutions to the user. Primal-dual interior-point algorithms are very
well suited for problems of this type. Nonetheless, for three-dimensional problems the available high-quality
implementations of interior-point algorithms (such as Ref. [153]) are based on direct linear solvers are too
memory-demanding and inefficient. Tuned implementations based on conjugate-gradient iterative solvers are
needed.

Testing for strict jamming typically takes more time, by as much as 25%, since additional denser
rows/columns are included in the rigidity matrix, and this is more pronounced in three dimensions where
more of the contacts are on the boundary. The exact way the strain and the associated constraints are
handled makes a difference in this case. We emphasize that for three-dimensional packings the sparse fac-
torization linear solver in LOQO is not the best choice, so much smaller running times are possible with
specialized implementations. The running time of the linear solver depends non-trivially on both the number
of spheres and the number of contacts in the contact network. The number of contacts is very sensitive to the
choice of the gap tolerance δ, which we usually decreased as the packing size increased (and thus the average
displacements decreased). Therefore, the running times shown shortly should not be taken as a measure of
the scaling of the LP solver computational effort with the number of spheres, but rather as typical runtimes
for some representative packing sizes.

4.7 Results

In this section we apply the LP algorithms to representative ordered (crystalline) and disordered (amorphous)
packings of hard disks and spheres, and summarize our observations.

4.7.1 Periodic Lattice Packings

Table 1 in Ref. [15] gives a classification of some common simple lattice packings into jamming categories
for hard-wall boundary conditions. Table 4.1 modifies this for periodic boundary conditions. The results in
principle will depend on the choice of unit cell, so the terminology “lattice XXX is YYY jammed” is used
loosely here. We illustrate some unjamming motions for lattice disk packings in Figs. 4.9 and 4.10.

We point out for the curious that the triangular lattice is not the only strictly jammed ordered disk
packing; two other examples are shown in Fig. 4.11. We show below that one can remove at most one quarter
of the disks from a triangular lattice packing and still maintain strict jamming. Using the Lubachevsky-
Stillinger packing algorithm for small packings, we recently found a new family of strictly jamming packings
obtained by reinforcing with triangular regions a particular tiling of the plane with three congruent pentagons.
An example is shown in Fig. 4.11.

4.7.1.1 Low-Density Strictly Jammed Triangular Packings

We give a simple argument here proving that the reinforced Kagomé lattice (see Fig. 4.11) is the lowest
density strictly jammed subpacking of the triangular lattice disk packing. We start with a triangular packing
and remove disks to form vacancies, preserving the strict jamming property. Observe that one cannot have
any compact divacancies, i.e., neighbouring vacancies, since these unjam the packing. Therefore, each disk
removal removes exactly 6 contacts from the contact network. At a minimum, we need at least 2 contacts per
particle in a (collectively or) strictly jammed large packing, since the number of impenetrability constraints
must be at least the number of degrees of freedom. Therefore, if we start with N � 1 disks, and remove n
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Figure 4.9: Simple collective mechanisms in the Kagom é and honeycomb lattices, respectively. These lattices
are not collectively jammed with periodic boundary conditions, as the sample unjamming motions for the
Kagomé (left) and for the honeycomb (right) packings shown here illustrate. The shaded disks represent
periodic images.

Lattice ϕ Z Ns L C S
Honeycomb 0.605 3 4 Y N N

Kagomé 0.680 6 3 Y N N
Square 0.785 4 2 Y N N

Triangular 0.907 6 1 Y Y Y
Diamond 0.340 4 4 Y N N

SC 0.524 6 2 Y N N
BCC 0.680 8 2 Y N N
FCC 0.741 12 1 Y Y Y
HCP 0.741 12 2 Y Y Y

Table 4.1: Classification of some simple lattices into jamming categories for periodic boundary conditions.
We give the packing (i.e., covering) fraction ϕ (to three decimal places), the coordination number Z, and
the number of disks/spheres Ns per unit cell, as well as an assessment of whether the lattice is locally (L),
collectively (C) or strictly (S) jammed (Y is jammed, N is not jammed). We chose the smallest unit cells for
which an unjamming motion exists (illustrated on our webpage [135]), if there is one.
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Figure 4.10: Shearing the honeycomb lattice. The honeycomb lattice is not strictly (or collectively) jammed,
and an example of a lattice deformation, replicated on several unit cells to illustrate the shear character of
the strain ε = (∆Λ)Λ−1. Note that only three (original) spheres are involved in the actual calculation of
this unjamming motion, the rest are image spheres.
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Figure 4.11: Examples of strictly jammed lattices in two dimensions (from Ref. [71]). The 6/7th lattice
(packing number 2 in Ref. [142] and the last packing in Ref. [59]), top, is obtained by removing every 7th
disk from the triangular lattice. The reinforced Kagomé lattice, middle, is obtained by adding an extra “row”
and “column” of disks to the Kagomé lattice and thus has the same density in the thermodynamic limit,
namely, it has every 4th disk removed from the triangular packing (see also Ref. [59]). The pentagonal
packing shown at the bottom is obtained from a particular tiling of the plane with three rotated congruent
pentagons, and is just one member of a whole family of strictly jammed packings.
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disks, we must have that:

3N − 6n ≥ 2(N − n)⇒ n ≤ N

4
(4.26)

that is, we can at most remove one quarter of the disks. Since the reinforced Kagome lattice is strictly
jammed (we do not prove this here) and asymptotically realizes this bound, the bound (4.26) is tight.

4.7.2 Results for Disordered Hard Sphere and Disk Packings

The linear programming algorithms we developed were specifically designed for disordered packings. We
have used them to analyze jamming in disordered packings produced by a variety of packing algorithms,
namely the Lubachevsky-Stillinger packing algorithm [12], an energy minimization algorithm as presented
in Ref. [31], as well as the Zinchenko packing algorithm [28].

4.7.2.1 Packing Algorithms

We produced most packings using the Lubachevsky-Stillinger compression algorithm [12] with periodic
boundary conditions. We also obtained sample monodisperse sphere and bidisperse disk packings from
the authors of Ref. [31]. These packings are not of perfectly hard spheres, but rather soft spheres interacting
via repulsive potentials when there is overlap between the cores of diameter D. They use energy minimiza-
tion for harmonic and Hertzian potentials, descending to an energy minimum using the conjugate gradient
algorithm from a random initial configuration (i.e., a rapid quench from T = ∞ to T = 0). The packings
we analyzed were just above the “jamming threshold” density φc, meaning that there was only very small
(less than 10−5D) overlap between the outer cores. We therefore simply scaled the sizes of the particles
by a factor very close to unity to obtain overlap-free hard-sphere packings. Since the jamming threshold
densities found in Ref. [31] were very close to the final densities produced by the Lubachevsky-Stillinger
algorithm (with reasonably large compression rates), we expected these packings to behave very similarly,
and have confirmed this with computational tests. Therefore, here we focus on and present the results for the
Lubachevsky-Stillinger packings. Finally, we also had available disordered three-dimensional packings pro-
duced with the contact network building Zinchenko packing algorithm [28], and confirmed that they behaved
like the packings produced by the other algorithms. Unfortunately, we do not know of a two-dimensional
implementation of this algorithm.

All of these algorithms seem to produce collectively jammed packings in both two and three dimensions,
excluding rattlers and allowing for appropriate numerical tolerances. This can be proved rigorously for the
Zinchenko packing algorithm, and under certain additional assumptions also for the energy minimization
algorithm. In principle, only locally jammed configurations are possible final states for the Lubachevsky-
Stillinger algorithm since they give infinite collision rates, however, we believe that local configurations are
unstable attractors for this algorithm. On the other hand, none of these algorithms produces truly strictly
jammed packings a priori. Indeed, the packings that that we tested were never truly strictly jammed. This
is not surprising because none of them incorporates deformations of the periodic lattice, but rather, they
all use a fixed (typically cubical) unit cell. It is not hard to incorporate boundary deformations into these
algorithms, and we are presently working on such extensions. In particular, the Lubachevsky-Stillinger
algorithm can easily incorporate a deforming lattice in the spirit of Parinello-Rahman molecular dynamics
[107]. We have in fact implemented such an extended Lubachevsky-Stillinger algorithm (described in Section
3.2.4.2) and used it to produce a priori strictly jammed packings. In packing algorithms based on energy
minimization, as in Ref. [31], one need only include the strain as part of the degrees of freedom in order
to allow relaxation of the lattice and produce strictly jammed packings. The same is true of the Zinchenko
packing algorithm.

Both monodisperse and bidisperse packings were studied. The main reason for including bidisperse
packings in this preliminary study is that monodisperse disk packings crystallize easily, forming large ordered
almost-triangular domains (grains) with high packing fraction ϕ ≈ 0.88. This is because in two dimensions the
locally densest configuration coincides with the globally densest triangular lattice, unlike in three dimensions,
where the locally optimal (tetrahedral) configuration cannot tile three-dimensional space [6]. It is only
by introducing polydispersity that one can produce disk packings with no apparent (or little) short-range
order (i.e., amorphous), as can be determined by, for example, bond-orientational order metrics,[6] and in
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particular, the local Q6 order metric. We used an equimolar mixture of disks with diameter ratio of 1.4 as
done in Ref. [31]. For amorphous monodisperse three-dimensional packings the typical packing fraction is
around ϕ ≈ 0.64, and such a packing is shown in Fig. 4.12. For the aforementioned amorphous binary disk
packings ϕ ≈ 0.84, and such a packing is illustrated in Fig. 4.8.

Figure 4.12: Virtually strictly jammed sphere packing. This random packing of 500 spheres with density
ϕ = 0.64 was produced using the (original) Lubachevsky-Stillinger algorithm and it is collectively jammed
and practically strictly jammed. The (cubical) unit cell is also shown.

In a truly disordered (generic) packing, it is expected that the average number of interparticle contacts
per particle (coordination number) will be Z = 2d, i.e., that the packing will be isostatic. Thus, it is expected
that Z = 4 in two dimensions. However, collectively jammed monodisperse disks packings are rather dense
(ϕ ≈ 0.86− 0.88) and crystalline and they have Z > 4 (This should be compared to Z = 6 for the triangular
crystal). Disordered bidisperse disk packings do have Z ≈ 4, and similarly in three dimensions monodisperse
packings have Z ≈ 6, consistent with an assumption of generic character. However, the exact number one
gets depends rather sensitively on the criterion for assigning contacts and on whether rattling particles are
excluded or not. It is important to note that a large packing must have Z ≥ 2d in order to be collectively
or strictly jammed, and Z ≥ d + 1 to be locally jammed. We also point out that our algorithm to test for
jamming does not depend sensitively on the criterion for selecting contacts.
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4.7.2.2 Methodology

Although most of the packings we analyzed had small interparticle gaps and can also be studied within the
framework of ideal packings and classified as jammed or not jammed, we instead consider them nonideal and
explicitly deal with the interparticle gaps. We wish to stress that the results below are not averages over
many packings with the same number of spheres/disks, but rather they are results for particular packings
produced by the Lubachevsky-Stillinger algorithm. These packings seemed to be typical of the types of
packings produced by the algorithm under a relatively wide range of expansion rates and packing sizes. We
therefore believe that the numbers presented here serve well as a semi-qualitative illustration of the behavior
of random disk and sphere packings commonly used in many computational studies. The primary reason we
do not give averaged results this is that detailed average results should be given only once it is determined
what quantitative metric of jamming is physically appropriate (which is likely to be different for different
types of packings and different applications), and results should also be correlated with more characteristics
of the packings (i.e., not just the covering fraction) and to various relevant parameters of the algorithm used
to generate the packing [56].

As a quantitative measure of jamming in these packings, we report the average particle displacement
‖∆ri‖ achieved during random loading. This choice is not ideal, and attaching a physical picture to the
numbers is difficult. For example, rattlers often contribute most to the average displacement for packings
which might be “more jammed” if the rattlers are removed. Moreover, although an entry in Table 4.4 below
might say that the average displacement for a monodisperse disk packing was only 10% of the particle size,
the character of the particle motion might be such that very significant rearrangements happen in the packing
because grain boundaries move (see Fig. 4.14), and this has to be seen to be appreciated. We will share our
VRML visualizations with interested readers, and many examples are provided on our webpage [135].

Another statistic we report is the time (in seconds) spent by the AMPL implementation (with some
Fortran) of the testing algorithm on a typical personal computer14. Since most of the computational time is
spent in LOQO, similar running times are typical of the Fortran codes as well. For each packing, we applied
three different random loads (with opposite orientations), and for each load we successively solved three
linear programs (so a total of 18 linear programs for each packing). The running times below should not
be taken as a measure of the scaling of the LP solver computational effort with the number of spheres, but
rather as typical runtimes for some representative packing sizes. This is because the computational effort
depends nontrivially on many of the parameters in the algorithm, and on the exact implementation.

4.7.2.3 Results

Qualitatively different results were observed for the amorphous monodisperse sphere packings and binary
disk packings, and the polycrystalline monodisperse disk packings.

For the amorphous packings, we give results for bidisperse packings in two dimensions in Table 4.2, and
for monodisperse packings in three dimensions in Table 4.3, with similar trends. In general, these packings
were collectively jammed, in the sense that only small (average) displacements of the particles are possible.
The small feasible displacements are mostly due to rattlers and/or early termination of the packing algorithm
and we believe that any true final Lubachevsky-Stillinger packing with infinite collision rate will in fact have
an ideal collectively jammed subpacking (similarly for the other packing algorithms). The packings were not
strictly jammed for small system sizes, however, the magnitude of the feasible displacements decreased as
the packings became larger, and therefore large amorphous packings were virtually collectively and strictly
jammed. This can be understood by thinking of the distinction between collective and strict jamming as
a boundary effect: As the packings become larger the boundary effects diminish. Therefore, even though
none of the packing algorithms is meant to produce strictly jammed packings a priori, they do so for large
amorphous packings.

Importantly, very different results were observed for monodisperse disk packings, which are invariantly
nearly triangular (i.e., crystalline). We wish to point out that crystallization into a triangular lattice poses
a convergence obstacle for the Lubachevsky-Stillinger algorithm since near triangular regions have very high
collision rates even when the disks diameters are not at their maximal value. Therefore it was only for
monodisperse disk packings that some of the final packings were not collectively jammed (large particle

14More precisely, calculations were performed on an 1666MHz AMD Athlon PC running Linux.
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N φ t (s) coll. ‖∆ri‖/Di coll. ‖∆ri‖/Di strict
50 0.845 2.1 0.010 0.060
100 0.842 6.4 0.0034 0.011
250 0.846 21 0.0037 0.0053
500 0.847 72 0.0016 0.0067
750 0.849 88 0.0022 0.012
1000 0.849 130 0.0016 0.018
1500 0.848 247 0.0016 0.020
2500 0.849 248 0.0039 0.010

Table 4.2: Results of Algorithm 14 for equimolar binary disk packings of diameter ratio 1.4. The first
column shows the total number of particles N , the second the packing fraction, the third the running time
for the AMPL model that tests for collective jamming, and the last two columns show the average particle
displacement during collective (i.e., with a fixed lattice) and strict jamming (i.e., with a deforming lattice)
testing. Notice that the displacements are significantly larger for the strict jamming test, especially for small
packings. The analogous table for three dimensions, Table 4.3, shows similar behavior but significantly larger
computational times due to the inefficiency of the direct linear solver in LOQO for three-dimensional contact
networks.

N φ t (s) coll. t (s) strict ‖∆ri‖/D coll. ‖∆ri‖/D strict
50 0.628 23 29 0.0012 0.12
100 0.644 53 76 0.00043 0.15
250 0.636 164 210 0.0021 0.031
500 0.641 480 597 0.0037 0.014
750 0.641 900 1017 0.0015 0.0035
1000 0.642 1822 1866 0.011 0.013

Table 4.3: Results for monodisperse sphere packings. The columns are as in Table 4.2, and here we show
the running times for both the testing for collective and strict jamming.

rearrangements were possible near grain boundaries). Most packings were however collectively jammed just
as for amorphous packings and we present results for these in Table 4.4. By using certain tricks in the
Lubachevsky-Stillinger algorithm, such as collections of frozen particles or very large expansion rates, one
can obtain apparently “jammed” amorphous monodisperse disk packings near a packing fraction ϕ ≈ 0.83.
However, due to numerical instabilities or the presence of an artificial boundary of fixed disks, these packings
were not collectively jammed, as illustrated in Fig. 4.13. One of the important observations is that none
of the large Lubachevsky-Stillinger monodisperse disk packings were strictly jammed. In fact, typical grain
boundaries are very fragile under shear, and so even for the large packings significant rearrangements of the
grain boundaries are feasible, as illustrated in Fig. 4.14.

N φ t (s) coll. ‖∆ri‖/D coll. ‖∆ri‖/D strict
50 0.832 2.9 0.0022 0.39
100 0.863 8.9 5.4·10−8 0.18
250 0.886 21 0.0014 0.86
500 0.891 78 6.7·10−5 0.16
750 0.887 103 0.0040 0.26
1000 0.882 153 0.0017 0.23

Table 4.4: Results for monodisperse disk packings. The columns are as in Table 4.2. Notice the very large
displacements during the test for strict jamming, even for large packings, as well as the high packing densities
for larger packings.

It is also important to verify that any packing algorithm claimed to produce jammed packings can indeed
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Figure 4.13: Locally jammed disk packing. A random packing (ϕ = 0.82) of 1000 disks that is not collectively
jammed, and a representative periodic unjamming motion. More insightful animations can be found at the
webpage [135].
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Figure 4.14: Collectively jammed disk packing. A dense (ϕ = 0.89) random packing of 1000 disks that is
collectively jammed but not strictly jammed, and a representative unjamming motion. One can see the grains
gliding over each grain boundary due to the shear, bringing this packing closer to a triangular lattice.
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produce jammed ideal packings, in the sense that all tolerances in the test for jamming can be tightened
progressively as the numerical accuracy is increased and the convergence criteria in the packing algorithm are
tightened. We demonstrate this for collective jamming in monodisperse sphere packings in Table 4.5. The
corresponding results for strict jamming, given in Table 4.6, illustrate that the (traditional) Lubachevsky-
Stillinger packings do not have a strictly jammed ideal subpacking, but are practically strictly jammed for
large system sizes. This is unlike monodisperse disk packings, which are far from being strictly jammed, as
illustrated in Table 4.7.

N / Ncoll(103) 1 5 10 25
50 0.041 0.015 .0018 4.9·10−10

100 0.036 0.016 0.0011 0.00014
250 0.050 0.023 0.0015 0.00036
500 0.047 0.024 0.0028 0.0014
750 0.046 0.019 0.0030 0.0011
1000 0.052 0.020 0.0025 0.00067

Table 4.5: The average particle displacement ‖∆ri‖/D during the test for collective jamming is shown for a
series of sphere packings produced by the (original) Lubachevsky-Stillinger algorithm. From top to bottom
the packing size N increases, and from left to right the number of collisions per particle Ncoll(in thousands)
increases (and thus the density also slowly increases). No special handling of rattlers was employed. It is
easily observed that the packings uniformly become “more jammed” as the packing algorithm is run longer
(though rattlers may continue to give a finite contribution to the observed displacements). Similar behavior
is expected of any algorithm which in the limit of infinite numerical precision produces packings with a
collectively jammed subpacking.

N / Ncoll(103) 1 5 10 25
50 0.083 0.057 0.059 0.051
100 0.066 0.042 0.023 0.026
250 0.052 0.027 0.010 0.0097
500 0.056 0.024 0.012 0.010
750 0.048 0.027 0.014 0.014
1000 0.060 0.025 0.0040 0.0021

Table 4.6: This table is the analog of Table 4.5 but for strict jamming. In this case it is seen that the average
displacements do not converge uniformly toward zero, an indication that the packings do not have a strictly
jammed ideal subpacking (similar results are observed for amorphous binary disk packings). However, the
average displacements are quite small for large packings (this is even more pronounced for the binary disk
packings).

Ncoll(103) 1 5 10 25
Collective 0.12 0.007 0.00050 1.7·10−5

Strict 0.45 0.24 0.12 0.12

Table 4.7: Just as an illustration, this short table shows results for a two dimensional disk packing with
250 disks, corresponding to the results presented for amorphous sphere packings in Tables 4.5 and 4.6. It
is seen that although the packing has an ideal collectively jammed subpacking, it is clearly far from being
strictly jammed, as typical for monodisperse disk packings produced by the Lubachevsky-Stillinger packing
algorithm with a fixed lattice.

We have implemented an extension of the Lubachevsky-Stillinger packing algorithm in which the lattice
deforms during the molecular dynamics run [11], as dictated by the collisional (contact) stress induced by the
particle collective. Details of the algorithm and the packings it produces will be given elsewhere. For relatively
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small numbers of particles, this algorithm typically produces truly strictly jammed packings, and for these
packings ‖∆ri‖ is similar for both collective and strict jamming. The algorithm produces similar amorphous
packings (in packing fraction and disorder) to the original Lubachevsky-Stillinger algorithm, however, for
monodisperse disks it frequently terminates with completely crystal packings, and also produces complete
triangular lattices with special types of defects, such as monovacancies and peculiar “dislocation cores”. One
such strictly jammed disk packing is shown in Fig. 4.15. Investigation of these strictly jammed disk packings
as well as extensions of other packing algorithms to allow for deforming boundaries should be carried out in
the future. We note in passing that we also used the extended Lubachevsky-Stillinger algorithm to try the
shrink-and-bump heuristic [71] to test for strict jamming by also allowing the lattice to deform while the
particles bump around. This seemed to detect disordered packings which are not strictly jammed, however,
the test is significantly slower than the linear programming algorithm and is also very heuristic and much
less reliable.

4.8 Conclusions

In this chapter we proposed, implemented, and tested a practical algorithm for verifying jamming categories
in finite sphere packings based on linear programming. We demonstrated its simplicity and utility, and
presented some representative results for ordered lattices and random packings. Interestingly, the large
computer-generated monodisperse random packings that we tested were virtually strictly jammed in three
dimensions, but not in two dimensions.

Our results have important implications for the classification of random disk and sphere packings and
suggest a number of interesting avenues of inquiry for future investigations. Random disk packings are
less well-understood than sphere packings. The tendency of disk packings to “crystallize” (to form ordered,
locally dense domains) at sufficiently high densities is well established. For example, Quickenden and Tan
experimentally estimated the packing fraction of the “random close packed” (RCP) state to be ϕ ≈ 0.83 and
found that the packing fraction could be further increased until the maximum value of ϕ = 0.906 is achieved
for the triangular lattice packing [154]. By contrast, random sphere packings at ϕ in the range 0.63 − 0.66
cannot be further densified.

Our recent understanding of the ill-defined nature of random close packing and of jamming categories
raises serious questions about previous two-dimensional studies, particularly the stability of such packings.
Our present study suggests that disordered random disk packings are not collectively jammed at ϕ ≈ 0.83;
at best they may be locally jammed. This brings into question the previous widespread belief that the
two-dimensional analog of the RCP sphere-packing state has density about ϕ ≈ 0.82−0.83 [41]. Collectively
jammed disk packings seem to have significantly higher densities ϕ ≈ 0.88 and consist of large triangular
grains, but even at such high densities they are not strictly jammed. An interesting question is whether the
grain size becomes small compared to the system size for large collectively jammed disk packings, or whether
the appearance of grain boundaries is in fact a finite-size boundary effect. It may be that the preponderance of
collectively and strictly jammed large disk packings are very crystalline, with a distribution of the local bond-
orientational parameter Q6 (see Ref. [6]) highly peaked around some relatively large value. Furthermore,
it is important to ascertain if the strong distinction between only collectively and strictly jammed disk
packings persists in the limit of very large packings. Careful investigations of very large collectively and
strictly jammed disk packings produced with a variety of packing algorithms are still required to answer
these questions.

The old concept of the RCP state incorrectly did not account for the jamming category of the pack-
ing. Previous attempts to estimate the packing fraction of the “random loose” state [139] are even more
problematic, given that this term is even less well-defined than the RCP state [155, 156]. Furthermore, as
our investigations of disk packings show, the “stability” of packings cannot be judged based solely on local
criteria, as suggested in Ref. [141] for sphere packings, and using such local criteria in estimating mean
coordination numbers or densities of packings [140, 139] is at best an exercise in modeling locally jammed
packings. The best way to categorize random disk packings is to determine the maximally random jammed
(MRJ) state [58] for each of the three jamming categories (local, collective and strict). Such investigations
will be carried out in the future, and we have some preliminary results and promising avenues of approach.

The identification of the MRJ state for strictly jammed disk packings is an intriguing open problem. On
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Figure 4.15: Strictly jammed disk packing. We show here 2x2 unit cells of a dense (ϕ = 0.88) random
packing of 250 disks that is strictly jammed, modulo four rattling particles, shown in black. This packing
was produced with the extended Lubachevsky-Stillinger algorithm which allows for deformations of the lattice
during the compression. We also display the contact network of the packing. The striking feature of this
and similar strictly jammed disk packings we have produced is the appearance of peculiar “dislocation cores”
and the appearance of large perfectly triangular regions.
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the one hand, we have shown that random packings exist with densities in the vicinity of the maximum
possible value (ϕ = π

2
√

3
) that are not strictly jammed, and on the other hand, there is a conjectured

achievable lower bound ϕ ≥
√

3π
8 corresponding to the “reinforced” Kagomé lattice (see Fig. 4.11). It may

therefore be that the search for the MRJ state for strictly jammed disk packings should focus on randomly
diluted triangular packings. For random sphere packings, an initial study undertaken in Ref. [56], using the
LP algorithm described in this work, found that maximally disordered random packings around ϕ ≈ 0.63
were strictly jammed, suggesting a close relation between the conventionally accepted RCP state and the
MRJ state for strictly jammed packings. Much less obvious is what the MRJ state for collectively jammed
sphere packings is. Finally, a completely unexplored question concerns the identification of the MRJ state
for locally jammed disk and sphere packings.
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Chapter 5

Hypostatic Jammed Packings of Hard
Ellipsoids

In this chapter we apply the collision-driven algorithm presented in Chapter 3 to generate, for the first time,
disordered jammed packings of hard ellipsoids in three [78] and two dimensions. We show that ellipsoids
can randomly pack more densely; up to ϕ = 0.68 − 0.71 for spheroids with an aspect ratio close to that of
M&M’S Candiesr, and even approach ϕ ≈ 0.74 for non-spheroidal ellipsoids. In several industrial processes
such as sintering and ceramic formation interest exists in increasing the density and number of contacts
of powder particles to be fused. It is worth noting that using ellipsoidal instead of spherical particles, we
may increase the density of a randomly poured and compacted powder to almost the limit of a perfectly
crystalline system. Both the density of the random packings φJ and the average contact number Z̄ rise
sharply from their sphere values as asphericity is introduced, showing that the sphere point is a singular
point and that orientational degrees of freedom dramatically impact the properties of jammed packings. The
contact numbers reach values close to isostatic only for very aspherical particles, while the packings of nearly
spherical ellipsoids are rather hypostatic, in sharp contrast with random sphere packings, which have been
shown to be isostatic.

In order to understand the observed behavior, we consider the mathematics of jamming in packings of
smooth strictly convex nonspherical hard particles [74]. We explain why the isostatic conjecture, stating
that for large disordered jammed packings the average contact number is twice the number of degrees of
freedom per particle, does not apply to nonspherical particles. We develop first- and second-order conditions
for jamming, and demonstrate that ellipsoid packings can be jammed even though they are hypostatic.
We apply an algorithm using these conditions to the computer-generated hypostatic ellipsoid and ellipse
packings and demonstrate that our algorithm does produce jammed packings, even close to the sphere
point. We also consider packings that are nearly jammed and draw connections to packings of deformable
(but stiff) particles. Finally, we consider the jamming conditions for nearly spherical particles and explain
quantitatively the behavior we observe in the vicinity of the sphere point.

5.1 Introduction

The structure of liquids, crystals and glasses, and transitions between these phases is intimately related to
volume fractions of ordered and disordered (random) hard-sphere packings [70]. In dimensions higher then
three, packing problems [8] are of current interest for insulating stored data from noise [9], and in two and
three dimensions in relation to flow and jamming of granular materials [157, 158, 159] and glasses [4]. Most
of the computational studies of jammed packings of hard particles have focused on hard spheres, primarily
because it is much simpler to study hard spheres both computationally and theoretically. However, this
leaves open the question of whether hard spheres are an appropriate model for systems where the particles
are not truly spherical.

Through computer simulations, we find that asphericity, as measured by the deviation of the aspect ratio
α from unity, dramatically affects the properties of jammed packings. In particular, we find that the packing
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fraction (density) at jamming φJ and the average coordination (contact) number per particle Z̄ increase
sharply from the typical sphere values φJ ≈ 0.64 and Z̄ = 6 when moving away from the sphere point α = 1.
If one views φJ and Z̄ as functions of the particle shape, they have a cusp (non-analytic) minimum at the
sphere point. The rapid increases are unrelated to any observable increase in order in these systems that
develop neither crystalline (periodic) nor liquid crystalline (nematic or orientational) order.

There have been conjectures [160, 161, 162, 163, 143] that large disordered jammed packings of hard
frictionless particles are isostatic, meaning that the number of contacts is equal to the number of degrees
of freedom. Most of previous discussions of isostaticity have been in the context of spheres, and for sphere
packings this isostatic conjecture has been verified computationally [75, 164]. For a general particle shape,
the obvious generalization of the conjecture would produce the expectation Z̄ = 2df , where df is the number
of degrees of freedom per particle (df = 2 for disks, df = 3 for ellipses, df = 3 for spheres, df = 5 for
spheroids, and df = 6 for general ellipsoids). Since df increases discontinuously with the introduction of
rotational degrees of freedom as one makes the particles non-spherical, the isostatic prediction would be that
Z̄ would have a jump at α = 1. We do not observe such a discontinuity, rather, we observe that ellipsoid
packings are hypostatic, Z̄ < 2df , near the sphere point, and only become close to isostatic for large aspect
ratios (but still remain hypostatic).

We generalize our previous theoretical and computational investigations of jamming in sphere packings
[75, 71] to packings of nonspherical particles, and in particular, packings of hard ellipsoids. We generalize
the mathematical theory of rigidity of tensegrity frameworks [73, 165] to packings of nonspherical particles,
and demonstrate rigorously that the ellipsoid packings we studied in Ref. [78] are jammed even very close
to the sphere point. Armed with this theoretical understanding of jamming, we also obtain a quantitative
understanding of the cusp-like behavior of φJ and Z̄ around the sphere point. We will repeat some of the
discussion about jamming from Chapter 4, partly in order to make this chapter more self-contained, and
partly in order to remove all of the assumptions we made that are true only for spheres. The reader is
however encouraged to read at least Section 4.2 before reading this chapter.

In Section 5.2 we generate disordered jammed packings of hard ellipses and ellipsoids and study their
properties as a function of the particle aspect ratio. In Section 5.4 we define jamming and we investigate the
reasons for the failure of the isostatic conjecture for nonspherical particles. In Section 5.5 we develop the first-
and second-order conditions for jamming in a system of nonspherical particles, and then design and use a
practical algorithm to test these conditions in Section 5.5.3. In Section 5.7 we consider the thermodynamical
behavior of hypostatic packings that are close to, but not quite at, the jamming point. In Section 5.8 we
discuss the connections between jammed packings of hard particles and strict energy minima for systems
of deformable particles. In Section 5.9 we focus on packings of nearly spherical ellipsoids, and finally, offer
conclusions in Section 5.10.

5.2 MRJ Packings of Hard Ellipsoids

We use the generalized Lubachevsky-Stillinger (LS) sphere-packing algorithm [12], described in Chapter 3,
to generate disordered jammed packings of hard ellipsoids. A typical configuration of 1000 oblate ellipsoids
(the aspect ratio α = b/a = 1.9) is shown in Fig. 5.1, with density of about ϕ ≈ 0.70. The nematic order
parameter is S ≈ 0.02− 0.05, which is consistent with complete absence of orientational (nematic) ordering
for this size of the system [43]. Based on our experience with spheres [56], we believe that our algorithm
(with rapid particle expansion) produces final states that represent the MRJ state well. The algorithm closely
reproduces the packing fraction measured experimentally [78] for M&M’S Candiesr , as detailed in Chapter
7. In simulations a contact is typically defined by a cutoff on the gap between the particles. Fortunately,
over a wide range (10−9 − 10−4) of contact tolerances, Z̄ is reasonably constant, as discussed in detail in
Chapter 9 for spheres (the discussion applies to hard ellipsoids as well).

In Fig. 5.2 we show the jamming density φJ and contact number Z̄ of jammed monodisperse packings
of hard ellipsoids in three dimensions as a function of the particle shape. The ellipsoid semiaxes have ratios
a : b : c = 1 : αβ : α where α > 1 is the aspect ratio (for general particle shapes, α is the ratio of the radius
of the smallest circumscribed to the largest inscribed sphere), and 0 ≤ β ≤ 1 is the “oblateness”, or skewness
(β = 0 corresponds to prolate and β = 1 to an oblate spheroid). It is seen that the density rises as a linear
function of α − 1 from its sphere value φJ ≈ 0.64, reaching densities as high as φJ ≈ 0.74 for the self-dual
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Figure 5.1: (Left) Computer-generated packing of 1000 oblate ellipsoids with α = 1.9, close to the shape
of M&M’S Candiesr. (Right) Computer-generated packing of 1000 ellipses of aspect ratio α = 1.5, being
among the densest generated ellipse packings and almost as dense as the triangular disk crystal packing
(φ ≈ 0.906).

ellipsoids with β = 1/2. The jamming density eventually decreases again for higher aspect ratios, however,
we do not investigate that region in this work. The contact number also shows a rapid rise with α− 1, and
then plateaus at values somewhat below isostatic, Z̄ ≈ 10 for spheroids, and Z̄ ≈ 12 for nonspheroids (for
β = 1/4 and β = 3/4, as well as β = 1/2). In Section 5.9 we will need to revert to two dimensions (ellipses)
in order to make some analytical calculations possible. We therefore also generated jammed packings of
ellipses, and show the results in Fig. 5.3. Since monodisperse packings of disks always crystallize and do
not form disordered jammed packings, we used a binary packing of particles with one third of the particles
being 1.4 times larger than the remaining two thirds. The ellipse packings show exactly the same qualitative
behavior as ellipsoids, and an example packing is shown in Fig. 5.1.

Previous simulations for random sequential addition (RSA) [14], as well as gravitational deposition [38,
34], produce a similarly shaped curve, with a maximum at nearly the same aspect ratios α ≈ 1.5 (for both
prolate and oblate spheroids), but with substantially lower volume fractions (such as ϕ ≈ 0.48 for RSA). It
is interesting to note that for both spheroids and general ellipsoids Z̄ reaches a constant value close to the
isostatic prediction Z̄ = 2df (but still less), at approximately the aspect ratio for which the density has a
maximum. This supports the claim the density decrease for large α comes from exclusion volume effects at
constant coordination number [27]. In Section 5.9 we explain quantitatively why the density and contact
numbers rise sharply near the sphere point. Since the density increases for aspect ratios near unity and then
decreases for large aspect ratios, it is clear it must have a maximum. We do not yet understand why different
dimensions, different particle shapes [27], and packings as different as RSA and MRJ, show a maximum at
approximately the same aspect ratio 1.5 < α < 2.0.

Several interesting features can be noted in Fig. 5.2 concerning the variations of the density with changes
in the particle shape, and especially with variations in the skewness β. Firstly, we observe the same packing
density for ellipsoids with skewness β and their dual ellipsoids with skewness 1− β. In particular, to within
statistical and algorithmic variations, prolate and oblate ellipsoids have identical packing densities within
the ranges of aspect ratio we have studied (up to α ≈ 10, though for large aspect ratios our results are not
as accurate and we do not show them here). The self-dual ellipsoids with β = 1/2 show the highest packing
densities, and are in a sense most aspherical given a certain aspect ratio. Correspondence between prolate
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Figure 5.2: Jamming density and average contact number (inset) for packings of N = 10000 ellipsoids with
ratios between the semiaxes of 1 : αβ : α [c.f. Fig. (2) in Ref. [78]]. The isostatic contact numbers of 10 and
12 are shown as a reference.

and oblate ellipsoids has been observed in equilibrium simulations of hard-ellipsoid fluids [166, 43], and it
has been noted that the second virial coefficient, or more specifically, the scaled excluded volume

vex =
Vex

8V
,

is equal for a prolate and an oblate ellipsoid for the same aspect ratio. Here Vex measures the orientation-
averaged volume excluded to another particle with identical shape [43], and V is the particle volume, while
the normalization factor of eight is used so that vex = 1 for spheres. The excluded volume plays a crucial
role in many theories of the liquid state, and is invariant under the change of β with 1−β [167, 168]. We plot
in Fig. 5.4 the data from Fig. 5.2 but with the aspect ratio replaced by vex, with the hope that comparisons
among different particle shapes may find better agreement if one uses vex instead of α. Note however that
even at the same scaled excluded volume and contact number, the packing density is different for different
β.

Another interesting question is the exact form of the density and contact number increase around the
sphere point. The inset shown in Fig. 5.2 suggests that the density rises linearly in α−1, and indeed we will
predict exactly this behavior using analytical calculations in Section 5.9. It is computationally difficult to
study Z̄ very close to the sphere point due to the difficulty of distinguishing true contacts from near contacts,
as discussed in Chapter 9, however, (semi-)analytical calculations in Section 5.9 suggest that near the sphere
point Z̄ ≈ 2d + Zα

√
α− 1, and numerical results are consistent with such behavior. We note that random

sequential addition (RSA) [14] also seems to produce a comparable linear increase in the saturation density
as asphericity is introduced. Our RSA data has large statistical errors because efficient simulation of the
RSA process is rather difficult for nonspherical particles however, especially near the sphere point. This is
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Figure 5.3: Average contact number and jamming density (inset) for bi-disperse packings of N = 1000
ellipses with ratios between the semiaxes of 1 : α, as produced by the MD algorithm using two different
expansion rates γ (affecting the results only slightly). The isostatic contact number is 6. The results of the
leading-order (in α− 1) theory presented in Section 5.9 are shown for comparison.

because finding the correct orientation for insertion of a particle inside a tight void requires a lot more trials
than just finding the right position of the centroid.

Finally, it is interesting to observe that the number of rattlers, i.e., particles without any touching
neighbors, decays rapidly as asphericity is introduced. Where as sphere packings can have as many as 5%
rattling particles in two dimensions or 2.5% in three dimensions, this number decreases rapidly for ellipsoids
and for aspect ratios larger than about 1.25 we usually do not observe any rattling particles even in very large
packings. The reasons for the occurrence of rattlers and their impact on the thermodynamic or mechanical
properties of packings are not well understood. Experimental packings can be made to not contain any
rattlers, without significantly affecting the packing properties. For example, this can be done by packing
marbles inside an elastic balloon and compressing the balloon slowly until rattling is no longer heard when
the packing is shaken. When we discuss contacts or near contacts, and quote contact numbers such as Z̄, we
will remove rattlers from consideration due to the additional complexity they would introduce otherwise.

5.3 Impenetrability and Interparticle Forces

In Chapter 4 we discussed jamming in hard-sphere systems in great detail, including linear programming
algorithms to test for jamming in the different jamming categories of local, collective and strict jamming.
In this section we consider extending the theory and algorithms to nonspherical particles. We do not repeat
the discussion of boundary conditions and related details from Chapter 4 since those details apply for both
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Figure 5.4: The density data as in Fig. 5.2, but with aspect ratio replaced by the scaled excluded volume. An
interesting, but perhaps naive, extrapolation of the density for β = 1/2 from large aspect ratios to the sphere
point produces a jamming density of about 0.74, very close to the density of the hard sphere crystal. The
inset focuses on the region close to the sphere point and shows the jamming density for both MRJ packings
and for saturated packings produced by random sequential addition (RSA). We do not try to distinguish
the data for different β due to the presence of large statistical and systematic errors very close to the sphere
point.

spherical and non-spherical particles. Instead, we focus on the differences between the impenetrability
constraints for spherical and non-spherical particles.

5.3.1 The Rigidity Matrix

The addition of rotational degrees of freedom changed the rigidity matrix of the packing. In a very general
sense, the rigidity matrix is the gradient of the overlap potential ζ = (ζij) with respect to the configuration

A = ∇Qζ.

This [Nf ×M ] matrix connects, to first order, the change in the interparticle gaps to the particle displace-
ments, ∆ζ = AT ∆Q. The rigidity matrix is sparse and has two blocks of df non-zero entries in the column
corresponding to the particle contact {i, j}, namely, ∇iζij in the block row corresponding to particle i and
∇jζij in the block row corresponding to particle j (unless one of these particles is frozen). Represented
schematically:
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A =

{i, j}
↓

i→

j →



...
∇iζij

...
∇jζij

...


.

It may sometimes be more convenient to work with surface-to-surface interparticle gaps, ∆h = AT
E∆Q (the

subscript E stands for Euclidean), especially if second-order terms are not considered, and this is what we did
in Chapter 4 for spheres. For spheres this change of convention does nothing more than rescale the columns
of the rigidity matrix by the sum of sphere radii, and it does not affect any of the results presented in this
work. All of the discussion about boundary conditions and its impact on the rigidity matrix carries over from
spheres to ellipsoids, and we do not repeat the tedious details here but rather focus on the impenetrability
constraints between pairs of particles.

5.3.2 Interparticle Forces

Hard particles in contact can exert a compressive (positive) contact force f = fn directed along the normal
vector (for frictionless particles). The total force and torque exerted on a given particle i by the contacts
with its neighbors N (i) is

∆bi = −
∑

j∈N (i)

fij

[
nij(

rij
iC × nij

) ]
=

∑
fij (∇ihij) ,

or, considering all particles together
∆B = AEf .

The fact that the matrix (linear operator) connecting force imbalances to contact forces is the transpose of
the rigidity matrix is well-known and can also be derived by considering the work done by the contact forces
to displace the particles

W = ∆BT ∆Q =
(
Ãf

)T

∆Q = fT
(
ÃT ∆Q

)
=

= fT ∆h = fT
(
AT

E∆Q
)
,

showing that Ã = AT
E . In this work we will use forces f that are a rescaled version of the physical forces fE ,

fij =
(
rT

ijnij

)
fE

ij /2, so that Af = AEfE . This scaling is more natural for our choice of overlap potential,
and does not affect any of the results.

In static packings, the contact forces must be balanced, i.e., the force/torque equilibrium condition

Af = 0 and f ≥ 0

must be satisfied. The number of equations is equal to the total number of degrees of freedom Nf = Ndf ,
and the total number of equations is equal to the number of contacts M . The actual magnitudes of the forces
are determined by external loads (for example the applied pressure for a system of deformable particles),
history of the packing preparation, etc.; however, the relation between the forces at different contacts is
determined by the packing geometry, or more specifically, by A. Typically forces are rescaled to a mean
value of unity, eT f = M , and it is has been observed that the distribution of rescaled contact forces has
some universal features, for example, there is an exponential tail of contacts carrying a large force, and also
a large number of contacts supporting nearly zero force [75, 169]. We will see later that these force chains,
or internal stresses, are an essential ingredient of jamming for hard particles.
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5.4 The Isostatic Conjecture

In the granular materials literature special attention is often paid to so-called isostatic packings, and it
has been postulated several times that realistic packings of hard particles are isostatic. There are several
different definitions of isostaticity, and most of the discussions in the literature are specifically applied to hard
spheres or to frictional particles. In this section we summarize several relevant definitions of and arguments
for isostaticity and generalize them to nonspherical particles. Our arguments will arrive to the following
definition of isostaticity, which we believe is the correct generalization to systems of nonspherical particles.
A packing is isostatic if the number of constraints (contacts) is equal to the number of degrees of freedom

Nc = Nf or Nc = Nf + 1,

where we can explicitly add +1 if we do not count the density as a degree of freedom. Packings with less
contacts than isostatic are called hypostatic, and packings with more contacts than isostatic are hyperstatic.
The isostatic conjecture states that large disordered packings of hard particles are isostatic. Defining what
precisely is meant by a disordered packing is difficult in itself [170, 58], however, intuitively, in a disordered
packing there is only the minimal degree of correlations between particles, as necessitated by the constraints
of impenetrability and jamming. Therefore, it is expected that in a certain sense disordered packings are
generic [137], and that “special” configurations with geometric degeneracies will not appear.

Note that for large systems the majority of the degrees of freedom come from the particles themselves,
Nf ≈ Ndf , and the majority of constraints come from contacts shared between two particles, Nc ≈ M =
NZ̄/2, giving the isostatic property

Z̄ = 2df . (5.1)

Equation (5.1) has been verified to very high accuracy for jammed hard-sphere packings [75], however,
disordered packings of hard ellipsoids are always hypostatic and thus contradict the isostatic conjecture [78].
In this Section we attempt to deconstruct previous discussions of the isostatic conjecture and jamming in
hard-particle packings, and we hope that through our discussions it will become clear why previous “proofs”
of the isostatic conjecture do not apply to nonspherical particles, or to put it the other way around, what
makes disordered sphere packings isostatic.

5.4.1 Jamming, Rigidity and Stability

An essential initial step is defining more precisely what is meant by a stable, rigid, or jammed packing. All of
these terms have been used in the literature, and in fact we equate each of them with a particular perspective
on jamming:

Kinematic A packing is jammed if none of the particles can be displaced in a non-trivial way without
introducing overlap between some particles.

Static A packing is rigid if it can resolve any externally applied forces through interparticle ones, without
changing the packing configuration.

Perturbation A packing is stable if the structure of the packing changes smoothly for small (local or global)
perturbations of the packing.

We will consider each of these approaches separately. It will shortly become clear that all of them are closely
related, and under certain mild conditions they are actually equivalent. This is the case for spheres, and
we focused on the kinematic perspective in Section 4.2; however, one can use any of the different views of
jamming as well.

We will use the term jamming as an umbrella term, and later give our preferred definition of jamming,
which is based on the kinematic perspective. We note that it is important to precisely specify the boundary
conditions applied regardless of the view used in considering jamming; different boundary conditions lead to
different jamming categories, specifically local, collective or strict jamming [15, 71], as discussed in Section
4.2. Here, we will sometimes use local jamming in simple examples but mostly focus on collective jamming;
all particles are allowed to move collectively and we will employ periodic boundary conditions with fixed
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lattice vectors. In order to eliminate trivial uniform translations of the systems, we can freeze the centroid
of one of the particles, to obtain a total of

Nf = Ndf − d

degrees of freedom. The exact boundary conditions affect the counting of constraints and degrees of freedom,
however, the correction is not extensive in N and therefore is negligible for large system when considering
quantities on a per particle basis (such as, for example, Z̄).

An important point to note is that the above definitions of jamming treat all degrees of freedom identically.
In particular, translational motion (forces) is treated on the same footing as rotational motion (torques).
This is not necessarily the most appropriate definition, as is easily seen by considering the case of spheres,
which can rotate in place freely even though they are (translationally) jammed. This distinction between
translations and rotations will become more explicit in Section 5.7 when considering packings that are nearly,
but not quite, jammed.

5.4.1.1 Kinematic View

The kinematic perspective considers a packing jammed if it is not possible to continuously displace the
particles in a non-trivial way without introducing overlap. That is, the impenetrability conditions preclude
any motion of the particles. Here trivial motions are those that do not change the distances between any
two particles, such as global translations when periodic boundary conditions are used. We can assume that
such trivial motions have been eliminated via some artificial constraint, such as fixing the centroid of one
particle externally when using periodic boundary conditions.

Mathematically, for any continuous motion ∆Q (t) there exists a T > 0 such that at least one of the
impenetrability constraints between a touching pairs of particles

ζ [QJ + ∆Q (t)] ≥ 0 (5.2)

is violated for all 0 < t < T . A motion ∆Q (t) such that for all 0 < t < T none of the constraints are violated
is an unjamming motion. One can in fact restrict attention to analytic paths ∆Q (t), and also show that a
jammed packing is in a sense isolated in configuration space, since the only way to get to a different packing
is via a discontinuous displacement ‖∆Q‖ > 0 [73].

A similar definition of jamming was used by Alexander in Ref. [160]. He considers a packing to be
geometrically rigid if it cannot be “deformed continuously by rotating and translating the constituent grains
without deforming any of them and without breaking the contacts between any two grains”. This definition
implies that a packing in which particles can be moved so as to break contacts (for example, imagine a
pebble resting on other pebbles in gravity, and moving it upward away from the floor) is jammed. Later
in the manuscript Alexander talks about adding constraints to block motions that break contacts. We in
fact have in a certain sense a choice in the matter, determining whether we work with inequality or equality
constraints. We choose to work with inequality constraints, since this is the natural choice for frictionless
hard particles; there is no cohesion between the particles maintaining contacts. In effect, when counting
degrees of freedom, we count the possible collective rescaling of the particle shapes (i.e., the density φ)
necessary to maintain contacts as a single degree of freedom.

5.4.1.2 Static View

The static perspective considers a packing rigid if it can resolve any applied forces through interparticle ones,
without changing the packing configuration. This is sometimes referred to as static rigidity, to be contrasted
with kinematic rigidity as defined in Section 5.4.1.1. For hard particles, there is no scale for the forces, and
so the actual magnitude of the forces does not matter, only the relative magnitudes and the directions. The
particles do not deform, but can exert an arbitrary positive contact force.

Mathematically, we consider the existence of a solution to the force-equilibrium equations

Af = −B, where f ≥ 0, (5.3)

for all resolvable external loads B. The space of resolvable loads is determined by the boundary conditions:
certain forces such as pulling on the walls of a container cannot be resolved by packings and need to be
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excluded. This is similar to the definition used by Witten in Ref. [162]: A packing is mechanically stable “if
there is a nonzero measure set of external forces which can be balanced by interbead ones.” The problem with
this definition of rigidity and in particular Eq. (5.3) is that it does not take into account the fact that the
geometry of the packing, i.e., the rigidity matrix A, changes when an external load is applied on the packing.
That is, physically, forces arise only through deformation, and this deformation, however small, may need
to be taken into account. Forces are in essence Lagrange multipliers associated with the impenetrability
constraints in Eq. (5.2); the very existence of such Lagrange multipliers may require a change in the packing
configuration.

Various counting arguments related to force equilibrium constraints, starting with the seminal work of
Maxwell, have appeared in the engineering literature on mechanical structures (see references in Ref. [137]).
In this literature, a structure is called statically determinate if the forces necessary to support a given
external load can be uniquely determined from the equations of force balance. An isostatic jammed packing
is necessarily statically determinate up to a multiplier of the self-stress of the packing. A hyperstatic packing
is statically underdetermined, since there are multiple ways to resolve almost any applied load. In this case
constitutive (elastic) laws need to be invoked to determine the forces. A hypostatic packing on the other hand
is statically overdetermined, and as such is considered unstable in the literature on mechanical structures.

5.4.1.3 Perturbation View

The perturbation perspective considers a packing to be stable if the structure of the packing changes smoothly
for small perturbations of the packing. In particular, the structure of the packing includes the positions of
the particles and the contact force network. Perturbations to be considered should include changes in
the grain internal geometry (deformation), strain, and stress (external forces due to shaking, vibration, or
a macroscopic load). In great generality we can restrict our perturbations to small perturbations of the
distances between contacting particles combined with small perturbations of the applied forces.

Mathematically, we consider the sensitivity of the configuration and force chains to all perturbations of
the interparticle gaps ∆ζ and applied forces ∆B away from zero, i.e., we look for solutions of the coupled
system of equations of preserving contacts and maintaining force equilibrium:

[A (Q + ∆Q)] (f + ∆f) = −ε∆B

ζ (Q + ∆Q)−∆ζµ = −ε∆ζ

eT ∆f = 0, (5.4)

where ε > 0 is a small number and we have assumed f > 0. Similarly to the external forces, the space of
resolvable gap perturbations is determined by the boundary conditions: global expansions will lead to gaps
that cannot all be closed unless the particles grow by a certain scaling factor µ = 1 + ∆µ. It is therefore
convenient to include ∆ζµ ≈ 2∆µ as an additional variable. An added constraint is that the normalization
eT f = M be maintained. It is important to note that we explicitly account for the dependence of the rigidity
matrix on the configuration in the force-balance equation. Notice that when we combine perturbations of the
geometry and forces together, the total number of variables is M +Nf , and the total number of constraints
is also M +Nf (here we include the global particle rescaling ∆ζµ as a degree of freedom). Therefore there
are no underdetermined (linear) systems as found in counting arguments that consider geometry and forces
separately, as is typically done in the literature.

5.4.2 Isostaticity

In this section we will attempt to deconstruct previous arguments in justification of an isostatic conjecture,
mostly in the context of sphere packings, and try to identify the problems when the same arguments are
applied to nonspherical particles.

The isostatic conjecture (property) is usually justified in two steps. First, an inequality Z̄ ≤ 2df is
demonstrated, then, the converse inequality Z̄ ≥ 2df is invoked to demonstrate the equality Z̄ = 2df . We
will demonstrate that it is the second of these steps that fails for non-spherical particles. However, first
we recall some typical justifications for the inequality Z̄ ≤ 2df . Isostaticity is also extensively discussed by
Roux [143], and although there are close connections between our discussion here and the one in Ref. [143],
we will not discuss the similarities or differences due to space limitations.
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5.4.2.1 Why Z̄ ≤ 2df applies

A packing with Z̄ > 2df is overconstrained, and in a certain sense geometrically degenerate and thus not
“random.” It can be argued that such a packing is not stable against small perturbations of the packing
geometry, since all contacts cannot be maintained closed without deforming some of the particles. For
example, Witten [162] considers hard-sphere packings with a small polydispersity, so that particles have
slightly different sizes, to conclude that “the creation of a contact network with coordination number higher
than 2d occurs with probability zero in an ensemble of spheres with a continuous distribution of diameters.”
Moukarzel [161, 171] considers how the actual stiffness modulus of deformable particles affects the interpar-
ticle forces and concludes that making the particles very stiff will eventually lead to negative forces and thus
breaking of contacts, until the remaining contact network has Z̄ ≤ 2df : “The contact network of a granular
packing becomes isostatic when the stiffness is so large that the typical self-stress...would be much larger
than the typical load-induced stress...granular packings will only fail to be isostatic if the applied compressive
forces are strong enough to close interparticle gaps establishing redundant contacts.” A similar argument is
made by Sir Edwards in Ref. [163] for frictional grains: “if z > 4 then there is a solution with no force on
z − 4 contacts, and there is no reason why other solutions would have validity.”

These arguments apply also to nonspherical particles, however, it is important to point out that they
specifically only apply to truly hard-particle packings or to packings of deformable particles in the limit
of zero applied pressure (see Section 5.8.1). In real physical systems, particles will have a finite stiffness
and the applied forces will be non-negligible, and such packings will have more contacts than the idealized
hard-particle construction.

5.4.2.2 Why Z̄ ≥ 2df does not apply

The converse inequality, stating that a minimum of 2df contacts is necessary for jamming (rigidity), does
not apply to nonspherical particles. We can demonstrate this vividly with a simple example of an ellipse
jammed between three other stationary (fixed) ellipses, as shown in Fig. 5.5. Jamming a disk requires at
least three touching disks; the additional rotational degree of freedom of the ellipse would seem to indicate
that four touching ellipses would be needed in order to jam an ellipse. However, this is not true: if the
normal contact vectors intersect at a single point, three ellipses can trap another ellipse, as shown in Fig.
5.5. We will shortly develop tools that can be used to demonstrate rigorously that this example is indeed
jammed.

The above example shows that the claim of Ref. [160] that “One requires 4 (= 3 + 1) contacts to fix the
DOF [degrees of freedom]...of an ellipse in the plane” is wrong. Similarly, it shows that the argument in Ref.
[161], namely, that the minimum number of contacts needed for a packing of N spheres in d dimensions to
be rigid is dN , cannot be generalized to nonspherical particles by simply replacing d with df . Claims that
the number of constraints must be larger than the number of degrees of freedom have been made numerous
times within the kinematic perspective on jamming, for example, in Ref. [163]. Our careful analysis of the
conditions for jamming in the next section will elucidate why this is correct for spheres but not necessarily
correct for nonspherical particles, and under what conditions a hypostatic packing can be jammed.

Another argument, made within the static perspective on jamming [c.f. Eq. (5.3)], is given by Witten
[162]: “The number of equilibrium equationsNd should not exceed the number of force variablesNc; otherwise
these forces would be overdetermined.” The example in Fig. 5.5 demonstrates why this argument cannot be
applied to nonspherical grains. The system of force and torque balance equations is not really overdetermined
since the torque balance equation is identically zero due to the peculiar geometry of the packing. Since the
normal vectors at the points of contact intersect at a point, a torque around that point cannot be resolved
by any set of normal forces between the particles. Yet the packing is jammed, and if built in the laboratory
it will resist the torque by slight deformations of the particles, so that the normal vectors no longer intersect
in one point and the contact forces can resist the applied torque. The connection between the geometry of
the contact network, i.e., A, and the packing configuration Q, must be taken into account when considering
the response of hypostatic packings to external perturbations. We discuss this connection in detail in the
next section.
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Figure 5.5: A mobile ellipse (green) jammed between three fixed ellipses (yellow). All ellipses are of the same
size and have an aspect ratio α = 2. This packing was produced by a Lubachevsky-Stillinger type algorithm,
where the three particles were kept fixed by giving them infinite mass and no initial velocities. The normal
vectors at the points of contact intersect at a common point I, as is necessary to achieve torque balance.
This leads to a geometrically-degenerate configuration which would usually be dismissed as a probability-zero
configuration. The number of force balance constraints here is 2, and the number of torque constraints is 1,
giving a total of 3 constraints.

5.5 Conditions for Jamming

In this Section we develop first and second order conditions for jamming, using a kinematic approach. Statics
(forces) will emerge through the use of duality theory. The discussion here is an adaptation of the theory
of first-order, pre-stress, and second-order rigidity developed for tensegrities in Ref. [73]. The discussion in
this section is technical and in Section 5.8 the rigorous hard-particle results are explained more simply by
considering the conditions for local (stable) energy minima in soft-particle systems.

We consider an analytic motion of the particles

∆Q (t) = Q̇t+ Q̈
t2

2
+O(t3),

where Q̇ are the velocities, and Q̈ are the accelerations. Expanding the distances between touching particles
to second-order, and taking into account that ζ (QJ) = 0, gives

ζ(t) ≈ AT Q̇t+
[
Q̇THQ̇ + AT Q̈

] t2
2

= ζ̇t+ ζ̈
t2

2
, (5.5)

where the Hessian H = ∇2
Qζ = ∇QA can be thought of as a higher-rank symmetric matrix.

5.5.1 First-Order Terms

Velocities Q̇ 6= 0 for which ζ̇ = AT Q̇ ≥ 0 represent a first-order flex (using the terminology of Ref. [73]).
If we can find an unjamming motion Q̇ such that ζ̇ > 0 (note the strict inequality), then the packing is
first-order flexible, and there exists a T > 0 such that none of the impenetrability conditions [c.f. Eq. (5.2)]
are violated for 0 ≤ t < T . We call such a Q̇ a strict first-order flex. If on the other hand for at least one
constraint ζ̇ < 0 for every Q̇, then the packing is jammed, since every non-trivial movement of the particles
violates some impenetrability condition for all 0 < t < T for some T > 0. We call such a packing first-order
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jammed. Finally, a Q̇ such that ζ̇ = 0 is a null first-order flex, often referred to as zero or floppy mode in
the physics literature.

A packing is first-order jammed if and only if there are no (non-trivial) first order flexes. A packing is
first-order flexible if there exists a strict first-order flex. Some packings are neither first-order jammed nor
first-order flexible; One must consider higher-order terms to access whether such packings are jammed, and
if they are not, to identify an unjamming motion. We will consider the second-order terms later; in this
section we develop conditions and algorithms to verify first-order jamming and identify first-order flexes if
they exist. The algorithms are closely based on work in Ref. [71].

5.5.1.1 Strict Self-Stresses

Let us first focus on a single contact {i, j}, and ask whether one can find a first order flex that is strict on
that contact, i.e.,

ζ̇ij =
(
AT Q̇

)
ij

=
(
AT Q̇

)T

eij = (Aeij)
T Q̇ > 0,

where eij denotes a vector that has all zero entries other than the unit entry corresponding to contact {i, j}.
If it exists, such a flex can be found by solving the linear program (LP)

max
Q̇

(Aeij)
T Q̇

AT Q̇ ≥ 0. (5.6)

If this LP has optimal objective value of zero, then there is no first-order flex that is strict on the contact in
question. Otherwise, the LP is unbounded, with an infinite optimal objective value. The dual LP of (5.6) is
a feasibility problem

A
(
f̃ + eij

)
= 0

f̃ ≥ 0, (5.7)

where the contact forces f̃ are the Lagrange multipliers corresponding to the impenetrability constraints
AT Q̇ ≥ 0. If the dual LP (5.7) is feasible, then the primal LP (5.6) is bounded. If we identify f = f̃ +eij ≥ 0,
f̃ij ≥1, we are naturally led to consider the existence of non-trivial solutions to the force-equilibrium equations

Af = 0 and f ≥ 0. (5.8)

A set of non-negative contact forces f 6= 0 that are in equilibrium as given by Eq. (5.8) is called a self-
stress. In Ref. [73] these are called proper self-stresses, as opposed self-stresses which are not required to be
non-negative. Self-stresses can be scaled by an arbitrary positive factor, so we will often add a normalization
constraint that the average force be unity, eT f = M . A self-stress that is strictly positive on a given contact
is strict on that contact. A self-stress f > 0 is a strict-self stress. The existence of a (strict) self-stress can
be tested by solving the linear program

max
f ,ε

ε

Af = 0

f ≥ εe

eT f = M (5.9)

and seeing whether the optimal value is negative (no self-stress exists), positive (a strict self-stress exists),
or zero (a self-stress exists). What we showed above using linear duality is that if there is a self stress that
is strict on a given contact, there is no flex strict on that contact. In particular, this means that packings
that have a strict self-stress can only have null first-order flexes.

We can also show that there is a first-order flex that is strict on all contacts that do not carry a force in
any self-stress (i.e., no self-stress is strict on them). To this end, we look for a first-order flex that is strict
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on a given subset of the contacts, as denoted by the positions of the unit entries in the vector ẽ

max
Q̇,ε

ε

AT Q̇ ≥ εẽ. (5.10)

The dual program is the feasibility problem

Af = 0

ẽT f = 1
f ≥ 0, (5.11)

which is infeasible if there is no self-stress that is positive on at least on the contacts under consideration,
since ẽT f ≡ 0. Therefore the primal problem (5.9) is unbounded, that is, one can find a self-stress that is
strict (since ε → ∞) on the given set of contacts. This shows that packings that do not have a self-stress
are first-order flexible. In other words, the existence of force chains in a packing is a necessary criterion for
jamming.

In summary, if a packing has no self-stress, it is not jammed, and one can easily find a strict first-order
flex by solving a linear program [71]. The analysis is simplified if the packing has a strict self-stress, since
in that case all first-order flexes are null, i.e., they are solutions of a linear system of equalities AT Q̇ = 0.
This is the case of practical importance to jammed packings, so we will focus on it henceforth.

5.5.1.2 Floppy Modes

The linear system AT Q̇ = 0 has Nfloppy = Nf−r solutions, where r = M−Nstresses is the rank of the rigidity
matrix, and Nstresses is the number of (not necessarily proper) self-stresses (more precisely, the dimensionality
of the solution space of Af = 0). We know that Nstresses ≥ 1 for a jammed packing. If the packing is not
hypostatic, or more precisely, if the number of contacts is sufficiently large

M = Nf +Nstresses ≥ Nf + 1,

then there are no non-trivial null first-order flexes (floppy modes), Nfloppy = 0. Therefore, a packing that
has a strict self-stress and a rigidity matrix of full-rank is (first-order) jammed. We will later show that this
sufficient condition for jamming is also necessary for sphere packings, that is, jammed sphere packings are
never hypostatic.

However, we will see that jammed ellipsoid packings may be hypostatic, M < Nf + 1. Such a hypostatic
packing always has floppy modes,

Nfloppy = Nf +Nstresses −M ≥ Nf + 1−M.

Every floppy mode can be expressed as a linear combination of a set of Nfloppy basis vectors, i.e.,

Q̇ = Vx for some x, (5.12)

where the matrix V is a basis for the null-space of AT . To determine whether any of the null first-order
flexes can be extended into a true unjamming motion, we need to consider second-order terms, which we do
next.

5.5.2 Second-Order Terms

Consider a given null first-order flex AT Q̇ = 0. We want to look for accelerations Q̈ that make the second-
order term in the expansion (5.5) non-negative, i.e.,

AT Q̈ ≥ −Q̇THQ̇. (5.13)

If we cannot find such a Q̈ for any first-order flex, then the packing is second-order jammed. If we find a Q̈
such that all inequalities in (5.13) are strict, than we call the unjamming motion

(
Q̇, Q̈

)
a strict second-order
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flex, and the packing is second-order flexible, since there exists a T > 0 such that none of the impenetrability
conditions [c.f. Eq. (5.2)] are violated for 0 ≤ t < T . If for all first-order flexes Q̇ at least one of the
inequalities in (5.13) has to be an equality, then we need to consider even third- or higher-order terms,
however, we will see that for sphere and ellipsoid packings this is not necessary.

5.5.2.1 The Stress Matrix

In order to find a strict second-order flex, we need to solve the LP

max
Q̈,ε

ε

AT Q̈ ≥ εe− Q̇THQ̇, (5.14)

the dual of which is

min
f

(
Q̇THQ̇

)T

f

Af = 0

eT f = 1
f ≥ 0, (5.15)

where the common optimal objective function is

ε∗ =
(
Q̇THQ̇

)T

f = Q̇T (Hf) Q̇ = Q̇T HQ̇,

where H = Hf is a form of reduced Hessian that incorporates information about the contact force and the
curvature of the touching particles. The [Nf ×Nf ] matrix H plays an essential role in the theory of jamming
for hypostatic ellipsoid packing and we will refer to it as the stress matrix following Ref. [73].

The stress-matrix has a special block structure, where all of the blocks are of size [df × df ], and both
the block-rows and the block-columns correspond to particles. The block entry corresponding to the pair of
particles (i, j) is nonzero if and only if there is a contact between them. Written explicitly, the stress matrix
is a force-weighted sum of contributions from all the contacts

H =
∑
{i,j}

fijHij ,

where the contribution from a given contact {i, j} is

i · · · j
↓ · · · ↓

Hij =
i→

...
j →

 ∇2
iiζij · · · ∇2

jiζij
...

. . .
...

∇2
ijζij · · · ∇2

jjζij

 . (5.16)

If Q̇T HQ̇ < 0 then ε∗ < 0 and therefore the first-order flex Q̇ cannot be extended into a second-order
flex. We say that the stress matrix blocks the flex Q̇. If on the other hand Q̇T HQ̇ > 0, then ε∗ > 0 and by
solving the LP (5.14) we can find an unjamming motion, i.e., the packing is second-order flexible. Therefore,
finding an unjamming motion at the second-order level essentially consists of looking for a null first-order
flex (floppy mode) Q̇, AT Q̇ = 0, that is also a positive curvature vector for the stress matrix.

Recalling that every floppy mode can be expressed as Q̇ = Vx [c.f. Eq. (5.12)], we see that

Q̇T HQ̇ = xT
(
VT HV

)
x = xT HV x. (5.17)

If the matrix HV is negative-definite, than the packing is second-order jammed. In Ref. [73] such packings
are called pre-stress stable, since the self-stress f rigidifies the packing (i.e., blocks all of the floppy modes).
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If HV is indefinite, than the packing is second-order flexible since any of the positive-curvature directions
can be converted into a strict self-stress by solving the LP (5.14).

If a packing has more than one (proper) self-stress, than it is not clear which one to use in the stress-matrix.
One can try to find a self-stress that provides for jamming (pre-stress stability) by looking for a solution to
Eq. (5.9) such that HV � 0 (i.e., HV is negative-semidefinite). This is known as semidefinite programming
(SDP), and is a powerful generalization of linear programming that has received lots of attention recently
[172]. It is however possible that different self-stresses are needed to block different portions of the space of
floppy modes, and this general case of a second-order jammed packing is difficult to test for algorithmically.
In our study of disordered sphere and ellipsoid packings, we will see that in practice the jammed packings
only have one strict self-stress. In this case, testing for jamming reduces to calculating the smallest eigenvalue
of HV . We will discuss actual numerical algorithms designed for ellipsoid packings in subsequent sections,
but first we explain what makes sphere packings special.

5.5.2.2 The Stress Matrix for Hard Spheres

For hard spheres it is easy to write down the explicit form for Hij since the overlap function is given explicitly
by Eq. (2.3) and its second-order derivatives are trivial,

∇2
iiFij = ∇2

jjFij = −∇2
ijFij = −∇2

jiFij =
2Id

(Oi +Oj)
2 ,

where Id is the [d× d] identity matrix. This implies that Hij is a positive-definite matrix, since

ṘT HijṘ = (ṙi − ṙj)
T (ṙi − ṙj) ≥ 0.

Therefore, any first-order flex in fact represents a true unjamming motion, since Q̇THQ̇ ≥ 0 and we can
trivially use Q̈ = 0 in Eqs. (5.14). In other words, a sphere packing is jammed if and only if it is first-order
jammed, and therefore it cannot be hypostatic. To test for jamming in hard-sphere packings we need only
focus on the velocities of the sphere centroids and associated linear programs in Section 5.5.1. This important
conclusion was demonstrated using a simple calculation in Ref. [71].

For general particle shapes, however, Hij may be indefinite for some contacts, and testing for jamming
may require considering second-order terms. If one considers general convex particle shapes but freezes the
orientations of the particles, the packing will behave like a hard-sphere packing. In particular, a jammed
packing of nonspherical particles must have at least as many contacts as the corresponding isostatic packing
of spheres would, that is,

Z̄ ≥ 2d

for any large jammed packing of convex hard particles.

5.5.3 Testing for Jamming in Ideal Packings

We now summarize the theoretical conditions for jamming developed in this section in the form of a procedure
for testing whether a given packing of non-spherical particles is jammed. We assume that the contact network
of the packing is known and available as input. For spherical particles, as already discussed, second-order
terms never need to be considered, and testing for jamming can be done by solving one or two linear
programs, as discussed in detail in Ref. [71]. In the formulation below, we avoid solving linear programs
unless necessary, but rather use basic linear algebra tools whenever possible.

1. Find a basis F for the null-space of the rigidity matrix A, i.e., find Nstresses linearly independent
solutions to the linear system of equations Af = 0, normalized to mean of unity. This can be done,
for example, by looking for zero eigenvalues and the associated eigenvectors of the matrix AT A. If

(a) Nstresses = 0,
(b) Nstresses = 1 but the unique self-stress is not non-negative, or
(c) Nstresses > 1 but the linear feasibility program (5.9) is infeasible,
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then declare the packing not jammed (first-order flexible), optionally identify an unjamming motion
by solving the linear feasibility program AT Q̇ ≥ e, and terminate the procedure. Otherwise, if the
identified self-stress f is not strict, declare the test inconclusive and terminate.

2. If Nfloppy = Nf + Nstresses − M = 0, then declare the packing (first-order) jammed and terminate
the procedure. Otherwise, find a basis V for the null-space of AT , i.e. Nfloppy linearly-independent
solutions to the linear system of equations AT ∆Q = 0. Compute the stress matrix H using the
previously-identified strict self-stress f , and compute its projection HV on the space of null first-order
flexes.

3. Compute the smallest eigenvalue λmin and associated eigenvector xmin of the matrix HV . If λmin < 0,
declare the packing (second-order) jammed and terminate the procedure. If λmin > 0 and Nstresses = 1
declare the packing not jammed (second-order flexible), optionally compute an unjamming motion by
solving the LP (5.14) with Q̇ = Vxmin, and terminate the procedure. Otherwise, declare the test
inconclusive and terminate.

We will discuss the actual numerical implementation of this algorithm later, and see that in practice we
do not need to solve linear programs to test for jamming in hypostatic ellipsoid packings. Essentially, the
packings we encounter in our work with disordered packings of hard ellipsoids always have a single strict
self-stress and a negative-definite HV .

5.5.4 An Example: Rectangular Lattice of Ellipses

In this section we consider a simple example of a jammed hypostatic packing of ellipses having Z̄ = 4, the
minimum necessary for jamming even for disks. Namely, the rectangular lattice of ellipses, i.e., the stretched
version of the square lattice of disks, is collectively jammed, and in particular, it is second-order jammed.
More specifically, freezing all but a finite subset of the particles, the remaining packing is second-order
jammed. At first glance, it appears that one can rotate any of the ellipses arbitrarily without introducing
overlap. However, this is only true up to first order, and at the second-order level the “flat” contacts between
the ellipses, that is, the contacts whose normals are along the small ellipse semiaxes, block this rotation
through the curvature of the particles at the point of contact.

Consider a finite subpacking of the infinite packing that contains N ellipses (3N degrees of freedom) and
hasM contacts between ellipses both in the subpacking, andM ′ contacts between an ellipse in the subpacking
and a fixed (boundary) ellipse. That is, the total number of constraints (contacts) is Nc = M+M ′. Also note
that M ′ + 2M = 4N , since there are on exactly 4 contacts per ellipse. The set of self-stresses is obvious in
this (sub)packing: Each row and column of ellipse contacts carries an equal force, which can be independent
of the force carried by other rows or columns. That is, the dimension of the space of strict self-stresses is
Ns = M ′/2, since every boundary contact is paired with another boundary contact. Also obvious is the set of
first-order flexes, i.e., particle motions which preserve contact distances to first order. Namely, a basis vector
for this set is a single ellipse rotating around its centroid. The total number of first-order flexes can be found
by the Maxwell counting, Nf = 3N −Nc +Ns = N , and so by rotating each particle around its centroid we
have a basis for the full linear space of first-order flexes. This observation simplifies the calculation of the
stress matrix, or more specifically, of the matrix HV ; we only need to consider ellipsoid rotations without
considering translations.

The above counting argument applies whenever one takes a jammed sphere packing and makes the
particles nonspherical but does not change the normal vectors at the point of contact. This can be done, for
example, by simply taking a jammed sphere packing and swelling the particles to be nonspherical, without
changing the geometry or connectivity of the contact network, as illustrated for disks in Fig. 5.6. If the
particles swell enough to make all of the contacts sufficiently flat, the new packing will be jammed, since all
of the first-order flexes consist of particle rotations only and are blocked by the flat curvature of the contacts.
In order to see this analytically, we will consider the case of one ellipse jammed among four fixed ellipses
(two horizontally, two vertically). The same approach can give the full stress matrix and demonstrate that
HV is negative-definite, although the proof is more involved and we do not give it here.
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Figure 5.6: A jammed packing of hard disks (colored red) is converted into a jammed packing of nonspherical
particles by simply changing the curvature of the particle surfaces at the point of contact to be sufficiently
flat (the enlargements of the disks are colored black), without changing the contact network or contact forces.

5.5.4.1 Stress Matrix for a Single Ellipse

What we need to calculate is the Hessian ∂2ζ/∂θ2, where ζ is the PW overlap potential and θ is the angle
(orientation) of the central ellipse. For this purpose, we can locally approximate the two ellipses in contact
with circles that are tangent to the ellipses at the point of contact and have a radius equal to the radius
of curvature of the ellipses. Let this radius of curvature be R = b2/a for the mobile ellipse, and R′ = R
for the fixed ellipse. Let the origin of the coordinate system be at the center of the mobile ellipse, and the
initial position of the center of the tangent circle be r0 = 〈l, 0〉 for the mobile ellipse and r′ = 〈l +R+R′, 0〉
for the fixed ellipse. As the mobile ellipse rotates by an angle ∆θ and is scaled by a factor µ, we have
r = µl 〈cos ∆θ, sin∆θ〉. The condition that the two circles be in external tangency is

‖r− r′‖2 = (µR+R′)2.

This equation can be solved (explicitly or just implicitly) to give µ(∆θ), and then ∆ζ = µ(∆θ)2−1 calculated
to second order to give ∂2ζ/∂θ2. This calculation gives the result

∂2ζ

∂θ2
=

1− α4

2α2
,

where α = b/a is the aspect ratio.
If the contact we are considering is between curved tips, then α < 1, and ∂2ζcurv/∂θ

2 > 0. For the
contact between the flat tips, we just replace α with α−1 and get that ∂2ζflat/∂θ

2 = −∂2ζcurv/∂θ
2 < 0. The

product xT HV x in Eq. (5.17) simply becomes

∆2ζ =
(
fflat

∂2ζflat

∂θ2
+ fcurv

∂2ζcurv

∂θ2

)
∆θ2,

where f is the self-stress under consideration. Therefore, as long as fflat > fcurv, the mobile ellipse is jammed,
more specifically, pre-stress rigid. This result can be shown to apply to the square lattice of ellipses for an
arbitrary number of ellipses. As we will see in Section 5.8, if the ellipses are not hard but rather deformable,
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the packing would not support a compression along the curved contacts, but it would along the flat contacts.
This is a very intuitive result: If one takes a smooth ellipsoid and presses it against a table with its most
curved tip, it will buckle and the only stable configuration is one where the flat tip presses against the table.
Note however that the hard-ellipse equivalent is jammed and can resist any finite external forces, including
a compression along the curved contacts. The anharmonicity of the hard-sphere potential becomes essential
in this example, since the packing can choose the correct internal (self) stresses (forces) needed to provide
mechanical rigidity. In systems of deformable particles, the internal stresses are fixed and determined by the
state of compression.

5.5.5 Outside the Kinematic Perspective

It is worthwhile to briefly consider the connections between the jamming criteria developed above using the
kinematic approach to jamming, and the static and perturbation approaches.

5.5.5.1 Static View

We have already seen that forces appear naturally as Lagrange multipliers corresponding to impenetrability
constraints, in the form of a strict self-stress f > 0. In the static view, we ask whether a packing can support
a given applied external force B by a set of non-negative interparticle forces. The key observation is that
we can add an arbitrary positive multiple of a self-stress to any set of interparticle forces that support B
in order to make them non-negative, without affecting force balance. Therefore, if the rigidity matrix A is
of full-rank, as it has to be for jammed sphere packings, any (supportable) load B can be balanced with
non-negative interparticle forces, and kinematic and static rigidity become equivalent [138].

For jammed hypostatic ellipsoid packings however, such as the one in Fig. 5.5, supporting some loads may
require a small deformation of the packing, such as a slight rotation of the mobile ellipse in the example in
Fig. 5.5. After this small deformation, the normal vectors at the points of contact will change slightly and the
interparticle forces f can support the applied force B. The larger the magnitude of the forces is, the smaller
the deformation needed to support the load is. Therefore every jammed packing can support any applied
force in a certain generalized sense. Another way to look at this is to observe that, if the interparticle forces
are much larger than the applied ones, the applied load will act as a small perturbation to the packing and
the static view becomes equivalent to the perturbation view (with ∆ζ = 0). We consider the perturbation
view next and show how the stress matrix appears in the response of the packing to perturbations.

5.5.5.2 Perturbation View

In the perturbation view we consider how the configuration and the contact forces respond to perturbations
consisting of small changes of the contact geometry and small applied forces. Counting geometric and force
constraints separately, as done in the literature, is incorrect when f > 0: There is coupling between the
particle positions and the interparticle forces as represented by the Hessian H = Hf .

With this in mind, we can expand Eq. (5.4) to first order in {‖∆Q‖ , ‖∆f‖}, to get the linear system of
equations  A −H 0

0 AT −2e
e 0 0

 ∆f
∆Q
∆µ

 = −ε

 ∆B
∆ζ
0

 . (5.18)

It can be demonstrated that if the reduced Hessian HV is definite, this system will have a solution for any
∆b and ∆ζ. Furthermore, if HV is negative-definite the response to perturbations will be stable, in the
sense that applied forces will do a positive work in order to perturb the packing.

Equation (5.18) can be used to find the jamming point starting with a packing that is nearly jammed, i.e., a
packing that has nonzero interparticle gaps ε∆ζ and a self-stress that has a small imbalance ε∆B = Af . This
works well for small packings, however, for large disordered packings, the force chains are very sensitive to
small changes in the geometry and the linearization of the perturbation response is not a good approximation
even for packings very close to the jamming point. Additionally, we note that to first order in ε, the solution
to Eq. (5.18) has

∆µ/ε = fT ∆ζ/2M = fT
Eh/2M (5.19)
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, which can be used to quickly estimate the jamming gap of a nearly-jammed packing from just the inter-
particle gaps ∆ζ = ζ and the interparticle forces, without knowing the actual jamming point [75].

5.6 Numerically Testing for Jamming in Hypostatic Ellipsoid Pack-
ings

In this section we will apply the criteria for jamming and the algorithm to test for jamming from Section
5.5.3 to our computationally-generated hypostatic packings of ellipsoids. The numerical results show that
the packings are indeed second-order jammed, even very close to the sphere point.

We derived the necessary overlap potentials and its derivatives for hard ellipses and ellipsoids in Chapter
2. In particular, the stress-matrix is built from blocks as given in Eq. (5.16), where each of the four blocks
∇2

αβζ (α and β denote either A or B) involves both translations and rotations,

∇2
αβζ =

[
∇2

rα
ζ ∇2

ϕαrβ
ζ

∇2
rαϕβ

ζ ∇2
rβ
ζ

]
,

and the necessary second-order derivatives are given in Section 2.2.4.2.
The numerical implementation of the algorithm given in Section 5.5.3 poses several challenges. The most

important issue is that that algorithm was designed for ideal packings, that is, it was assumed that the true
contact network of the packing is known. Packings produced by the MD algorithm, although very close to
jamming (i.e., very high pressures), are not ideal. In particular, it is not trivial to identify which pairs of
particles truly touch at the jamming point. Disordered packings have a multitude of near contacts that play
an important role in the rigidity of the packing away from the jamming point [173], and these near contacts
can participate in the backbone (force-carrying network) even very close to the jamming point. Additionally,
not including a contact in the contact network can lead to the identification of spurious unjamming motions,
which are actually blocked by the contact that was omitted in error.

For hard spheres, the algorithms can use linear programming to handle the inclusion of false contacts
[71]. For ellipsoids, we look at the smallest eigenvalues of AT A, i.e., the least-square solution to Af = 0.
The solution will be positive if we have identified the true contact network, f > 0, but the inclusion of false
contacts will lead to small negative forces on those false contacts. The problem comes about because the
calculation of the self-stress by just looking at the rigidity matrix does not take into account the actual
proximity to contact between the particles. One way to identify the true contact network of the packing is to
perform a long molecular dynamics run at a fixed density at the highest pressure reached, and record the list
of particle neighbors participating in collisions as well as average the total transfer of collisional momentum
between them in order to obtain the (positive) contact forces [75].

Once the contact network is identified, we want to look for null-vectors of the rigidity matrix. This
can be done using specialized algorithms that ensure accurate answers [174], however, we have found it
sufficient in practice to simply calculate the few smallest eigenvalues of the semi-definite matrix AT A. We
used MATLAB’s sparse linear algebra tools to perform the eigenvalue calculation (internally MATLAB uses
the ARPACK library, which implements the Implicitly Restarted Arnoldi Method). We consistently found
that the smallest eigenvalue is about 3− 6 orders of magnitude smaller than the second-smallest eigenvalue,
indicating that there is a near linear-dependency among the columns of A in the form of a self-stress. The
self-stress, which is simply the eigenvector corresponding to the near-zero eigenvalue, was always strictly
positive; in our experience, disordered packings of ellipsoids have a unique strict self-stress f . This means
that there are Nfloppy = Nf + 1 −M solutions to AT ∆Q = 0, Nf −M of which are exact, and one which
is approximate (corresponding to the approximate self-stress). This can be seen, for example, by calculating
the eigenvalues of AAT , since Nf −M will be zero to numerical precision, one will be very small, and the
remaining ones will be orders of magnitude larger.

5.6.1 Verification of Second-Order Jamming

Once a strict self-stress is known, second-order jamming or flexibility can be determined by examining the
smallest eigenvalue of HV , which requires finding a basis for the linear space of floppy modes. However, it
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is computationally demanding to find a basis for the null-space of AT due to the large number of floppy
modes, and since sparsity is difficult to incorporate in null-space codes. There are algorithms to find sparse
basis for this null-space [174], however, we have chosen a different approach.

Namely, we calculate the smallest eigenvalues of

Hk = kAAT −H,

which as we saw in Section 5.8.2 is the Hessian of the potential energy for a system of deformable ellipsoids
where the stiffness coefficients are all k. For very large k (we use k = 106), any positive eigenvalue of AAT is
strongly amplified and not affected by H, and therefore only the floppy modes can lead to small eigenvalues
of Hk, depending on how they are affected by H. We have found that MATLAB’s eigs function is not able
to converge the smallest eigenvalues of Hk for large stiffnesses k, however, the convergence is quick if one
asks for the eigenvalues closest to zero or even closest to −1. This typically reveals any negative eigenvalues
of Hk and the corresponding floppy modes.

It is also possible to perform a rigorous numerical test for positive-definiteness of Hk using properly
rounded IEEE machine arithmetic and MATLAB’s (sparse) Cholesky decomposition of a numerically re-
conditioned Hk [175]. We have used the code described in Ref. [175] to show that indeed for our packings
Hk � 0 and therefore the packings are second-order jammed. For spheroids, that is, ellipsoids that have
an axes of symmetry, there will be trivial floppy modes corresponding to rotations of the particles around
their own centroid. These can be removed most easily by penalizing any component of the particle rotations
∆ϕ that is parallel to the axis of symmetry. For example, one can add to every diagonal block of Hk

corresponding to the rotation of an ellipsoid with axes of symmetry u a penalization term of the form kuuT .
We have not performed a detailed investigation of a very wide range of samples since our goal here

was to simply demonstrate that under appropriate conditions the packings we generate using the modified
Lubachevsky-Stillinger algorithm are indeed jammed, even though they are very hypostatic near the sphere
point. In this work we have given the fundamentals of the mathematics of jamming in these packings. A
deeper understanding of the mechanical and dynamical properties of nearly-jammed hypostatic ellipsoid
packings is a subject for future work.

5.6.2 Extensions to Non-Ideal Packings

In Chapter 4 we used mathematical programming, and in particular, linear programming, in order to find
unjamming motions even in the presence of interparticle gaps, i.e., when considering non-ideal packings.
The LP formulation identifies the set of contacts that support a given external load B, i.e., the set of active
contacts, even in the presence of gaps. If we apply the same type of randomized algorithm to test for
jamming in packings of nonspherical particles, we would have to include at least the quadratic terms in the
impenetrability expansion, to obtain the primal quadratic programming (QP) problem

max∆Q BT ∆Q for virtual work

such that ∆̃ζ = AT ∆Q + ∆QTH∆Q + ∆ζ ≥ 0 for impenetrability, (5.20)

where ∆ζ ≥ 0 are the interparticle gaps. The first-order Karush-Kuhn-Tucker (KKT) optimality conditions
for this QP problem are essentially Eq. (5.18) restricted to the set of active contacts

Af + H∆Q = −B

f ≥ 0

fT ∆̃ζ = 0, (5.21)

while the second-order sufficient conditions require a strict self-stress, f +∆̃ζ > 0, and also that all first-order
flexes Q̇ of the active contact network be blocked by the stress matrix, Q̇T HQ̇ < 0, as we already derived.

The problem, however, is that non-convex quadratic programs like that in Eq. (5.20), unlike linear
programs, are not solvable in polynomial time, and in fact, it is rather difficult to solve them numerically
for large packings using general-purpose quadratic solvers. It may be possible to design special methods
that use the pairwise structure of the constraints together with explicit separation of the variables into
translational and orientational degrees of freedom, and efficiently solve the QP (5.20). This is a subject for
further research.
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5.7 Nearly Jammed Packings

So far we have considered ideal jammed packings, where particles are exactly in contact. Computer-generated
packings however always have a packing fraction φ slightly lower than the jamming packing fraction φJ , and
the particles can rattle (move continuously) to a certain degree if agitated thermally or by shaking [75].
We can imagine that we started with the ideal jammed packing and scaled the particle sizes by a factor
µ = 1 − δ < 1, so that the packing fraction is lowered to φ = φJ (1− δ)d. We call δ the jamming gap or
distance to jamming.

It can be shown that if δ is sufficiently small the rattling of the particles does not destroy the jamming
property, in the sense that the configuration point Q = QJ + ∆Q remains trapped in a small jamming
neighborhood or jamming basin J∆Q ⊂ RNf around QJ [165]. In the limit δ → 0 the set of accessible
configurations J∆Q → {QJ}, and in fact this is the definition of jamming used by Salsburg and Wood in
Ref. [52]. Rewritten to use our terminology, this definition is: “A configuration is stable if for some range of
densities slightly smaller than φJ , the configuration states accessible from QJ lie in the neighborhood of QJ .
More formally, if for any small ε > 0 there exists a δ > 0 such that all points Q accessible from QJ satisfy
‖Q−QJ‖ < ε provided φ ≥ φJ (1− δ)d.” We call this the trapping view of jamming, most natural one
when considering the thermodynamics of nearly jammed hard-particle systems [82]. Note that the trapping
definition of jamming is in fact equivalent to our kinematic definition of jamming [165], and we actually
motivated the concept of jamming by considering trapping in Chapter 4.

To illustrate the influence of the constraint curvature on jamming, we show in Fig. 5.7 four different
cases with two constraints in two dimensions. In all cases a self-stress exists since the normals of the two
constraints are both horizontal. If both constraint surfaces are concave (have negative or outward curvature),
as constraints always are for hard-spheres, two constraints cannot close a bounded region J∆Q around the
jamming point. One needs at least three constraints and in that case J∆Q will be a curved triangle. If
however at least one of the constraints is convex (has positive curvature), two constraints can bound a closed
jamming basin. Specifically, if the sum of the radii of curvatures of the two constraints at the jamming point
R1 + R2 is positive, there is no unjamming motion, however, if it is negative then there is an unjamming
motion in the vertical (floppy) direction. This is equivalent to looking at the smallest eigenvalue of the stress
matrix in higher dimensions.

The jamming basin J∆Q(δ) for a given jamming gap δ is the local solution to the relaxed impenetrability
equations

ζ (∆Q) ≥ −ζδ = 1−
(

1
1− δ

)2

.

One way to determine J∆Q(δ) for a wide range of δ’s is to consider the function of the particle displacements

δ̃ (∆Q) =
√

1 + min [ζ (∆Q)]− 1, (5.22)

that is, to calculate by how much the particles need to be shrunk to make a given particle displacement ∆Q
feasible (preserving non-overlapping). The contours (level-sets) of the function δ̃ (∆Q) denote the boundaries
of J∆Q(δ), that is, J∆Q(δ) =

{
∆Q | δ̃ (∆Q) ≤ δ

}
.

5.7.1 First-Order Jammed Packings

As a simple but illustrative example, we will consider a single mobile disk jammed between three other
stationary disk, as shown in Fig. 5.8, an analog of the ellipse example from Fig. 5.5. This packing is
first-order jammed, and the figure also shows a color plot of the function δ̃ (∆Q) along with its contours. It
is seen that for small δ the jamming basin J∆Q is a closed curved triangle.

These observations are readily generalized to higher dimensions. For sufficiently small δ, the jamming
basin approaches a convex jamming polytope (a closed polyhedron in arbitrary dimension) P∆Q, as discussed
in Section 4.3.1.1. For spheres all constraint surfaces are concave and therefore P∆Q ⊆ J∆Q [52, 145]. The
jamming polytope is determined from the linearized impenetrability equations

AT ∆Q ≥ −ζδ ≈ −2δ, (5.23)
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Figure 5.7: The feasible region (yellow) around a jamming point (black circle) for two curved constraints in
two dimensions (black circles). The region of the plane forbidden by one of the constraints is colored red,
and colored blue for the other constraint. The region forbidden by both constraints is purple. The distance
from the jamming point to the constraints is approximately δ and chosen small. Four cases are shown, going
from left to right: (a) Both constraints are concave, and the yellow region is not bounded. Moving along
the vertical direction unjams the system (this is typical of hard spheres). (b) Both constraints are convex,
and the yellow region is closed, even though it is very elongated along the vertical direction (of order

√
δ).

This is an example of pre-stress stability (second-order jamming). (c) One of the constraints is convex, but
not enough to block the unjamming motion in the vertical direction. The motion has to curve to avoid the
convex constraint, i.e., a nonzero acceleration is needed to unjam the system (second-order flexible). (d)
Only one of the constraints is convex, but enough to close the yellow region (second-order jammed). If the
radii of curvatures are very close in magnitude, this region can become a very elongated banana-like shape.

Figure 5.8: (Left) An example of a mobile disk (green) jammed between three fixed disks (yellow). This is
analogous to the ellipse packing shown in Fig. 5.5. (Right) A color plot of the function δ̃ (∆Q) for this disk
packing along with its contours (level sets).
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and we can see that its volume, which determines the (non-equilibrium) free-energy, scales like δNf . This
leads to the free-volume divergence of the pressure in the jamming limit

p =
PV

NkT
≈ df

1− φ/φJ
, (5.24)

which has been verified numerically for disordered isostatic hard sphere packings [75].

5.7.2 Second-Order Jammed Packings

The ellipse analog from Fig. 5.5 has three degrees of freedom, two translational and one orientational. If
we fix the orientation of the (mobile) ellipse, that is, we take a planar cut through δ̃ (∆Q), the situation is
identical to that for the disk example above: For small δ the jamming basins J∆Q are closed curved triangles.
However, the range of accessible orientations is rather large, on the order of

√
δ, since even for a small δ the

ellipse can rotate significantly. This is a consequence of the rotation of the ellipse being a floppy mode, and
only being blocked by second-order effects as given by the curvature of the impenetrability constraints. In a
certain sense, the packing is much more trapped in the subspace of configuration space perpendicular to the
space of floppy modes than it is in the space of floppy modes. This is illustrated in Fig. 5.9.

Figure 5.9: (Left) A plot of the function δ̃ (∆Q) for the packing from Fig. 5.5. The horizontal axes correspond
to the translational degrees of freedom, and the vertical to the rotational degree of freedom (the rotation
angle of the major axes). The ∆ϕ = 0 cut is also shown (horizontal colored plane), to be compared to the
right part of Fig. 5.8. We also show the jamming basin J∆Q(δ = 0.0035) (dark blue region), illustrating
that this region is shaped like a banana, elongated along the direction of the floppy mode. (Right) Several
contours (iso-surfaces) of δ̃ (∆Q), bounding the banana-shaped regions J∆Q(δ).

5.7.3 Pressure Scaling for Hypostatic Jammed Ellipsoid Packings

The observations in Fig. 5.9 are readily generalized to higher dimensions, however, it is no longer easy to
determine the volume of J∆Q (and thus the free energy) in the jamming limit. If we consider the simple
two-constraint example in Fig. 5.7, we find that the area A of the feasible (yellow) region scales like δ3/2

instead of δ2,

A =
16
3

√
R1R2

R1 +R2
δ3/2.
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An obvious generalization of this result to higher dimensions can be obtained by assuming that the jamming
basin J∆Q has extent

√
δ along all Nfloppy ≈ Nf −M directions corresponding to floppy modes, where as it

has extent δ along all other perpendicular directions. The volume would then scale as

|J∆Q| ∼ δMδ(Nf−M)/2 = δN(df /2+Z̄/4) = δNdf (1+s)/2,

where we quantify the hypostaticity of the packing by s = Z̄/2df . The corresponding scaling of the pressure
in the jamming limit is

p =
PV

NkT
≈ df (1 + s)/2

1− φ/φJ
.

However, as δ becomes very small, the jamming region becomes so elongated along the space of floppy
modes that the time-scales for rattling along the elongated directions becomes much larger than the time for
rattling in the perpendicular directions. This manifests itself as a remarkably large and regular oscillation
of the “instantaneous” pressure (as measured over time intervals of tens of collisions per particle) during
molecular-dynamics runs at a fixed δ, as illustrated in Fig. 5.10. The oscillations are more dramatic the
smaller δ is, and can span six or more orders of magnitudes of changes in the instantaneous pressure. The
period of oscillation, as measured in numbers of collisions per particle, is dramatically affected by the moment
of inertia of the ellipsoids I, most naturally measured in units of mO2, where m is the particle mass and O
is the (say smallest) ellipsoid semiaxis.
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Figure 5.10: The “instantaneous” reduced pressure for a jammed hypostatic packing of three-dimensional
ellipsoids with semiaxes ratio 1.025−1 : 1 : 1.025, at different (estimated) distances from the jamming point
δ. Molecular dynamics runs using a natural moment of inertia of the particles as well as ones using a much
smaller moment of inertia are shown. The pressure oscillations are sustained for very long periods of time,
however, it is not clear whether they eventually dissipate.

We do not understand the full details of these pressure oscillations, however, it is clear that dynamics near
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the jamming point for the hypostatic ellipsoid packings is not ergodic on small time-scales. In particular, as
a packing is compressed during the course of the packing algorithm, the time-scale of the compression may
be shorter than the time-scale of exploring the full jamming basin. Over shorter time scales the packing can
only explore the directions perpendicular to the floppy modes, and in this case we expect that the pressure
would scale as

p ≈ dfs

1− φ/φJ
.

In Fig. 5.11 we show C = p(1 − φ/φJ) as a function of the jamming gap for compressions of systems of
ellipses of different aspect ratios close to unity. The compression started with a dense liquid and the particles
were grown slowly at an expansion rate γ = 10−5 to a high pressure (jamming) p = 109. The figure shows
for each aspect ratio the lower bound CL = dfs = 3s and the upper bound CU = df (1 + s)/2 = 1.5(1 + s),
where s was calculated by counting the almost perfect contacts at the highest pressure [75]. As expected
from the arguments above, we see that very close to the jamming point C ≈ CL, however, further away from
jamming C ≈ CU . For packings that are not hypostatic CL = CU = df , and for disks CU = CL = 2.
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Figure 5.11: The pressure scaling coefficient C = p(1−φ/φJ) as systems of hard ellipses are compressed from
a dense liquid to the jamming point. The value of C is not constant however it seems to remain between the
bounds CL (shown with a dashed line in the same color as C) and CU (shown with a solid line).

5.8 Energy Minima in Systems of Deformable Particles

In this section we consider the connections between jamming in hard particle packings and stable (local)
energy minima (inherent structures [29]) for systems of deformable (soft) particles. This has a two-fold
purpose. Firstly, in physical systems particles are always deformable, and therefore it is important to
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establish that the hard-particle conditions for jamming we established in Section 5.5 are relevant to systems
of deformable particles. We expect that if the particles are sufficiently stiff, to be made more quantitative
shortly, the behavior of the soft-particle system will approach that of the corresponding hard-particle packing.
Secondly, considering the conditions for the existence of a stable energy minimum will enable us to derive in
a simpler fashion and better understand the jamming conditions from the previous section.

We consider systems with short-ranged continuous interparticle potentials that are a monotonically de-
creasing function E of the overlap between particles,

Uij = E [ζ (qi,qj)] . (5.25)

That is, we assume that the elastic behavior of the particles is such that the interaction energy only depends
on the distance between the particles as measured by the overlap potential ζ. An example of such an elastic
potential is an inverse power-law

E(ζ) = (1 + ζ)−ν
, (5.26)

which in the limit p→∞ approaches a hard-particle interaction

EH(ζ) =
{

0 if ζ > 0
∞ if ζ < 0 .

For sufficiently large power exponents p the interaction is localized around particles in contact and the overall
energy

U =
∑
ij

Uij → max
ij

Uij =
(

1 + min
ij

ζij

)−ν

=
(
1 + δ̃2

)−ν

is dominated by the most overlapping pair of particles [see Eq. (5.22) for the definition of δ̃]. Additionally,
as p grows the interparticle potential becomes stiff in the sense that small changes in the distance between
the particles cause large changes of the interparticle force

f = −dE
dζ
≥ 0,

and the stiffness coefficient

k =
d2E

dζ2
≥ 0

becomes very large and positive. This indicates a physical interpretation of the hard-particle interaction
potential: It is the limit of taking an infinite stiffness coefficient while the force between particles is kept at
some non-negative value, which can be tuned as desired by infinitesimal changes in the distance between the
particles (but note that the forces in different contacts are correlated since the motion of particles affects all
of them simultaneously).

5.8.1 Stable Energy Minima Correspond to Jammed Packings

Assume that we have a packing of hard particles and that we can find a set of interparticle interaction
potentials Uij for the geometric contacts such that the configuration is a stable energy minimum. This
means that any motion of the particles leads to increasing the energy U , i.e., to overlap of some pair of
particles. Therefore, the packing of hard particles is jammed. This gives a simple way to prove that a
given packing is jammed: Find a set of interparticle potentials that makes the configuration a stable energy
minimum [165, 73]. We examine the conditions for a stable energy minimum when the interaction potentials
are twice differentiable next.

The converse is also true, in the sense that arbitrarily near a jammed packing there is an energy minimum
for a sufficiently “hard” interaction potential (in some cases the potential energy U may have to be discon-
tinuous at the origin [73]). We demonstrate this on the examples from Figs. 5.8 and 5.9 for a power-law
interaction potential with increasing exponent ν in Figs. 5.12 and 5.13, respectively. It is clear that in the
limit p→∞, the contours of the interaction potential become those of δ̃(∆Q) and are thus closed near the
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Figure 5.12: The total interaction energy U(∆Q) for the example in Fig. 5.8 when the disks are deformable
and interact via a power-law potential. We show U as a color plot with overlayed contours for power
exponents ν = 12, 25, and 100 (going from left to right). Compare the ν = 100 case to the contours of
δ̃(∆Q) in Fig. 5.8.

Figure 5.13: The contours (iso-surfaces) of the total interaction energy U(∆Q) for the example in Fig. 5.9
when the ellipses are deformable and interact via a power-law potential. Going from left to right, we show
ν = 12 and 25, as well as the hard ellipsoid δ̃(∆Q), corresponding to the limit ν →∞.

origin, i.e., the energy has a minimum. The higher the exponent p is, however, the more anharmonic the
interaction potential becomes and the contours are no longer ellipsoidal near the energy minimum.

It should be emphasized that not all energy minima correspond to packings. In particular, at large
pressures or applied forces the deformability of the particles becomes important and the energy minima no
longer have the geometric structure of packings. However, in the limit of no externally-applied forces, i.e.,
f → 0, the only interacting particles are those that barely overlap, i.e., that are nearly touching. Therefore
energy minima for purely-repulsive interaction potentials and a finite cutoff correspond to jammed packings
of hard particles in the limit of zero external pressure (alternatively, one can keep the applied forces constant
and make the grains infinitely stiff [161]). Therefore, the packings of soft particles studied in Ref. [164] very
slightly above the “jamming treshold” φc are closely related to collectively jammed ideal packings of spheres
of diameter D = σ (polydispersity is trivial to incorporate) [176].
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5.8.2 Hessian Eigenvalues and Jamming

It is well-known that for smooth interactions a given configuration is a stable energy minimum if the gradient
of the energy is zero and the Hessian is positive-definite, and the converse is also true if positive-definite is
replaced with positive-semidefinite. This has been used as a criterion for jamming in systems of deformable
particles [164, 176].

The gradient of U =
∑

ij Uij is

∇QU =
∑
ij

dE

dζij
(∇Qζij) = (∇Qζ) (∇ζE)

= A (∇ζE) = −Af .

The first-order necessary condition for a stable energy minimum is therefore exactly the force/torque balance
condition

Af = 0 and f ≥ 0,

as we derived using linear programming and duality theory for hard-particle packings. The Hessian is

∇2
QU = [∇Q (∇ζE)]AT +

(
∇2

Qζ
)
(∇ζE)

=
[
A

(
∇2

ζE
)]

AT + (∇QA) (∇ζE)

= AKAT −Hf = AKAT −H,

where K = ∇2
ζε = Diag {kij} is an [M ×M ] diagonal matrix with the stiffness coefficients along the diagonal,

and H = ∇QA = ∇2
Qζ is the Hessian of the overlap constraints. Note that more careful notation with

derivatives of vectors and matrices can be developed and should in principle be employed in calculations to
avoid confusions about the order of matrix multiplications and transpositions [84].

The Hessian
HU = ∇2

QU = AKAT −H

consists of two terms, the stiffness matrix HK = AKAT , and the stress matrix H that we already encoun-
tered in the second-order expansion of the impenetrability constraints. The second-order sufficient condition
for a strict energy minimum is

HU � 0.

Since K > 0, the stiffness matrix HC is positive-semidefinite: For any vector ∆Q that is not a floppy mode,
∆QT HK∆Q > 0, while ∆QT HK∆Q = 0 if ∆Q is a floppy mode (i.e., AT ∆Q = 0). Therefore, for any
direction of particle motion that is not a floppy mode, one can make the stiffness coefficients large enough
to make ∆QT HK∆Q > 0, regardless of the value of ∆QT H∆Q. Floppy modes, however, correspond to
negative curvature directions of the Hessian HU if they are positive-curvature directions of the stress matrix,
∆QT H∆Q > 0. Therefore, the energy minimum is strict if and only if the stress matrix is negative-definite
on the space of floppy modes. This is exactly the same result as the second-order condition for jamming we
derived in Section 5.5 using duality theory.

For deformable particles, the stiffness coefficients are finite. Therefore, for sufficiently large interparticle
forces, the stress matrix may affect the eigenspectrum of the Hessian HU and therefore the stability of
potential energy minima. For spheres, as we derived earlier, H � 0 and therefore interparticle forces may
only destabilize packings: This is the well known result that increasing the interparticle forces leads to
buckling modes in sphere packings [160, 177]. Jamming in systems of soft spheres is therefore considered in
the limit of f → 0, i.e., the point when particles first start interacting [164, 173]. For ellipsoids however, the
forces can, and in practice they do, provide stability against negative or zero-frequency vibrational modes.
The magnitude of the forces becomes important, and will determine the shape of the density of states (DOS)
spectrum [177, 173] for small vibrational frequencies. To quote from Ref. [160], “The basic claim...is that
one cannot understand the mechanical properties of amorphous materials if one does not explicitly take into
account the direct effect of stresses.”
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5.8.3 An Example of Pre-Stress Stability

Figure 5.14 shows a very simple example in which pre-stressing, i.e., pre-existing forces, stabilize a structure.
Although the example is not a packing, it illustrates well some of the essential features. First, the geometry of
the system is degenerate, since the two springs are exactly parallel. This degeneracy insures that a self-stress
exists, since one can stretch/compress both springs by an identical amount and still maintain force balance.

Figure 5.14: An example of a pre-stress stable system. Two elastic springs of stiffness k and length l are
connected via a joint that can move in the horizontal direction under the influence of an external force F .

Observe that geometrically the change in the position of the joint ∆x causes a quadratic change in the
length of each spring ∆l ≈ ∆x2. To balance an applied force F , the force inside each spring f needs
to be f∆x = F . If the system is not pre-stressed, then the potential energy is quartic around the origin,
∆U = 1

2k∆l
2 ≈ 1

2k∆x
4, and the applied force causes a very large deformation of the structure ∆x = (F/k)1/3.

The structure is stable (i.e., corresponds to a jammed packing), however, its response to perturbations is not
harmonic. If however there is an initial force f in the springs, then the potential energy is quadratic around
the origin ∆U ≈ f∆l = f∆x2 and the deformation is linear in the applied force ∆x = F/f . If f < 0, then
the system is unstable and will buckle, and if f > 0 the system is stable and its response to perturbations is
harmonic. This is exactly the form of stability that hypostatic ellipsoid packings have.

5.9 Packings of Nearly Spherical Ellipsoids

In this section we will consider nearly spherical ellipsoids, that is, ellipsoids with aspect ratio α close to
unity. In particular, we try to understand why these packings are hypostatic and to quantitatively explain
the sharp rise in the density and contact numbers of disordered packings as asphericity is introduced. We
propose that the packings of nearly spherical ellipsoids should be looked at as continuous perturbations of
jammed disordered disk packings, and establish the leading order terms in the expansion around the sphere
point.

5.9.1 Rotations and Translations Are Not Equal

One might at first sight expect a discontinuous change in the contact number, and therefore the structure,
as asphericity is introduced. After all, the number of degrees of freedom jumps suddenly from df = d to (for
non-spheroids) df = d(d + 1)/2 > d. However, such an expectation is not reasonable. Firstly, the number
of degrees of freedom is df = d(d + 1)/2 even for spheres, since spheres can rotate too. This rotation does
not affect the non-overlap conditions and therefore is not coupled to translational degrees of freedom. If the
ellipsoids are nearly spherical, particle rotation is only mildly coupled to particle translations and rotation
only affects the non-overlap conditions very close to the jamming point. This is seen, for example, through
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a violation of the equipartition theorem in non-equilibrium MD simulations of hard ellipsoids, depending on
the moment of inertia of the particles and the time-scale of the system evolution. We therefore expect that
thermodynamically and kinetically, at least at the level of translations, systems of nearly spherical ellipsoids
will behave identically to systems of spheres until the interparticle gaps become comparable to the difference
between the semiaxes. It is therefore not really surprising that the properties of the jammed packings such
as φJ or Z̄ change continuously with α.

What is somewhat surprising however is that φJ and Z̄ are not analytic functions of particle shape.
In particular, starting with a unit sphere and changing a given semiaxes by +ε � 1 increases the density
linearly in ε, and changing it by −ε also increases the density by the same amount, ∆φJ ∼ |ε|. As we will
show through our calculations, this non-analyticity is a consequence of the breaking of rotational symmetry
at the sphere point. The particle orientations themselves are not analytic functions of particle shape and
change discontinuously as the sphere point is crossed.

Finally, there is little reason to expect packings of nearly spherical particles to be rotationally jammed.
After all, sphere packings are never rotationally jammed, since the spheres can rotate in place arbitrarily.
Similarly, near the jamming point, it is expected that particles can rotate significantly even though they will
be translationally trapped and rattle inside small cages, until of course the actual jamming point is reached,
at which point rotational jamming will also come into play. It is therefore not surprising that near the sphere
point the parameters inside the packing-generation protocol, such as the moment of inertia of the particles
and the expansion rate of the particles, can significantly affect the final results. In particular, using fast
particle expansion or too large of a moment of inertia leads to packings that are clearly not rotationally
jammed, since the torques are not balanced, however, they are translationally jammed and have balanced
centroid forces. We do not have a full understanding of the dynamics of our packing-generation algorithm,
even near the jamming point.

We will focus on packings that are also rotationally jammed, however, in general one may need to
distinguish between translational and rotational jamming. For example, the ellipsoid packing produced by
simply stretching the crystal packing of spheres along a certain axes by a scaling factor of α is translationally
but not rotationally jammed. This is because by changing the axes along which the stretch is performed one
gets a whole family of ellipsoid packings with exactly the same density. This is illustrated in Fig. 5.15 in
two dimensions.

Figure 5.15: The triangular packing of ellipses is not rotationally jammed since one can shear the packing
continuously, without introducing overlap or changing the density. The figure shows a sequence of snapshots
as this shearing motion proceeds. The packing is however translationally jammed.

5.9.1.1 Isostatic Packings are Translationally Ordered

As we already demonstrated, in order for a hypostatic packing of ellipsoids to be jammed, the packing
geometry must be degenerate. The existence of a self-stress f requires that the orientations of particles be
chosen so that the torques are balanced in addition to the forces on the centroids. This leads to a loss of
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“randomness” in a certain sense, since the number of jammed configurations is reduced greatly by the fact
that geometrically peculiar configurations are needed to balance the torques.

However, it is also important to point out that disordered isostatic packings of nearly spherical ellipsoids
are hard to construct. In particular, achieving isostaticity near the sphere point requires translational
ordering. In two dimensions, the average number of contacts per particle needed is Z̄ = 6, however, the
maximal kissing number near the sphere point is also Zmax = 6. Therefore the only possibility is that
every particle have exactly Z = 6 contacts. This inevitably leads to translational ordering on a triangular
lattice. In other words, the only isostatic packing of ellipses in the limit α → 1 is the hard disk triangular
crystal. Similarly, in three dimensions, Z̄ = Zmax = 12 for non spheroids, and therefore every particle
must have exactly Z = 12 neighbors. While it not rigorously known what are the sphere packings with all
particles having twelve neighbors, it is likely that only stacking variants of the FCC/HCP lattice achieve that
property. For spheroids, the isostatic number of contacts is Z̄ = 10 and the results in Fig. 5.2 indicate that
this value is nearly reached for sufficiently large aspect ratios. For nonspheroids, however, we only observe
a maximum of 11.4 contacts per particle, consistent with the fact that achieving the isostatic value requires
more translational ordering. It is interesting to note that even with exactly Z̄ = 12 contacts per particle, an
ellipsoid packings does not have enough contacts to be first-order jammed, since the total number of degrees
of freedom exceeds the number of constraints, Nf = 6N + 3 > M = 6N .

In conclusion, near the sphere point there is a competition between translational and rotational jamming
and also between translational and translational disorder. At the sphere point α = 1, and it is neighborhood,
translations win. As one moves away from the sphere point, however, translations and rotations start to
play an equal role. For very large aspect ratios, α� 1, it is expected that rotations will dominate although
we do not investigate that region here.

5.9.2 Maintaining Jamming Near the Sphere Point

In this section we will make extensive use of the expansions of the overlap potentials for two nearly spherical
ellipsoids given in Section 2.2.6.

Assume now that we have a collectively jammed isostatic sphere packing with density φS
J and that we

want to make the disks slightly ellipsoidal by shrinking them along a given set of axes, while still preserving
jamming. Keeping orientations fixed, one can expand each near-sphere by a scaling factor ∆µ and displace
each centroid by ∆r, so that all particles that were initially in contact are still in contact. Note that because
the matrix S is proportional to ε, so will ∆µ and ∆R. In other words, the change in the density will be
linear in asphericity. However, the value of the slope depends on the choice of orientations of the ellipsoids.
Referring back to Section 5.5.5.2 we see that to first order in ε, ∆µ is

∆µ =
1
M

fT ∆ζ =
1
M

∑
{i,j}

fijuT
ijSijuij

=
1

2M

∑
i

∑
j∈N (i)

fijuT
ijTiuij ,

giving a new jamming density

φJ/φ
S
J = (1 + ∆µ)d

d∏
k=1

(1 + εOi ) ≈ 1 + d∆µ+ eT εO.

Keeping all ellipsoids aligned produces an affine deformation of the sphere packing that has the same jamming
density, but is not (first-order) jammed. Therefore, the true jamming density must be higher, φJ ≥ φS

J . This
explains why the jamming density increases with aspect ratio near the sphere point. The added rotational
degrees of freedom allow one to increase the density beyond that of the aligned (nematic) packing, which for
ellipsoids has exactly the same density as the sphere point.

Can we find a set of orientations for the ellipsoids so that the resulting packing is jammed? The first
condition for jamming is that there exist a self-stress that balances both forces and torques on each parti-
cle. Just from the force-balance condition, one can already determine the magnitudes of the interparticle
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forces f . These will change little as one makes the particles slightly aspherical, because the normal vectors
barely change. Therefore, the self-stress is already known a priori, without regard to the choice of particle
orientations. The orientations must be chosen so that the torques are also balanced. The torque exerted by
the contact force f = fn on a given particle, to first order in asphericity ε, comes about because the normal
vector no longer passes through the centroid of the particle (as it does for spheres). One can ignore the small
changes in the magnitude of the normal force or the change in the contact point rC , and only consider the
change in the normal vector

n ≈ Xu ≈ (I− 2T)u = u− 2Tu,

giving a torque
τ = rC × f ≈ 2Of (Tu)× u.

Therefore, to first order in asphericity ε, the torque balance condition for particle i is∑
j∈N (i)

fij (Tiuij)× uij =
∑

j∈N (i)

fijUijTiuij = 0. (5.27)

This gives for each particle a set of possible orientations, given the contact network of the isostatic sphere
packing. The torque balance condition (5.27) is in fact the first-order optimality condition for maximizing
the jamming density, as expected. It is worth pointing out that for a random assignment of orientations to
ellipses the expected change in density is identically zero; in order to get an increase in the density one must
use orientations correlated with the translational degrees of freedom.

5.9.2.1 Ellipses

In two dimensions, for a particular contact with u = 〈cos θ, sin θ〉 we have the simple expressions

uTφu = sin2(φ− θ)

u× (Tφu) =
1
2

sin [2(φ− θ)] .

Considering 2φ as the variable, one easily finds the solution to Eq. (5.27)

2φ = arctan(±
∑

i

fi sin 2θi,±
∑

i

fi cos 2θi). (5.28)

If we calculate the second derivative for the density increase we find that

d2

dφ2

[∑
i

fi sin2(φ− θi)

]
= ±1,

and therefore in order to maximize the jamming density we need to choose the minus signs in Eq. (5.28).
Once we find the unique orientation of each ellipse that ensures torque balance, we can calculate the jamming
density

φJ/φ
S
J ≈ 1 + sφε, (5.29)

where

sφ = 2

∑
i

∑
j∈N (i) fij

(
uT

ijT
φ
i uij

)
∑

i

∑
j∈N (i) fij

− 1.

We have calculated the slope sφ for disordered binary disk packings (with φS
J ≈ 0.84) numerically, and

find a value sφ ≈ 0.454. We compare this theoretical value with numerical calculations in Fig. 5.16. The
first comparison is directly to the packing fractions obtained using the Lubachevsky-Stillinger algorithm,
which do not have anything to do with perturbing a sphere packing. Although the simulation jamming
densities are not linear over a wide range of aspect ratios, near α = 1 they are and the slope is close to the
theoretically-predicted sφ. We also compare to results obtained by perturbing a jammed disk packing using
MD. Specifically, we start with a jammed disk packing at a relatively high pressure (p = 1000) and assign
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an orientation according to Eq. (5.28) to every disk, and then we start growing the large semiaxes slowly
while performing a form of constant-pressure MD. The density changes automatically to keep the pressure
constant, and from the instantaneous density we estimate the jamming density using Eq. (5.24). In Fig. 5.16
we show how the (estimated) jamming density changes with aspect ratio. If we freeze the orientations (i.e.,
use an infinite moment of inertia), we obtain results that follow the theoretical slope prediction closely. Very
good agreement with the results from the LS algorithm is obtained over a wide range of α if we start with
the correct orientations and then allow the ellipse orientations to change dynamically. For comparison, in the
inset we show that the packing density actually decreases if we use the LS algorithm and freeze orientations
at their initial (random) values, demonstrating that balancing the torques and (maximally) increasing the
density requires a particular value for the particle orientations.
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Figure 5.16: The estimated jamming density near the disk point for binary packings of hard ellipses, as
obtained from the LS packing algorithm, from perturbing the disk packing using constant-pressure MD, and
from the first-order perturbation theory. The inset shows some of the data over a larger range of aspect ratio
and also shows the packing densities obtained when the ellipses have infinite moment of inertia in the LS
algorithm.

For ellipses, there are unique orientations that guarantee the existence of self-stresses near a given isostatic
jammed disk packing. Do these orientations actually lead to jammed packings, that is, are the second-order
conditions for jamming also satisfied? If one starts with a jammed disk packing and transforms the disks
into ellipses of aspect ratio sufficiently close to unity, the packing will remain translationally jammed [165].
Subsequent increase in the size of the particles must eventually lead to a packing of maximal density. It
is not however a priori whether this packing is rotationally and translationally jammed or has some kind
of peculiar unjamming motions that preserve the density, such as the ones shown in Fig. 5.15. For small
disk packings, we have found the perturbed ellipse packings to be second-order jammed sufficiently close to
the sphere point. For larger systems, even for very small asphericities, it is difficult numerically to perturb
a given disk packing into an ellipse packing without leading to new contacts or breaking of old ones, as
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discussed shortly. An analytical investigation may be able to prove that the perturbed packings are actually
second-order jammed, and therefore prove that there exist (large) jammed ellipse packings with Z̄ = 4, the
absolute minimum contact number possible for a jammed packing.

Finally, we note that in three dimensions the torque balance equations (5.27) involve quaternions and
are quartic, and it does not seem an analytical solution is possible as it is in two dimensions. We however
expect that the calculations performed here in d = 2 can be generalized to higher dimensions as well. One
interesting question to answer theoretically in d = 3 is whether the middle axes (β) affects the slope of the
density sφ or whether only the ratio of the largest to the smallest semiaxes (α), matters. In Ref. [78] we
proposed that the rapid increase in packing fraction could be attributed to the need to increase the contact
numbers, since forming more contacts requires a denser packing of the particles. This is supported by the
observation that the maximal packing density is achieved for the most aspherical shape (β = 1/2), however,
the numerical results very close to the sphere point shown in Fig. 5.4 are also consistent with a slope sφ

independent of β. The arguments of this section indicate that the density rise is independent of the rise of
the coordination number, at least near the sphere point.

5.9.3 Contact Number Near the Sphere Point

In our perturbation approach to ellipsoid packings near the sphere point, we assumed that the contact
network remains that of the disk packing even as the aspect ratio moves away from unity. However, as the
aspect ratio increases and the packing structure is perturbed more and more, some new contacts between
nearby particles will inevitably close, and some of the old contacts may break. In Fig. 5.17 we show a system
that the linear perturbation prediction produces at α = 1.025. While the original contacts in the jammed
disk packing are maintained relatively well, we see that many new overlaps form that were not contacts in
the disk packing. This means that the contact number will increase from Z̄ = 4 as asphericity is introduced.

These observations suggest a way to calculate the leading order term of Z̄(α) − 2d: We simply count
the overlaps introduced by orienting and displacing the centroids of the ellipsoids according to the linear
perturbation theory. It is well-known that jammed disordered sphere packings have an unusual multitude
of nearly-touching particles, as manifested by a nearly inverse-square-root divergence in the pair correlation
function near contact [75]. These near contacts will close to form true contacts and cause the rapid increase
in Z̄(α), and we expect that the growth will be of the form

Z̄(α)− 2d ≈ Zα

√
α− 1. (5.30)

A more rigorous analysis is difficult since we do not really have an understanding of the geometry of the near
contacts. We have numerically estimated the coefficient Zα and plotted the prediction of Eq. (5.30) in Fig.
5.3. It is seen that the prediction matches the actual simulation results well sufficiently close to the sphere
point.

5.10 Conclusions

We presented in detail the mathematical theory of jamming for packings of ellipsoids and tried to understand
the properties of jammed packings of ellipsoids of aspect ratio close to unity. In this section we summarize
our findings and also point to directions for future investigation.

In Section 5.2 we applied the modified LS algorithm to generate disordered jammed packings of hard
ellipsoids. The simulations showed that ellipsoids can randomly pack more densely, approaching ϕ ≈ 0.74
for non-spheroidal ellipsoids. Both the density of the random packings φJ and the average contact number Z̄
rise sharply from their sphere values as asphericity is introduced, showing that the sphere point is a singular
point and that orientational degrees of freedom dramatically impact the properties of jammed packings. The
contact numbers reach values close to isostatic only for very aspherical particles, while the packings of nearly
spherical ellipsoids are rather hypostatic, in sharp contrast with random sphere packings, which have been
shown to be isostatic.

In Section 5.4 we discussed the conjecture that large disordered jammed packings of hard particles are
isostatic, i.e., that they have an equal number of constraints and degrees of freedom, Z̄ = 2df . It is not
possible to make this conjecture into a theorem since the term “disordered” is highly nontrivial to define
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Figure 5.17: Overlaps introduced at α = 1.025 by the naive linear perturbation theory which only takes
into account the original contact network of the disk packing (black lines). We see many overlaps forming
between particles that were nearly touching when α = 1.

[58], however, arguments have been made in the literature in support of the isostatic property. We showed
that this conjecture can be supported with reasonable arguments only for spheres, where particle rotations
are not considered. In particular, while it is expected that Z̄ ≤ 2df for “random” packings, the converse
inequality Z̄ ≥ 2df only applies to spheres. Packings of nonspherical particles can be jammed and have less
than 2df contacts per particle, i.e., be hypostatic. A minimally rigid ellipsoid packing, i.e., a packing that
has the minimal number of contacts needed for jamming, satisfied only the inequality Z̄ ≥ 2d, since at least
2d contacts per particle are needed to block particle translations. Particle rotations, however, and combined
rotation/translation motions, can be blocked by the curvature of the particle surfaces at the point of contact.
In essence, if the radii of curvatures at the point of contact are sufficiently large, i.e., the particle contact
is sufficiently “flat”, rotation of the particles is blocked. This can be visualized by considering the limit of
infinite radii of curvatures, when have a contact between two flat surfaces. Such contacts, in a certain sense,
count as several “contact points” and block several degrees of freedom.

In Section 5.5 we generalized the mathematics of first and second-order rigidity for tensegrity frameworks
developed in Ref. [73] to packings of nonspherical particles. We proved that in order for a packing to be
jammed there must exist a set of (nonzero) non-negative interparticle forces that are in equilibrium, i.e., the
packing must have a self-stress. Furthermore, we considered second-order terms for hypostatic packings that
do have a self-stress but also have floppy modes, that is, particle motions that preserve interparticle distances
to first order. The second-order analysis showed that jammed packings of strictly convex particles cannot
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have less than 2d contacts per particle. We found that floppy modes involving particle rotations can be
blocked (rigidified) by the stress-matrix, which includes second-order information about the particle surfaces
at the point of contact. We proposed that this is exactly the type of jamming found in disordered ellipsoid
packings near the sphere point, and in Section 5.6 we presented a numerical algorithm for testing hypostatic
ellipsoid packings for jamming and applied it to some computer-generated samples. We demonstrated that
the packings are indeed jammed even very close to the sphere point, where they have close to 2d contacts
per particle.

In Section 5.7 we considered the thermodynamics of packings that are close to, but not exactly at, the
jamming point, so that particles have some room to rattle (free volume). We found that for hypostatic
packings the jamming basin J∆Q, which is localized around the jamming point in configuration space, is
very elongated along the space of floppy modes. For iso- or hyper-static packings, as jammed sphere packings
always are, the jamming basin approaches a polytope in the jamming limit, whereas for hypostatic packings
it approaches a (hyper) banana. The latter leads to very large oscillations of the instantaneous pressure near
the jamming point and a violation of the asymptotic free-volume equation of state (pressure scaling).

Real packings are always made from deformable (albeit very stiff) particles, i.e., particles that interact
via some elastic interaction potential. The analog of a jammed hard-particle packing for deformable particles
are strict energy minima (inherent structures), i.e., structures where any motion of the particles costs energy
(quadratic in the displacements). In Section 5.8 we analyzed the first- and second-order conditions for a
strict energy minimum for twice-differentiable interaction potentials. We found that the first-order condition
is exactly the requirement for the existence of a self-stress, and that the second-order condition is exactly
the condition that the stress-matrix blocks the floppy modes. This deep analogy between jamming in hard-
particle packings and energy minima in soft-particle packings is not unexpected since a “soft” potential can
approximate the singular hard-particle potential arbitrarily closely. As the potential becomes stiffer, the
energy minimum will become highly anharmonic and its shape will closely resemble that of the jamming
basin J∆Q (even at very small temperatures).

Finally, in Section 5.9 we developed a first-order perturbation theory for packings of nearly spherical
ellipsoids, expanding around the sphere point. The theory is based on the idea that packings of ellipsoids
with aspect ratio α = 1 + ε near unity have the same contact network as a nearby jammed isostatic packing
of hard spheres. In order for the ellipsoid packing to also be jammed, the orientations of the ellipsoids must
be chosen so as to balance the torques on each particle. These orientations also maximize the jamming
density, increasing it beyond that of the disk packing, and we analytically calculated the linear slope of
the density increase with ε for binary ellipse packings. The calculated coefficient is in good agreement with
numerical results. The perturbation of the sphere packing also leads to a rapid increase in the average particle
coordination Z̄, which we attributed to the closing of the multitude of near contacts present in disordered
disk packings. The predicted Z̄ ∼

√
ε is also in good agreement with numerical observations.

The observed peculiar behavior of ellipsoid packings near the sphere point is a consequence of the breaking
of rotational symmetry. Near the sphere point the coupling between particle positions and orientations is
weak and translations dominate the behavior of the system. In this sense sphere packings are a good model
system, and particle shapes close to spherical can be treated as a continuous perturbation of sphere packings.
However, even for aspect ratios relatively close to unity, the perturbation changes the properties of the system
such as density and contact number in a sharp fashion, making sphere packings a quantitatively unreliable
reference point for packings of more realistic particle shapes. Furthermore, even qualitative understanding of
jamming and mechanical rigidity for packings of nonspherical particles requires consideration of phenomena
that simply do not have a sphere equivalent.

We hope that through our work it has become clear that the study of nearly jammed packings requires the
use of mathematical programming techniques. Unjamming motions at very high densities are collective and
involve careful correlated motion of most if not all of the particles in the packing, and such collective motions
cannot be efficiently found using Monte Carlo or Molecular Dynamics methods because of the long separation
of time scales between local rattling motion and collective rearrangements. It remains a challenge for the
future to develop quadratic programming techniques for studying collective rearrangements in packings of
hard ellipsoids. Future work should consider the mathematics of jamming for packings of hard particles
that are convex, but not necessarily smooth or strictly convex. In particular, particles with sharp corners
and/or flat edges are of interest. We also believe that jamming in frictional packings, even for the case of
spheres, is not understood well-enough. It is also important to consider packings of soft ellipsoids and in
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particular develop algorithms to generate them computationally and to study their mechanical properties.
Investigations of the thermodynamics of nearly jammed ellipsoid packings also demand further attention.
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Chapter 6

Free Energy of Nearly Jammed
Packings

In this chapter we present in considerable detail an event-driven molecular dynamics algorithm for measuring
the free energy of nearly jammed hard-particle packings [82]. This Bounding Cell Molecular Dynamics
(BCMD) algorithm calculates exactly the free-energy of a single-occupancy cell (SOC) model in which each
particle is restricted to the neighborhood of its initial position using a hard-wall bounding cell. It is based
on previous MD algorithms appearing in the literature, however, several small but important modifications
enable us to apply it to nonspherical particles as well as to measure the free-energy change during continuous
irreversible transformations. Additionally, we point connections to the well-studied problem of computing
the volume of convex bodies in high dimensions using random walks. We test and verify the numerical
accuracy of the method by comparing against rigorous (asymptotic) results for the free energy of isostatic
disordered packings of both hard spheres and ellipsoids, for which the free energy can be calculated directly
as the volume of a high-dimensional simplex. We also compare our results to previously published Monte
Carlo results for hard-sphere crystals and find excellent agreement.

6.1 Introduction

Calculating the absolute free energy of atomic and molecular systems is a fundamental problem in compu-
tational physics [178]. Knowledge of the absolute free energy of various phases gives the phase diagram and
identifies the phase transitions in the system. In recent years several problems for calculating free energies
have received great attention, and conflicting claims have emerged. For example, the determination of the
thermodynamically stable solid phase of the hard-sphere system [179, 45, 46] and the determination of the
configurational entropy of supercooled liquids [180, 181, 182, 183] are still not settled. The latter problem
in particular is of significant importance since it provides insight into the validity of ideal glass transition
theories, thus addressing one of the most fundamental open problems in statistical mechanics.

Hard-particle systems are an excellent substrate for such studies because of the balance they offer between
a simple model and resulting complex behavior. They have been shown to exhibit a variety of phases
including liquid, solid, liquid crystal and glassy. Furthermore, they can be simulated with very fast specialized
simulation techniques. Calculating the free energy of structured phases such as solid, glassy and liquid crystal
phases is a particular challenge, and various approaches have been developed, mostly using Monte Carlo (MC)
algorithms [178]. Hard-particle systems are however best simulated using event-driven Molecular Dynamics
(MD) algorithms [11]. We present in detail an algorithm for computing the free energy (equivalently, entropy)
of nearly jammed hard particle packings, i.e., hard-particle systems where diffusion can be ignored and
particles remain localized in the vicinity of their initial configuration for long times. Note that (nearly)
jammed packings are not in thermodynamic equilibrium and therefore the free energy we calculate is not the
equilibrium free energy at the given packing fraction (density), but rather, it is the free-volume contribution
to the thermodynamic free energy. We have successfully applied the algorithm to disordered (glassy) jammed
hard-sphere packings and demonstrated that previous claims of an ideal glass transition in binary hard-sphere
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systems need to reevaluated [57, 83].
The algorithm we develop fits directly into the collision-driven MD algorithm which we developed in detail

in Ref. [11] and reviewed in Chapter 3. Our Bounding Cell MD (BCMD) algorithm is based on the tether
method of Speedy [184] and calculates the free-energy of a single-occupancy cell (SOC) model [179] in which
each particle is restricted to the neighborhood of its initial position using a hard-wall bounding cell. The
BCMD algorithm can be applied to nonspherical particles, and it can measure the free-energy change during
continuous irreversible transformations, unlike previous MD algorithms. We test and verify the numerical
accuracy of the method by comparing against rigorous (asymptotic) results for the free energy of isostatic
disordered packings of both hard spheres and ellipsoids, for which the free energy can be calculated directly
as the volume of a high-dimensional simplex. Previous algorithms have only been verified by comparing to
earlier results obtained with similar methods, or other indirect methods, and this is the first time that the
free-energy of a nontrivial hard-particle system has been calculated with a deterministic method. We also
compare our results to previously published Monte Carlo results for hard-sphere crystals and find excellent
agreement. We also discuss the connections of our algorithm to the best-known algorithms for computing
the volume of convex bodies in high dimensions, as well as the effects of boundary conditions.

In Section 6.2 we provide a brief mathematical introduction to the problem, focusing on the jamming
limit for hard particle packings. We then describe the BCMD algorithm in Section 6.3 in considerable detail,
and give an illustrative example in Section 6.3.5. We apply the algorithm to hard-sphere crystals as well as
isostatic jammed packings of spheres and ellipses in Section 6.4, and verify its high numerical accuracy.

6.2 Background

We consider a (thermal) system of hard particles with covering fraction (or density) φ, characterized by the
particle displacements ∆Q = (∆q1, . . . ,∆qN ) from an ideal collectively jammed [71] configuration QJ with
jamming density φJ . For simplicity we will focus on sphere packings and denote the configuration with R
unless specifically focusing on nonspherical particles, in which case we will revert to Q. Depending on the
boundary conditions, Q may include additional degrees of freedom, for example, the lattice vectors defining
the periodic unit cell, and also certain additional constraints, such as freezing the center of mass, may be
imposed, leading to a total of Nf ∼ Ndf degrees of freedom.

We are concerned here with nearly jammed packings, where the particles are shrunk from the terminal
jamming point (RJ , φJ) to a reduced density φ = φJ (1− δ)d ≈ φJ (1− dδ), where δ ≈ ∆µ is a small
jamming gap. The configuration point R = RJ + ∆R remains trapped in a small neighborhood J∆R

around RJ [165], called a jamming basin. For the purposes of this work, it is not necessary that the packing
be rigorously trapped inside J∆R. Instead, we can consider J∆R to be the region of configuration space
explored by the packing on the time scale of the observation, that is, the region of configuration space which
makes an appreciable impact on the measured thermodynamic properties of the system. Let the number of
particle pairs which participate in trapping the configuration inside J∆R be M . That is, J∆R is bounded
by M surfaces determining the impenetrability condition between nearby particles. In the jamming limit M
becomes the number of true particle contacts.

Two fundamental assumptions are that J∆R is bounded (i.e., the displacements of the particles from
the jammed point are finite), and that J∆R is explored ergodically on the time scale of the measurement of
thermodynamic properties such as pressure. In particular the last part enables us to separate the configu-
rational from kinetic portions of phase space. These assumptions allow us to consider both nonequilibrium
metastable systems such as disordered packings and equilibrium ones such as perfect crystals. Even in the
equilibrium crystal there are occasional very large density fluctuations and therefore particle displacements,
and additionally, there are diffusing defects such as vacancies and dislocations. However, at sufficiently high
densities, the thermodynamic properties are primarily determined by the configurations close to the perfect
crystal. For metastable systems sufficiently long timescales will eventually lead to large particle rearrange-
ments into the equilibrium configuration, however, such systems can be observed in metastable disordered
packing configurations for sufficiently long times as to make meaningful measurements. In a sense, the tech-
niques presented in this work can be applied to any system where diffusion can be neglected. Free energy is
a concept that strictly speaking applies only to systems in thermodynamic equilibrium, and the free energy
we compute is in fact only the free-volume contribution to the thermodynamic free energy of the system.
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However, phrases such as“free energy of the FCC/HCP lattice”or“free energy of a glass”are used commonly.
One can formally make the concept of free energy well-defined for non-equilibrium states by restricting the
parition function to configurations in the vicinity of a reference jammed packing; we will do this by use of a
cell model in Section. 6.3.

The fundamental problem considered here is computing the logarithm of the volume of the body V =
|J∆R| in configuration space. In a slight abuse of (equilibrium) thermodynamic nomenclature, we will refer
to this as the (non-normalized) free-energy

F = − ln |J∆R| = Nf,

where f is the sought-after free-energy per particle, presumed to be independent of N for sufficiently large
systems. Note that since there is no internal energy for hard-particle systems we can fix kT = 1 and also the
free energy is simply the negative of the entropy. We want to alert the reader that the choice of f to denote
(intensive) free energy conflicts with our notation for forces. In this Chapter we denote interparticle forces
via ~f , in the spirit of forces being vectors.

6.2.1 Jamming Polytope

As discussed in Sections 4.3.1.1 and 5.7.1, for first-order jammed packings, as sphere packings always are, in
the jamming limit δ → 0 the set of displacements that are accessible to the packing J∆Q approaches a convex
polytope P∆Q [52, 145], given by Eq. (5.23). Complications to this simple and intuitive jamming polytope
picture arise for hypostatic packings of nonspherical particles, as discussed in Section 5.7.2. In particular,
J∆Q does not approach a polytope in the jamming limit, but rather, it can have some curved (quadratic)
surfaces which cannot be linearized no matter how close to the jamming point. Due to this additional layer
of complexity, we will not try to study such jammed hypostatic ellipsoid packings analytically in this work.
Instead, we will produce first-order jammed packings of ellipses for which the polytope picture applies. Since
the translational degrees of freedom have a length scale while the rotational do not, we renormalize all
distances so that the linear extents of each particle are dimensionless, for example, the smallest semiaxes of
an ellipsoid is unity1. Note that the molecular dynamics numerical algorithm works even for second-order
jammed packings.

The polytope P∆Q is determined by the system of linear inequalities AT ∆Q ≥ −δe, where we have
assumed that all spheres have diameter D = 1 (using the notation of Chapter 4) or that the smallest
semiaxes of all ellipsoids is unity2 (using the notation of Chapter 5). Therefore, when studying the jamming
limit we can focus on the normalized jamming polytope

Px : AT x ≥ −e, (6.1)

which can be scaled by a factor of δ along all coordinate directions in order to obtain P∆R. In particular, the
volume scales in a predictable manner, |P∆Q| = δNf |Px|. The free energy thus diverges in the well-known
free-volume [52] logarithmic fashion,

f = −df ln δ − ln |Px|
N

= −df ln δ − fJ , (6.2)

where the fundamental constant fJ is determined by the geometry of the jammed state. Computing fJ

reduces the well-known #P-hard problem of computing the volume of a polyhedron in high-dimensional
spaces. In general this problem is very difficult and takes exponentially long in the number of dimensions
[185], and our attempts to use state-of-the-art software for computing the volume of polyhedra in high
dimensions [186] have failed even for relatively small system sizes due to computational limitations.

1A more consistent choice would have been to follow the sphere example and make the smallest axes (diameter) unity,
however, the usual overlap function used for spheres (the interparticle gap) differs by a factor of 2 (near jamming) from the
PW overlap potential.

2A more consistent choice would have been to follow the sphere example and make the smallest axes (diameter) unity,
however, the usual overlap function used for spheres (the interparticle gap) differs by a factor of 2 (near jamming) from the
PW overlap potential [c.f. Eq. (5.23)], and this normalization of lengths makes the jamming polytopes have right hand sides
of −δe for both spheres and ellipsoids.
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6.2.2 Isostatic Packings

An especially tractable case arises when the jammed configuration is isostatic, in the sense that M = Nf +1.
In this particular case the jamming polytope is a simplex, whose volume can be computed exactly easily (see
Fig. 4.1 for an illustration). We have derived a formula for computing the volume directly from the rigidity
matrix [187], specifically,

|Px|−1 = Nf !
∣∣∣Ã∣∣∣ ∏

ij

~fij , (6.3)

can be calculated using common (sparse) linear-algebra operations. Here the augmented rigidity matrix

Ã =
[

A
e

]
(6.4)

is invertible, and the vector
~f = Ã−1

[
0
1

]
≥ 0,

has the physical interpretation of normalized (to a unit sum, rather than unit mean) interparticle forces
appearing in the force-chains near the jamming point [75]. The derivation of this fact for a general simplex
is given in Section 6.2.2.2. In Section 6.2.2.3 we discuss the behavior in the thermodynamic limit N → ∞
and find that the (intensive) free energy per particle is well defined even for infinite packings, and is related
to the density of vibrational states of the isostatic solid.

6.2.2.1 The Augmented Rigidity Matrix

In this section we give some useful relations concerning the augmented rigidity matrix (6.4) and its relation
to the rigidity matrix A. One can view Ã as a generalized rigidity matrix that includes the density (particle
growth) as an extra degree of freedom, as discussed in Chapter 5. The rigidity matrix A for an isostatic
packing is not invertible, however, if we remove a contact {i, j}, i.e., we remove the (last) column a = Aij

from the rigidity matrix, the remaining square submatrix B is invertible. The augmented rigidity matrix
becomes a [2× 2] partitioned matrix

Ã =
[

B a
eT 1

]
,

and its inverse is

Ã−1 = α

[
B−1

[
α−1I +

(
aeT

)
B−1

]
−B−1a

−eT B−1 1

]
,

where
α =

(
1− eT B−1a

)−1
.

Note that
∣∣∣Ã∣∣∣ = α−1 |B|. The interparticle forces are

~f = α

[
−B−1a

1

]
.

It is useful to explicitly calculate the vertex v = xij of the simplex AT x ≥ −e, corresponding to the
contact ij. This vertex is the solution to the linear system of equations BT v = −e, v = −B−T e, which
is exactly the last row in Ã−1, scaled by α. Therefore, an efficient way to calculate all of the vertices of a
simplex is to calculate Ã−1 and then normalize each row so that the last column has all unit entries. The
rows of the renormalized inverse of the augmented rigidity matrix are the vertices of the simplex. Note that
the distance from the vertex v to the ij face of the polytope is hij = 1 + vT a = α−1 = 1/~fij .
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6.2.2.2 The Volume of a Simplex in the H-representation

Consider the simplex S given in the (hyperplane) H-representation,

Ax ≤ b,

where b > 0 (this simply guarantees that the simplex has a positive volume and 0 is an interior point), and
x ∈ Rn. Here A itself is not invertible (it is not square), however,

Ã =
[

A b
]

is invertible. Therefore, let’s append an artificial variable x0,

x̃ =
[

x
−x0

]
,

and go to (n+ 1)-dimensional space, where S is given by

Ãx̃ ≤ 0 and x0 = 1.

Consider now the transformation of variables

x̃ = −Ã−1y

with Jacobian J =
∣∣∣Ã∣∣∣−1

, which transforms S into a slightly modified version of the standard simplex S̃,

y ≥ 0 and aT y = 1.

Here a is the last row of Ã−1, that is

a = Ã−T

[
0
1

]
.

It is easy to see that the volume of S̃ is

Ṽ −1 = n!
n+1∏
i=1

ai,

which directly gives the volume of S by virtue of the constant Jacobian

V −1 = n!
∣∣∣Ã∣∣∣ n+1∏

i=1

ai. (6.5)

All of the quantities involved here can be calculated very quickly from an LU decomposition of Ã, the

determinant from the diagonal of L and U , and a from the solution to ÃT a =
[

0
1

]
. The calculation can

be made performed in sparse mode if A is sparse, by using common tricks to handle the dense column b.
It is unusual that we have not found in the literature any direct prescription for calculating the volume of

a simplex in the H-representation. The standard formula quoted in most elementary textbooks is expressed
in very simple form in the (vertex-based) V-representation. It is however not computationally efficient to
transform to the V-representation just for the purposes of computing the volume, instead, Eq. (6.5) should
be used.

6.2.2.3 Simplex Volume in the Limit N →∞

It is worth considering the limit N →∞ for an isostatic jammed packing more closely. We can rewrite the
an explicit formula for the volume of the simplex, Eq. (6.5), as

fJ =
ln |Px|
N

= df − df

ln
∣∣∣Ã∣∣∣
M

− df

∑M
i=1 ln ~fi

M
, (6.6)
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where Ã is the (augmented) rigidity matrix, and ~f are the compressive contact forces between the particles
at jamming [75]. These forces are in static equilibrium, A~f = 0, normalized to unit mean,

∑M
i=1

~fi = M ,
and are positive, ~f > 0. As N → ∞ the magnitudes of these forces follow a probability distribution Pf (~f),

so that the last term in Eq. (6.6) above becomes an integral df

〈
ln ~f

〉
= df

∫
Pf (~f) ln ~fd~f . We have studied

this probability distribution in Ref. [75] and found that Pf (0) > 0, indicating that the polytope picture does
not apply strictly since the simplex is not closed. This does not pose problems when calculating fJ since the
logarithmic function is integrable, giving a finite contribution to fJ independent of N .

It would also be useful to give a physical interpretation to the second term in Eq. (6.6). We can do this
by noting that

ln |A|
M

=
1

2M
ln

∣∣AAT
∣∣ =

1
M

Nf∑
i=1

ln
√
λi(H) =

1
M

Nf∑
i=1

lnωi =
∫
Pω(ω) lnωdω, (6.7)

where H = AAT . As we derived in Section 5.8, the dynamical matrix (Hessian) for energy minima in
soft-sphere systems in the high stiffness limit, or equivalently, in the limit of no internal stresses ~f → 0, is
AKAT , where the diagonal matrix K contains the stiffness coefficients along its diagonal. Therefore, H1

is the dynamical matrix in the case of all stiffnesses being unity, and its eigenvalues are the squares of the
(harmonic) vibrational eigenfrequencies ωi . Essentially, the problem reduces to calculating the density of
states Pω(ω) for a system of oscillators of unit mass coupled with springs of unit stiffness, where springs are
placed between all pairs of touching spheres. It is exactly this density of states which has been calculated
in Ref. [188], where it was found that Pω(0) > 0, indicating an excess of low-frequency vibrational modes
(so-called Boson peak).

We can even combine the last two terms in Eq. (6.6) if we consider the density of states Pω(ω) when
the stiffness constants of the harmonic springs are made proportional to the square of the compressive force,
K = ~F2, to obtain

fJ =
ln |Px|
N

= df − df

∫
Pω(ω) lnωdω. (6.8)

This equation is surprisingly similar to that used for the vibrational entropy of glasses around their inherent
structures in the so-called harmonic approximation [178]. This shows an interesting and potentially deep
connection between packings of hard spheres and inherent structures (glasses) of soft spheres, at least under
the identification of spring constants proportional to the square of the contact force, as is the case, for exam-
ple, for logarithmic springs. Such highly nonuniform interactions are not usually used for soft sphere glasses,
for example, Ref. [188] uses springs of uniform stiffness, and it may be the very high anharmonicity of the
hard-sphere potential makes such stiff interactions more appropriate for hard sphere systems. In particular,
preliminary calculations show that the resulting density of states Pω(ω) with nonuniform stiffnesses diverges
at ω = 0 as ω−1/2. Alternatively, it may be that the limit of zero compressive force is not appropriate and
one must take into consideration the internal stresses in the packing [177]. It has been proposed in Ref.
[173] that the “effective” potential between hard spheres in isostatic packings is logarithmic, with stiffness
constant proportional to the square of the interparticle force, although the argument used there does not
actually prove that the free energy is actually connected to the vibrational free energy of the corresponding
logarithmic spring soft-particle system. The Pω(ω) observed in Ref. [173] using such logarithmic springs
does appear to diverge at ω = 0 as ω−1/2, although the exact exponent is not reported.

The important point here is that the simplex picture enables us to derive Eq. (6.8), which can be easily
applied to infinite systems even though the simplex picture itself breaks down for very large disordered
packings [75]. Additionally, it reveals surprising analogies with the vibrational entropy of inherent structures
of soft-sphere glasses. However, Eq. (6.8) does not directly apply to hyperstatic systems such as the triangular
or the FCC crystals, and it is an interesting open question to generalize it to such systems.

6.3 Molecular Dynamic Method for Measuring f

Traditional molecular simulation methods can only measure the difference in free energy between two states,
typically by constructing a reversible path between the two states, one of which has known free energy [178].
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The problem is usually in finding a state for which the free-energy is known analytically, and which can be
connected to the state of interest by a reversible path free of (first-order) phase transitions. The classical
molecular dynamics (MD) method for hard-sphere crystals is to use the so-called single-occupancy cell (SOC)
model, in which space is partitioned into N cells, typically the Voronoi polyhedra of the unit cell, and the
centroid of each particle is constrained to remain fully within its (polyhedral) cell [179]. In the high density
limit the system is (virtually) indistinguishable from the unconstrained crystal, and in the low-density limit
the system is an SOC ideal gas, the free-energy of which can be calculated easily. The classical Monte Carlo
(MC) method on the other hand uses a crystal state in which the particles are constrained to remain within
a small neighbourhood of the equilibrium crystal sites by virtue of strong harmonic springs (the so-called
Einstein crystal) [44]. In the limit of very stiff springs the hard-particle interactions become negligible and
the free-energy can be calculated exactly. Both of these methods have major disadvantages. The MD method
requires a complicated polyhedral cell complex, which would be rather non-trivial to construct for non-crystal
packings or for systems of nonspherical particles. The MC method on the other hand requires introducing
“soft” (spring) interactions into an otherwise hard-particle problem, so that special efficient hard-particle
techniques such as event-driven MD cannot be substituted for MC. Additionally, both methods have an
approximate (extrapolated) termination criterion, one in a limit of zero density, the other in the limit of
sufficiently strong interactions.

The MD method developed here essentially combines the two methods to obtain a method which uses
only hard-particle interactions and is also readily applicable to disordered configurations and to nonspherical
particles. Additionally, it has a well-defined termination criterion. It is based on the tether-method that
Speedy introduced for spheres [184], however, with some important improvements and generalizations, as we
explain shortly. In particular, the term tether-method is not appropriate for nonspherical particles, instead,
we prefer to continue to think of this as a cell-method, but with a wiser choice of cell than Voronoi polyhedra.
We will call the method the Bounding Cell MD (BCMD) algorithm. It fits directly into the collision-driven
MD algorithm which we developed in detail in Ref. [11].

6.3.1 Basic Algorithm

The algorithm for performing hard-particle MD described in Ref. [11] is collision-driven (event-driven),
meaning that the algorithm makes predictions on when two particles collide and then jumps from collision
to collision asynchronously. For the purposes of improving the computational efficiency of the algorithm,
near-neighbor lists (NNLs) were introduced in Ref. [11] through the concept of a bounding neighborhood,
which we will call bounding cells in this context. Namely, for a given snapshot configuration of the packing,
each particle is surrounded by a cell which has exactly the same shape as the particle itself, but is scaled
uniformly by a scaling factor µ = 1 + ∆µ. The volume of the cell is thus Vc = µdVp, where Vp is the volume
of the particle. Each particle only predicts collisions with the particles whose bounding neighborhoods/cells
overlap with its own, and also predicts collisions with its own bounding cell. The BCMD algorithm uses
exactly this same machinery, with one important difference: When a particle collides with its cell, instead
of rebuilding its list of near neighbors as done in Ref. [11], the particle bounces off the cell wall as if the cell
has hard walls.

This is just like the single-occupancy cell (SOC) system used in Ref. [179], however, with cells which
do not necessarily cover space and which have the same shape as the particles, rather then being complex
polyhedra. We now focus on solid-like systems, meaning that there is no or very little free diffusion, so that
over long periods of time the particles do not move far away from their initial positions (i.e., the centers of
the cells). When the cells are very large, that is, µ = µmax � 1, the SOC system is indistinguishable in its
thermodynamic properties from the unconstrained system. In the limit µ→ 1, the cells will become disjoint
and the system becomes a collection of N independent particles, which can be treated analytically. We will
assume that there exists a µmin > 1 for which the cells are fully disjoint. This can always be assured by
preparing the initial state more carefully or by shrinking the particles slightly.

The basic idea of the BCMD algorithm is to connect the two states, one with large-enough and the other
with small-enough cells, via a thermodynamically reversible (quasi-equilibrium) path. We do this in the our
MD simulation by simply slowly reducing the scaling factor during the course of the MD simulation

µ = µmax − γµt
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with a constant cell reduction rate γµ. The algorithm developed in Ref. [179] already has allowance for
a potentially changing shape of colliding particles, and therefore the introduction of a bounding cell with
a changing shape poses no additional technical issues. During the course of the MD we can measure the
average reduced pressure on the walls of a cell pc = PcVc/kT and then obtain the change in free energy as
the work done in shrinking the cells

fc (∆µmin)− f =
∫ V max

c

V max
c

pc
dVc

Vc
. (6.9)

We will assume that one can calculate fc (∆µ) theoretically, and thus Eq. (6.9) gives us f . For example, for
spheres of unit diameter we have the trivial result

fc (∆µ) = −df ln∆µ− lnVp, (6.10)

and in general for particles with unit dimensions

fc (∆µ) = −df ln∆µ− fJ
c , (6.11)

where fJ
c is a constant which depends on the exact particle shape, fJ

c = ln(π/6) for spheres.
The BCMD method is inspired by and closely related to the tethered-spheres method of Speedy [184].

Speedy describes this method for spheres as having the center of each particle tied with a tether to its initial
position, and then considers changing the length of the tether in fixed finite increments, performing MD, and
measuring the average tether force. He also points out the implicit presence of cells. One naturally extends
the algorithm to nonspherical particles by adopting the cell picture. Additionally, we continuously change
the cell size with time and adjust our MD algorithm accordingly, rather than using fixed finite steps. This
offers more than just computational convenience. Namely, it gives a control parameter, γµ, which can be
used to control the accuracy of the results: Reducing γµ improves the accuracy by both allowing for better
equilibration and by increasing the number of collisions processed (and thus the overall statistical accuracy).
More importantly, as we will explain in the next section, one can directly obtain the change in free energy
from the change in kinetic energy of the system, thus obviating the need to define and measure3 “pressure”
and integrate it numerically after the simulation has finished, using potentially artificial interpolation. This
not only improves the accuracy, but also enables one to calculate change in “free energy” in nonequilibrium
processes where dynamics does matter and one cannot stop the simulation at specific points, such as the
production of glasses by (relatively rapid) quenching.

We note in passing that recent Monte Carlo switch methods can more directly (and thus accurately)
measure the difference in free energies between two states by directly switching from one state to the other
[189]. It would be interesting to investigate such methods where the two states are the large and small cell
states.

6.3.2 Elastic Collision Law

An important detail which has not been discussed carefully enough in the literature is the collision law for
particle-particle and particle-wall collisions in the presence of a deforming particle shape or deforming wall.
The collision law that we use is an elastic one, in the following sense: Linear and angular momentum are
conserved, and the direction of the relative normal surface-to-surface velocity v⊥ at the point of contact
is reversed upon collision (but the magnitude is unchanged). It is most convenient to consider binary
collisions only and then just take the limit that the “mass” of a hard wall goes to infinity. This collision
law corresponds to a non-dissipative collision during which a purely normal exchange of momentum ∆πc

occurs and an additional work Wc = v⊥∆πc is performed in order to maintain the rate of deformation of
the particle/wall shape during the collision. Therefore, even though at first sight such collisions are not
conserving kinetic energy, they are in fact conserving if one takes into account the work done by external
“agents” to change the shape of the particles, cells, or container. The first work we are aware of where such
collisions are considered is Ref. [12], and there an adjustable parameter h is left in the collision law, and

3For example, for nonspherical particles the force exerted by the particle on the walls of the cell is nonuniform, so that in
principle a pressure tensor needs to be considered.
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its choice is considered free. In fact, the actual choice made there corresponds to the above “conserving”
(elastic) collision law, and is thus the best choice possible.

Using energy-conserving collisions enables us to calculate the change in free energy during a continuous
transformation of the system by simply considering the change in kinetic energy of the particles. For example,
the change in kinetic energy as the cells are shrunk during the cell method, or as particles are grown in size
in order to produce jammed/glassy packings, or as the particles go from nonspherical to spherical, or as
the shape of the simulation box shears from cubic to sheared-cubic, etc. Virtually any quasi-equilibrium
transformation can be studied by simply performing it using collision-driven MD and letting the kinetic
energy K increase or decrease spontaneously, to give the change in free energy

∆f =
df

2
ln

K

K0
. (6.12)

In Section 6.3.3 we derive this formula for the BCMD method by looking at the algorithm in high-dimensional
configuration space, giving us a unique perspective on the key elements of the algorithm that enable mea-
surement of configurational volume to be done by performing (molecular) dynamics.

6.3.3 Billiards Algorithm for Volume Calculation

In this section we look at the BCMD algorithm in high-dimensional configuration space in order to understand
how it actually measures the free volume and also how it can be applied as a general algorithm for measuring
the volume of a (nearly) convex body in high dimensions. We also compare it to known efficient algorithms
for measuring the volume of a convex body in high dimensions.

The motion of a nearly jammed hard-particle system in Nf -dimensional configuration space corresponds
to a (point) billiard ball B ∈ RNf elastically bouncing inside the nearly convex closed body J∆R whose
volume V = |J∆R| we wish to calculate. We assume here that the dynamics of the ball is ergodic and
can be analyzed within classical equilibrium thermodynamics. That is, the ball exerts a uniform pressure
P = kT/V on the walls when averaged over sufficiently many collisions with the wall, where the temperature
kT = 2K/Nf measures the kinetic energy of B. The assumption of ergodicity is non-trivial and is usually
assumed to hold when all of the walls of J∆R are semi-dispersing (concave) [190], which is true only for
sphere packings. Physically, ergodicity is often attributed to the presence of a large number of particles,
however, even with a large number of nonspherical particles the dynamics of B can be highly nontrivial and
nonuniform.

The elastic nature of the ball implies that both the kinetic energy and the component of the momentum
parallel to the wall are conserved upon collisions with a stationary wall of J∆R. If a wall is moving due to,
for example, growth in the size of the particles, when B collides with the wall it gets a velocity boost in the
direction normal to the wall such that the normal velocity of the ball relative to the wall is reversed,

vafter
⊥ − v⊥ = −

(
vbefore
⊥ + v⊥

)
,

where v⊥ denotes the (local) normal velocity of the wall. This kind of dynamics ensures that the ball never
sticks to the wall and also implies energy conservation in the following sense. The change in kinetic energy
of the ball is

∆Kc =
m

2
(
vafter
⊥ − vbefore

⊥
) (
vafter
⊥ + vbefore

⊥
)

= v⊥∆πc,

where ∆πc is the momentum exchanged between the ball and the wall. Therefore ∆Kc is exactly the work
done by the moving wall against the force exerted on it by the bouncing ball.

Now consider adding constraints on the displacements of the particles in addition to the nonoverlap
conditions, with some parameter ξ determining how strong these additional constraints are. In isolation, the
additional constraints limit the configuration to some neighbourhood J̃∆R(ξ) around RJ , so that J̃∆R(ξ →
0) = {RJ} and J̃∆R(ξ → ∞) = Rn. For example, in our MD algorithm, we add the constraints that each
particle remain within its bounding cell, and can identify ξ = ∆µ. In a more general situation we could
simply add the constraint that the configuration remain within a hypersphere of radius ξ centered at RJ .
Here we will assume that the volume

∣∣∣J̃∆R(ξ)
∣∣∣ is known. The resulting available region of configuration

space Ĵ = J̃∆R ∩ J∆R interpolates between J∆R for sufficiently large ξ = ξmax and J̃∆R for sufficiently
small ξ = ξmin. A two-dimensional illustration is provided in Fig. 6.1.
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Figure 6.1: An illustration of the BCMD algorithm in a fictitious two-dimensional configuration space. The
surface area of the polygon (J∆R) is obtained by intersecting it with a shrinking disk of radius ξ(t) centered
inside the polygon [J̃∆R], and integrating the surface area (colored purple) of the intersection region (Ĵ ,
shaded in yellow). This surface area is measured from the pressure exerted on it by a ball B bouncing
elastically inside the intersection region.

Our algorithm for measuring |J∆R| essentially consists of dynamically decreasing ξ(t) from ξmax to ξmin

while following the collision dynamics of the billiard ball, and simply measuring the relative change in kinetic
energy K/K0 during the process. This change in kinetic energy comes because of the motion of the walls
of J̃∆R as ξ changes. Namely, consider the short time interval from t to t + ∆t during which the volume
V (ξ) =

∣∣∣Ĵ (ξ)
∣∣∣ decreases by ∆V = Sv⊥∆t, where S is the surface area of J̃∆R contained within J∆R. The

increase in kinetic energy of B during this interval is

∆K = v⊥∆π =
∆π
S∆t

∆V = P∆V = kT
∆V
V (ξ)

=
2K
Nf

∆V
V (ξ)

.

Taking the limit ∆t→ 0 we get a differential equation whose solution gives the volume V = V (ξmax),

ln
V

Vmin
=
Nf

2
ln

K

K0
, (6.13)

where Vmin = V (ξmin) =
∣∣∣J̃∆R(ξmin)

∣∣∣ is known. Equation (6.13) was used to obtain Eq. (6.12).
The basic elements of the algorithm are essentially identical to well-known polynomial algorithms for

computing the volume of a convex body in high dimensions [185]. The majority of these algorithms (other
than the best known algorithm from Ref. [191]) use a random walk through the convex body Ĵ to essentially
estimate the fraction of the surface area of J̃∆R that is contained in Ĵ . The total volume is then calculated as
a product of such fractions, that is, the logarithm of the volume is calculated as a sum (i.e., an approximation
to the integral of the surface area). In our algorithm we use (ergodic) molecular dynamics to estimate and
integrate the fractions as ξ is changed dynamically. We believe that the powerful mathematical techniques
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developed for the analysis of random walk algorithms together with techniques from theory of ergodic billiards
could be applied to analyze the BCMD algorithm and come to quantitatively understand its trade-offs
between accuracy and complexity.

6.3.4 Algorithmic Details

We now turn to some technical details needed when using the BCMD algorithm in practice.
The first concerns the choice of boundary conditions. We have employed periodic boundary conditions

here, which gives d trivial translational degrees of freedom to the unconstrained system. However, when cells
are present, they are fixed in space, breaking the translational symmetry. The usual approach to eliminating
trivial translations is to freeze the center of mass of the particles. In traditional conservative MD this is
done easily by simply ensuring that the initial velocities add to zero. However, collisions with the hard
walls of the bounding cells do not conserve linear momentum. This leads to an artificial increase of the
collision rate of the particles with the cells, particularly at high densities (i.e., near jamming), because the
center of mass oscillates as the excess linear momentum is distributed among the particles through binary
collisions. Speedy proposed to artificially enforce a frozen center of mass by correcting the velocity of all
of the particles whenever a particle collides with a bounding cell. This is rather inefficient; instead, we
have chosen to evaluate the kinetic energy K in the center-of-mass system. For sufficiently large systems,
the corrections due center-of-mass oscillations is small. Another way to eliminate trivial translations is to
freeze one particle (give it infinite mass), which is especially useful near jamming. The two methods are not
equivalent in terms of free energy. The difference in free energy due to this change of boundary conditions
is shown to be d lnN/N in Section 6.3.4.1.

The second technical issue concerns that of adjusting the reduction rate γµ. The rule of thumb is to keep
it small enough so that the actual linear velocity of the moving cell walls is small (say 10−3 times smaller)
compared to the average particle velocity. Keeping γµ constant, however, uses too much computer time for
large µ, a region which actually contributes little to the total configurational volume, and too little on small
µ, where more precision is actually required. We have chosen to implement an periodic adaptive change of
the reduction rate4

γµ (µ) = γµ (µmax)
(

∆µ
∆µmax

)ϑ

,

where ϑ is an exponent, which we have usually kept in the range 0.25−1, depending on the size of the system
and the initial γµ (µmax) as well as the ratio ∆µmin/∆µmax. It is important to consider the convergence of
the BCMD method in more detail using existing powerful mathematical techniques and try to determine
a theoretically sound γµ (µ) that would provide a desired total error in f with reasonable confidence5. At
present, we do not have such a theory and therefore are unable to quote rigorous error bars on our results other
than statistical fluctuations among samples and also estimated errors from different runs with successively
smaller γµ (µmax) or larger ϑ.

The final technical point concerns the actual practical implementation of the BCMD algorithm for el-
lipses/ellipsoids. As explained in the second part of Ref. [11], the numerical calculation of overlap potentials
in the case of one ellipsoid contained inside another is numerically unstable and causes difficulties in the cor-
rect prediction and processing of collisions with the bounding cells. While the occasional numerical failures
can be tolerated when the bounding neighborhoods are used only for speeding up the neighbor search in the
MD algorithm, they become an insurmountable obstacle with the cell method, especially when the cells are
disjoint or nearly disjoint. This is because a wrong collision prediction can lead to a particle leaving its cell
permanently. We have not really found a satisfactory solution to this problem, and have been forced to use
reduction rates γµ sufficiently fast so that such failures are unlikely to appear.

An additional technical difficulty when dealing with ellipsoids is the fact that there is no analytical
equivalent to Eq. (6.10). One possibility is to calculate fc for a particle inside its cell numerically by
following a reversible path to a known system. Two possibilities include the case of an infinitesimally small
particle, reducing to a one-particle ideal gas inside a container of volume Vc, or the case of a spherical
particle inside a spherical cell. The first system can be reached by shrinking the size of the particle slowly,

4Note that in the actual implementation γµ is updated periodically, rather than continuously.
5It is reasonable to assume that an error of the order ln N/N is acceptable since finite-size effects are of this order [192].

This means that the configurational volume only needs to be determined to within a factor of ln N .
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and the second by reducing the asphericity. We have implemented both options in our MD codes, however,
as explained above, numerical difficulties are a problem. For this reason we (semi)analytically consider the
case of an ellipse of aspect ratio α = 2 inside a bounding cell in Section 6.3.4.2, to obtain fJ

c ≈ 2.269. We
have verified this result (to within the precision possible) with the MD algorithm by calculating the change
in free energy as the ellipses and the cells were slowly transformed into disks while keeping ∆µ fixed by
shrinking the larger semiaxis to unity. Namely, for small-enough ∆µ the change in free energy during such
a transformation is known analytically to be

∆fsphere = − ln
[
π

(
π∆µ2

)]
−

[
−3 ln ∆µ− fJ

c

]
= ln∆µ+ fJ

c − 2 lnπ,

where we have used the fact that a disk has full rotational freedom (contributing a factor of π to the
configurational volume).

6.3.4.1 Frozen Particle vs. Frozen Center of Mass

The easiest way to eliminate the d trivial translational degrees of freedom is to freeze one of the particles, say
the first one, ∆R1 = 0, which simply amounts to deleting the d rows of the rigidity matrix corresponding
to that particle. Another method is to freeze the center of mass,

∑N
i=1 ∆Ri = 0, which amounts to adding

d columns to the rigidity matrix. When performing MD in the NV T ensemble, the center of mass is frozen
by virtue of momentum conservation. However, it is also possible to freeze a particle, so that collisions with
it no longer conserve momentum.

The two different boundary conditions do not give the same free energy. However, the difference can be
readily calculated. When one particle is frozen the natural set of independent coordinates are the displace-
ments of the other N − 1 particles (coordinate system F ). When the center of mass is frozen we can choose
the same set of independent coordinates since the displacement of the frozen particle is just the negative
sum of the other displacements (coordinate system CM). The transformation between these two coordinate
systems is

∆RCM = ∆RF − 1
N

N−1∑
i=2

∆RF
i = J∆RF

where the Jacobian J = I−∆J and ∆J is a block matrix made up of d×d diagonal blocks which have −1/N
on the diagonal. The determinant of this Jacobian can be calculated to be

|J| = 1
Nd

,

which relates the ratios of configurational volumes in the two different coordinate systems. For the free
energy per particle we thus have the transformation

fCM = fF − d lnN
N

,

the difference of course vanishing in the infinite system limit. A term of the order lnN/N is the leading
finite-size correction in other free-energy methods as well [192].

6.3.4.2 The Free Energy of an Ellipse in a Cell

In this Section we consider analytic expressions for the free energy of an ellipse of aspect ratio α enclosed
in a fixed cell that is of the same shape but 1 + ∆µ times larger, in the limit of small ∆µ. In this limit
we can linearize the nonoverlap condition between the inner and outer ellipses. However, unlike the case of
two disjoint ellipsoids, there is no unique contact point around which to linearize the nonoverlap. Instead,
every point on the ellipse is a potential contact point, and therefore the linearization of the nonoverlap
condition consists of infinitely many linear inequalities. For a given potential contact rc on the ellipse with
a (normalized) normal vector n, the linearized nonoverlap condition is

nT (∆r + ∆ϕ× rc) ≤ ∆l = ∆µ
(
nT rc

)
, (6.14)
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where ∆r and ∆ϕ are the translational and orientational displacement of the ellipse, and ∆l is the gap
between the “surfaces” of the inner and outer ellipse. Since the ellipse is a smooth convex shape the mapping
between n and rc is unique [11],

rc =
X−1n√
nT X−1n

,

where X = Diag{1, α−2}. The three dimensional convex set of allowed displacements of the inner ellipse
J∆q is bounded by the infinite collection of linear inequalities in ∆q = (∆r,∆ϕ) as given by Eq. (6.14), for
all n = (cos θ, sin θ). We are interested in calculating its volume. It is clear that its extents scale linearly
with ∆µ, and its volume is therefore V (∆µ) = ∆µ3V (∆µ = 1). We can thus focus on the case ∆µ = 1.

It is not trivial to calculate the volume V (J∆q). We approached the problem by considering a fixed ∆ϕ
and then attempting to find an analytic representation of the resulting planar set of feasible ∆r, J∆r, so that
its area can be calculated. For example, for the trivial case ∆ϕ = 0, J∆r is simply an ellipse of aspect ratio
α (this is easy to see geometrically). The maximum possible ∆ϕ corresponds to only ∆r = 0 being feasible,
and in the particular case α = 2 it is ∆ϕmax = 4/3. Unfortunately, for sufficiently large ∆ϕ the convex J∆r

is not smooth, so that it cannot be parameterized by a continuous family of normal vectors. We therefore
partially resorted to numerical calculations of the area of J∆r(∆ϕ), and then numerically integrated

V =
∫ ∆ϕmax

−∆ϕmax

J∆rd(∆ϕ).

For the particular case of an ellipse with semiaxes 1 and 2 we obtained the final result

fc = −2.268− 3 ln ∆µ.

It is desirable that the general case be worked out analytically, particularly for ellipsoids in three dimensions.

6.3.5 Illustrative Example: Dense Hard-Sphere Liquid

As an illustration of the BCMD algorithm we apply it to a system which is at the limit of the method’s
applicability: A dense hard-sphere liquid near the melting point, at φ = 0.5. This is still a liquid and thus the
particles diffuse freely given sufficient time, and the cell method is not rigorously applicable. However, adding
the cells stabilizes the liquid in the neighbourhood of its initial configuration for long periods of time, thus
allowing the measurement of the free-energy for a metastable cell-constrained liquid (CCL). This free-energy
is certainly larger than that of the unconstrained liquid, which has more free volume available to explore.
If one assumes that one can divide this liquid free volume into more-or-less Nb equivalent “basins”, each
basin corresponding to a single “glassy” jammed configuration, then the loss of entropy due to the presence
of the cells would be of the order of N−1 lnNb. This assumption about dividing configuration space into
statistically equivalent compartments or basins, though commonly used in the literature, has not really been
justified for the hard-sphere system (where entropy cannot be “turned off” by going to zero temperature).

In Fig. 6.2 we show the results of the cell method as applied to a stable liquid. We show both the
pressure on the cell walls pc, which dominates at µ = µmin, and the internal pressure p, which dominates
at µ = µmax, when it approaches the true (unconstrained) liquid pressure. It is seen that the cell-wall
pressure shows a minimum, as first observed in Ref. [184], when µ ≈ 2, that is, when a bounding cell
corresponds to the exclusion sphere of its particle in the initial liquid configuration. For µ > 2 it appears
that particle rearrangements take place which increase pc. Even though pc has a minimum, it remains positive
throughout due to the diffusion of the particles, and therefore one cannot measure the true free-energy of the
liquid using the BCMD algorithm. Instead, we show in Fig. 6.2 the excess free-energy of the cell-constrained
liquid relative to the ideal gas,

∆fCCL (µ) = f (µ)− fideal = ∆fc (∆µmin)− d
∫ µ

µmin

pc
dµ

µ
.

Here the ideal-gas free energy is trivially

fideal = − 1
N

ln
V N

N !
≈ − ln

V

N
− 1 = − ln

Vp

φ
− 1 (6.15)
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Figure 6.2: Illustration of the BCMD algorithm for a dense equilibrium hard-sphere liquid close to the
melting point, φ = 0.5. We show as a function of the relative size of bounding cells the internal pressure
p as well as the cell-wall pressure pc, along with the calculated excess free energy of the cell-constrained
liquid ∆fCCL (µ). The results from the semi-empirical CS EOS is shown for comparison. It is seen that the
pressure on the cell walls goes through a minimum but is always positive due to the free diffusion of the
particles. The values of pc for large µ are more difficult to measure accurately since they depend on particle
diffusion and they have not been studied carefully.

and therefore
∆fc (∆µ) = − ln∆µdVp + ln

Vp

φ
+ 1 = − ln

(
φ∆µd

)
+ 1. (6.16)

In the figure we compare ∆fCCL (µ) to the results predicted by the relatively-accurate Carnahan-Starling
(CS) equation of state (EOS) for the liquid [193],

pCS =
1 + φ+ φ2 − φ3

(1− φ)3
and fCS =

∫ φ

o

p− 1
φ

=
φ (4− 3φ)
(1− φ)2

.

While ∆fCCL (µ ≈ 2) is a reasonable approximation to the true liquid free energy at such high liquid
densities, the difference between the two, called communal entropy by Kirkwood for his single-occupancy
cell liquid model, is not zero and has been estimated a long time ago [194]. Additionally, due to somewhat
arbitrary choice of the cell size (unlike in Kirkwood’s model where the cell partitioning is fixed), the exact
value is not well-defined, and therefore interpretations in terms of number of “inherent-structures” that the
liquid samples are questionable. We will discuss these issues in significant detail in Chapter 13.

6.3.5.1 Rattlers

Computer-generated packings often have rattlers, particles which do not participate in the jammed backbone
of the packing and are free to rattle inside a cage formed by the jammed backbone. Near the jamming limit,
systems with rattlers fall out of equilibrium on the time-scale of the BCMD algorithm because the rattlers
heat up less than the other particles and the equipartition theorem no longer holds. In essence, two time-
scales emerge, a short time scale for the backbone and a long timescale for the rattlers, and the theory in
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Section 6.3.3 no longer applies. The usual “velocity-rescaling” thermostat, i.e., a uniform cooling of the whole
system [11], is not appropriate since it lowers the rattler temperature more than the backbone. A better
thermostat to completely reinitialize all the particle velocities to random values as a way to cool down the
system. This strategy affects the natural dynamics of the system but is necessary because the separation in
time-scales between the dynamics of the rattlers and the jammed particles makes the system nonergodic on
the time-scale of the simulation.
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Figure 6.3: The measured contribution of the 30 rattlers to the excess free energy for a jammed disordered
packing of N = 1000 spheres, r∆fr(µ), as a function of the bounding cell relative size. The non-rattling
particles, i.e., the particles in the jammed backbone, were frozen. For small µ the rattler cells are disjoint
from the backbone in which case the free energy is known analytically (red line). For large µ the presence of
the cells does not make a difference and one can extract the appropriate r∆fr(µ) ≈ 0.4 to use in Eq. (6.17).

For hard spheres in three dimensions, Eqs. (6.2) and (6.15) suggests that in the neighbourhood of the
jamming point the excess free energy (relative to the ideal gas) increases with density as

∆fJ(φ) = b

{
−3 ln

(
1− φ

φJ

)
−

[
ln

(
2bφJ

9π

)
− 1

]
− fJ

}
+ (1− b)∆fr, (6.17)

where b ≈ 1 − 0.025 is the fraction of particles participating in the jamming backbone, and ∆fr is the
contribution due to the trapping of rattlers inside the cage of jammed particles (assumed to be independent
of φ sufficiently close to the jamming point). We can measure the rattler contribution (1 − b)∆fr = r∆fr

by using the BCMD method as follows. We freeze all non-rattling particles and then perform the BCMD
algorithm (in reverse) on just the rattlers, starting with bounding cells small enough so that they are disjoint
with other particles, and ending with cells which are large enough so that they do not affect the rattler free
volume. The resulting excess free energy for the cell-constrained rattler system, scaled by r = 1− b, is shown
in Fig. 6.3. It is seen that even though the fraction of rattlers is small, their excess free energy relative to
the ideal gas is rather high (i.e., the rattler cages are rather tight) and thus the contribution to ∆fJ(φ) is
significant and cannot be neglected if one wants to calculate free energies to accuracy better than 0.1NkBT .

6.4 Results

In this section we present the first testing of the BCMD algorithm against rigorously-known free energies
by applying it to isostatic jammed systems. For these systems, as explained in Section 6.2, the free-energy
in the jamming limit can be found from the volume of a simplex polytope, which can be calculated exactly
easily even for large systems. In the jamming limit we choose to freeze one particle in order to eliminate
trivial translations, so that the effective number of particles N is one less than the true number of particles.
Assuming that we start the cell method at exactly the jammed configuration RJ , the cells will become
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disjoint when ∆µmin = δ. The total change in free energy during the course of shrinking the cells is

∆f =
df

2
ln

K

K0
=

(
−fJ

c − df ln δ
)
− (−df ln δ − fJ) = fJ − fJ

c , (6.18)

where we recall that fJ = (N − 1)−1 [ln |Px|], which can be calculated easily if Px is a simplex, and fJ
c

is known for a given particle shape. We use Eq. (6.18) to rigorously validate and test the accuracy of
the BCMD algorithm. As an initial test, we compare against the highest-precision MC results for hard-
sphere crystals that have appeared in the literature. In subsequent work we will apply the validated BCMD
algorithm to dense liquid and glassy systems further from the jamming point in order to better understand
the thermodynamics of hard-particle metastable liquids and glasses [57, 83].

6.4.1 Hard-Sphere Crystals

The entropy of hard-sphere crystals as a function of density has approximately been known from the early
days of computer simulations [194]. Interest in the problem has surged recently trying to access whether
the FCC or the HCP crystal has lower free energy (and is thus the stable solid phase) [44, 179, 54, 45, 46].
The difference between the two is very small and the literature is filled with contradicting claims and
underestimated error bars. The most accurate results are those produced by MC switch algorithms, which do
not determine an absolute free-energy but rather directly measure the entropy difference between FCC/HCP,
producing a difference of about 1.1 · 10−3NkT in favor of FCC configurations in the jamming limit [45].

The results for the pressures and absolute value of the free energies have been summarized and processed
in Ref. [54], and the most precise quoted MC result for the excess free energy of the FCC crystal over the
ideal gas is close to the melting point, ∆fFCC(φ = 0.545) = 5.91916(1). At the same density, the BCMD
algorithm with ∆µmax = 1, γµ (µmax) = 0.001 and ϑ = 1 produces 5.919(0), which is in excellent agreement.
In the jamming limit, from the data in Ref. [54] we estimate[

fJ − fJ
c

]
FCC

= 2.160± 0.001,

where the exact error bars are difficult to cite since most of the focus has been near the melting point
rather than close packing. Our most precise BCMD runs have involved about 10, 000 spheres at δ = 10−6

and ∆µmax = 10−5 with γµ (µmax) = 0.001 and ϑ = 0.5, giving
[
fJ − fJ

c

]
FCC

= 2.1599 ± 0.0005 and[
fJ − fJ

c

]
HCP

= 2.1593 ± 0.0005, where as pointed out previously the true error bars are not known. The
excellent agreement between our results and the published ones serves as a validation of the algorithm and our
implementation. Unfortunately, the true volumes of the jamming polytopes corresponding to the jamming
limit cannot be calculated exactly for anything but small systems [46], since their combinatorial complexity
is exponential.

The difference in free energy between the FCC and HCP lattices as calculated with the BCMD algorithm
is of the same sign and order of magnitude as the literature results. However, the error bars are significant
and although it is possible to run longer and larger simulations to improve them we believe that without a
rigorous error analysis one should not really engage in trying to decide the“winner”among these two lattices.
Additionally, the impact of vacancies needs to be accessed more carefully. Furthermore, the HCP lattice does
not have full cubic symmetry and therefore the crystal of minimum free energy is slightly compressed along
the hexagonal symmetry axis. Preliminary calculations indicate that both of these effects produce corrections
about an order of magnitude smaller than the reported difference between FCC and HCP, however, more
rigorous results are lacking. Finally, the importance of randomly stacked arrangements is not obvious, despite
the natural assumption that one of the two extremal stacking arrangements (ABA and ABC) will produce
the minimal free energy.

It is interesting to observe that the BCMD method works remarkably well for a solid like the FCC
crystal, even at densities as low as the melting density. This is because the displacements of the particles
from the ideal lattice positions are small (usually Gaussian in density functional approximations) and thus
well-localized around the equilibrium locations. This makes pc(∆µ) a rapidly (faster than exponential)
decaying function which is easy to integrate accurately with little computational effort, as illustrated in Fig.
6.4. This is not the case for disordered packings of monodisperse spheres, where the particle displacements
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are significant and pc(∆µ) decays slowly in a power-law manner. Two-dimensional crystals which lack long-
range translational order are also expected to show significant particle delocalization at densities away from
the jamming density.
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Figure 6.4: Rescaled values of the cell-wall pressure p̃c = δpc as a function of rescaled ∆µ̃ = ∆µ/δ for
several different values of δ for both an FCC crystal packing (N ≈ 104) and an isostatic disordered packing
(N ≈ 103, see Section 6.4.2).We also show for comparison the expected asymptotic dependence in the limit
of disjoint cells, p̃c = ∆µ̃−1, as well as a logarithmic-scale view of the data in the inset. In the jamming limit,
where the polytope picture applies, we expect these rescaled curves to follow a master curve independent of
δ.

6.4.2 Isostatic Jammed Packings: Spheres

We have generated isostatic disordered jammed sphere packings of N = 1000 spheres using the procedures
described in Ref. [75]. These packings have a number of rattlers, particles which are free to move inside a cage
of jammed particles. We remove these rattlers and freeze one particle before applying the BCMD method
in order to make the packings fit the simplex picture exactly, and then we compute the exact free-volume
in the jamming limit from the volume of the simplex using Eq. (6.5). As an illustration, we consider one
of these packings of N = 978 particles (1000 particles with the rattlers), and get fJ − fJ

c ≈ 4.9479 (in the
frozen center-of-mass coordinate system fJ − fJ

c ≈ 4.9690). Table 6.1 shows the results obtained from the
BCMD algorithm at δ = 10−8 with several different choices of the main parameters, illustrating the excellent
agreement with the exact result, especially in the limit of infinitely long runs6. The primary error is likely
due to statistical fluctuations in the kinetic energy due to the relatively small number of particles. It is

6One could potentially improve the precision by extrapolating to, for example, γµ (µmax)→ 0, however here we are primarily
interested in testing the method rather than obtaining the most accurate result.
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important to note that the simplex polytopes for disordered packings are very elongated in certain directions
and therefore require significantly larger ∆µmax/δ than crystal packings.

δ ∆µmax γµ (µmax) ϑ fJ − fJ
c

10−8 2.5 · 10−5 0.1 1.00 4.9476
10−8 2.5 · 10−5 0.01 0.25 4.9480
10−8 1.5 · 10−5 0.001 0.25 4.9458
10−8 2.5 · 10−5 0.01 0.50 4.9493
10−8 2.5 · 10−5 0.01 0.75 4.9485

10−8 (frozen CM) 2.5 · 10−5 0.01 0.50 4.9624
10−7 2.5 · 10−4 0.01 0.25 4.9498
10−6 2.5 · 10−3 0.01 0.25 4.9414

Table 6.1: Results of the BCMD algorithm for an isostatic disordered jammed sphere packings of N = 1000
spheres, with different parameters for the algorithm. The rattlers were removed and one particle was frozen,
except in one case where the center of mass was frozen. In principle the exact answer fJ − fJ

c = 4.9479,
as calculated from the volume of the jamming simplex, should be reached for infinitely long runs as δ → 0.
Typical running times are of the order of several hours to a day on an 1666MHz AMD Athlon PC running
Linux.

In Fig. 6.4 we show the cell-wall pressure as a function of the cell size, illustrating the fact that it decays
very slowly. In fact, this particular isostatic packing (recall, after rattlers have been removed) unjams when
δ ≈ 10−5 without the presence of the cell walls to stabilize it. The difference between the crystal and glassy
packings is striking. For the crystal packings p̃c decays at least exponentially, even at densities as low as the
melting point (φ ≈ 0.545), making it easy to obtain the free energies. However, for the disordered packings
the decay is power-law like, with long tails which are more difficult to integrate accurately. Studies of glasses
further away from the jamming point will be presented in separate work [83], here we focus on the region
where the simplex picture applies.

6.4.3 Isostatic Jammed Packings: Ellipses

As we discussed already, nonspherical particles pose problems to the polytope picture in general and cannot
usually be analyzed within the polytope picture even in the jamming limit. However, it is possible to
(artificially) make isostatic jammed packings which do fit the polytope picture (i.e., first-order rigid packings
[73]). The idea here is to obtain a packing which has 6 − 2/N ≈ 6 contacts per particle, since this is the
number required for an isostatic packing (M = Nf = 3N −2+1 = 3N −1). We cannot use a crystal packing
here since those have exactly 6 contacts per particle and are thus hyperstatic by one contact, and typical
disordered packings of ellipses are usually rather hypostatic, having too few contacts for first-order rigidity.
We therefore started with a triangular lattice of N = 100 disks, replaced each disk with an ellipse of aspect
ratio 2, and then compressed the packing using MD to jamming to obtain a partially disordered packing.
Even these packings had M < 3N−1, however, by freezing 4 of the particles we were able to obtain packings
which had matched number of degrees of freedom and contacts. We then calculated the volume of the
simplex, obtaining fJ − fJ

c = 3.6693 for the packing illustrated in Fig. 6.5. Running the BCMD algorithm
at δ = 10−4 with ∆µmax = 1.5 · 10−2 with γµ (µmax) = 0.001 and ϑ = 0.5 gave fJ − fJ

c = 3.61 ± 0.01,
in reasonable agreement with the known answer. Higher accuracy is hard to achieve at present due to
numerical difficulties in the implementation discussed previously. We note that when using a frozen particle
to eliminate trivial translations only its centroid must be fixed, but not its orientation, since the orientation
of the coordinate system is fixed by the orientation of the periodic unit cell.

An additional possibility which deserves further investigations is using transformations of the particle
shape without any cell models in order to measure free energies. Examples would include superellipses
transforming into ellipses, or ellipses transforming into spheres, etc., while measuring the change in kinetic
energy. The difficulty in such simulations is the identification of reversible paths free of discontinuous phase
transitions, however, the possible increased computational efficiency as well as the ability to study a whole
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Figure 6.5: A sample isostatic jammed (first-order rigid) packing of N = 96 free and four frozen ellipses of
aspect ratio α = 2, used to test the BCMD algorithm on nonspherical particles. This packing was produced
using a complicated artificial procedure as described in the body of the paper, and is not typical of disordered
ellipse packings, which have fewer contacts per particle.

range of particle shapes in one simulations make the method very attractive.

6.5 Conclusions

We developed an MD algorithm for measuring the free energy of systems of hard particles where diffusion is
negligible. By exploiting free-volume theories for the jamming limit of hard-particle packings we were able
to exactly calculate the asymptotic behavior of the free energy of model disordered systems, namely isostatic
jammed sphere and ellipsoid packings. This provided us with a rigorous verification of the numerical accuracy
of the BCMD algorithm. However, a quantitative understanding of the statistical and systematic errors in
the BCMD algorithm is missing. Additionally, quantitative understanding of the connection between hard-
particle systems (where free energy is the volume of a bounded high-dimensional body) and low-temperature
soft-particle systems (where free energy is a weighted volume integral) is important to elucidating the useful-
ness and limitations of hard-particle models of real materials. The algorithm presented here is successfully
applied to the study of the glass transition in hard-sphere systems in subsequent work [57, 83], as described
in Chapter 13.
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(Nearly) Jammed Packings:
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Chapter 7

Packings of Spheres and Ellipsoids in
Finite Containers

In this Chapter we compare the properties of computer-generated packings of hard spheres and ellipsoids
with experimental results for packings of ball bearings, M&M’S Candiesr, as well as manufactured ellipsoids
[78, 79]. For M&M’S Candiesr we can experimentally attain sufficiently large packings to obtain reason-
able estimates of the bulk packing fractions, which can easily be obtained in simulations by using periodic
boundary conditions [78]. The simulations in Ref. [78] predicted the ellipsoid shape which gives the highest
random packing density, namely, that ellipsoids with axes ratios near 1.25 : 1 : 0.8 form bulk amorphous
packings as dense as the densest crystal packing (FCC) of spheres, φbulk ≈ 0.735. We demonstrate that
such dense packings are realizable by fabricating ellipsoids using stereolitography and packing them inside
spherical containers [79]. The analysis of the packings required better understanding of finite-size effects,
and we use both simulations and novel experimental methods to minimize surface effects and to obtain good
estimates of bulk packing densities. We show that, in a sphere, the radial packing fraction φ(r) can be
obtained from V (h), the volume of added fluid to fill the sphere to height h. We also obtain φ(r) from a
magnetic resonance imaging (MRI) scan. The measurements of the overall density φavg, the radial density
distribution φ(r), and the core density ϕo ≈ 0.740±0.005 agree with simulations. This verifies that idealized
computer packings of frictionless hard particles are relevant to the quantitative understanding of real-life
packings of frictional macroscopic particles in a gravitational field.

7.1 Introduction

Hard-particle packings have been intensely studied theoretically, computationally, and also experimentally
[195, 79, 40, 16, 196, 70, 3, 154, 197, 155, 198, 199, 200, 201]. Packings of frictionless hard spheres or
ellipsoids cannot be realized experimentally because hard frictionless particles are an idealization of realistic
particles. However, colloids and granular materials can be synthesized so that the constituent particles are
very good approximations of hard spheres, either by tuning the interaction potential between the colloidal
particles, or by using manufactured particles such as ball bearings, marbles, beads, etc. Obtaining a high
fidelity for the shape of the particle and small polydispersity between different particles is not trivial, and
interaction forces in addition to the hard repulsive core, such as friction or hydrodynamic forces, cannot
be completely eliminated. Boundary conditions, such as the effects of walls and gravity, also cannot be
eliminated [70]. Finally, studying the internal structure of the packings, such as the positions of the particles
and the interparticle contacts and forces, is challenging.

Packings can be studied using both high-school and high-tech approaches. Determining the packing
fraction of a packing in a hard-wall container is as trivial as measuring the volume of liquid that can be
poured into the container. The structure of packings can also be studied by using sophisticated X-ray
micro-tomography [198, 199] or confocal microscopy [16]. In this chapter we apply a variety of methods
to study the packing of hard ellipsoids, with the ultimate goal of verifying the realizability and practical
relevance of the computer-generated disordered packings we studied in Chapter 5. Experiments have been
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done with hard spheres for more than half a century, and it is well-known that experimental packings closely
resemble the MRJ packings obtained through a variety of simulation methods, if the packing is vibrated or
tapped sufficiently to overcome friction and to jam the particles into mechanically stable configurations [195].
Ellipsoids are however hard to manufacture, and to our knowledge ours are the first thorough experimental
studies of disordered packings of hard ellipsoids.

In Section 7.2 we perform experiments on large packings of M&M’S Candiesr, and compare with the
results obtained in simulations using periodic boundary conditions. In Section 7.3 we test whether a random
packing of ellipsoids as dense as φ ≈ 0.74 could be realized experimentally by performing experiments on
relatively small packings of fabricated ellipsoids in spherical flasks, and compare the results against direct
computer simulations of packings inside a spherical hard-wall container.

7.2 Bulk Packing of M&M’S Candiesr

In this first set of experiments, we study large packings of M&M’S Candiesr, a widely-available commercial
product that is an excellent substrate for studying packings of hard ellipsoids, with the goal of obtaining a
good estimate of the packing density of very large packings, i.e., the bulk density φbulk.

The experiments used two varieties of M&M’S Candiesr, regular and baking or ”mini” candies1. Both
are oblate spheroids, with small deviations from true ellipsoids, ∆r/r < 0.01, as illustrated in Figure 7.1.
Additionally, M&M’S Candiesr have a very low degree of polydispersity with principle axes 2O1 = 1.34 ±
0.02 cm, 2O2 = 0.693 ± 0.018 cm, O1/O2 = 1.93 ± 0.05 for regular, and 2O1 = 0.925 ± 0.011 cm, 2O2 =
0.493± 0.018 cm, O1/O2 = 1.88± 0.06 for minis. A set of experiments was performed by filling 0.5 , 1 and
5 liter round flasks (to minimize ordering due to wall effects) with candies by pouring them into the flasks
while tapping (5 liters corresponds to about 23,000 minis or 7500 regulars). Figure 7.1 shows an illustration.
The volume fractions found were ϕ = 0.685± 0.01 for both the minis and regulars2. The same procedure for
30,000 ball bearings in the 0.5 liter flask gave ϕ = 0.635± 0.01, which is close to the accepted MRJ density.
A five liter sample of regular candies similar to that shown in Fig. 7.1 was scanned in a medical MRI at
Princeton Hospital. For several planar slices, the direction θ (with respect to an arbitrary axis) of the major
elliptical axis was manually measured and the two-dimensional nematic order parameter, S2 =

〈
2 cos2 θ − 1

〉
computed with the result S2 ≈ 0.05. This is consistent with the absence of orientational order in the packing
[43]. Compare these results to those in Chapter 5 for the computer-generated packings of N = 1000 oblate
ellipsoids with aspect ratio α = a/b = 1.9, as illustrated in Fig. 5.1, with density of about ϕ ≈ 0.70, and
nematic order parameter S ≈ 0.02− 0.05.

Experimentally, the average contact number Z̄ for spheres was determined by Bernal and Mason by
coating a system of ball bearings with paint, draining the paint, letting it dry, and counting the number of
paint spots per particle when the system was disassembled [201]. Their results gave Z̄ ≈ 6.4, surprisingly
close to isostaticity for frictionless spheres. We performed the same experiments with the M&M’S Candiesr,
counting the number of true contacts between the particles. Near neighbors (even when very close) leave a
spot, touching neighbors leave a spot with a hole in the middle at the contact point. A histogram of the
number of touching neighbors per particle for the regular candies is shown in Fig. 7.2. The average number
is Z̄ = 9.82. In simulations a contact is typically defined by a cutoff on the gap between the particles.
Fortunately, over a wide range (10−9− 10−4) of contact tolerances, Z̄ is reasonably constant. Superposed in
Fig. 7.2 is the histogram of contact numbers obtained for simulated packings of oblate ellipsoids for α = 1.9
, from which we found Z̄ ≈ 9.80. The minimal number of contacts per particle observed in the simulation is
6 (for only three particles), and 7 in the experiment (thus, there are no rattlers).

7.3 Finite Packings

The simulations presented in Chapter 5 predicted that ellipsoids that do not have an axis of rotational
symmetry and have skewness of β = 0.5 (self-dual ellipsoids) produce the densest random packings, and in
particular, it was predicted that ellipsoids with axes ratios of 1.25 : 1 : 0.8 (α ≈ 1.6) pack densest, reaching

1M&M’S Candiesr are a registered trademark of Mars, Inc.
2We estimate the correction due to the lower density at the surface of the flasks to be about 0.005, and a more thorough

discussion of this issue will be given shortly.
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Figure 7.1: (Top) An experimental packing of about 7500 regular M&M’S Candiesr. (Bottom) A cross
section of one of the candies showing its high degree of fidelity to a true ellipse.

a random packing density as high as the highest packing density achievable with spheres, φ ≈ 0.74. We will
call this special ellipsoid shape ollipsoid, short for “optimal ellipsoid”. In this section we test whether such a
dense random packing of ollipsoids could be realized experimentally.

For this purpose, we fabricated ollipsoids using a stereolitography machine 3D Systems Model SLA 250.
The machine uses a UV laser with an absorption length of ∼ 100µm in monomer CIBATOLL r© SL 5170. The
computer controlled laser scans the surface leaving a solid polymerized layer 100µm deep. This patterned
layer is then lowered and the next layer written by polymerizing the covering liquid. The beam width, which
determines the xy resolution, is comparably scaled at 150µm allowing feature size of 150µm in each direction.
The size of our ellipsoids was 2.344 : 1.875 : 1.5cm for <1% resolution. A picture of an experimental packing
of these ollipsoids inside a spherical flask is shown in Fig. 7.4. The fabrication process is involved and costly,
and we could only produce about a thousand ollipsoids. Additionally, due to the resolution limitations of
stereolitography, the particles are rather large and therefore producing very large packings is difficult.

It is therefore important to look at ways of extracting information about bulk packings from very small
packings (a few hundred particles), in finite hard-wall containers. In particular, in order to minimize the
effects of the hard walls, it is best to choose a spherical packing container, since a sphere minimizes the
surface area for a given volume, and additionally, effects due to sharp corners are avoided. In this section we
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Figure 7.2: (Left) The paint marks left on the candies after draining the paint. (Right) Comparison of
experimental (black bars, from 489 M&M’S Candiesr) and simulated (white bars, from 1000 particles)
distribution of particle contact numbers.

study finite size and boundary effects for packings in a spherical flask via simulation, theory, and experiments,
and demonstrate that it is indeed possible to design experimental methods that largely eliminate the effects
of the boundary.

7.3.1 Simulations

In this section we use the modified LS algorithm described in Chapter 3 to study the effects of finite system
size and boundary conditions on the density and internal structure of packings of hard ellipsoids.

7.3.1.1 Finite-Size Effects

Systems studied in simulations or experiments are always finite, and it is important to access the finite-
size and boundary effects on the measured packing densities. At the most basic level, even in an infinite
boundary-free packing, the density that would be measured inside a finite window has a certain statistical
variance from the mean bulk density. Quantifying the variance of the density, i.e., the density fluctuations,
inside a packing is a non-trivial task. In Chapter 10 we will study number density fluctuations in large
disordered jammed hard sphere packings, and we will see that for jammed packings the variance of the
number of particles found inside a spherical window of radius R, as the center of the window is moved
through an infinite packing, grows like the surface-area of the sphere R2, rather than the volume of the
sphere (this is the so-called hyperuniformity property [202]). This suggests that the standard deviation of
the packing fraction φ(R) inside a randomly positioned spherical window of radius R (i.e., the fraction of
the sphere covered by particles), decays like R−2.

Indeed, this is observed computationally by moving a spherical window inside a large packing of hard
spheres and monitoring the root mean square deviation σφ(R) of the calculated density, as shown in Fig.
7.3. The numerical results are well fitted by

σφ(R) ∼ 0.1(2R/D)−2 ≈ 0.1(φ/N)2/3 ≈ 0.07N−2/3,

where we used the fact that φ ≈ N(D/2R)3. This sets a bound on the achievable accuracy in measuring
bulk packing densities using finite samples, even if boundary effects have been eliminated, for example, if
one is far from the walls of the packing container. As an example, if one wants to estimate the density to
within σφ ≈ 0.001, one needs to have a spherical sample of at least N ≈ 0.02σ−3/2

φ ≈ 650 particles. Of
course, averaging over Ns independent samples will improve the accuracy by a factor of 1/

√
Ns. However, it
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Figure 7.3: A log-log plot of the standard deviation (root mean square deviation) of the packing fraction φ(R)
inside a spherical container of radius R randomly placed inside a jammed disordered packing of N = 10000
hard spheres. Also shown is a power-law fit σφ(R) ∼ 0.1(2R/D)−2.

should be noted that it is difficult to exactly reproduce packing protocols such as shaking/tapping intensity
between different packings.

7.3.1.2 Boundary Effects: Spherical Containers

We have also implemented a hard-wall spherical boundary in the molecular dynamics algorithm described
in Chapter 3, for the purpose of direct comparison between computer-generated packings with experimental
packings of M&M’S Candiesr and/or manufactured ellipsoids in spherical containers. To save time and
implementation effort, we used lattice boundaries (but without periodic images) and employed a trick to
implement the spherical boundary. Specifically, we put a spherical container inside a cube and then added
special code in the handling of the boundary conditions to predict and process collisions with the hard walls.
This was not difficult to do because the spherical container is a special case of an ellipsoid and we already have
well-developed tools to deal with collisions between an ellipsoid contained within a larger one, as presented
in Section 2.2.2. In fact, implementing true flat hard walls is more difficult for ellipsoids as it necessitates the
development of new overlap potentials (see Section 2.2.5.1). Figure 7.4 shows one of our ollipsoid packings.
As we will demonstrate shortly, the properties of this computer-generated packing compare very well to
actual experimental data.

In Fig. 7.5 we show how the packing density varies with the radial distance for a jammed packing of
N = 5000 hard spheres inside a spherical hard-wall container or radius R. More specifically, we show the
radial density profile φ(r) as determined by calculating the packing fraction inside a thin spherical shell3

between spheres of radii r and r + ∆r. The radial distance is normalized with the size of the particles,
specifically, with the geometric mean of the ellipsoid semiaxis a = 3

√
O1O2O3, which for spheres is simply

the radius, a = O = D/2. The figure clearly illustrates the layering of the particles near the hard walls. As

3Note that for ellipsoids what we actually calculate is a numerical approximation to the true radial density profile since
it is rather nontrivial to exactly evaluate the volume of intersection of an ellipsoid and a sphere. Out calculation of φ(r) for
ellipsoids is based on a local approximation of the sphere with its tangent plane, and is rather accurate for sufficiently large r
(as compared to the size of a particle).
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Figure 7.4: (Left) A packing of N = 1000 ellipsoids with aspect ratios 0.8 : 1 : 1.25 (ollipsoids) inside
a spherical container. A cube enclosing the sphere is used as a pseudo-boundary for the purposes of the
MD algorithm. (Right) An experimental packing of ellipsoids manufactured using stereolitography, to be
compared with the computational packing on the left.

expected, the density is zero next to the wall r = R, and has large fluctuations due to layering near the hard
wall. The fluctuations are much larger near the walls and slowly decay toward the core. Due to the lower
density and ordering of the particles next to the hard wall, one needs to eliminate several layers of particles
close to the wall before φ(r) reaches the core density of about φ0(r) = 0.64, however, it should be noted that
there are oscillations of the density even far away from the walls due to the finite size of the sample.
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Figure 7.5: The (approximate) fraction φ(r) of a sphere of radius r covered by the particles for a packing of
N = 5000 hard spheres inside a spherical container of radius R. The dashed line shows the expected (bulk)
packing density far from the hard walls, φo ≈ 0.64.

We note a few observations about the nature of the ordering (layering) near hard walls. The layering is
very reproducible between samples, likely due to the high degree of ordering (crystallization) near the walls.

180



The density oscillations are largest for spheres, as can be expected due to the sharp localization of length
scale, and are smaller for ellipsoids with three different semiaxes (and thus a broad range of length scales).
Larger aspect ratios lead to smaller oscillations, again, likely due to the spread in length scales between
the different semiaxes. The period of oscillations, or more generally, the nature of the layering near the
hard wall, seems nontrivial to predict, and in fact we have not attempted a full study of ordering near flat
surfaces in random jammed packings of ellipsoids. Our current implementation of the MD packing algorithm
only implements hard-wall boundary conditions with spherical containers for ellipsoids, and implements both
spherical and flat hard walls for spheres.

7.3.2 Experiments

In this section we try to design experiments that try to eliminate the effects of the hard wall boundaries and
obtain a good estimate of the bulk packing properties of hard ellipsoids. We develop methods in order of
increasing complexity and technical sophistication.

7.3.2.1 Extrapolation to R→∞

The simplest way to measure packing fraction is to pack a container with the particles and determine the
volume of fluid which fills the voids. The average (overall) packing density φavg of a finite particle packing in
a spherical container of radius R is significantly smaller than the bulk density of equivalent particles φbulk,
even for large containers. This is primarily due to the lower density φ(r) in the first layer of particles near
the wall [next to the wall the density is identically zero φ(R) = 0]. To get an estimate of what the correction
to the measured packing density is for a large spherical container, we can assume that the packing is radially
symmetric and that the radial density profile has the form

φ(r) = φ0 −∆φ
(
R− r
a

)
, (7.1)

where a is a length-scale for the particles, and ∆φ(x) is an approximately universal (i.e., independent of R)
rapidly decaying (on the scale of a few a’s) function representing the correction to the density due to layering
near the wall. For large containers, the core density φ0 will approach the bulk packing density, φ0 = φbulk.
If we use (7.1) in

φavg =
3

∫ R

0
r2φ(r)dr
R3

we obtain the expansion of φavg in powers of δ = a/R,

φavg(δ) = φ0 − 3 〈∆φ〉1 δ + 6 〈∆φ〉2 δ
2 − 3 〈∆φ〉3 δ

3, (7.2)

where 〈∆φ〉n =
∫∞
0
xn∆φ(x)dx are moments of ∆φ. This argument demonstrates that it is very reasonable

to expect the leading-order correction to the density to be given with a term proportional to a/R, so that
a linear fit to φavg(δ) for a range of (sufficiently large) container sizes and extrapolation to a/R→ 0 should
give a very good estimate of φ0.

In Fig. 7.6, we present the results of experiments with spherical glass marbles of diameter 1.1cm, mini
M&M’S Candiesr (oblate spheroids), and our fabricated ollipsoids, in spherical flasks of several sizes. The
ellipsoids or spheres were poured into glass flasks which were then shaken by hand. More particles were
added until further shaking failed to produce space for the addition of another particle. In order to overcome
friction, we added a small amount of isopropanol as a lubricant for the marbles and ellipsoids. Also shown
are computer generated jammed configurations of frictionless spheres and ellipsoids in geometrically similar
spherical containers [11]. From this data, it is clear that the density is the largest for the fabricated ellipsoids
and smallest for the spheres. Extrapolating the simulation results to δ → 0, we find φ0(spheres) = 0.642 ±
0.002, φ0(MMs) = 0.700±0.002 and φ0(ollipsoids) = 0.741±0.002. Our experimental data for glass marbles
and M&M’S Candiesr agree well with simulated results of frictionless particles. However, for the fabricated
ellipsoids, the measured packing densities are noticeably lower than the simulated result for a/R > 0.1,
most likely due to the influence of friction near the walls of the container (the ollipsoids have a rather rough
surface). A meaningful extrapolation to an infinite container for the ollipsoids is difficult for the number of
particles we have studied; we need to further minimize surface effects.
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Figure 7.6: Packing fraction φavg(δ) as a function of inverse spherical container size δ = a/R. Empty
symbols and lines are data and extrapolation for simulated packing. Solid symbols are the corresponding
experimental results.

7.3.2.2 Extracting the Average Core Density

The average density of a spherical core, excluding several particle layers near the container wall, should
provide a very good approximation to the bulk density. We therefore devised a different experiment to allow
a measurement of the radial density profile φ(r). A spherical container of radius 10cm was prepared with
two holes in the bottom. Tubes were attached to the holes with epoxy. The sphere was filled with particles
and shaken until no further particles could be added. The sphere was then set on a digital scale and one tube
was attached to a water reservoir. The other tube was attached to a pressure transducer with a sensitivity
of 10−5bar (equivalent to a water height of about 0.1mm). The experiment proceeded by allowing the water
to slowly enter the container from the bottom while recording the weight [i.e., volume V (h)] of fluid added
and the pressure (i.e. fluid level h). This is illustrated in the inset in Fig. 7.7.

As liquid is poured into the container, the total volume of liquid V as a function of the height of the
liquid column h, measured from the center of the flask, −R ≤ h ≤ R, is given by the integral

V (h) =
∫ h

R

2πr2(1− h

r
) [1− φ(r)] dr. (7.3)

Eq. (7.3) is an integral equation for the radial density profile φ(r), and its solution is trivially obtained by
differentiating V (h) twice:

1− φ(r) = − 1
2πr

∂2V (h)
∂h2

∣∣∣∣
h=r

. (7.4)

Using Eq. (7.4) to obtain φ(r) from an experimental V (h) is difficult. Not only is second-order differentiation
a numerically unstable procedure, especially with noisy data, but also the natural fluctuations in V (h) due
to the discrete character of the actual density mask the global fluctuations.

182



Figure 7.7: Volume V (h) of liquid to fill a spherical container to height h from center. Circles are for an
empty container, triangles for a marble packing, and star for an ollipsoid packing. Lines are representative
of 35,000 data points. Symbol for empty sphere is from Eq. (7.5) with φ0 = 0, while the symbols for marbles
and ollipsoids are cubic fits.

It is instructive to consider the case when φ(r) = φ0 is constant, to obtain a V (h) which is cubic in h,

V (h) = −(1− φ0)
[
π

3
h3 − πR2h− 2πR3

3

]
. (7.5)

An important observation is that the coefficient of h3 does not depend on R and is thus independent of
system size. In fact, this coefficient is rather robust to fluctuations in the density φ(r) as well. For example,
it is easy to show that if φ(r) = φ0 is constant only inside a core of radius R̃ < R, but is not constant outside
the core (which is a good approximation for real packings), then V (h) is again cubic for−R̃ ≤ h ≤ R̃, with
an unaltered coefficient −π

3 (1− φ0) in front of h3, but with altered coefficients in front of lower powers of h.
Therefore, a quick and rather accurate way of obtaining an estimate for the core (bulk) density in a packing
is to fit a cubic polynomial through V (h) and extract φ0 from the coefficient of h3. In Fig. 7.7, we show
the measured V (h) together with the corresponding cubic fits. We find φ0(spheres) = 0.635 ± 0.005, and
φ0(ollipsoids) = 0.735± 0.01, in excellent agreement with simulation estimates of the bulk packing densities.

7.3.2.3 MRI Scans

We also performed MRI scans of the ellipsoids in the same spherical container to assure that the packing
did not show signs of crystal or orientational order. The space between ellipsoids was filled with water. MRI

183



scans were collected on a Siemens 3T Allegra scanner. The images were acquired at 1mm3 isotropic resolution
per voxel using a conventional 3D FLASH sequence in a standard birdcage head coil. The manufacturer’s
3D large field of view geometric distortion correction algorithm was applied to the images. Fig. 7.8 insert
shows a gray scale (raw) slice from the MRI data and no apparent ordering is present.

Figure 7.8: The inset shows one of the 256 grayscale slices of an MRI scan of the packing of ollipsoids shown
in Fig. 7.4. The radial density profile φ(r) and its integral, obtained by converting the grayscale images into
binary ones, are shown and compared against simulation results. Note that the experimental results have
geometrical distortions, especially near the bottom and top of the experimental sample, making it difficult
to exactly identify the container boundary.

We can also use the MRI data for an independent measurement of φ(r). Thresholding based on Sobel
derivative boundary detection (we used IDL’s image-processing routines) converts the gray scale images into
binary ones, and using the binary data, it is straightforward to calculate φ(r), as shown in Fig. 7.8, along
with results from a simulated packing with the same geometry. We also show the average density up to a
certain radius r,

φavg(r) =
3

∫ r

0
x2φ(x)dx
r3

,

which tells us how well we could estimate the bulk packing density if we could experimentally perfectly
remove the particle layers from radius r to the wall container. The average density inside the core r < 0.6R
is 0.735, and the error due to finite pixel size, error in threshold and geometry distortions in the MRI scan is
in total ±0.01. While the agreement between the simulation results and the MRI results is surprisingly good,
some systematic differences are observed, for example, the amplitude of the density oscillations is smaller
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for the MRI data. The largest source of error is the geometry distortion in the MRI scanner, as well as the
difficulty of exactly identifying the particle boundaries (which are rough) due to the finite voxel size. These
sources of errors will be corrected for in future experiments in order to enable a more accurate description of
the microstructure of the experimental packings. Such improved accuracy is necessary, for example, in order
to determine particle contacts reliably.

We have also tried to develop procedures that extract the positions and orientations of the ellipsoids from
the MRI data. For spheres, this can easily be done using Fourier transform techniques [199]. For ellipsoids
this cannot be done and we developed a real space method instead. Using this method we obtained the
orientations of the particles and for the sample core we find the nematic order parameter S2 ≈ 0.13, which
is higher than that expected for a random sample [43], S2 = 0.05± 0.03. This may be due to small amounts
of layering present in the packing due to gravity or the experimental packing protocol. The method is not
yet accurate enough to identify particle contacts reliably.

7.4 Conclusions

We performed simulations to generate packings of hard ellipsoids inside spherical hard-wall containers. The
simulations helped us better understand the impact that finite-size and boundary effects have on the packing
density and structure of the packings. We found that it is relatively straightforward to experimentally
realize random ellipsoid packings whose packing density matches simulations of hard frictionless particles.
We have also demonstrated a new way to measure the bulk density of an infinite random system, using
a limited number of particles, which should be useful for packing measurements for other particle shapes.
While we will pursue further MRI experiments which can provide more detailed information about inter-
particle correlations, the new technique can be used for all types of granular material whether amenable to
MRI investigation or not, and is experimentally simple. The development of better experimental methods
to study packings is necessary in order to study packing conditions that are not as easily simulated. In
particular, friction and gravity are an important factor for the mechanical stability of packings that are not
jammed in the frictionless sense we study in this work. We also note that work is underway in the research
group of Dr. Paul Chaikin to produce colloids with monodisperse ellipsoidal particles, which would enable a
whole series of experiments aimed at studying the thermodynamics of hard ellipsoid systems, something not
possible with granular packings.

We find very good agreement between results obtained for computer-generated and experimental (strongly
tapped) packings of hard particles. This verifies that idealized computer packings of frictionless hard particles
are relevant to the quantitative understanding of real-life packings of frictional macroscopic particles in a
gravitational field. It is surprising that such good agreement is observed since the effect of friction is very
strong, especially for our fabricated ollipsoids. Also, the experimental packing protocol, in which particles are
added and sediment on the bottom of the container as the packing is shaken or tapped, has little resemblance
to the LS algorithm, in which all of the particles are in the container and grow while bouncing elastically.
This similarity between jammed packings produced by a variety of simulation or experimental protocols
points to a fundamental meaning of the MRJ state, and in particular, to maximal disorder. In Chapter
13 we will study binary hard-disk packings and suggest that the MRJ packings have maximal entropy, in
the sense that an exponential majority of jammed packings has the same statistical properties (density, pair
correlations, etc.) as the MRJ state. If this interpretation of entropy, or degeneracy, as a fundamental order
metric is correct, it would provide a deep insight: Almost all jammed packings look alike and therefore it
has historically been assumed that “random packing” is a unique and well-defined concept [58]?
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Chapter 8

Unusually Dense Crystal Packings of
Ellipsoids

Extensive experience with spheres has shown that for reasonably large packings, sufficiently slowing down
the growth of the density, so that the hard-particle system remains close to the equilibrium solid branch
of the equation of state, leads to packings near the FCC lattice. This however requires impractically long
simulation times for large ellipsoid packings. In this chapter, by running the MD packing algorithm for
very small deformable unit cells, we are able to identify crystal packings of ellipsoids significantly denser
than the FCC lattice [80]. An analysis of the generated packings and an analytical calculation leads us to
discover ellipsoid packings with a remarkably high density of φ ≈ 0.7707. The family of new packings we
discovered are crystal (periodic) arrangements of nearly spherically-shaped ellipsoids, and always surpass the
densest lattice packing. The maximum density of ϕ ≈ 0.7707 is achieved for aspect ratio of

√
3, and in this

densest-know ellipsoid packing each ellipsoid has 14 touching neighbors. These results do not exclude the
possibility that even denser crystal packings of ellipsoids could be found, and that a corresponding Kepler-
like conjecture could be formulated for ellipsoids. We briefly explore the thermodynamical properties of our
unusually dense crystal and also propose rigorous ways to look for the densest packing in the neighborhood
of the sphere point by using global optimization.

8.1 Introduction

Packing problems, how densely objects can fill a volume, are among the most ancient and persistent problems
in mathematics and science [8]. The simulation results for disordered packings of hard ellipsoids [78] suggested
that disordered packings can be as dense as the FCC sphere packing, ϕ ≈ 0.735. It has generally been assumed
in the literature that the crystal phase for not very aspherical ellipsoids is a stretched (affinely deformed)
FCC sphere packing (i.e., a nematic FCC crystal) or a stacking variant thereof [43], with the same density
ϕ ≈ 0.7405. A system in which the density of a disordered phase surpasses the density of the ordered solid
would be a candidate for the elusive thermodynamic glass, since at very high densities the densest phase has
the largest free volume and is thus always thermodynamically favored. In light of the possibility that adding
orientational degrees of freedom could lead to stable glasses, it is important to determine what the densest
packing of ellipsoids in the vicinity of the sphere point really is.

In addition to being important for understanding the physics of complex materials, finding the densest
packing for a given particle shape is a basic problem in geometry. The famous Kepler conjecture postulates
that the densest packing of spheres in three-dimensional Euclidean space has a packing fraction (density)
φ = π/

√
18 ≈ 0.7405, as realized by stacking variants of the face-centered cubic (FCC) lattice packing. It is

only recently that this conjecture has been proved [39]. Very little is known about the most efficient packings
of convex congruent particles that do not tile three-dimensional space [9]. The only other known optimal
three-dimensional result involves infinitely long circular cylindrical particles: the maximal packing density
φmax = π/

√
12 is attained by arranging the cylinders in parallel in the triangular lattice arrangement [203].

Of particular interest are dense packings of congruent ellipsoids (an affine deformation of a sphere) with
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semi-axes a, b and c or, equivalently, with aspect ratio α = b/a and skewness β, where we have assumed that
the c semiaxes is the middle semiaxes.

In two dimensions, it can easily be shown that the densest packing of congruent ellipses has the same
density as the densest packing of circles, φ = π/

√
12 ≈ 0.9069 [204]. This maximal density is realized by

an affine (linear) transformation of the triangular lattice of circles. Such a transformation leaves the density
unchanged. In three dimensions attempts at increasing the packing density yield some interesting structures,
at least for needle-like ellipsoids. By inserting very elongated ellipsoids into cylindrical void channels passing
through the ellipsoidal analogs of the densest ordered sphere packings (an affinely deformed face centered
cubic or hexagonal close packed lattice), congruent ellipsoid packings have been constructed whose density
exceeds 0.7405 and approaches 0.7585 in the limit of infinitely thin prolate spheroids (ellipsoids of revolution),
i.e., when β = 1 and α→∞ [203, 205].

However, there appears to be a widespread belief that for nearly spherical ellipsoids the highest packing
fraction is realized by an affine transformation (stretch by α and β along two perpendicular axes) of the
densest sphere packing, preserving the density at 0.7405. Mathematicians have often focused on lattice
packings, where a single particle is replicated periodically on a lattice to obtain a crystal packing. For
ellipsoids, a lattice packing is just an affine transformation of a sphere packing, and therefore a theorem due
to Gauss [9] enables us to conclude that the densest lattice ellipsoid packing has φ ≈ 0.7405. The next level
of generality involves nonlattice periodic packings (lattice packings with a multiparticle basis), where a unit
cell consisting of several ellipsoids with at least two inequivalent orientations is periodically replicated on a
lattice to fill Euclidean space. We will refer to these as crystal packings.

8.2 The Densest Known Ellipsoid Packing

In this chapter, we report on a family of crystal packings of ellipsoids that are denser than the densest
Bravais lattice packing for a wide range of aspect ratios in the vicinity of the sphere point α = β = 1, and
for certain aspect ratios yields the densest known ellipsoid packings with φ ≈ 0.7707.

8.2.1 MD Simulations

Extensive experience with the LS algorithm for hard spheres has shown that for reasonably large packings,
sufficiently slowing down the growth of the density, so that the hard-particle system remains close to the
equilibrium solid branch of the equation of state, leads to packings near the FCC lattice [58, 56]. This is
because the dense crystal is thermodynamically favored over disordered liquid and glassy states. This however
requires impractically long simulation times for large ellipsoid packings. By running the simulation for very
small unit cells, from 4 to 16 particles per unit cell, we were able to identify crystal packings significantly
denser than the FCC lattice. The simulations were carried out by starting with a small number of particles
inside a cubic cell and then growing the particles very slowly, at expansion rates γ ≈ 10−8 − 10−6, while
allowing the unit cell to deform as described in Section 3.2.4.2. It is very important to allow for a deforming
unit cell when considering small systems. If the lattice is kept constant, then the produced packings will
at most be collectively jammed, and their density can strictly be increased to first order by deforming the
lattice, as discussed in Chapter 5. If on the other hand the generated packings are strictly jammed, then their
density cannot be increased by continuous motions of the particles, even if the unit cell deforms. For small
systems, the lowering of the density due to boundary effects is substantial, and without using a deforming
lattice we would not have found packings denser than the FCC sphere crystal.

The packings produced by the algorithm are not truly strictly jammed because of the difficulties of
incorporating the deforming lattice in the MD algorithm, and also, there is no guarantee that even very slow
runs will find the densest packing. By examining several of the densest computer-generated packings and
subsequent analytical calculations suggested by the simulation results, we discovered ellipsoid packings with
a remarkably high density of φ ≈ 0.7707. This result implies that among all possible choices of congruent
ellipsoids, the maximum density attainable is bounded below by 0.7707.
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8.2.2 Explicit Construction

We now describe the construction of a family of unusually dense crystal packings of ellipsoids. We start
from the FCC lattice, viewed as a laminate of face-centered square planar layers of spheres, as illustrated in
Fig. 8.1. We similarly construct layers from the ellipsoids by orienting the c semiaxis perpendicular to the
layer, while orienting the a and b axes along the axes of the face-centered square lattice defining the layer, as
shown in Fig. 8.1. In this process, we maintain the aspect ratio of the squares of side L of the face-centered
square lattice defining the layer, i.e., we maintain

L =
4α√

1 + α2
, (8.1)

which enables us to rotate the next layer by π/2 and fit it exactly in the holes formed by the first layer.
This two-layer lamination is then continued ad infinitum to fill all space. This can be viewed as a family of
crystal packings with a unit cell containing two ellipsoids.

Figure 8.1: (Left): The face-centered cubic packing of spheres, viewed as a laminate of face-centered layers
(in the (001) plane). The bottom layer is colored purple and the top layer yellow. (Right) A nonlattice
layered packing of ellipsoids based on the FCC packing of spheres, but with a higher packing fraction.

We can calculate the minimal distance h between two successive layers (that preserves impenetrability)
from the condition that each ellipsoid touches four other ellipsoids in each of the layers above and below it.
This gives a simple system of equations (two quadratic equations and one quartic equation), the solution of
which determines the density to be

φ =
16πα
3hL2

. (8.2)

Notice that the axis perpendicular to the layers can be scaled arbitrarily, without changing the density, and
therefore it is sufficient to consider spheroids with a = c = 1. The density of this crystal packing as a function
of the aspect ratio α is shown in Fig. 8.2, and is higher than the density of the FCC sphere packing for a
wide range of aspect ratios around the sphere point α = 1. The Taylor series expansion of Eq. (2) about
the sphere point through second order in α− 1 does not contain a linear term,

φ =
π√
18

[1 + 6(α− 1)2 +O((α− 1)3)].

Two sharp maxima with density of about 0.770732 are observed when the ellipsoids in the face-centered
layers touch six rather than four in-plane neighbors, as shown in Fig. 8.3, i.e., when L = 2α. This corresponds
to an in-plane aspect ratio of

√
3. These two densest-known packings of spheroids are illustrated in the insets

188



Figure 8.2: The density of the laminate crystal packing of ellipsoids (thin blue line) as a function of the ratio
α̃ = b/a, which is essentially the aspect ratio but can also be less than unity [i.e., α = max(α̃, α̃−1)]. The
third semiaxes can be fixed at c = a for spheroids. The point α̃ = 1 corresponding to the FCC lattice sphere
packing is shown, along with the two sharp maxima in the density for α =

√
3, as illustrated in the insets for

prolate (α̃ =
√

3) and oblate particles (α̃−1 =
√

3). The presently maximal achievable density is also shown
(thick red line), and is constant for α ≥

√
3, as explained in the text. Note that unlike for random packings,

the jamming density is a differentiable function of the ellipsoid axes.

in Fig. 8.2, and in these special packings each ellipsoid touches exactly 14 neighboring ellipsoids (compare
this to 12 for the FCC lattice). As illustrated for two dimensions in Fig. 5.15, an affine deformation of the
densest sphere packing gives an ellipsoid packing that is not strictly jammed [15, 72]. It is an interesting open
question whether our denser laminated crystals are strictly jammed. Unfortunately, the algorithm to test for
jamming described in Chapter 5 cannot be applied to these crystal packings directly because the packing is
geometrically very degenerate and has a very high number of self stresses (and thus first order flexes), and
therefore different stresses may block different unjamming motions. This is similar to the situation for the
rectangular lattice of ellipses discussed in Section 5.5.4.

Figure 8.2 shows a rapid decrease in the packing fraction for large aspect ratios. However, it is a surprising
fact that the maximal density of 0.770732 is also achievable whenever the aspect ratio α of the ellipsoids is
greater than or equal to

√
3. The key observation is that the x = y plane is a mirror symmetry plane in

the above packings, so that an affine stretch by an arbitrary factor s ≥ 1 along a direction in this plane will
produce a packing of equal (stretched) ellipsoids, without changing the density. Stretching an ellipse with
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Figure 8.3: (Left) The layers of the densest known packing of ellipsoids with aspect ratio
√

3, as illustrated
in Fig. 8.2. The same perpendicular view applies for both prolate and oblate particles. The layers can be
viewed as either face-centered or triangular. (Right) The layers of the densest known packing of ellipsoids
with aspect ratio α = 3, as obtained by stretching the packing on the left along the (

√
2/2,
√

2/2, 0) direction
by a factor of 2.4842. The same perpendicular view applies for both prolate and oblate particles or general
ellipsoids.

α =
√

3 by a factor of s along the x = y line produces an ellipse with aspect ratio

α2 =
(2 + s2 + 2s4) + 2(1 + s2)

√
1− s2 + s4

3s2
, (8.3)

which is always greater than
√

3 and achieves arbitrarily large values for sufficiently large s. Therefore, by
stretching the packing in Fig. 8.3 along the (

√
2/2,
√

2/2, 0) direction, we can obtain a packing with density
0.770732 for any aspect ratio α ≥

√
3. The layers of such a packing of ellipsoids with α = 3 are illustrated

in Fig. 8.3. As before, scaling the axis perpendicular to the layers can be used to go between the prolate
and oblate cases since the c semi-axes remains aligned with the z axes. Notice that the initial stretch can be
along a direction with a nonzero z component, which produces alternative packings with the same density
and α ≥

√
3. The above stretch cannot be used to decrease the aspect ratio, so that for δ <

√
3, our best

results remain as shown in Fig. 8.2. In the limit of infinitely large stretch s (i.e., α → ∞), the particles
approach perfect alignment that are either needle- or plate-like ellipsoids. However, the packings remain
non-lattice arrangements with 14 contacts per particle and a density of 0.770732.

8.3 Thermodynamics

We use the collision-driven MD algorithm from Chapter 3 to look more closely at the thermodynamic behavior
of prolate and oblate ellipsoids of aspect ratio α =

√
3, for which the crystal packing is the densest known,

φ ≈ 0.77. The first-order phase transition between the hard-sphere liquid (a more correct term is fluid)
and crystal phases can be directly observed in molecular dynamics simulations, and the relevant dynamics
(nucleation or relaxation) studied. In MD, one usually studies equilibrium properties by starting with a
nonequilibrium system at a given density and then allowing it to equilibrate for a sufficiently long time. An
alternative is to very slowly change the density in a quasi-equilibrium manner while tracking the relevant
properties such as pressure or order-parameters. This kind of procedure allows one to directly observe
the process of melting of the high-density crystal or the freezing of a liquid, and identify approximately
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the transition points. The collision-driven MD algorithm we have presented is ideally suited for such a
study. Namely, by imposing a very small rate of expansion/contraction γ of the particle extents, one can
continuously change the density while keeping the system in quasi-equilibrium.
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Figure 8.4: Equation-of-state (pressure-density) curves for prolate and oblate ellipsoids of aspect ratios√
3, compared with spheres (inset), as obtained from quasi-equilibrium collision-driven MD with N = 1024

particles. The temperature kT is maintained at unity by frequent velocity rescaling and the “instantaneous”
pressure and order parameters are averaged and recorded every 100 collisions per particle. The unit cell is
kept fixed. Compare the inset with the more detailed results in Fig. 1.3. Our two-layered crystal [80] is
melted from a density of φ = 0.73, and an affinely deformed FCC crystal is melted starting from φ = 0.7
(similarly for spheres in the inset), with γ = −10−6. An attempt to freeze an isotropic liquid on the other
hand fails and leads to a jammed metastable glassy configuration with φ ≈ 0.72 despite the slow expansion
(γ = 10−6), for both oblate and prolate ellipsoids. Investigating even slower expansion or larger systems is
needed to obtain more quantitatively accurate results.

By starting with a low-density isotropic fluid and very slowly increasing the density, one can produce a
superdense liquid and then observe a first-order freezing transition as soon as the metastable fluid becomes
unstable, typically when the density approaches the maximal density of coexistence (as also observed in Ref.
[53]). This freezing is a nucleation-activated (rare-event) process (the dynamics of which can be observed) and
does not lead to perfect crystallization, but is clearly visible as a discontinuous pressure drop, as illustrated
for hard-spheres in the inset in Fig. 8.4 and also in Fig. 1.3. One can reverse the process by starting with
a perfect crystal, assuming that the stable high-density crystal structure is known, and slowly reduce the
density until the crystal melts, typically as the density approaches the minimal density of coexistence, as
illustrated in the inset in Fig. 8.4. In the figure, comparison is made to the semi-empirical results for the
liquid, solid, and coexistence regions for hard spheres in the literature [53], and for ellipsoids comparison is
made to scaled-particle theory for the isotropic fluid [206]. Unfortunately, direct coexistence is very difficult
to observe in computer simulations, and requires the creation of an artificial interface between the two phases
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[207]. Additionally, it is in principle important to include unit cell dynamics in order to allow for solid-solid
transitions. However, it is difficult to do this in a stable manner across a range of densities and in this study
we fix the unit cell.

In Fig. 8.4, we also show the melting of our newly-discovered two-layered ellipsoid crystal for an aspect
ratio of

√
3 for prolate and oblate spheroids. The crystal melts into an isotropic fluid and no nematic phase

is observed, as can be seen by monitoring the nematic order parameters, which rapidly goes to zero as the
first-order transitions occur. For comparison, we also show the corresponding melting curves for the ellipsoid
crystal obtained by affinely stretching or compressing an FCC sphere crystal along the (0, 0, 1) direction.
Additionally, we try to observe the freezing of the isotropic liquid by slow compression. However, it can
be seen that despite the very slow compression the liquid does not freeze but rather jams in a metastable
glass. This illustrates that systems of ellipsoids have a marked propensity toward (orientationally) disordered
configurations and are very hard to crystallize. This is to be contrasted with the case of hard spheres where
we easily observe freezing at the same expansion rate. A close agreement between the results for prolate and
oblate spheroids is seen, although mode detailed studies with a wider range of system sizes and expansion
rates are needed.

8.3.1 Crystal Nucleation and Glassiness

It is interesting to compare the densities of random ellipsoid packings, as reported in Chapter 5, against
those of the densest-known crystal packing. In particular, the self-dual ellipsoids with β = 1/2 have the
highest random packing densities, and we compare this density against the density of our crystal (which
is independent of β) in Fig. 8.5. We see that for ollipsoids (recall that in Chapter 7 we termed ellipsoids
with axes 1.25 : 1 : 0.8 ollipsoids), the difference in density between the disordered (φ ≈ 0.735) and ordered
(φ ≈ 0.753) packings is rather small, ∆φ ≈ 0.02, especially when compared to the difference for spheres,
∆φ ≈ 0.1. We expect that this will be reflected in a reduced tendency to crystallize, both through an
increase in the freezing temperature from the sphere value φg ≈ 0.495, and also through enhanced tendency
to form glasses upon compression. Indeed, recent calculations of the nucleation barrier and nucleation rate for
crystallization of hard ellipsoid fluids have found that nucleation is very strongly suppressed [208], although
it should be noted that this study did not use our crystal structure.

We do not carry out a more detailed investigation of the thermodynamics of hard ellipsoids in this work.
For large aspect ratios it is well-known that ellipsoids form a nematic (liquid-crystal) phase [43], rather
than a glassy phase. In the nematic phase the particle centroids are liquid-like, whereas the orientations
are solid-like (aligned). For aspect ratios very close to unity, the liquid freeze into a rotor (plastic crystal)
phase where the particle centroids are just like in a hard-sphere crystal, whereas the particle orientations
are random (liquid-like) [208]. For aspect ratios in the range 1.2 < α < 2 we expect that there will be a first
order phase transition from the isotropic liquid phase to a crystal that is like the crystal phase we described
in Section 8.2, in which both translations and orientations show long-range periodic order. Our preliminary
studies indicate that crystallization into such a crystal is kinetically suppressed and the liquid is thus more
likely to form a glass.

It would be of interest to observe spontaneous crystallization of a hard-ellipsoid liquid. This would give
hints about the densest packing of ellipsoids, since we know that the densest packing will be favored ther-
modynamically at sufficiently high densities. However, we have only been able to observe such spontaneous
crystallization by starting with a translationally ordered state. We started with an FCC sphere crystal and
transformed the spheres into ollipsoids by shrinking then along certain randomly selected axes. We then
performed very long MD runs at the reduced density. We observed that the initial plastic crystal (rotor)
phase spontaneously froze into an orientationally ordered crystal. Examination of the particle orientations
showed that there was alignment along two perpendicular directions in alternating layers, just like in the
densest crystal we identified (Section 8.2). This offers some hope that we may have indeed identified the
densest packing, at least close to the sphere point. However, it is far from a proof. In the next section we
will consider ways to rigorously identify the optimal packing of nearly spherical ellipsoids.
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Figure 8.5: A comparison between the densities of random and crystal packings of ollipsoids, as determined
in this work. We highlight the special point of ollipsoids, which is expected to give improved glass formers,
better ceramic materials (highest densities and contact number), and may even be relevant to the shape of
the eggs for certain species of fish.

8.4 Nearly Spherical Ellipsoids

There is nothing to suggest that the crystal packing we have presented here is indeed the densest for any
aspect ratio other than the trivial case of spheres. We believe it is important to identify the densest periodic
packings of ellipsoids with small numbers of ellipsoids per unit cell. This may be done using modern global
optimization techniques, as has been done for various sphere and disk packing problems. However, this is
a challenging project due to the complexity of the nonlinear impenetrability constraints between ellipsoids.
The case of slightly aspherical ellipsoids is more tractable, since the best packing will be a perturbation of
the FCC lattice with a broken orientational symmetry, and should thus be easier to identify. In Fig. 8.2 we
see that the density of our crystal packing increases smoothly (quadratically) as asphericity is introduced,
unlike for random packings, where a cusp-like increase is observed near α = 1 [78]. Is there a crystal packing
of ellipsoids which has to a linear increase in density for slightly aspherical ellipsoids?

Formally, the problem is similar to that of finding the densest packing of ellipsoids in the vicinity of a
random sphere packing, as we studied in Section 5.9. Consider a (small) unit cell of N spheres, whose lattice
is a sublattice of the FCC packing and density is φS

J . We assign orientations (quaternions) W to each of the
spheres in this crystal packing of spheres. Then we perturb (shrink) the shape of the spheres to be slightly
aspherical, with semiaxes O = O(I+ εεO), where sε

φ = eT εO is the relative change in volume of the particles
due to the perturbation. Note that we can always take the largest entry in εO to be unity and the smallest
to be zero, εO = Diag {0, β, 1}, and therefore the aspect ratio after the perturbation is α = 1 + ε. Finally,
we increase the density of the packing while keeping the orientations fixed, to find a jamming density

φJ(W) = φS
J

[
1 + sφ(W)ε+O(ε2)

]
.
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The goal is to find the choice of orientations that maximize sφ(W). No expansion can help us in this, since the
orientational symmetry is broken when asphericity is added; the search must be over all sets of orientations
(quaternions). Going back to the expansions of the impenetrability constraints between nearly spherical
ellipsoids in Section 2.2.6, we see that sφ(W) can be found from the solution to a linear programming
problem,

sφ(W) = max
∆R,sφ

sφ

AT ∆R− 2
d

(
sφ − sε

φ

)
e ≥ −2UTS(W)U, (8.4)

where the higher-order matrix (linear operator) S contains the information from the orientations, see Eq.
(2.25). Here the lattice degrees of freedom need to be included in R and in the rigidity matrix, and we
have set ε = 1. Note that the right hand side of the linear constraints in the LP (8.4) are sums of squares
of quadratic polynomials of the quaternions W = (wi). The difficult problem is performing the (outer)
maximization maxW sφ(W).

We have tried to use some general-purpose global optimization software packages to solve for the optimal
W, however, we did not have success in obtaining a provably global optimum for reasonable numbers of
particles in the unit cell N . Nevertheless, we give the details of the formulation of the global optimization
problem to be solved below, in the hope that future work may be able to use it. If a global optimum of

max
W

sφ(W) = 0

could be proved, this would show that the density of the FCC hard-sphere crystal cannot be improved to
first order as asphericity is added. Instead, one would have to look at second-order terms in the perturbation
around the sphere point.

8.4.1 Global Optimization Approach

The problem maxW sφ(W) together with the LP (8.4) is a clearly separated mixed LP-NLP polynomial
global optimization problem, where the linear variables are ∆R, and the nonlinear variables are W.

8.4.1.1 Formulation

We summarize the structure of the global optimization problem that gives the best packing of nearly spherical
ellipsoids:

• Variables: ∆ri ∈ R3(displacements) and wi = [si,pi] ∈ R4 (normalized quaternions), where pi ∈ R3,
for i = 1, .., N . There are also the degrees of freedom coming from the symmetric strain tensor (lattice
deformation) ε̂, and of course sφ.

• Objective: Linear f = sφ.

• Constraints: For a sparse set of contacting pairs of particles {i, j}, with given unit vectors uij as
parameters, and a given set of shape parameters εO, it must hold that:

uT
ij∆rij +

3∑
k=1

εOk
[
g2

k (uij ,wi) + g2
k (uij ,wj)

]
≥ 2

3
(
sφ − sε

φ

)
e,

which are (nonconvex) polynomial constraints of degree 4, since the gk’s are nonconvex quadratic
polynomials. Notice that the constraints are separable in the w’s. There are also normalization
conditions on the quaternions, ‖wi‖ = 1.

The structure of this hard mathematical programming problem is of the following form

miny,x cT x

Ax ≤ b(y)

with b(y) being at most quartic polynomials of y’s.
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8.4.1.2 Hessian of Nonlinear Terms

The separable nonlinear terms in the constraints have the form

C = [g (u,w)]T ε [g (u,w)] ,

where the elements of the vector g (u,w) ∈ R3 are quadratic polynomials in w, and ε is a diagonal matrix.
The form of the quadratic polynomials is

g = 2
[
(uT p)p + s (u× p) +

(
s2 − 1

2

)
u
]
,

where × denotes a cross product of two vectors. The Jacobian of g is given with

J = ∇wg = 2
[

u× p + 2su
(uT p)I + puT + sU

]
,

which gives the Hessian of the nonlinear term

H = ∇2
wC = 2JT εJ + 4H̃,

where the second term is

H̃ =
[

2vT u (v × u)T

v × u vuT + uvT

]
with v = εg.

Note that if we choose ε ≥ 0 (which we can since the sign of the shape perturbation is not important), the
first term in the Hessian, JT εJ � 0, and only the second piece H̃ has negative eigenvalues (non-convexities).
The eigenvalues of H̃ are two eigenvalues of multiplicity two,

λ = vT u± ‖v‖ = ‖v‖ (cos θ ± 1) ,

where θ is the angle between v and u. The only potentially negative eigenvalue (non-convexity) therefore is
‖v‖ (cos θ − 1):

λmin = ‖v‖
(
v̂T u− 1

)
,

where v̂ is a unit vector in the direction of v.

8.5 Densification by Changing the Ellipsoid Shape

In Section 8.4 we considered the breaking or orientational symmetry in the hard-sphere crystal for nearly-
spherical ellipsoids. This symmetry breaking is inherently a discontinuous change, since particle orientations
suddenly start making a difference when asphericity is introduced. Once the orientational symmetry is
broken however, and the structure of the ellipsoid crystal, and in particular, the particle orientations and
the contact network, are determined, we expect that the packing structure and density will evolve smoothly
as the asphericity ε = α− 1 is increased. This smooth evolution of the packing structure could be followed,
for example, by using an ODE solver to update the particle positions and orientations as the shape of the
particle changes continuously with time. Of course, such a smooth evolution is only possible until some
singular point is reached, such as the special aspect ratio 1 +

√
3 for our crystal packing of ellipsoids, at

which point the contact number jumped from 12 to 14.
In this Section we examine the change in the jamming density as one changes the shape of the particles

in a nearly jammed packing, to first order. We allow for general changes in the particle shapes and sizes. In
particular, for spheres, we examine how the jamming density changes as one changes the diameters of the
spheres independently, that is, makes the packing polydisperse. Our goal is to find ways to generate very
dense disordered polydisperse packings of disks and spheres. For ellipsoids, we focus on changing the shape
of the ellipsoids while keeping the packing monodisperse. The goal is to design a procedure that can find
the ellipsoid shape that produces denser packings.
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8.5.1 Spheres

Consider a jammed polydisperse sphere packing with particle diameters D that is at a jamming gap δ (see
Section 5.7), and the particle displacements from RJ are ∆R. The interparticle gaps are thus

h = AT ∆R− δ

2
ÂD,

where Â is the node-arc incidence matrix for the undirected contact network graph. The equilibrium inter-
particle forces, Af = 0, are related to the jamming gap δ via [c.f. Eq. (5.19)]

fT h = (Af)T ∆R− δ

2

(
ÂD

)T

f = −δ
2

(
Âf

)T

D. (8.5)

Consider changing the particle diameters by ∆D. How does this affect the jamming density? The
interparticle gaps change by ∆h = 1

2Â∆D and the forces are not affected to first order. Therefore, according
to Eq. (8.5), the change in the jamming gap is

∆δ = −2
fT ∆h(
Âf

)T

D
= −

(
Âf

)T

∆D(
Âf

)T

D
.

At the same time, the change in the density is

∆φ =
Sd

V

(
Dd−1

)T
∆D,

where Sd is just the constant in front of Dd−1 in the surface area of a sphere, so that the density is

φ =
Sd

dV

(
eT Dd

)
.

The change in the jamming density φJ = (1 + dδ)φ to first order is

∆φJ ≈ ∆φ+ dφ∆δ,

which is proportional to

∆φJ ∼

Dd−1 − eT Dd(
Âf

)T

D

(
Âf

)
T

∆D. (8.6)

If the D−equilibrium condition

Âf =

(
Âf

)T

D

eT Dd
Dd−1 = pintDd−1 (8.7)

is satisfied, then no further growth of the jamming density is possible regardless of the specific ∆D. This
condition has a very simple physical interpretation: The term Âf gives the total force pressing on the
surface of the particle (without regard to direction), and therefore the constant pint can be interpreted as the
internal pressure inside the particles that resists the compressive forces. When this pressure is equal between
all spheres, then the sphere diameters are in mutual equilibrium and changing them only exchanges volume
between the spheres but cannot grow the overall volume (density).

As an example, consider perturbing a monodisperse sphere packing into a bidisperse one by randomly
selecting a fraction x of the particles to increase their diameter by ∆D, ∆D = ẽ, where ẽ is a vector with
xN randomly positioned unit entries. Substitution of this and D = De into equation (8.6) produces

∆φJ ∼ xN −
N(

Âf
)T

e

[(
Âf

)T

ẽ
]

= 0.
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Figure 8.6: (Left) A very dense (φ ≈ 0.91) polydisperse packing of disks that is in D−equilibrium, produced
by an MD algorithm in which the particle diameters change independently. (Right) A very dense (φ ≈ 0.68)
polydisperse packing of spheres that is approximately in D−equilibrium.

As discussed in Chapter 13, we expect that in the bidisperse MRJ sphere packing the large and small disks
will be fully demixed, that is to say, a randomly chosen subset of the particles in a monodisperse packing
is chosen to be large disks and grown to the desired size. Our derivation suggests that polydispersity does
not change the random packing density to first order in the size dispersity, consistent with computational
observations in Ref. [69].

Equation (8.7) gives a very simply prescription for how to increase the jamming density of a packing that
is not in D−equilibrium: Just set the sphere growth rates proportional to

γ =

(
Âf

)T

D

eT Dd
Dd−1 − Âf , (8.8)

that is, if a sphere is being pressed on too much by its neighbors, shrink its diameter, otherwise, increase
it. Since the forces f can be calculated using MD by averaging over collisions, if the growth rates are small
enough this should lead to a slow increase in the jamming density in an actual implementation, ending in a
configuration that is in D−equilibrium. We have made a preliminary implementation of this procedure in
our MD algorithm for hard spheres, and examples of packings that we have produced with it are shown in
Fig. 8.6.

Starting from a disordered binary packing of hard disks, like the one in Fig. 4.8, we start the MD
simulation at a small δ (i.e., high pressure), and let the particle diameters change independently according
to Eq. (8.8) at constant (reduced) pressure, where the forces are estimated from the average collisional
momentum exchange between particles. The final packing, that is in D−equilibrium, is shown in Fig. 8.6.
As expected, it has more contacts per particle due to the additional N degrees of freedom present (the
diameters of the disks), more specifically, we expect that Z̄ ≥ 2(d + 1) = 6. In fact, the contact number
is exactly six, Z̄ = 6, and the density is very close to that of the triangular crystal of monodisperse disks,
φ ≈ 0.91. Starting with a disordered packing of monodisperse hard spheres, and using the same MD recipe, we
obtained a polydisperse packing of hard spheres with density φ ≈ 0.68, also shown in Fig. 8.6. The algorithm
slowed down substantially in three dimensions and was not able to find a packing in true D−equilibrium,
therefore, we expect the density can be increased further. The important observation is that these packings
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are disordered according to any reasonable criterion, however, they are much denser than what would be
considered “random” or MRJ packings. For example, if we use the same distribution of radii as the one
for the polydisperse packing of spheres in Fig. 8.6 (at φ ≈ 0.68) and perform the usual LS algorithm of
compressing a liquid into a jammed packing, we obtain a packing with significantly lower jamming density
φ ≈ 0.645.

8.5.2 Ellipsoids

We now generalize the argument in the previous section to ellipsoids. In the case of spheres the matrix Â
has 1’s in column {i, j} in rows i and j. In the case of ellipsoids these dense blocks become vectors ã,

ã =
(
O−1Qn̂

)
� (QrC) ,

as derived in Section 2.2.5. Note that ãT o = n̂T rC , so that in this case,

fT h = −δ
2

∑
i

(
Âf

)T

i
oi = −δ

2

∑
i

∑
j∈N (i)

fT
ijr

j
iC = −δ

∑
ij

fT
ijrij . (8.9)

If the axes of the ellipsoids change, then the change in the jamming gap is

∆δ = −

∑
i

(
Âf

)T

i
∆oi∑

ij fT
ijrij

.

At the same time, the relative change in the volume of one ellipsoid is

∆V/V = eT O−1∆o.

The total change in jamming density therefore is:

∆φJ ≈ ∆φ+ dφ∆δ ∼
∑

i

Vi

(
eT O−1

i ∆oi

)
−

d∑
j

Vj

 ∑
i

(
Âf

)T

i
∆oi∑

ij fT
ijrij

 .

Of particular interest is the case when all the ellipsoids have the same size and they all change their shape
in unison, ∆o = Oκ, where κ 6= e is some vector. In this case the above simplifies to

∆φJ ∼

e− d

∑
i

(
Âf

)T

i
O∑

ij fT
ijrij


T

κ =

[
e− d

∑
i

∑
j∈N (i) fij (Oãij)∑
ij fij

(
n̂T

ijrij

) ]T

κ.

Since Oã = (Qn̂) � (QrC), we finally get a condition for O-equilibrium

∑
i

∑
j∈N (i)

fij (Qin̂ij) �
(
Qir

j
iC

)
=

∑
ij fij

(
n̂T

ijrij

)
d

e = pinte.

We have not yet implemented an MD algorithm that would search for ellipsoid packings in O−equilibrium,
however, this is an interesting investigation for the future.

8.6 Conclusions

In this chapter we used molecular dynamics to discover ellipsoid packings that surpass the density of the
FCC lattice packing even for nearly-spherical ellipsoids. The maximum density of ϕ ≈ 0.7707 is achieved for
aspect ratio of

√
3, and in this densest-know ellipsoid packing each ellipsoid has 14 touching neighbors. There

is nothing to suggest that the crystal packing we have presented in this chapter is indeed the densest for any
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aspect ratio other than the trivial case of spheres. We believe it is important to identify the densest periodic
packings of ellipsoids with small numbers of ellipsoids per unit cell. We proposed how to do this by using
modern global optimization techniques, as has been done for various sphere and disk packing problems.
However, this is a challenging project due to the complexity of the nonlinear impenetrability constraints
between ellipsoids. In particular, the case of slightly aspherical ellipsoids is very interesting, as the best
packing will be a perturbation of the FCC lattice with a broken symmetry, and should thus be easier to
identify. Once the breaking of orientational symmetry is resolved, aspect ratios close to unity could be handled
by smooth continuation of the structure of nearly spherical packings. The results of such investigations could
be used to formulate a Kepler-like conjecture for ellipsoids and understand the high-density phase behavior
of the hard-ellipsoid system.
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Chapter 9

Pair Correlation Function of Jammed
Sphere Packings

In this chapter we study the approach to jamming in hard-sphere packings, and, in particular, the pair
correlation function g2(r) around contact, both theoretically and computationally [75]. Our computational
data unambiguously separates the narrowing delta-function contribution to g2 due to emerging interparticle
contacts from the background contribution due to near contacts. The data also shows with unprecedented
accuracy that disordered hard-sphere packings are strictly isostatic, i.e., the number of exact contacts in the
jamming limit is exactly equal to the number of degrees of freedom, once rattlers are removed. For such
isostatic packings, we derive a theoretical connection between the probability distribution of interparticle
forces Pf (f), which we measure computationally, and the contact contribution to g2. We verify this relation
for computationally-generated isostatic packings that are representative of the maximally random jammed
state. We clearly observe a maximum in Pf and a nonzero probability of zero force, shedding light on
long-standing questions in the granular-media literature. We computationally observe an unusual power-law
divergence in the near-contact contribution to g2, persistent even in the jamming limit, with exponent −0.4
clearly distinguishable from previously proposed inverse square root divergence. Additionally, we present
high-quality numerical data on the two discontinuities in the split-second peak of g2, and use a shared-
neighbor analysis of the graph representing the contact network to study the local particle clusters responsible
for the peculiar features. Finally, we present the first computational data on the contact-contribution to g2 for
vacancy-diluted FCC crystal packings and also investigate partially crystallized packings along the transition
from maximally disordered to fully ordered packings. We find that the contact network remains isostatic
even when ordering is present. Unlike previous studies, we find that ordering has a significant impact on the
shape of Pf for small forces.

9.1 Introduction

Jamming in hard-sphere packings has been studied intensely in past years (see [4, 6] and references therein).
In this Chapter we investigate the pair correlation function g2(r) of the classical three-dimensional hard-
sphere system near a jamming point for both disordered (amorphous, often called random) as well as ordered
(crystal) jammed packings. The basic approach follows that of Ref. [52], developed further for crystal
packings of rods, disks and spheres in Ref. [145]. We focus on finite sphere packings that are almost
collectively jammed [15, 71], in the sense that the configuration point is trapped in a very small region of
configuration space around the point representing the jammed ideal packing [71]. Difficulties with extending
the results to infinite packings will be discussed in what follows. In the ideal jammed packing particle
contacts necessary to ensure jamming are exact, and the particles cannot at all displace, even via collective
motions. Such ideal jammed (or rigid) packings have long been the subject of mathematical inquiry [138];
however, they are not really attainable in numerical simulations where produced packings invariably have
some interparticle gaps (even taking into account the unavoidable roundoff errors). It is therefore instructive
to better understand the approach to this ideal jammed state computationally and theoretically, which is
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our primary objective.
We choose as our main tool of exploration the shape of the venerable orientationally-averaged pair

correlation function g2(r) around contact. This is because this function is a simple yet powerful encoding
of the distribution of interparticle gaps. In the jamming limit, it consists of a delta function due to particle
contacts and a background part due to particles not in contact. As the jamming limit is approached, it
is expected that the delta-function contribution will become more localized around contact. We derive the
first exact theoretical model for this narrowing for isostatic packings (defined below), connecting g2 to the
probability distribution of interparticle forces Pf , and verify the relation numerically. In this work, we present
computational data with unprecedented proximity to the jamming limit, for the first time clearly separating
the narrowing delta-function contribution from the apparently persistent diverging background contribution.
The data show that our disordered packings have an exactly isostatic contact network in the jamming limit,
but with an unusual multitude of nearly closed contacts, manifested as a power-law divergence in the near-
contact contribution to g2, persistent even in the jamming limit, with exponent −0.4 clearly distinguishable
from previously proposed inverse square root divergence. We study the properties of the contact network and
find, contrary to previous studies, no traces of polytetrahedral packing, but rather a complex local geometry,
indicating that the geometric frustration due to the constraints of global jamming on the local geometry is
nontrivial. Additionally, we study the evolution of the salient features of g2(r) along the transition from
maximally disordered to fully ordered packings by inducing partial crystallization in the packings. We find
that both g2(r) and Pf are significantly affected by crystallization; however, the contact network remains
isostatic. We thus demonstrate by example that isostaticity is not synonymous with randomness.

In this Chapter we focus on short-ranged pair correlations, i.e., on the features of the pair correlation
function close to contact. In Chapter 10 we will continue our study of pair correlations in disordered jammed
hard-sphere packings by focusing instead on the long-ranged tail of g2, or equivalently, on the behavior of
the structure factor S(k) for small k. In Chapter 11 we will examine random sphere packings in dimensions
higher than three, and we will find a very similar behavior to the one we study in detail here for d = 3.

9.2 Theoretical Considerations

As discussed in Sections 4.3.1.1 and 5.7.1, for jammed sphere packings, in the jamming limit δ → 0 the set
of displacements that are accessible to the packing J∆R approaches a convex polytope P∆R [52, 145], which
is a simplex for isostatic packings. A troublesome aspect, discussed in Ref. [52], is that infinite packings can
never be jammed in the above sense unless δ = 0, due to the appearance of unjamming mechanisms involving
collective density fluctuations. Nevertheless, computational studies indicate that macroscopic properties
derived using this polytope-based approach do not depend on N , even as N → ∞. Looking at Eq. (5.24),
we see that in the jamming limit the reduced pressure is asymptotically given by the free-volume equation
of state [52],

p =
PV

NkT
=

1
δ

=
d

(1− φ/φJ)
. (9.1)

Relation (9.1) is remarkable, since it enables one to accurately determine the true jamming density of a given
packing even if the actual jamming point has not yet been reached, just by measuring the pressure. We later
numerically confirm the validity of Eq. (9.1) in the vicinity of the jamming point.

9.2.1 Interparticle Force Networks

During a molecular dynamics simulation, the particles travel around RJ and the configuration explores P∆R.
One can average the exchange of momentum between any two pairs of particles which share a contact in the
jammed limit (i.e., whose contact forms a face of P∆R), hereafter referred to as first neighbors, to obtain
an average interparticle force (momentum transfer per unit time or impulse [117]). This kind of method for
measuring interparticle forces has previously been used in work on dense granular flows [117]. The vector
of collisional forces f compares directly to the inter-grain force networks which have been the subject of
intense experimental and theoretical study in the field of granular materials [3, 209, 16, 210]. As discussed
in Chapter 5, the existence of a self-stress f is a necessary condition for jamming, specifically, these forces
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must be in equilibrium,
Af = 0, (9.2)

they must be nonnegative, f ≥ 0, and here we normalize them to have a unit average, f̄ = eT f/M = 1, in the
tradition of the granular media literature. Our numerical investigations indicate that indeed the set of time-
averaged collisional forces approach local equilibrium as the time horizon T of the averaging increases, in a
inverse-power law manner, ‖Af‖ ∼ T−1. We can therefore obtain interparticle forces relatively accurately
given sufficiently long molecular dynamics runs. While Eq. (9.2) will have a unique solution if and only if
the contact network of the packing is isostatic, even for hyperstatic packings, such as the FCC packing, the
equilibrium set of forces should be unique. In fact, one can prove that the force between two particles will
be proportional to the surface area of the face of P∆R formed by the contact in question.

It is interesting to observe that if one has an arbitrary point ∆R ∈ P∆R, the interparticle gaps due to
nonzero jamming gap will be h ≈ AT ∆R + δDe, so that

fT h ≈ (Af)T ∆R +MDδ = MDδ. (9.3)

Eq. (9.3) enables one to determine how far from the jamming density a packing is without actually reaching
the jamming point. This can be a useful alternative to using Eq. (9.1) when the hard-sphere pressure is not
available, but interparticle forces are, such as, for example, with packings generated by algorithms using stiff
“soft” spheres [31].

As discussed in Chapter 5, hypostatic packings cannot be jammed. However, it is possible for a hypostatic
packing to be locally maximally dense, in the sense that no continuous motion of the particles can increase
the density to first order. In other words, the particles must first move and unjam (which must be possible
for a hypostatic sphere packing) before the density can increase. In particular, a packing of contacting
particles for which a set of interparticle forces f in equilibrium exists, is locally maximally dense. In a sense,
the interparticle forces resist further increase of the density. As we discuss later, our packing generation
algorithm sometimes terminates with such packings since it tries to continually increase the density.

9.2.2 Pair Correlation Function Around Contact

We now turn to the central subject of this work: The shape of the (orientation-averaged) pair correlation
function g2(r) for small jamming gaps. In particular, we will focus on interparticle distances r that are very
close to D. We express g2(l) in terms of the nonnegative interparticle gaps l = r −D. Note that so far we
have denoted gaps with h, however, in this section, we will use h to denote heights in a simplex. Only the M
first-neighbor particle pairs will contribute to the shape of g2(l) right near contact, i.e., for gaps up to lmax,
where lmax is the largest distance from the centroid of P∆R to one of its faces. This contribution will become
a delta function in the jamming limit. Particle pairs not in contact will not contribute to g2(l) until gaps
larger than the minimal further-neighbor gap lFN , and for now we will implicitly assume that lFN � lmax,
so that there is a well-defined delta-function region g

(δ)
2 (l) ≡ g2(l � lFN ). This delta function region has

previously been investigated theoretically for crystal packings, primarily [145]. In this work, we derive exact
theoretical expressions for this region for isostatic packings, as well as numerically study vacancy-diluted
FCC crystals and partially crystallized packings.

9.2.2.1 Isostatic Packings

We first focus on the probability distribution for observing an interparticle gap l, Pl(l), which is related to
g
(δ)
2 (l) via a simple normalization factor. The contribution P̃ (l) from a specific contact is determined from

the area S̃(l) of the cross section of Px with a plane parallel to the face corresponding to the contact and
at a distance l from the face, P̃ (l) ∼ S̃(l) [145]. The critical observation we make is that for an isostatic
contact network, P∆R is a simplex and thus immediately we get S̃(l) ∼ [(h− l)/h]M , where h is the height
of the simplex corresponding to this particular face, h = M |P∆R| /S, S = S̃(0). After normalization of P̃ (l)
and averaging over all interparticle contacts, we obtain that

Pl(l) =
∫ ∞

h=l

M

h

[
1− l

h

]M

Ph(h)dh,
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which shows that if we know the distribution Ph of heights for the simplex, or equivalently, the distribution
of surface areas S of the faces of the polytope PS(S), we would know Pl and thus g(δ)

2 .
Since the interparticle force f ∼ S, we see immediately that the distribution of face areas is equivalent

to the distribution of interparticle forces Pf (f), as we derived in Section 6.2.2.1,

h =
M

f
∆D,

where ∆D = δD. This gives in the limit M →∞

Pl(l) =
∫ M/l

f=0

f

∆D

[
1− lf

M∆D

]M

Pf (f)df ≈

1
∆D

∫ ∞

0

fPf (f) exp(−fl/∆D)df =
1

∆D
Ll/∆D [fPf (f)] ,

where Ls denotes the Laplace transform with respect to the variable s. We have the normalization condition∫∞
0
Pl(l)dl = 1 and additionally

DPl(0) =
D

∆D

∫ ∞

0

fPf (f)df =
D

∆D
= p.

If we now relate Pl(l) to g(δ)
2 (l),

g
(δ)
2 (l) =

2MV

4πD2N2
Pl(l) =

Z̄D

24φ
Pl(l),

where Z̄ = 2M/N = 2d = 6 is the mean coordination number, we obtain the central theoretical result

g
(δ)
2 (l) =

p

4φ
Ll/∆D [fPf (f)] . (9.4)

9.3 Computational Results

We use event-driven molecular dynamics [11] as the primary computational tool for our investigations. This
enables us to perform exact molecular dynamics on hard-particle packings very close to the jamming point,
which is not possible with traditional time-driven molecular dynamics algorithms, as discussed in Chapter 3.
The algorithm monitors a variety of properties during the computational run, including the “instantaneous”
pressure, as calculated from the total exchanged momentum in all interparticle collisions during a certain
short time period ∆t. By allowing the shape of the particles to change with time, for example, by having
the sphere diameter grow (shrink) uniformly at a certain (possibly negative) expansion rate dD/dt = 2γ,
one can change the packing density. If the change is sufficiently slow, the system will be in approximate
(metastable) equilibrium during the densification, and one can rather effectively gather quasi-equilibrium
data as a function of density.

Event-driven molecular dynamics (see Ref. [11] and references therein) in which the particles (quickly)
grow in size in addition to their thermal motion at a certain expansion rate, starting from a random (Poisson)
distribution of points, produces a jammed state with a diverging collision rate. This is the well-known
Lubachevsky-Stillinger (LS) packing algorithm [12, 13], which we have used and modified [11] to generate
all the disordered hard-sphere packings for this study. During the initial stages, the expansion has to be
fast to suppress crystallization and maximize disorder [56], and delaying further discussion to later sections,
we will assume that the disordered packings used in this study are representative of the MRJ state. It is
important to note that the algorithm typically produces packings that have rattling particles, i.e., particles
that do not have true contacts with particles in the jammed backbone1 of the packing, and can be removed
without affecting the jamming category of the final packing. We will discuss procedures for identification of
such rattlers in what follows.

1The backbone is formed by the collection of particles that participate in the jamming force network [71].
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Figure 9.1: The inverse of the“instantaneous” (averaged over several hundred collisions per particle) pressure
of a nearly jammed (isostatic) packing of 1000 particles, as it is slowly diluted (using a negative expansion
rate for the particles in the molecular dynamics algorithm γ = −10−5) from φJ ≈ 0.627 until an unjamming
particle rearrangement occurs. Up to this occurrence, the free-volume theoretical relation p = δ−1 is satisfied
to very high accuracy. There is a short transient region during the initial equilibration of the packing. Rattlers
have been removed from the packing.

To our knowledge, no verification of the exactness of Eq. (9.1) for disordered packings exists in the
literature. The perfect FCC crystal is stable until rather low densities, and the pressure seems to be rather
accurately predicted by the free-volume approximation in a wide range of densities around close packing.
This has been observed in the literature and a suitable corrective term was determined [54]. However, for
disordered packings, previous studies have identified a coefficient smaller than 3 in the numerator, namely
2.67 [211, 53]. In Fig. 9.1, we numerically confirm the validity of Eq. (9.1) with very high accuracy for
disordered packings. In Fig. 9.2, we show the change of the coefficient (the configurational heat capacity in
units of Nk) C = (1−φ/φJ)p with density. Agreement with the theoretical C = d = 3 is observed sufficiently
close to the jamming point, but with rapid lowering of the coefficient from 3 away from the jamming point.
This is because for sufficiently large jamming gaps, contacts other than theM true contacts start contributing
to the collisions, and the polytope-based picture we presented so far does not apply exactly. We demonstrate
this in Fig. 9.2 by showing the number of contacts which participate in collisions (active contacts) as the
jamming point is approached. Our investigations indicate that previous studies did not examine at the range
of densities appropriate for the theory presented above and did not properly account for the rattlers.

9.3.1 Disordered Packings

We have verified in previous publications that LS packings are typically collectively jammed [72] using a
testing procedure based on linear programming [71]. Unfortunately, the linear programming library used
in the implementation cannot really achieve the kind of numerical accuracy that we require in this work,
specifically that for packings which are jammed almost to within full numerical precision (δ = 10−15−10−12).
Additionally, it cannot handle three-dimensional packings of more than about a thousand particles. Another
test for jamming, which we have found to be reliable for the purposes of this work, is to take the final packing
produced by the LS procedure and then run standard event-driven molecular dynamics on it for long periods
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Figure 9.2: The coefficient C during a typical slow densification (expansion rate is 10−4) of a 10, 000-particle
system, starting from an equilibrated liquid at φ = 0.5 up to jamming. The final packing has 259 rattlers,
so the expected coefficient is 3 · 0.9741 ≈ 2.92, a value which is shown with a red line. It is clear that close
to the jamming point Eq. (9.1) is very accurate, but a marked lowering from a coefficient of 3 is seen for
pressures lower than about 106, likely explaining the coefficient 2.67 reported in works of Speedy [211, 53].
The inset shows the estimated “collisional” coordination, defined as the average number of different particles
that a particle has collided with during a time interval of about 100 collisions per particle, during the same
densification. The expected number 6 · 0.9741 ≈ 5.85 is shown (this number is not asymptotically reached
exactly since some of the M contacts do not participate in collisions frequently enough to be registered
during the time interval used), and we see that as many as 8 contacts per particle are active at sufficiently
large jamming gaps.

of time (on the order of thousands to hundreds of thousands of collisions per particle) and monitor the
“instantaneous” pressure. We called this the shrink-and-bump test for jamming in Section 4.3.3.1. If the
packing is jammed, this pressure will be stable at its initial value. However, if the packing is not truly
jammed, we have observed that the pressure slowly decays with time, the slower the “pressure leak” the
more “jammed” the initial packing is, as illustrated in Fig. 9.3. Similar observations are made in Ref. [211].
In addition, we track the average particle displacement (from the initial configuration) and check to see if
there is a systematic drift with time away from the initial configuration. The two tests always agreed: A
pressure leak always corresponds to a systematic drift away from the initial configuration. Note that this
kind of test would not work for hypostatic jammed packings of ellipsoids, since there the pressure exhibits
large oscillations, as discussed in Section 5.7.3.

We have observed that LS packings densified to within numerical capability only pass this rigorous
jamming test of having no pressure leak if during the final stages of the LS densification the expansion rate is
very small compared to the average thermal velocity (maintained constant via a velocity rescaling thermostat
[11]) of the particles (about five orders of magnitude or less). Similar observations are made in Ref. [211].
If the expansion rate is too fast, we have found that the packings jam in slightly hypostatic configurations,
where there are not enough particle contacts to ensure jamming. In particular, some particles have 2 or
3 contacts (and of course rattlers are present). In order for a set of balanced forces to exist (which as we
discussed is a necessary condition for a packing to be locally maximally dense) when a particle has less than
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Figure 9.3: The short-term (“instantaneous”) pressure versus number of events (mostly binary collisions)
processed by the molecular dynamics algorithm [11], corresponding to a total run of about half a million
collisions per particle. For the 1000-particle packing the pressure is stable, but for the larger packings a
systematic pressure leak is observed.

4 contacts, these contacts must be in a degenerate geometric configuration, namely 3 coplanar or 2 collinear
contacts. We have indeed verified that this is what happens in the hypostatic packings produced by the LS
algorithm. The number of such geometric peculiarities increases with increasing expansion rate, and also for
more ordered packings, as we discuss later.

We illustrate the progress of the densification during the final stages of the algorithm in Fig. 9.4. The
figure shows, for several snapshots of the packing during the densification, the cumulative coordination
number

Z(l) =
N

V

∫ D+l

r=D

4πr2g2(r)dr = 24φ
∫ D+l

r=D

( r

D

)2

g2(r)
dr

D
,

i.e., the average number of particles within a gap l from a given particle. We we will often use this quantity
instead of g2(l). For the first time in the vast literature on random hard-sphere packings, a clear separation
is seen between the delta-function contribution Z(δ)(l), which becomes more localized around contact, and
the background increase in the mean coordination from the isostatic contact value of Z̄ = 6, which remains
relatively unaffected by the densification. For small packings (N = 1000), the value of Z(l) is fixed at 6 for
a remarkably wide range of gaps, as much as 9 orders of magnitude for the final packings. Fast densification
is seen to lead to hypostatic packings in Fig. 9.4, leaving a certain fraction of the contacts “open”. Stopping
the expansion invariably leads to a decay of the macroscopic pressure for such hypostatic packings.

By using heuristic strategies, we were able to find (slow) densification schemes which produced packings
which are indeed ideally jammed within almost full numerical precision, at least for packings of N = 1000
particles or less. In fact, the plateau in Z(l) was at exactly (up to a single contact!) an isostatic number of
contacts, M = 3N − 2, for all the packings produced via a carefully guided LS algorithm. It is essential that
here N is the number of particles in the jammed backbone of the packing [71], i.e., rattlers [13] with fewer
than 2 contacts have been removed from the packing. It seems that the algorithm produces packings with
about 2.2% rattlers, and so the density of the disordered packings we look at is typically φ ≈ 0.625− 0.630,
rather than the widely known φ ≈ 0.64. Despite a concentrated effort and lots of expended CPU time, we
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Figure 9.4: The cumulative coordination Z(l) (i.e., the integral of g2(l)) as a function of the gap tolerance l,
for a sequence of snapshots of a 1000-particle packing during the final compression stages of the LS algorithm.
Each snapshot is shown with a separate solid curve and only the last one is labeled in the figure legend.
For a sufficiently slow expansion (expansion rate is 10−5 times the average thermal velocity), the packing
is clearly seen to jam in an isostatic configuration. A hypostatic configuration is found for fast expansion
(expansion rate is comparable to the thermal velocity). The inset shows the properly normalized derivative
of Z(l), right around contact, along with a comparison to our semi-theoretical prediction for g(δ)

2 (l), for a
packing with δ = 2.5 · 10−12.

have been unable to achieve true isostaticity for 10, 000-particle packings2. This is illustrated in Fig. 9.3,
where it is clearly seen that the pressure in the large packings does not remain constant over long periods of
time (about a million collisions per particle). It is therefore not strictly justified to consider these packings
within the framework of ideal jammed packings that we have adopted here. However, it is readily observed
that over finite and not too long time intervals (for example several thousands of collisions per particle), the
large packings conform to the predictions of the theory developed here. In particular, the collisional forces
form a balanced force network with essentially the same Pf (f) as the truly jammed smaller packings, and
the pressure is given by Eq. (9.1) with very high accuracy, where δ can be determined, for example, via
Eq. (9.3). We have observed no systematic differences in any of the correlation functions or distributions
between the jammed isostatic packings with 1000 particles and the ones with 10000 particles, other than the
better binning resolution of the larger packings and larger statistical variability among the small packings.
Results given in subsequent sections will indicate that the fact we could not achieve true jamming for very
large packings is an inherent property of the kinds of packings we consider, rather than a failure of the
simulation method. We therefore believe it is justified to use the larger packings for certain analysis where
better statistics are needed.

2When carefully densified, the packings typically lacked only a few contacts to achieve isostaticity.
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The main goal of this work is to explore and explain Fig. 9.4, and in particular, to investigate both
the “delta-function”, or contact, contribution g

(δ)
2 , which should integrate to produce the isostatic average

coordination Z̄ = 2M/N = 6, and the “background” or near-contact g(b)
2 , for gaps from about 100δD to

10−1D. This latter one has already been observed in an experimental study of hard spheres [199], and in
computational studies of stiff “soft” spheres [32, 31], including work on soft spheres that followed ours and is
closely related [212]. These various studies find a nearly square-root divergence, g(b)

2 (l) ∼ 1/
√
l, and Ref. [32]

observes that this is an integrable divergence and thus clearly separate from the delta function. Our results,
shown in Fig. 9.4, are the first unambiguous and precise separation of the two pieces of the pair correlation
function around contact near jamming for hard spheres. Our numerical data has precision (δ < 10−13)
not previously attained, since such proximity to ideal jammed hard-sphere packings can only be achieved
in a true hard-sphere algorithm, and at present only event-driven molecular dynamics seems to provide the
required numerical robustness. It is rather interesting that although graphs showing the hard-sphere g2(l)
in the literature have clearly demonstrated a divergence in g2(l) near contact for at least three decades [20],
this seems to never have been clearly documented or investigated. We are led to believe that researchers
were under the false impression this divergence is a signature of the delta-function contribution, and thus
expected it to further narrow and disappear at true jamming.

9.3.1.1 Delta-Function (Contact) Contribution

We first verify that our theory correctly predicts the shape of g(δ)
2 (l). In order to verify relation (9.4)

numerically, a form for Pf (f) is needed. Force networks in particle packings have been the subject of intense
theoretical and experimental interest [3, 210, 169, 16, 213], and it has been established that Pf decays
exponentially at large forces for a variety of models. The behavior of Pf for small forces has not been agreed
upon, the central question being whether the infinite-system-limit Pf (0) is nonzero. No theoretical model
has been offered yet that truly answers this question. We note that a recent model reproduces all of the
major characteristics of Pf that we observe, including a positive Pf (0), even though it is presently restricted
to two dimensions [214]. Part of the difficulty is that the answer likely depends not only on the system
in question, but also on the definition of f . In a true ideal collectively jammed isostatic packing, which
is necessarily finite, all interparticle forces, must be strictly positive, and in fact are determined uniquely
through Eq. (9.5),

f =
[

A
eT

]−1 [
0
1

]
, (9.5)

without any mention of interparticle potentials or influence of external fields or loads like gravity, or thermal
dynamics. The limiting probability distribution of these interparticle forces as the packing becomes larger, if
it exists, can be positive at the origin, indicating that finite but large packings have limiting polytopes with a
few extremely small faces, or equivalently, are very elongated along certain directions. We have numerically
studied the form of Pf (f) for almost jammed random packings of N = 1000 and N = 10, 000 spheres by
using molecular dynamics to observe the collisional forces between first neighbors, and also by directly using
Eq. (9.5) for the smaller packings3 (this offers better accuracy for small forces). The results are shown in
Fig. 9.5. We clearly see a peak in P (f) for small forces, as observed in the literature for jammed packings
of soft particles [169], and it appears that there is a finite positive probability of observing zero interparticle
force. We will return to this point later.

The observed Pf (f) can be well fitted for medium and large forces by Pf (f) = (Af2 + B)e−Cf , with
a small correction needed to fit the small-force behavior, as used in Fig. 9.5. This small correction has a
negligible impact on the Laplace transform of fPf (f), and in fact a very good approximation to g(δ)

2 (l) in
Eq. (9.4) is provided by just using

Lx [fPf (f)] =
6A

(x+ C)4
+

B

(x+ C)2
. (9.6)

In the inset in Fig. 9.4, we show a comparison between the g(δ)
2 (l) we observe computationally and the one

given by Eqs. (9.4) and (9.6) and the empirical fit to Pf (f) in Fig. 9.5. An essentially perfect agreement is
3Efficiently inverting the rigidity matrix for very large three dimensional packings is a rather challenging numerical task

which we have not yet tackled.
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Figure 9.5: Computational data on the interparticle force distribution along with the best fit we could
achieve. Packings of both 1, 000 and 10, 000 particles, using either molecular dynamics to average the
collisional forces, or inversion of the rigidity matrix, were used, consistently producing the same probability
distribution. Comparison to other data in the granular-media literature is beyond the scope of this work.

observed. Our focus here is on small forces, however we do wish to note that our data cannot confidently
rule out a Gaussian component to Pf for large forces and that a slight quadratic component does seem to
be visible when Pf (f) is plotted on a log-log plot.

9.3.1.2 Near-Contact Contribution

In Fig. 9.6 we investigate the near-contact contribution to g2(l). We have found that Z(b)(l) has a power
law behavior over a surprisingly wide range of gaps, up to the first minimum of g2 at l ≈ 0.25D, Z(b)(l) ≈
11(l/D)0.6, as shown in the figure. Note that this range is too wide for

g
(b)
2 (x) =

1
24φ(1 + x)2

dZ(b)(x)
dx

to be a perfect power law, where x = l/D, as used to fit numerical data in other studies (which have not
investigated nearly as wide a range of gaps as we do here) [32, 199]. The observed exponent is clearly
distinguishable from an inverse square root divergence in g(b)

2 (l), as proposed in the literature [32], and it is
consistent with the experimental exponents reported in Ref. [199]. Our study has higher statistical accuracy
than previously realized, however, it is not clear if there aren’t also systematic effects due to the different
protocols used to prepare the packings in studies such as Ref. [32].

We do not have a theoretical explanation for this functional behavior of Z(b)(l), however, the remarkable
quality of the fit in Fig. 9.6 hints at the possibility of a (simple) scaling argument. Some simple observations
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can be made by assuming that
Z(x) = Z̄ + ax1−α for 0 < x ≤ β, (9.7)

where α is an exponent 0 ≤ α ≤ 1, and β < 1 determines the extent of this power-law dependence. The
corresponding pair correlation function of course exhibits an inverse power-divergence with exponent α,
except when α = 1, when it is identically zero4. The exponent α clearly will depend on the amount of
order present in the packing, i.e., the position of the packing in the density-order diagram of Fig. 1.4. We
expect that it will increase with increasing order, since α→ 0 would indicate a constant g2(l) near contact,
a signature of the ideal gas, while α → 1 would indicate a clear distinction between the first and second
shell of neighbors (i.e., a wide range of gaps with very few contacts) typical of crystal packings. Under the
assumption that a power-law divergence in g2 is appropriate, an intermediate value of α between 0 and 1,
as we find numerically, is therefore expected. Some bounds on the range of possible α can be obtained from
bounds on Z(x) derived from geometric constraints (for example, Z(x) < 13 for a certain range of x since
the sphere kissing number is 12 in three-dimensions), but the exact value is not simple to predict5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
l/D

0

1

2

3

4

5

6

7

8

Z(
l)-

6

Z(x=l/D)-6=11x.6

Numerical data

0.001 0.01 0.1 l/D
0.1

1

10

Figure 9.6: The near-contact Z(b)(l) for a nearly-jammed 10, 000-particle packing, along with a power law
fit for small gaps, shown in both a linear-linear scale and a log-log scale (inset). In this inset we also show
a line with slope 0.5 (i.e., a square root dependence), which is clearly inconsistent with the numerical data.
The rattlers have been removed from the packing.

It is important to emphasize that we have removed the rattlers from the packing before computing Z(x).
In Ref. [212] it is argued that this is unphysical, and that rattlers should be kept in the packing, which is
reported to lead to a power exponent α ≈ 0.50. Indeed, if rattlers are kept and Z̄ adjusted accordingly, we

4Note that g
(b)
2 (x) cannot have a simple-pole divergence since this would lead to a logarithmic divergence in Z(b)(x), which

must be finite for all finite x.
5The three parameters α, β and a are thus not independent of one another. For example, requiring that g

(b)
2 (x) > 1 and

Z(x) < 12 for 0 < x ≤ β gives the weak constraints a(1− α) > 24φβ2(β − 1)α and a(β − 1)1−α < 12− Z̄.
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find a power-law divergence in Z(x) with exponent between 0.5 and 0.6, closer to 0.5. However, we wish to
emphasize that the quality of the power law fit is much worse than that shown in Fig. 9.6. Additionally,
the exact placement of the rattlers inside their cage of neighbors affects the observed Z(x). For example,
an algorithm that tries to keep particles in contact, such as the Zinchenko algorithm [28], might produce
a packing in which a rattler touches d of its caging particles. This would increase the observed contact
number. On the other hand, algorithms such as the LS algorithm will randomly sample over the different
rattler placements inside their cage. Some algorithms, for example, based on energy minimization, might
tend to push rattlers as far from their caging neighbors as possible, leading to less contacts per particle.
For these reasons, we have analyzed the jammed backbones of the packings. As we will see in Chapter 11,
we observe the same goodness of fit and exponent of 0.6 for Z(x) for jammed sphere packings in dimension
higher than 3, suggesting a possible geometrically universal feature underlying the observed divergence in
the number of near contacts.

9.3.1.3 Away from Contact: Split Second Peak

Although the primary focus of this work is on the behavior of g2(r) around contact, it is instructive to
also look at the split second peak of the pair correlation function, shown for a sample of packings of 10, 000
particles in Fig. 9.7. Only two clear discontinuities are seen, one at exactly r =

√
3D, and one at r = 2D. The

latter is very clearly asymmetrical, with a sharp decrease in g2 at r = 2D+. Although the first discontinuity
is less pronounced and statistics are not good enough to unambiguously determine its shape, it appears that
it also has the same shape as the second discontinuity, only of smaller magnitude. The split second peak is of
great importance because it is a clear signature of the strong local order in the first two coordination shells of
the packing, and in fact observations have been made that along with the appearance of a peak in Pf (f) for
small forces, the splitting of the second peak of g2 is a signature of jamming [169]. It is therefore important
to try to understand the local geometrical patterns responsible for the occurrence of these structures in g2.
Analysis similar to ours is performed for packings of soft spheres near the jamming threshold in [212], and
find similar results.

9.3.1.4 Contact-Network Statistics

The exact geometry of the jammed configuration RJ is determined (not necessarily uniquely) from its
contact network, which as we have demonstrated is the network of first-neighbor interactions and can easily
be separated from further-neighbor interactions. Fig. 9.8 shows the histogram of local coordination numbers
as a function of the first-neighbor cutoff τ , i.e., the histogram of the number of particles within distance
(1 + τ)D from a given particle. It is seen that for sufficiently small τ (τ < 10−5) the histograms are
independent of the exact cutoff used (this is true down to τ ≈ 100δ or so, which can be as small as 10−12 in
some of our packings). It is interesting to observe that the contact-number probability distributions conform
very well to a Gaussian shape, at discrete points between four and ten, for all of the cutoffs shown in the
figure. A number of particles having less than 2 contacts are seen, and these are clearly rattlers and we
have removed them from consideration from all of the final packings we analyze here. We observe that such
particles remain with fewer than 2 contacts for a very wide range of τ and are easy to identify. In some
cases, however, we cannot unambiguously identify a handful of the particles as rattlers or non-rattlers. This
is typical for packings which are not sufficiently close to their jamming point, packings which have been
produced using fast expansion in the LS algorithm, or packings which are very large. It is safest to not
remove such particles as rattlers.

This work is the first time a clear look has been provided at the exact contact network of disordered
hard-sphere packings. Previous studies have either used soft atoms, in which case the definition of a contact
is not clear cut unless one carefully takes limits of a stiff interaction potential [210], and therefore in such
studies τ has been typically set to correspond to the location of the first minimum in g2(r), or have used
Voronoi tessellations to define neighbors. Even studies which have actually used hard particles have resorted
to such definitions unsuitable to investigating the jamming limit, mostly because the numerical precision
required to separate the true contacts from the near contacts has not been achieved up to now [215]. Such
investigations, the literature of which is too vast to cite, have found a plethora of local coordination patterns
typical of polytetrahedral packing, including icosahedral order [215].
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Figure 9.7: Computational data on the split second peak of g2(r) averaged over 5 packings of 10, 000 particles.
The values r =

√
3D and r = 2D are highlighted, and match the two observed discontinuities. Also visible

is the divergence near contact. The inset shows the probability distribution Pθ(θ) of bond-pair angles in
the contact network of the packings, also revealing two divergences at θ = π/3 and at θ = 2π/3. No peaks
are observed at r =

√
2D or r =

√
5D, which are typical of crystal packings, indicating that there is no

detectable crystal ordering in the packing.

We therefore attempted to do a similar shared-neighbor [215] analysis for the contact networks of our
disordered packings, and look for local clusters reminiscent of polytetrahedral packing. Our procedure, based
on looking at the contact network as an undirected graph, was as follows. For each particle, we extracted
the subgraph corresponding to the first neighbor shell of the particle (this includes contacts between the
neighbors), extracted its connected components, and counted the number of occurrences of a given subgraph
(using graph algorithms that can test for graph isomorphism to form equivalence classes). The results were
surprising. By far the most prominent patterns were a central particle contacting a chain of 1, 2, 3, 4
or 5 contacting particles. The chains were almost never closed, other than for chains of length 3 (which
together with the original particle form a contacting tetrahedron), and this was itself rare. The probability
of finding a chain of length n seems to decay exponentially, P (n) ∼ exp(−1.2n). This study found very
few tetrahedra, and so polytetrahedral local ordering is certainly not apparent in the contact networks. We
also performed the same analysis for a range of τ ’s, all the way up to τ = 0.1D (which raises the average
coordination significantly above 6), but still found the open linear chains to be the dominant pattern. We
further attempted to include second neighbors in the analysis, however including all second neighbors led
to very large subgraphs of a very broad variety, so classification was not possible. We further restricted our
attention only to second neighbors which are very close to the given particle (within 0.1D, for example), and
this also found very few tetrahedra.

One of our goals was to determine if certain simple local coordination patterns are responsible for each
of the three features of g2(r) we previously documented: the power-law divergence near contact, and the
discontinuous, if not diverging peaks at r =

√
3D and r = 2D. We had little success in accounting for the first

one by restricting attention to only the first two neighbor shells in the true contact network. In particular, we
looked at all the near contacts (for example, with gaps less than 0.01D) and whether the almost contacting
particles were in fact second neighbors in the contact network. Indeed most were, however the majority
only shared one particle as a first neighbor, or two or three first neighbors which were not themselves

212



0 1 2 3 4 5 6 7 8 9 10
Local Z

0

0.05

0.1

0.15

0.2

0.25

0.3

P(
Z)

τ=10−2

τ=10−3

τ=10−4

τ=10−5

τ=10−6

Figure 9.8: The probability distribution of local contact numbers as the cutoff used in defining neighbors is
increased. Rattlers are clearly seen, and a relative maximum at Z = 6 is seen. Note that only one particle
with 11 neighbors is observed, and very few have as many as 10 neighbors. No particle with 12 contacting
neighbors has been observed in any of our packings, indicating a lack of crystallinity.

first neighbors. It was therefore not possible to isolate one particular local geometry as responsible for
the multitude of near contacts. An interesting quantity we measured is the probability distribution Pθ(θ) of
bond-pair angles θ in the contact network, meaning the angles between two contact bonds of a given particle.
This distribution is shown in the inset in Fig. 9.7, and shows divergences at θ = π/3 and θ = 2π/3, which
correspond to distances r = 2D sin(θ/2) of r = D and r =

√
3D. Although there is no divergence at θ = π,

the corresponding distribution of distances does show a divergence at r = 2D.
We had more success with a shared-neighbors analysis for the split second peak. This was because we

could increase τ and thus progressively relax the definition of first neighbor. We found that with increasing
τ , an increasing majority of particle pairs at a distance close to

√
3D were second neighbors, and that an

increasing majority of them shared two neighbors which were themselves neighbors. This corresponds to
two edge-sharing approximately equilateral coplanar triangles, a configuration which has been suggested as
being responsible for the first part of the split second peak [20]. Note however that we do not observe
any discontinuity in g2 at r = 1.633D, which corresponds to two face-sharing tetrahedra, which is another
configuration often mentioned in connection with the split second peak [20]. A similar analysis for the peak
at 2D indicated that the majority of particle pairs at this distance share one neighbor between them, which
represents an approximately linear chain of three particles, a configuration which has long been known to be
responsible for the second part of the split second peak of g2.

9.3.2 Ordered Packings

In this work we have focused on disordered hard-sphere packings, and have found a multitude of unexpected
singular features, such as a long power-law tail in g(δ)

2 (l), a nonzero Pf (f = 0), and a power-law divergence
in g

(b)
2 (l). It is important to realize that the properties we observe are not universal and will change as

one changes the amount of ordering of the packings. In particular, dense ordered packings like the FCC
crystal are not isostatic, and we have no theory that can predict the shape of g(δ)

2 . We therefore resort to a
computational investigation of ordered and partially ordered sphere packings.
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9.3.2.1 Vacancy-Diluted FCC Crystal Packings

It was the behavior of crystal packings around the jamming point that was the subject of Refs. [52] and
[145], and these works inspired this investigation. For crystal packings, there is no ambiguity in defining
first neighbors, and the FCC packing has Z = 12 contacts per particle, which is twice the isostatic value.
Therefore, the limiting polytope Px is not a simplex and, as argued in Ref. [145], it is expected that for an
FCC packing g(δ)

2 (l) will have a single peak for small gaps. We indeed observe this computationally, for the
first time, as shown in Fig. 9.9.

Furthermore, we have prepared vacancy-diluted FCC packings by removing a fraction p of the spheres
from a perfect crystal, 0 ≤ p ≤ 4 (here p = 0 corresponds to the perfect crystal). The FCC lattice is
composed of 4 interpenetrating cubic lattices. We obtain the vacancy-diluted crystal with the lowest density
by removing one of these 4 cubic lattices (i.e., p = 1/4), as shown in the inset in Fig. 9.9. This gives a
packing with density of about φ ≈ 0.56 and mean coordination Z̄ = 8 and is still collectively jammed. In
fact, it is likely that more spheres can be removed with a more elaborate procedure [56]. We can add back a
randomly chosen fraction q = 1/4−p of the previously removed quarter of the spheres, to obtain 0 < p < 1/4.
The delta-function contributions to g2 for several p’s are shown in Fig. 9.9. It is rather surprising that the
pair correlation function for the p = 1/4 packing no longer shows a peak, but is monotonically decaying. In
fact, by changing p one can obtain packings with g(δ)

2 (l) that has zero slope at the origin.

0 1e-11 2e-11 3e-11 4e-11 5e-11
l/D
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1e+10
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p=0

Figure 9.9: The first-shell g(δ)
2 (l) for a collection of FCC crystal packings with a fraction p of the spheres

removed, starting with N = 13, 500 particles. The inset shows the packing with most vacancies, where every
4th sphere is removed to form a cubic sublattice of vacancies (colored dark). Intermediate p’s are achieved by
randomly adding back some of the spheres to the sublattice. The density has been reduced by δ =

√
2 ·10−11

from close packing.

It is interesting to note that for the (vacancy-diluted) FCC packings g(δ)
2 (l) decays in a Gaussian manner,

and in fact is perfectly fitted by a modified Gaussian, g(δ)
2 (l) = (Al2 +Bl+C) exp

[
(l −D)2

]
, as suggested by

an approximate theory [see Eq. (6) in Ref. [216]]. This fast decay is to be compared to the slow power-law
decay for the disordered packings [c.f. Eq.(9.6)], hinting at possible connection to the stability of the crystal
packings versus the metastability of the glass packings [217]. Additionally, we show the force distribution
Pf (f) for these ordered packings in Fig. 9.10, illustrating that, in contrast with the disordered packings, very
small forces are not observed. It would be interesting to know if the perfect FCC crystal can be vacancy-
diluted to an isostatic packing and still be collectively or strictly jammed, and what the corresponding force
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Figure 9.10: The force probability distribution for the collection of FCC crystal packings from Fig. 9.9. For
the pure crystal and the crystal with most vacancies, all of the particle pairs are identical and therefore the
probability distribution would be a delta function if forces are averaged over an infinite time horizon. For
the intermediate p’s, multiple relatively broad peaks are observed. In contrast with the disordered case, very
small forces are not observed.

distribution would be.

9.3.3 Partially Crystallized Packings

As previously explained, the Lubachevsky-Stillinger algorithm can produce partially crystalline sphere pack-
ings if a sufficiently small expansion rate is used and nucleation of crystallites occurs during the densification.
This is demonstrated in Fig. 9.11, where we show the evolution of the pressure during the densification of
an initially liquid sample (i.e., a state on the stable equilibrium liquid branch), for a range of expansion
rates γ. The slower the expansion is, the more crystalline the final packings become, as can be seen from
the fact that the final density increases and from the evolution of the peaks in g2(r), as shown in Fig. 9.12.
Additionally, the structure factor S(k) shows more anisotropy and localized peaks. More detailed studies of
crystallization using hard-sphere molecular dynamics have been performed by other researchers [218, 217].
Here we are merely interested in how crystallization affects the properties we have studied in detail for the
disordered packings.

The packings shown in Fig. 9.11 clearly have nucleated crystals, and so one may anticipate that there is
a qualitative distinction between them and the “random” packings produced by suppressing crystallization.
However, as demonstrated in Fig. 9.13, slower densification leads to larger densities and more ordered
packings even if crystallization is suppressed and no visible nucleation occurs. This indicates that there is
a continuum of packings from most disordered to perfectly ordered [58] packings, so that one needs to be
careful in interpreting results obtained from packings produced by just one, possibly non-trivially biased,
algorithm. For example, Ref. [169] relates the occurrence of a peak in Pf (f) to jamming. However, as we
show next, jammed packings do not necessarily exhibit this peak if they are sufficiently ordered.

For the sake of brevity, we will only briefly discuss some interesting features of g2 for the partially
crystallized packings. Since the perfect FCC/HCP crystals have Z̄ = 12, one expects that, as partial
crystallization occurs, somehow the number of first neighbors per particle should increase from the isostatic
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Figure 9.11: Compression of an initially liquid system with φ = 0.5 to jamming with several different
expansion rates γ (the mean thermal velocity is 1, in comparison). The pressure is plotted on a reciprocal scale
(the tick marks being equally spaced in equal increments of p−1, increasing in the usual direction), to highlight
the expected linear relation (9.1) near jamming. The pressure-density curves for the perfect FCC crystal
[54], the accepted fluid-solid coexistence region, and the widely known Carnahan-Starling equation of state
for the fluid branch, are also shown for comparison. Sufficiently fast compression suppresses crystallization
and leads to densities around 0.64− 0.65, and slower compression allows for partial crystallization, typically
occurring around φ ≈ 0.55, which is the end of the coexistence region (i.e., the density where the crystal
necessarily becomes thermodynamically favored). This produces denser packings which exhibit more crystal
ordering the denser they are.

value of Z̄ = 6. However, this is not really so if one properly defines first neighbors via true contacts in
the final jammed packing. In fact, if one plots Z(l) for partially crystallized packings (we omit this plot),
a qualitatively similar curve to that shown in Fig. 9.4 is seen, with Z̄ clearly close to the isostatic value of
6. However, the background Z(b)(l) shows a faster rise the more crystalline the packing is [consistent with a
larger exponent α as defined in Eq. (9.7)], so that indeed an increase of the cumulative coordination is seen
for sufficiently large gaps. Additionally, we observe that nearly crystalline packings easily jam in noticeably
hypostatic configurations, with a higher probability of observing particles with only 2 or 3 contacts and a
less flat plateau in Z(l).

All of these findings are readily explained. The basic premise, used widely in the granular media literature,
is that random perturbations to either the particle-size distribution or to the boundary conditions will break
some of the contacts in an otherwise perfect crystal down to the isostatic value. This is because additional
contacts in excess of Z̄ = 6 imply special correlations between the positions of the particles, which one
expects to destroy with random perturbations. Such random perturbations are provided in the case of
partially crystallized packings by the fact that the crystallites need to jam against a partially amorphous
surroundings, and this induces complex strains that break some of the perfect-crystal contacts.6 However,
the geometric peculiarities of the underlying crystal remain; for example, there is a multitude of nearly

6We mention in passing that we have observed similar results by starting with a perfect FCC crystal, applying a small (but
not too small) random strain, and then jamming the packings. This typically yields almost perfectly crystal packings which are
nonetheless clearly frustrated by the random strain to have Z̄ ≈ 6.
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Figure 9.12: The evolution of the peaks in g2(r) as crystalline order is increased, for the packings from Fig.
9.11. The formation of peaks at distances typical of the FCC lattice, such as r =

√
2, is clearly seen. It is

interesting to note that a peak is observed at
√

11/3 ≈ 1.91, which is a fifth-neighbor distance in the HCP
(but not the FCC) lattice (a similar HCP peak at

√
8/3 ≈ 1.63 is barely visible). This is in agreement with

numerous previous theoretical and numerical investigations of crystallization [218].

collinear (in fact lines of aligned particles) or coplanar contacts, which leads to the occurrence of much more
pronounced force chains (chains of large forces propagating along a nearly straight line) and a sharp increase
in the probability of occurrence of small forces. We indeed observe this in Fig. 9.14, where we show that
for sufficiently ordered packings there is no longer a peak in Pf (f) for small forces, but rather a monotonic
decrease of Pf (f), apparently exponential for sufficiently large forces. This is in contrast to previous studies
of the effect of order on force distributions in granular piles [196, 219], which did not register a significant
impact of the ordering. However, these studies examine the distribution of forces in granular piles and a
direct comparison is beyond the scope of this work.

9.4 Conclusions

The results presented in this work settle some long-standing questions and confusions in the literature. For
the first time, we showed both theoretically and computationally how the delta-function portion of g2(r) is
formed as jamming is approached, for a true hard-sphere packing. Our investigation focused on maximally
disordered (MRJ) sphere packings with a packing fraction φ ≈ 0.64−0.65. We presented the first true hard-
sphere computational data on the power-law divergence in the near-contact portion of g2, in agreement with
previous observations in the literature for stiff soft spheres, but with a distinguishably different exponent
of −0.4. We confirmed that this divergence persists even in the true jamming limit for hard particles. We
presented high-quality data on the probability distribution of interparticle forces Pf (f), especially focusing
on small forces, demonstrating a maximum at small forces and a nonzero intercept at f = 0. A local analysis
of the topology of the contact network found few traces of tetrahedra and an overwhelmingly complex local
connectivity, and was successful in accounting for the structures responsible for the split second peak of g2(r).
A computational study of the delta-function contribution to g2(r) for vacancy-diluted FCC crystals showed a
faster than exponential decay, unlike the slow power-law decay for the disordered isostatic packings. Finally,
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Figure 9.13: Compression of an initially (metastable) liquid system with φ = 0.6 to jamming with several
different expansion rates, as in Fig. 9.11. For this range of expansion rates, crystallization is suppressed due
to the large initial density and all final packings are apparently disordered and would be ordinarily identified
as random, however, it is clear that slower compression leads to higher densities, and thus the final packings
are not all identical, but rather, some are more ordered than others, as can be verified by the slight increase
in bond-orientational order metric Q6 [58], for example.

we investigated packings on the transition from maximally disordered to maximally ordered, and found that
partially crystallized packings produced by our algorithm are still nearly isostatic despite having a higher
density, and that Pf (f) loses the peak for sufficiently ordered packings.

This work has raised several important questions. The computational observations undermine the very
applicability of the ideal jammed packing model to large (maximally) disordered packings of spheres, as
produced by most algorithms in use today. First, a very unusual power law divergence in g2(l) is observed
near contact, leading to a multitude of particle pairs just away from contact. Similarly, a power-law decay
is seen in the contact part of g2(l). As the packings become larger, one can expect the tails of the two
power laws to start overlapping by an observable number of contacts, blurring the distinction between true
contacts and almost contacts. Even more troubling is the observation that there appears to be a positive
probability of observing a zero force in the contact network of the packings, indicating the presence of
geometric degeneracies in the contact network. The above observations may explain why we have had
trouble generating truly jammed packings of N = 10, 000 particles. However, we do not see a reason why
very large but finite packings collectively jammed ideal packings could not be constructed. The question of
what algorithm can produce disordered (and thus likely isostatic) packings which are jammed and devoid of
some or all of the above peculiarities, as is the FCC crystal packing7, for example, remains open.

7Note that the observations we list as troubling are separate from the rather general objections due to the inapplicability of
the concept of ideal jamming to infinite packings, which apply to crystal packings as well [52].
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Chapter 10

Density Fluctuations in Jammed
Sphere Packings

Continuing on previous theoretical investigations of local density fluctuations in atomic systems in Ref. [202],
we computationally study jammed disordered hard-sphere packings of as many as one-million particles [76].
We show that local density fluctuations are suppressed from volume to surface ones, i.e., the generated
packings are hyperuniform, with structure factor which vanishes at the origin to within 10−3. The numerical
results point to a strange non-analytic linear dependence of the structure factor around the origin, S(k) ∼ |k|.
In addition to exponentially damped oscillations seen in liquids, this implies a weak power-law tail in the total
correlation function, h(r) ∼ −r−4. The direct pair correlation function shows a significant long-range tail
outside the core, unlike the stable liquid. Finally, we demonstrate that the generated packings are saturated
and all voids in the mechanically rigid backbone of the packing are filled with rattlers. Our results illuminate
many open questions about density fluctuations in glassy atomic systems.

10.1 Introduction

The characterization of local density fluctuations in many-particle systems is a problem of great fundamental
interest in the study of condensed matter, including atomic, molecular and granular materials. Previous work
in Ref. [202] was concerned with the quantitative characterization of density fluctuations in point patterns,
and in particular, those in which infinite wavelength fluctuations are completely suppressed, i.e., the structure
factor S(k) vanishes at the origin. In these so-called hyperuniform (or superhomogeneous [220]) systems, the
variance in the number of points inside a large window grows slower than the volume of the window, typically
like the window surface area. Most known examples of hyperuniform systems are either ordered lattices or
quasi-crystals [202, 220]. An important open problem is the identification of statistically homogeneous and
isotropic atomic systems (e.g., glasses) that are hyperuniform.

For equilibrium liquids and crystals S(k = 0) = κT /κ
0
T , where κ0

T is the ideal gas compressibility, and
is thus positive. Strictly jammed sphere packings are rigorously incompressible (and non-shearable) [111];
however, they are also nonequilibrium systems. If the compressibility equation remains valid even in certain
nonequilibrium cases, it would predict that for hard-sphere systems in the jamming limit S(0) ≈ 3/p2, where
the reduced p = PV/NkT diverges in the jamming limit according to Eq. (9.1). In Ref. [202] it was
conjectured that all saturated1 strictly jammed packings are hyperuniform. In this chapter we demonstrate
that MRJ packings are indeed hyperuniform and saturated. Moreover, we observe an unusual non-analytic
structure factor S(k) ∼ |k|, or equivalently, a quasi-long ranged negative tail of the total pair correlation
function h(r) ∼ −r−4.

We prepare jammed packings of hard spheres under periodic boundary conditions using a modified
Lubachevsky-Stillinger (LS) packing algorithm [12], as detailed in Chapter 9. The generated disordered
sphere packings typically have volume fractions in the range φ = 0.64− 0.65, and to a good approximation
the packings should be representative of the maximally random jammed (MRJ) state [58]. The MRJ state

1A saturated packing is one in which no additional particles can be added.
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for hard-particle packings is intimately related to jamming and dynamic arrest in both granular and glassy
materials. For this study, we have generated a dozen packings of N = 105 and N = 106 particles jammed
up to a reduced pressure of 1012 using an expansion rate of 10−3 [75] with φ ≈ 0.644. Generating such
unprecedented one-million-particle packings was necessary in order to study large-scale density fluctuations
without relying on dubious extrapolations.

10.2 MRJ Packings Are Saturated
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Figure 10.1: The pore-size function F (δ) for a packing with N = 105 particles, with and without the
rattlers. The method of trial spheres with 2 · 109 trials was used [6]. A very similar F (δ) with cutoff around
δmax ≈ 0.8D is observed when N = 106, when rattlers are present. The cutoff is however not as sharply
defined as it is for the FCC crystal, shown for comparison.

The packings generated by the LS and other algorithms have a significant fraction (∼ 2.5%) of rattling
particles which are not truly jammed but can rattle inside a small cage formed by their jammed neighbors
[75]. These rattlers make a negligible contribution to the mechanical properties of the system, including the
pressure, and can be removed sufficiently close to the jamming point. However, they are important when
considering density fluctuations. Removing the rattlers will produce small but observable long-wavelength
density fluctuations. Assuming that the rattlers are more or less randomly distributed among all particles,
a hyperuniform packing from which the rattlers are then removed would have S(0) ≈ 0.025 > 0. Similarly,
the hyperuniformity could be destroyed by randomly filling large-enough voids with additional rattlers. It
is therefore important to verify that the jammed packings are saturated, i.e., that there are no voids large
enough to insert additional rattlers. Figure 10.1 shows the complementary cumulative pore-size distribution
F (δ) [6], which gives the probability that a sphere of diameter δ could be inserted into the void space, with
and without the rattlers. Clearly there is no room to insert any additional rattlers; the largest observed
voids are around δmax ≈ 0.8D. The algorithm used to produce the packings appears to fill all void cages
with particles.
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10.3 Structure Factor Near k = 0

Long-wavelength density fluctuations in the packing are determined by the large-distance pair correlations,
or equivalently, by the structure factor for small wavevectors. It is very difficult to study long-wavelength
density fluctuations accurately in 3D computer simulations. When periodic boundary conditions apply with
a periodic box of length L, particle correlations can only be studied up to a distance L/2, and there are
large finite-size corrections for distances comparable to L. Additionally, as we show later, strong statistical
fluctuations appear due to finite system size, making it necessary to use even larger systems to measure pair
correlations at large distances. In reciprocal space, S(k) can only be measured for k ≥ 2π/L, with large
discretization errors for the smallest wavevectors. To overcome these finite-size effects, it was necessary to
generate a packing of one million particles.

Consider a large isotropic three-dimensional packing of N hard spheres of diameter D, with average
number density ρ = N/V and average volume fraction φ = πρD3/6. We employ the usual pair correlation
function g2(x = r/D) or the total correlation function h(x) = g2(x) − 1 in real space, or the equivalent
Fourier representation given by the structure factor

S(K = kD) = 1 + 24φ
∫ ∞

0

sin (Kx)
Kx

x2h(x)dx.

Of particular interest are the moments of h(x), 〈xn〉 =
∫∞
0
xnh(x)dx. Computer-generated packings are

always finite, and thus binning techniques must be used to obtain probability densities like h. Accordingly,
we prefer to use the more readily measurable excess coordination

∆Z (x) = 1 + 24φ
∫ x

0

w2h(w)dw.

This is the average excess number of points inside a spherical window of radius xD centered at a particle,
compared to the ideal-gas expectation 8φx3. Any integral containing h(x) can easily be represented in terms
of ∆Z (x) using integration by parts. For the structure factor we get S (K) = limR→∞ S(K,R), where

S(K,R) = ∆Z (R)
sin (KR)
KR

−
∫ R

0

∆Z (x)
d

dx

sin (Kx)
Kx

dx. (10.1)

This has quadratic behavior near k = 0 when expanded in a Taylor series,

S (K) ≈ S(0) +
K2

3

∫ ∞

0

x [∆Z(x)− S(0)] dx, (10.2)

where S(0) = ∆Z (x→∞) vanishes for a hyperuniform system. For large x, an explicit finite-size correction
of order 1/N needs to be applied to the infinite-system excess coordination, ∆Z(x) ≈ S(0)

[
1− 8φx3/N

]
[221], as it is clear that the excess coordination must vanish for windows as large as the whole system.

Figure 10.2 shows S(k) for the simulated packings as obtained via a direct Fourier transform (DFT) of
the particle positions,

S(k) = N−1

∣∣∣∣∣∣
N∑

j=1

exp
(
ikT rj

)∣∣∣∣∣∣
2

,

where k is a reciprocal lattice vector for the periodic unit cell. This calculation potentially involves many
reciprocal lattice points and can only be done for a limited range of wavevectors near the origin due to
memory and CPU constraints, and cannot easily and accurately be made faster using Fast Fourier Transforms
(FFT). Recent non-uniform FFT algorithms can help obtain the DFT very efficiently [222, 223]. To obtain an
approximation to the radially symmetric infinite-system S(k), we average over the reciprocal lattice vectors
inside a spherical shell of thickness 2π/L. Using Eq. (10.1) together with a numerical (truncated) ∆Z(x)
quickly gives S(k) over a wide range of wavelengths. However, the behavior near the origin is not reliable
since it depends on the analytic extension for the tail of ∆Z(x). The results of the DFT calculations are
shown in Fig. 10.2, and they closely match the one obtained from ∆Z(x) for wavelengths smaller than about
20 diameters.
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Figure 10.2: Structure factor for a 106-particle packing and for a hard-sphere liquid near the freezing point
(φ = 0.49), as obtained via two alternative numerical methods and also from the Percus-Yevick (PY) theory
for the liquid [55]. DFT results are also shown over a larger range of K for a 105-particle packing. The
left inset focuses on the range close to the origin, showing that while a parabola matches the liquid data
reasonably well [ S(K) ≈ 0.02 + 4 · 10−3K2 according to PY theory], it does not appear appropriate for
the jammed packing for large-to-intermediate wavelengths. The very linear behavior of the DFT data for
the jammed packing in the range up to K/2π < 0.4 is remarkable. The right inset shows c(r) convolved
(smudged) with a narrow Gaussian [due to numerical truncation of S(k)]. The peak at r = D is thus in fact
(almost) a δ-function.

Figure 10.2 demonstrates that the saturated packing is indeed hyperuniform2 to within S(0) < 10−3, as
conjectured in Ref. [202]. The behavior of S(k) near the origin is very surprising. The observed S(k) follows
closely a non-analytic linear relationship3 well-fitted by S(K) ≈ 6.1 ·10−4 +3.4 ·10−3K over the whole range
K/2π < 0.4. By contrast, analytic quadratic behavior is observed for a liquid sample at φ = 0.49, as shown
in the figure. Theoretical finite-size corrections to the small-k behavior of S(k) have only been considered
for relatively low-density liquid systems with relatively small N [221, 224, 225], and do not appear useful for
our purposes. Although estimating the corrections to the DFT data analytically is certainly desirable, such
corrections appear to be rather small at least for the well-understood liquid at φ = 0.49. Comparison among
the different N = 106 samples shows that statistical fluctuations in S(k) near the origin are very small. It is
important to again point out that it is essential to keep the rattlers when calculating the structure factor,
since the removal of the rattlers introduces long-wavelength density fluctuations, as illustrated in Fig. 10.3.

2We believe that this small residual non-hyperuniformity is an artifact of the packing algorithm. For example, by reducing
the particle expansion rate one observes an increase in the hyperuniformity (and also in density [75]).

3Since S(k) is an even function, its derivative must vanish at the origin for it to be analytic.
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The exact positioning of the rattlers inside their cages affects S(k) and may also be contributing to the small
but non-zero value we observe.
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Figure 10.3: Structure factor obtained via DFT as in Fig. 10.2, with and without the rattlers, and with a
random 2.5% of the particles removed from the packing. It is seen that removing the rattlers is equivalent to
removing the same number of randomly-chosen particles, raising the structure factor to S(0) ≈ 0.025 > 0.

Equation (10.2) shows that if h is truly short-ranged, the structure factor must be analytic (i.e., an even
power of k, usually quadratic), near the origin. Our numerical observations point strongly to a linear S(K)
for small K. It is interesting to note that such non-analytic behavior is assumed in the so-called Harrison-
Zeldovich power spectrum of the density fluctuations in the early Universe [220], and has been verified
experimentally with high accuracy. If this observation S(K) ∼ |K| survives simulations of even larger
jammed hard sphere systems, using a variety of packing algorithms, it would imply a negative algebraic
power-law tail h(x) ∼ −x−4 uncharacteristic of liquid states. Such a quasi-long range correlated decrease in
the density around a particle is typically only seen in systems with long-range interactions.

10.3.1 Direct Correlation Function

A long-ranged tail must appear in the direct correlation function c(r) for a strictly hyperuniform system due
to the divergence of c̃(0), in a kind of “inverted critical phenomenon” [202]. Diverging length scales have
been identified at a jamming transition for systems of soft spheres [188]. Such a tail is uncharacteristic of
liquids where the range of c(r) is substantially limited to the range of the interaction potential. The direct
correlation function can numerically be obtained from its Fourier transform via the Ornstein-Zernike (OZ)
equation,

c̃(k) = (π/6φ)
S(k)− 1
S(k)

,

and we have shown it in the inset in Fig. 10.2, along with the corresponding PY anzatz for c(r) at φ = 0.49
which is assumed to vanish outside the core. Two unusual features relative to the liquid are observed for our
jammed packing. First, there is a positive δ-function at contact corresponding to the Z̄ = 6 average touching
neighbours around each jammed particle [75]. Second, there is a relatively long tail outside the core, the
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exact form of which depends on the behavior of S(k) around the origin4.

10.4 Number Fluctuations

The numerical coefficient in the power-law tail in h(x) suggested by the linear behavior of the structure
factor near the origin is very small and cannot be directly observed, as we will show shortly. It is however
possible to observe its effect on large-scale density fluctuations. For monodisperse hard sphere systems it
suffices to focus only on the positions of the sphere centers and consider density fluctuations in point patterns.
Following Ref. [202], consider moving a spherical window of radius R = XD through a point pattern and
recording the number of points inside the window N(X). The number variance is exactly [202],

σ2(X) =
〈
N2(X)

〉
− 〈N(X)〉2

=
3φ
2

[
(2X)2∆Z0(2X)−∆Z2(2X)

]
where ∆Zn(x) =

∫ x

0
wn∆Z(w)dw denotes a running moment of ∆Z.
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Figure 10.4: The variance σ2 as a function of the window radius for a 106-particle packing. The uncertainty
in the variance, as shown with error bars, is estimated to be of the order of σ2/

√
M , where M = 104 is

the number of windows used for a given window. Also shown is the theoretically predicted dependence of
the form AX3 + CX2 lnX + B0X

2, along with just the surface term B0X
2, which dominates the density

fluctuations.

Asymptotically, for large windows, in an infinite system with analytic S(k),

σ2(X) ≈ AX3 +BX2,

where
A = 8φ

(
1 + 24φ

〈
x2

〉)
= 8φS(0)

4We used the linear fit to S(k) when producing the figure, implying c(r) ∼ r−2.
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is the volume fluctuation coefficient, and

B = −144φ2
〈
x3

〉
= 6φ∆Z0 (x→∞)

is the surface fluctuation coefficient. When a non-integrable power-law tail exists in ∆Z(x), asymptotically
the “surface” fluctuation coefficient contains an additional logarithmic term in the moment

〈
x3

〉
, giving a

correction B(X) = B0 + C lnX and a variance

σ2(X) ≈ AX3 + CX2 lnX +B0X
2.

Such a logarithmic correction does not appear for any of the examples studied in Ref. [202]. Explicit finite-
size effects for non-hyperuniform systems yield an additional correction A(X) = 8φS(0)

[
1− 8φX3/N

]
[226].

Figure 10.4 shows numerical results for the number variance as a function of window size, along with the
predicted asymptotic dependence, including both the logarithmic and N−1 corrections5. Both corrections
need to be included in order to observe this close a match between the data and theory. The constants S(0)
and C were obtained from the linear fit to S(k), while B0 ≈ 1.02 was obtained by numerically integrating
∆Z(x), as explained shortly6.

10.5 Tail of the Total Correlation Function

We now turn our attention to real space to observe directly the large-distance behavior of h or equivalently
∆Z. For equilibrium liquids with short-ranged potentials it is expected that the asymptotic behavior of h(x)
is exponentially damped oscillatory [228, 229], of the form

h(x) ∼ C

x
exp (−x/ξ) cos [K0(x− x0)] . (10.3)

However, it is not clear whether the decay is still exponential for glass-like nonequilibrium jammed systems.
Previous studies have looked at much smaller systems, where explicit finite-size effects dominate, and also
focused on the liquid phase [224, 225]. Figure 10.5 shows the numerical ∆Z(x) along with a relatively good
exponentially damped oscillatory fit

∆Z(x) ≈ 5.47x exp(−x/1.83) cos(7.56x− 2.86)

over the range 5 < x < 15. Compare this fit to ξ ≈ 1.4 and K0 ∼ 7.9 reported in Ref. [36]. It would be
desirable to look at larger x and, in particular, directly observe the long-range inverse power tail predicted
from the linear behavior of S(k).

The use of cubic periodic boundary conditions imply that only pair distances up to xmax = 3
√
πN/24φ

can be studied, and additionally one expects to see implicit finite-size effects due to the use of periodic
boundaries in addition to explicit finite size effects. However, the most important for our study is the
uncertainty δZ(x) coming from statistical variations among finite systems. An estimate of the magnitude
of the uncertainty δZ(x) can be derived as follows. Ignoring the fact that the windows used in obtaining
∆Z(x) are centered on the particles, the expected uncertainty in the number of points per window is σ(x).
Since we are averaging over N windows, the expected uncertainty is δZ(x) ≈ σ(x)/

√
N . Our numerical

experience has demonstrated that this is a good estimate despite the assumptions in its derivation. If Ns

different packings were averaged over, for a hyperuniform system, the uncertainty is of the order of

δZ(x) = x

√
B

N ·Ns
.

The maximal uncertainty is thus of the order of δZ(xmax) ∼ 1/ 6
√
N , which decreases rather slowly with

increasing system size, and in practice the range of x for which sufficient accuracy can be obtained is rather
5Additional implicit finite size effects due to the periodicity of the system have been considered for hard disks in Ref. [227],

and they have been shown to be significantly smaller. While finite-size effects for hyperuniform systems have not been studied
theoretically, Fig. 10.4 suggests they are also small.

6The surface coefficient B0 cannot be determined from just the linear part of S(k) near the origin.

226



0 2.5 5 7.5 10 12.5 15 17.5 20
x=r/D

-3

-2

-1

0

1

2

3
Ex

ce
ss

 c
oo

rd
in

at
io

n

0 5 10 15 20
0.01

0.1

1

10
∆Z(x)
δZ(x)
Asympt. fit

0 5 10 15 20
0

0.1

0.2

0.3

0.4 ∆Z0(x)
∆Z1(x)

Figure 10.5: The excess coordination for a 106-particle packing, along with the best fit of the form (10.3)
for the tail, and the estimated uncertainty. Statistical fluctuations overcome the actual correlations after
x ≈ 15. Averaging over nine samples only shrinks the magnitude of the fluctuations by three, without
revealing additional information. The inset on the top uses a logarithmic scale, and the inset on the bottom
shows the zeroth and first running moments along with their asymptotic values as estimated from the tail
fit. Note that for the range of x shown explicit finite-size corrections are small (less than 5%).

limited. We have systematically observed that ∆Z(x) exhibits unusually strong correlated fluctuations at the
tail of the range of certainty, most likely due to amplification of the underlying small geometrical correlations
by statistical noise. These strong oscillations in ∆Z(x) for large x are illustrated in Fig. 10.6. It is therefore
essential to restrict the observations to the region of validity as determined from δZ(x), and as seen in Fig.
10.5 this limits the range of validity of the numerical ∆Z(x) to at most x < 15.

Within the range of validity of the observed ∆Z(x) the damped oscillatory fit is perfectly appropriate.
We smoothly combined the actual numerical data for x < 10 with the fitted decaying tail for x > 10, and
numerical integration of this smoothed ∆Z(x) gives B0 ≈ 1.02± 0.02, as used in producing Fig. 10.4. This
smoothed ∆Z(x) was used to obtain S(k) via Eq. (10.1) when producing Fig. 10.2. The estimated power-law
tail due to the non-analytic behavior of S(k), ∆Z(x) ≈ 4.4 · 10−3x−1, is too small to be observed directly,
as it is completely overwhelmed by the statistical fluctuations in ∆Z(x).

10.6 Conclusions

We have given computational results for million-particle jammed disordered hard sphere packings and demon-
strated that they are saturated and hyperuniform. We found that S(k) is nonanalytic at the origin in striking
contrast to liquid behavior. There are many open fascinating questions. Can a geometrical significance be
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Figure 10.6: The excess coordination as in Fig. 10.5 but shown over the full range of distances up to half
the simulation box length. Statistical fluctuations overcome the actual correlations after x ≈ 15 and they
are correlated over short distances, leading to large oscillations that may falsely be perceived as a signature
of persistent long-range correlations.

attached to the period of oscillations K0 in the jamming limit, or to the cutoff of F (δ)? We believe that
the strict jamming and saturation conditions demand hyperuniformity of our packings. We argue that the
observed nonanalytic behavior of S(k) ∼ k is a direct consequence of the condition of maximal disorder
on the jammed packing. The exponent p appears to increase with increasing order: It approaches infinity
for ordered lattices, is two for perturbed lattices, and is one for MRJ. In this sense, the MRJ packings
are markedly more disordered: they have macroscopic density fluctuations which are much larger than crys-
talline packings. Quantitative understanding of this aspect of disorder and its relation to density fluctuations
remains a fascinating open problem.

228



Chapter 11

Packing Hyperspheres in High
Dimensions

In this chapter we present the first study of disordered jammed hard-sphere packings in four-, five- and six-
dimensional Euclidean spaces [77]. Using a modified Lubachevsky-Stillinger packing generation algorithm,
we obtain the first estimates for the packing fractions of the maximally-random jammed (MRJ) states for
space dimensions d = 4, 5 and 6 to be φMRJ ' 0.46, 0.31 and 0.20, respectively. Calculations of the
pair-correlation function g2(r) and structure factor S(k) for these states show that short-range ordering ap-
preciably decreases with increasing dimension, consistent with a recently proposed “decorrelation principle”
stating that unconstrained correlations diminish as the dimension increases and vanish entirely in the limit
d → ∞. As in three dimensions (where φMRJ ' 0.64), the packings show no signs of crystallization, are
isostatic, and have a power-law divergence in g2(r) at contact with power-law exponent ' 0.4. Across dimen-
sions, the cumulative number of neighbors equals the kissing number of the conjectured densest packing close
to where g2(r) has its first minimum. Additionally, we obtain estimates for the freezing and melting packing
fractions for the equilibrium hard-sphere fluid-solid transition, φF ' 0.32 and φM ' 0.39, respectively, for
d = 4, and φF ' 0.19 and φM ' 0.24, respectively, for d = 5. Although our results indicate the stable phase
at high density is a crystalline solid, nucleation appears to be strongly suppressed with increasing dimension.

11.1 Introduction

In this chapter we extend the studies of hard sphere systems in three dimensions presented in previous
chapters, and in particular Chapters 9 and 10, to four, five and six dimensions. Of particular interest to
us are (nonequilibrium) disordered jammed packings of hard spheres and their statistical and mechanical
properties, such as the maximally random jammed (MRJ) state [58, 56], pair correlations [75], isostaticity
[75], and density fluctuations [76].

A hard-sphere packing in d-dimensional Euclidean space Rd is an arrangement of congruent spheres,
no two of which overlap. As in a variety of interacting many-body systems [230], we expect studies of
hard-sphere packings in high dimensions to yield great insight into the corresponding phenomena in lower
dimensions. Analytical investigations of hard-spheres can be readily extended into arbitrary spatial dimension
[231, 232, 233, 234, 235, 236, 237, 238, 239, 6, 202, 240, 241] and high dimensions can therefore be used as
a stringent testing ground for such theories. Mean-field-like models that are only approximate in lower
dimensions become more accurate in higher dimensions, enabling exact theoretical calculations in the limit
d → ∞. Along these lines and of particular interest to this paper, predictions have been made about
long-wavelength density fluctuations [202] and decorrelation [240, 241] in disordered hard-sphere packings in
high dimensions. Additionally, the optimal packing of hard spheres in high dimensions is also of interest in
error-correcting codes in communications theory [9].

Our focus in this paper will be the study of hard-sphere packings in four, five and six dimensions. We
consider equilibrium hard-sphere systems for d = 4 and d = 5. We report estimates of the freezing, melting,
and kinetic glass transition densities, and find a decreased tendency to crystallize with increasing dimension.
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We also numerically study MRJ packings of hard spheres for d = 4, 5 and 6 that are at least collectively
jammed and report the first estimates of the packing fractions of the MRJ states [58] in these dimensions
to be φMRJ ' 0.46, 0.31 and 0.20, respectively. We find that short-range ordering exhibited by g2(r) and
S(k) appreciably diminishes with increasing dimension, consistent with a recently proposed “decorrelation
principle” stating that unconstrained spatial correlations diminish as the dimension increases and vanish
entirely in the limit d→∞ [240].

11.1.1 Previous Work

Equilibrium thermodynamic properties of hard-sphere packings for d = 4 and d = 5 have been studied both
computationally and with approximate theories. For the low-density fluid, lower-order virial coefficients, B2,
B3, and B4, are known exactly for arbitrary dimensionality [231, 232]. Higher-order virial coefficients have
been calculated by Monte Carlo simulation, B5, B6 and B7 for both d = 4 and d = 5 and B8 for d = 4 [234],
or analytically [233]. The pair correlation function for equilibrium fluids has been studied and a decrease
in ordering with increasing dimension was readily apparent [242]. Hard-sphere systems have been shown to
undergo a (first-order) fluid-solid phase transition by numerical simulations for 3 ≤ d ≤ 5 [243] and with
approximate theories for d as high as 50 [238]. The freezing points for d = 4 and d = 5 were estimated
numerically to occur at packing fractions (fraction of space covered by spheres) φF ∼ 0.5φmax = 0.31 and
φF ∼ 0.4φmax = 0.19, respectively, and it was conjectured that freezing occurs at lower packing fractions
relative to close packing as the dimension increases [243].

At sufficiently large densities, the packing of spheres with the highest jamming density has the greatest
entropy because the free-volume entropy dominates over the degeneracy entropy. Therefore, the high-density
equilibrium phase corresponds to the optimal packing, i.e., maximal density. The densest packing for d = 3
was recently proved by Hales [39] to be attained by the FCC lattice with packing fraction φmax = π/

√
18 =

0.7404 . . . . The kissing number Z, the number of spheres in contact with any given sphere, for the FCC
lattice corresponds to the maximal kissing number Zmax = 12 for d = 3. One of the generalizations of
the FCC lattice to higher dimensions is the Dd checkerboard lattice, defined by taking a cubic lattice and
placing spheres on every site at which the sum of the lattice indices is even (i.e., every other site). The densest
packing for d = 4 is conjectured to be the D4 lattice, with packing fraction φmax = π2/16 = 0.6168 . . . and
kissing number Z = Zmax = 24, which is also the maximal kissing number in d = 4 [9]. For d = 5, the
densest packing is conjectured to be the D5 lattice, with packing fraction φmax = 2π2/(30

√
2) = 0.4652 . . .

and kissing number Z = 40 [9]. For d = 6, the densest packing is conjectured to be the “root” lattice E6, with
density φmax = 3π3/(144

√
3) = 0.3729 . . . and kissing number Z = 72 [9]. The maximal kissing numbers

Zmax for d = 5 and d = 6 are not known, but have the following bounds: 40 ≤ Zmax ≤ 46 for d = 5 and
72 ≤ Zmax ≤ 82 for d = 6 [9]. In very high dimensions, it has been suggested that random packings of
spheres might have a higher density than ordered packings, enabling the intriguing possibility of disordered
ground states and hence thermodynamic glass transitions [240]; see also Ref. [241].

11.1.2 Simulation Procedure

We use event-driven molecular dynamics (MD) and a modified Lubachevsky-Stillinger (LS) algorithm [12],
as in Chapter 9 (see also Section 1.2), to produce collectively-jammed hard-sphere packings. As discussed
in Chapter 3, our algorithm uses periodic boundary conditions applied to a hypercubic cell, in which a
fundamental cell containing N spheres is periodically replicated to fill all of Euclidean space. We also use
the cell method, in which the computational domain is divided into cubic cells and only neighboring cells are
checked when predicting collisions for a given sphere. Since the number of neighboring cells, as well as the
number of spheres per cell, increases considerably with increasing dimension, working in high dimensions is
computationally intensive. Additionally, eliminating excessive boundary effects requires on the order of ten
sphere diameters per simulation box length, i.e., on the order of N = 10d spheres. Due to the increasing
computational load with increasing dimension, we cannot yet study d > 6. Implementing the near-neighbor
list (NNL) techniques from Section 3.3.2, as well as parallelization, are necessary in order to study higher
dimensions. Dimension-independent C++ codes used to generate the data in this paper can be downloaded
at http://cherrypit.princeton.edu/Packing/C++.
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11.2 Thermodynamic Properties

The temperature in equilibrium systems of hard spheres is a trivial variable; it does not affect equilibrium
configurational correlations, leaving only one independent thermodynamic state variable, which can be taken
to be either the reduced pressure p = PV/NkBT or the density φ, related through the equation of state
(EOS). Hard-sphere systems undergo a (first-order) fluid-solid phase transition, characterized by a melting
point, which is the density at which the crystal thermodynamically begins to melt, and a freezing point,
which is the density at which the fluid thermodynamically begins to freeze. Equilibrium properties, such as
the melting and freezing points, are studied here using small expansion rates (γ = 10−5−10−9) and periodic
rescaling of the average sphere velocity to one, such that the total change in kinetic energy of the system,
due to the collisions between growing spheres, was kept small. In this section we only consider four and
five dimensions due to (presently) prohibitive computational costs for higher dimensions. Section 1.2 and in
particular Fig. 1.3 contains results closely related to the results presented here for three dimensions.

11.2.1 Equilibrium Properties

The low density phase for hard spheres is an isotropic fluid (which is formally a gas, but at high densities
has the microstructure of a liquid) in all dimensions. It is expected that this fluid will undergo a first-order
phase transition into a non-isotropic solid phase with long-range translational order (i.e., a crystal), at least
in lower dimensions [243, 238]. In this section we use MD to estimate the density ranges for the equilibrium
fluid, solid, and coexistence regions, in four and five dimensions.

11.2.1.1 Freezing Point

Figure 11.1 shows the reduced pressure p as a function of density φ for (a) simulations of d = 4 systems of
spheres placed in a D4 lattice with negative expansion rate γ = −10−6 and (b) simulations of d = 5 systems
of spheres placed in a D5 lattice with negative expansion rate γ = −10−5. The pressure initially follows
the (lower) crystal branch, until the system becomes mechanically unstable and jumps onto the (higher)
fluid branch. Also plotted is the theoretical prediction of Luban and Michels (LM) for the equation of state
[235], which agrees well with our numerical results for the fluid branch for d = 4, but less so for d = 5. It
is a computational observation that crystals become mechanically unstable, giving rise to a sudden jump
in pressure, at a density close to the freezing point [244, 245]. Such “superheating” (undercompression) is
most likely due to the difficulty of achieving coexistence in finite systems, although we are not aware of a
theoretical analysis. From the results in Fig. 11.1, we estimate the freezing points for d = 4 and d = 5 to be
φF ' 0.31− 0.32 and φF ' 0.19− 0.20, respectively.

11.2.1.2 Melting Point

The melting points for d = 4 and d = 5 can also be estimated from the data in Fig. 11.1. Since throughout
the coexistence region the fluid and solid have the same absolute pressure P , the melting density can be
estimated as the density on the crystal branch with the same absolute pressure P as that at the freezing
point. The coexistence region is plotted in Fig. 11.1 and the melting packing fractions for d = 4 and d = 5
are estimated to be φM ' 0.38− 0.40 and φM ' 0.24− 0.26, respectively. We also observe that the reduced
pressure at the freezing point is pF ' 12 in both d = 4 and d = 5, which agrees with the reduced pressure
at the freezing point for d = 3, pF ' 12.3, obtained from free energy calculations [116].

The melting point was also estimated for d = 4 (higher dimensions are presently too computationally
demanding) by slowly densifying a system of spheres, initially a fluid, and looking for the onset of partial
crystallization, again by monitoring the reduced pressure p as a function of density φ. Due to the difficulty
of observing coexistence in finite systems and the relatively high activation barrier, simulated hard-sphere
systems become “supercooled” (over-compressed) and nucleation does not occur until the melting density is
surpassed. Consequently, the density at which partial crystallization appears for sufficiently slow expansion
provides a reasonable estimate for the melting density, as illustrated for d = 3 in Fig. 1.3. As in Fig. 1.3, we
plot the estimated jamming density φ̃J(φ) [c.f. Eq. (1.3)] instead of the pressure p(φ), as shown in Fig. 11.2
for a system of 648 spheres in d = 4. The onset of partial crystallization causes a dramatic jump in φ̃J(φ),
as the jamming density of the crystal is much higher than the jamming density of a disordered packing. The
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Figure 11.1: Reduced pressure p as a function of density φ, for a range of system sizes (see legend), for (a)
d = 4 systems of spheres, initially in a D4 lattice, and negative expansion rate γ = −10−6 and (b) d = 5
systems of spheres, initially in a D5 lattice, and negative expansion rate γ = −10−5. The number of particles
N was chosen to make a perfect Dd lattice with periodic boundary conditions, i.e., N = (2n)d/2 for nεZ.
Also plotted is the theoretical prediction of Luban and Michels (LM) for the equation of state [235].
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intersection of the curves with the line φ̃J(φ) = φ gives the final jamming density. Sufficiently fast expansion
suppresses crystallization and leads to packing fractions around 0.45 − 0.47. Slower expansion allows for
partial crystallization, typically around φM ' 0.38− 0.39, which is our rough estimate of the melting point,
in agreement with our estimate from the results in Fig. 11.1. More accurate estimates can only be obtained
using free-energy calculations. Since crystallization is a nucleated process, it is not surprising that the
same expansion rates γ can crystallize at different packing fractions and onto different crystal branches, for
example, γ = 10−8 (a) and (b) in Fig. 11.2.
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Figure 11.2: (Left): The estimated jamming packing fraction φ̃J as a function of density φ for systems of
648 spheres for d = 4 with various expansion rates (see legend and note that there are two samples labeled
(a) and (b) for γ = 10−8). (Right): The cumulative coordination Z(r) (i.e., the number of contacts) for
the perfect D4 lattice and for the partially crystallized packings at p > 1012 obtained for expansion rates
γ = 10−8 and γ = 10−9. The jamming packing fraction for the γ = 10−8 packing is φ = 0.511, and the
jamming packing fraction for the γ = 10−9 packing agreed up to 12 significant figures with the density of
the D4 lattice, φ = π2/16 ' 0.617.

To determine whether the crystallized packings were spontaneously forming a D4 lattice, the conjectured
densest packing in four dimensions, we computed the average cumulative coordination number Z(r), which
is the average number of sphere centers within a distance r from a given sphere center. The inset to Fig.
11.2 shows Z(r) for a perfect D4 lattice and for the crystallized packings with γ = 10−8 and γ = 10−9

(corresponding colors represent the same packing). The sharp plateaus for the D4 lattice correspond to the
coordination shells and the number of spheres in the first shell is the kissing number Zmax = 24. The packing
with γ = 10−9 formed a perfect D4 lattice. The packing with γ = 10−8 partially crystallized with a final
density of φ ' 0.511.
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11.2.2 Kinetic Glass Transition

Figure 11.3 shows the estimated jamming packing fraction φ̃J(φ), as in Fig. 11.2, but for a system of 10, 000
spheres, instead of 648 spheres, in four dimensions. In contrast to the 648 sphere system, there is no sign of
partial crystallization for the 10, 000 sphere system. In fact, molecular dynamics was performed at packing
fractions of φ ' 0.38− 0.42 for 10 million collisions per sphere and there was no significant drop in pressure
indicative of partial crystallization. The curves in Figs. 11.2 and 11.3 exhibit a bump around φG ' 0.41,
suggesting a kinetic transition from the fluid branch to a glassy branch.
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φ = φJ

Figure 11.3: The estimated jamming packing fraction φ̃J as a function of density φ for a system of 10, 000
spheres for d = 4 with various expansion rates. The curve labeled“mix”corresponds to the following sequence
of expansion rates: γ = 10−2 until p = 10, γ = 10−3 until p = 104, γ = 10−4 until p = 106, and γ = 10−5

until p = 1012.

Figure 1.3 showed the estimated jamming packing fraction φ̃J for systems of spheres for d = 3 with
various positive and negative expansion rates, for comparison with the results for d = 4 and d = 5 in Figs.
11.1, 11.2 and 11.3. The locations of the freezing and melting points in d = 3 have been determined from
free-energy calculations [116] and good approximations to the EOS for both the fluid and crystal phases
[54] are known. Our estimates of the freezing and melting points as the densities at the onset of melting
of a diluted crystal or of partial crystallization of a densified fluid, respectively, compare favorably to the
true values computed from free-energy calculations in d = 3. The bump around φG ' 0.59, analogous to
the bump in Fig. 11.3 around φG ' 0.41, is often cited as the approximate location of the “kinetic” glass
transition [70]. Comparing Figs. 11.3 and 1.3 reveals that the melting point and suggested kinetic glass
transition are closer for d = 4 than for d = 3, which is a possible reason why there is a lower tendency to
crystallize for d = 4 than for d = 3. Similar results have been observed for binary hard disks, a model glass
former [57], as discussed in Chapter 13.

11.3 Disordered Jammed Packings

Packings representative of the maximally random jammed (MRJ) state are produced by a combination of
expansion rates. The expansion rate must be initially high (compared to the average thermal velocity) to
suppress crystallization and produce disordered configurations that are trapped in the neighborhood of a
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jammed packing. As discussed in more detail in Chapter 9, near the jamming point the expansion rate must
be sufficiently slow to allow for particle readjustments necessary for collective jamming. Figure 11.3 shows
the final jamming packing fractions of packings created using a variety of expansion rates, as the packing
fraction at which the curves intersect the line φ̃J = φ. We see that by increasing the expansion rate, we
attain packings with lower jamming packing fractions.

By comparing Fig. 11.3 and to the analogous plot for a d = 3 system (Fig. 1.3), where it is widely accepted
that φMRJ ' 0.64 − 0.65 [58, 56], we estimate the MRJ density for d = 4 to be φMRJ ' 0.460 ± 0.005. A
more accurate calculation of φMRJ demands a better theoretical understanding of order metrics and how the
expansion rate in the algorithm affects the ordering in the produced packings; statistical errors are smaller
than the effect of the packing-generation protocol. Systematic investigation of different protocol parameters,
as done for d = 4 in Fig. 11.3, is currently too computationally intensive in higher dimensions. Reasonable
estimates of φMRJ for both d = 5 and d = 6 are obtained using the following less computationally intensive
procedure. First, the system of spheres is expanded, starting from zero initial kinetic energy (T = 0), until
it reached a high pressure (say, p = 100 − 1000). Then the system is slowly expanded (γ = 10−5 − 10−3)
and periodically cooled to kBT = 1 until a very high pressure (say, p = 1012) is attained. The resulting
packings are approximately collectively jammed, as demonstrated by very large relaxation times for the
pressure during long molecular dynamics runs [75]. Using this method we estimate the MRJ density for
d = 5 to be φMRJ ' 0.310± 0.005 and for d = 6 to be φMRJ ' 0.200± 0.01.

The MRJ densities as well as important equilibrium densities are summarized in Table 11.1. It is useful
to compare the MRJ densities for d = 3− 6 to recent estimates of the saturation density φs for the random
sequential addition (RSA) packing of hard spheres obtained in Ref. [246]. These authors found that φs =
0.379± 0.0015, 0.2501± 0.0005, 0.1514± 0.0001 and 0.0896± 0.0006 for d = 3, 4, 5 and 6, respectively. The
nonequilibrium RSA packing is produced by randomly, irreversibly, and sequentially placing nonoverlapping
spheres into a volume. As the process continues, it becomes more difficult to find available regions into which
the spheres can be added. Eventually, in the saturation (infinite-time) limit no further additions are possible,
and the maximal achievable density is the saturation density φs [see Ref. [6] and references therein]. As
expected, the saturation density in dimension d is substantially smaller than the corresponding MRJ density
because, unlike the latter packing, the particles cannot rearrange.

Packing
fraction d = 3 d = 4 d = 5 d = 6
φF 0.494 [6, 116] 0.32± 0.01∗ 0.19± 0.01∗ -
φM 0.545 [6, 116] 0.39± 0.01∗ 0.24± 0.01∗ -
φMRJ 0.645± 0.005 [56] 0.46± 0.005∗ 0.31± 0.005∗ 0.20± 0.01∗

φmax 0.7405 . . . [39] 0.6169 . . . [9] 0.4652 . . . [9] 0.3729 . . . [9]

Table 11.1: Important packing fractions for d = 3, 4, 5 and 6. The freezing and melting points for d = 6
were not calculated here. ∗Values computed in this work.

Our estimates for the MRJ density are compared to a theoretical formula proposed by Philipse [239] for
the “random jamming density” φd,

φd '
0.046d2 + 1.22d+ 0.73

2d
, (11.1)

which predicts φ3 ' 0.601, φ4 ' 0.397, φ5 ' 0.249, and φ6 ' 0.152. It is seen that Eq. (11.1) underestimates
φMRJ in d = 3 and becomes worse with increasing dimension. Following Ref. [246], we obtain a better
scaling form by noting that the product 2dφMRJ for 3 ≤ d ≤ 6 is well approximated by a function linear,
rather than quadratic, in d (see Fig. 11.4), i.e., the scaling form for φMRJ is given by

φs =
c1
2d

+
c2d

2d
, (11.2)

where c1 = −2.72 and c2 = 2.56. Although the scaling form (11.2) applies only in low dimensions such that
d ≥ 3, theoretical arguments given in Ref. [246] suggest that the general scaling form (11.2) persists in the
high-dimensional limit, albeit with different coefficients c1 and c2.
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Figure 11.4: Fit of the data for the product 2dφMRJ to the linear form (11.2) for 3 ≤ d ≤ 6 with c1 = −2.72
and c2 = 2.56.

11.3.1 Pair Correlations

Our main interest is pair correlations in the jamming limit in four, five and six dimensions. We characterize
jammed packings statistically using the pair correlation function g2(r) and structure factor S(k). The pair
correlation function measures the probability of finding a sphere center at a given distance from the center
of another sphere, normalized by the average number density ρ to go asymptotically to unity at large r,

g2(r) =
〈P (r)〉
ρs1(r)

, (11.3)

where P (r) is the probability density for finding a sphere center a distance r from an arbitrary sphere
center, 〈〉 denotes an ensemble average, and s1(r) is the surface area of a single hypersphere of radius r [6]:
s1(r) = 2π2r3 in d = 4, s1(r) = 8π2r4/3 in d = 5 and s1(r) = π3r5 in d = 6. The structure factor

S(k) = 1 + ρĥ(k) (11.4)

is related to the Fourier transform of the total correlation function h(r) = g2(r) − 1. It measures spatial
correlations at wavenumber k and in particular, large-scale density fluctuations at k = 0 [202]. The structure
factor can be observed directly via scattering experiments [230].

11.3.1.1 Pair Correlation Function

As discussed in detail in Chapter 9, in the jamming limit, the pair correlation function g2(r) consists of a
δ-function due to sphere contacts and a background part gb

2(r) due to spheres not in contact:

g2(r) =
Z̄δ(r −D)
ρs1(D)

+ gb
2(r), (11.5)

where Z̄ is the average kissing number. Figure 11.5 compares the pair correlation function for jammed
packings of 100, 000 spheres in d = 3, 4, 5 and 6. Due to periodic boundary conditions, g2(r) can only
be calculated up to half the length of the simulation box, which limits the calculation to r/D ' 3 for
d = 6. The well-known split second peak present in d = 3 is strongly diminished as the dimension increases,
i.e., the amplitude of the split second peak decreases and the sharp cusps become rounded with increasing
dimension. The split third peak present in d = 3 with considerable structure and two shoulders vanishes
almost completely in the higher dimensions. The oscillations are strongly damped with increasing dimension
and the period of oscillations might also decrease slightly with increasing dimension; this latter possibility
is revealed more vividly in the structure factor through the shift in the location of the maximum, as we will
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describe below. The inset to Fig. 11.5 shows the magnitude of the decaying oscillations in h(r) on a semi-log
scale. Though at the values of r/D shown, up to about half the length of the simulation box, there is still
structure in addition to the oscillations, especially apparent for d = 3, it appears that the decay rate of the
oscillations in h(r) does not change significantly with dimension, whereas the amplitude of oscillations does.
However, further studies with larger r and therefore larger systems are needed to obtain more quantitative
results.
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Figure 11.5: The pair correlation function g2(r) for MRJ packings of N = 105 hard spheres for d = 3, 4, 5
and 6. Pair separation is plotted in units of the sphere diameter D. (For d = 6, g2(r) was only calculated
up to r/D = 3 due to the system size and periodic boundary conditions). The delta-function contribution
[c.f. Eq. 11.5] at contact, of course, is not shown. The inset shows |h(r)| = |g2(r)− 1| on a logarithmic scale
for d = 3, 4 and 5.

11.3.1.2 Structure Factor

We can calculate the structure factor S(k), defined in Eq. 11.4, for d = 4 and d = 5, by

S(K) = 1 + 128φ
∫ ∞

0

x3h(x)
J1(Kx)
Kx

dx (11.6)

and

S(K) = 1 + 480φ
∫ ∞

0

x4h(x)
(Kx)2

[
sin(Kx)
Kx

− cos(Kx)
]
dx, (11.7)

respectively, where φ = π2ρD4/32 for d = 4 and φ = π2ρD5/60 for d = 5, x = r/D and K = kD are the
dimensionless radius and wave number, and Jν(x) is the Bessel function of order ν. We do not calculate the
structure factor for d = 6 because at present we do not have g2(r) over a sufficiently large range of r.
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Following the procedure used in chapter 10 for d = 3, rather than working directly with g2(x) as in Eq.
(11.4), we consider the average cumulative coordination Z(x) [76],

Z(x) = ρ

∫ x

1

s1(x′)g2(x′)dx′. (11.8)

The excess coordination ∆Z(x),

∆Z(x) = 1 + 64φ
∫ x

0

(x′)3h(x′)dx′

∆Z(x) = 1 + 160φ
∫ x

0

(x′)4h(x′)dx′,

for d = 4 and d = 5, respectively, is the average excess number of sphere centers inside a spherical window of
radius x centered at a sphere, compared to the ideal gas expectations, 16φx4 for d = 4 and 32φx5 in d = 5.
We can rewrite Eq. (11.4) in terms of ∆Z(x) using integration by parts to get

S(K) = −2
∫ ∞

0

∆Z(x)
d

dx

J1(Kx)
Kx

dx

and

S(K) = −3
∫ ∞

0

∆Z(x)
d

dx

[
sin(Kx)
(Kx)3

− cos(Kx)
(Kx)2

]
dx,

for d = 4 and d = 5, respectively. Note that accurate evaluations of the integrals of ∆Z(x) require extrap-
olations of its large-x tail behavior, for which we have used an exponentially-damped oscillating function

∆Z(x) = a1xe
−a2x cos(a3x+ a4), (11.9)

where a1, a2, a3, and a4 are fitting parameters, as in Chapter 10.
Figure 11.6 shows S(k) for jammed packings of N = 105 spheres in three, four and five dimensions.

Qualitatively, S(k) is somewhat similar for d = 3, 4, and 5. However, with increasing dimension, the height
of the first peak of S(k) decreases, the location of the first peak moves to smaller wavelengths, and the
oscillations become damped. The width of the first peak also increases with increasing dimension, which
could indicate that the correlation length decreases with increasing dimension. The inset to Fig. 11.6 shows
S(k) for a jammed packing and a fluid near the freezing point in four dimensions. The relation between the
structure factor for the fluid and jammed packing is strikingly similar to what is found for d = 3, except
that the peaks of both curves for d = 4 appear scaled down relative to d = 3. Overall, our results for both
g2(r) and S(k) are consistent with a recently proposed “decorrelation” principle [240]. We note that similar
pair decorrelations are observed for RSA packings as the dimension increases up to d = 6 [246].

It is of interest whether infinite wavelength density fluctuations S(k = 0) vanish, i.e., whether MRJ
packings are hyperuniform [202] in dimensions higher than three as well. As we observed in Chapter 10 for
d = 3, S(k) for d = 4 appears to go to zero faster near the origin for the jammed packing than for the fluid.
However, we cannot reliably determine whether S(k) vanishes at the origin because our calculation of S(k)
for small k involved an extrapolation of the large-x tail of ∆Z(x). Nevertheless, using larger system sizes of
one million spheres, in Chapter 10 we demonstrated that saturated MRJ packings for d = 3 are hyperuniform
to a high accuracy [76] and the comparison of d = 4 and d = 5 to d = 3, shown in Fig. 11.6, suggests MRJ
packings for d = 4 and d = 5 are also hyperuniform.

11.3.2 Isostaticity

We study the near-contact contribution to g2(r), i.e., interparticle distances r that are very close to the sphere
diameter D, using the cumulative coordination number Z(x), where as before x = r/D is the dimensionless
radius and x − 1 is the dimensionless interparticle gap. Figure 11.7 shows Z(x) for jammed packings of
10, 000 spheres for d = 4 and d = 5 with rattlers removed. Due to computational constraints, our packings
for d = 6 were produced with a relatively high expansion rate (γ = 10−3) and were not grown to sufficiently
high pressures, as necessary to properly distinguish between true contacts and near contacts; therefore, we
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Figure 11.6: The structure factor S(k) for jammed packings of N = 105 hard spheres for d = 3, 4 and 5.
Inset: A comparison for d = 4 of S(k) for a jammed packing and for a fluid near the freezing point.

do not show results for d = 6 in this section. The plateaus at Z = 8 in Fig. 11.7 (a) and Z = 10 in Fig. 11.7
(b) show that both packings are isostatic (see Section 5.4).

Packings produced by the LS algorithm almost always contain a nonzero fraction of “rattlers”, which are
spheres trapped in a cage of jammed neighbors, but free to move within the cage. We find approximately
∼ 1% rattlers for d = 4 and ∼ 0.6% rattlers for d = 5, as compared to ∼ 2 − 3% rattlers for d = 3 [75].
Rattlers can be identified as having less than the required d + 1 contacts necessary for local jamming and
are removed to study the jammed backbone of the packing, which we focus on in this section.

The insets in Fig. 11.7 show Z(x) − 2d, along with a power-law fit for intermediate interparticle gap
x− 1,

Z(x) = Z̄ + Z0(x− 1)α, (11.10)

where Z̄ = 2d. Since the packings are generally slightly subisostatic, we apply a small correction (< 0.1%) to
the isostatic prediction of 2d by using the midpoint of the apparent plateau in Z(x). The best-fit exponent
is α ' 0.6 in both d = 4 and d = 5, in agreement with that found for d = 3 [75]. The coefficients of the
power law, Z0 ' 11 in d = 3, Z0 ' 24 for d = 4, and Z0 ' 40 for d = 5 are close to the corresponding
kissing numbers of the densest packings, Z = 12 for d = 3, Z = 24 for d = 4, 40 ≤ Z ≤ 46 for d = 5 and
72 ≤ Z ≤ 80 for d = 6. Motivated by this observation, we measured the value of the gap x − 1 at which
the cumulative coordination Z(x) equals the kissing number of the densest packing to be: x − 1 ' 0.35,
0.34, 0.31 − 0.36 and 0.33 − 0.36 in d = 3, 4, 5 and 6, respectively, which we can define to be the cutoff
for the near-neighbor shell. This definition produces results similar to that of the more common definition
of the cutoff for the near-neighbor shell as the value of the gap x − 1 at the first minimum in g2, which
occurs at x− 1 ' 0.35, 0.32, 0.30 and 0.28 in d = 3, 4, 5 and 6, respectively. It is also interesting to observe
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Figure 11.7: The near-contact cumulative coordination Z(x) for 10, 000-sphere MRJ packings for d = 4 (a)
and for d = 5 (b), with rattlers removed. The inset shows Z(x) on a log-log scale along with power-law fits
for intermediate interparticle gap x − 1 beyond contact. Packings of N = 105spheres in d = 5 with final
expansion rates of γ = 10−4 give similar results; such packings with final expansion rates of γ = 10−5 are
(presently) too computationally expensive. Compare these plots to the equivalent results for d = 3 in Fig.
9.6.
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that the power-law fit to Z(x) is good over a rather wide range of gaps, almost up to the first minimum in
g2. We should, however, emphasize that the minimum of g2 is not very precisely defined, especially due to
decorrelation in high dimensions, and the choice of the gap at the minimum of g2, or at which Z(x) equals
the kissing number of the densest packing, as a special point is somewhat arbitrary and not theoretically
justified at present.

11.4 Conclusions

We have presented the first numerical results characterizing random jammed hard-sphere packings in four,
five and six dimensions. We find disordered packings, representative of the maximally random jammed state,
to be isostatic and have packing fractions φMRJ ' 0.46, φMRJ ' 0.31 and φMRJ ' 0.20 for d = 4, 5 and 6,
respectively. For equilibrium sphere packings, we estimate the freezing and melting packing fractions for the
fluid-solid transition in four dimensions to be φF ' 0.32 and φM ' 0.39, respectively, and in five dimensions
to be φF ' 0.19 and φM ' 0.24, respectively. Additionally, a signature characteristic of the kinetic glass
transition is observed around φG ' 0.41 for d = 4. We observe a significantly lower tendency to crystallize
for d = 4 than in d = 3, which is likely due to the closer proximity of the melting and kinetic glass transition
densities for d = 4 [57].

We find that in high dimensions the split-second peak in the pair correlation function g2, present for
d = 3, gets dramatically diminished and oscillations in both g2 and the structure factor S(k) get significantly
dampened. These findings are consistent with a recently proposed “decorrelation principle” [240], stating
that unconstrained spatial correlations vanish asymptotically in the high-dimensional limit. Accordingly, in
this limit the pair correlation function g2(r) would be expected to retain the delta-function contribution from
nearest-neighbor contacts, but the extra structure representing unconstrained spatial correlations beyond a
single sphere diameter would vanish. Figures 11.5 and 11.6 show dramatically the decorrelation principle
already taking effect in four, five and six dimensions. We note that decorrelation principle is also apparent
in the same dimensions for RSA packings [246].

A particularly interesting property of jammed hard-sphere packings is hyperuniformity, the complete
suppression of infinite wavelength density fluctuations, i.e., the vanishing of the structure factor S(k) as
k → 0. It has been recently conjectured that all saturated strictly-jammed packings are hyperuniform [202]
and calculations of the structure factor near k = 0 for d = 3 using one million particle systems have strongly
suggested that MRJ packings for d = 3 are indeed hyperuniform [76]. Though the system sizes used in this
paper were too small to probe such large-scale density fluctuations without relying on dubious extrapolations,
our numerical results for the structure factor for d = 4 and d = 5, as shown in Fig. 11.6, are consistent with
hyperuniformity.

As in three dimensions, disordered jammed sphere packings show no signs of crystallization, are isostatic,
and have a power-law divergence in g2(r) at contact. Interestingly, all three dimensions (3, 4 and 5) share the
same power law exponent 1− α = 0.4 when rattlers are removed, and show the first minimum of g2(r) close
to where the cumulative coordination Z(r) equals the kissing number of the densest lattice packing. Such
a relation between the kissing numbers of the densest packings and MRJ packings for d = 3, 4, 5 and 6, if
not coincidental, is very surprising and may be a consequence of the geometrical structure of MRJ packings.
It suggests that disordered packings might be deformed crystal packings, in which the true contacts are
deformed into near contacts, and only the minimal number of contacts necessary for jamming is preserved.
This interpretation is to be contrasted with the usual interpretation of disordered packing in d = 3 in terms
of tetrahedral or icosahedral packings, without relation to the crystal (FCC) packing. This interpretation
is similar to the interpretation of the MRJ state for binary hard-disks as a random partitioning of the
monodisperse triangular crystal into “small” and “large” disks, i.e., a deformed monodisperse triangular disk
crystal in which a randomly chosen fraction of the particles have grown in size, proposed in Ref. [57].

It is important to point out that hard-sphere packings behave rather differently in two dimensions than
in three and higher dimensions. For d = 2, jammed hard-sphere systems are polycrystalline and there is
a very weak, nearly continuous fluid-solid phase transition. Hence, there is no glassy behavior for d = 2
and consequently no amorphous jammed packings. Glassy behavior, due to geometrical frustration arising
from the inconsistency of local optimal packing rules and global packing constraints, first appears in three
dimensions [6]. It is likely that geometrical frustration generally increases with dimension, consistent with
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our observation that nucleation is suppressed with increasing dimension.
Computational costs rise dramatically with increasing dimension and theoretical understanding based on

observations in moderate dimensions is necessary. We believe that the numerical results presented in this
work provide tests and motivations for such theories.
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Chapter 12

Tetratic Order in Systems of Hard
Dominos

Previous Monte Carlo investigations by Wojciechowski et al. have found two unusual phases in two-
dimensional systems of anisotropic hard particles: a tetratic phase of four-fold symmetry for hard squares
[247], and a nonperiodic degenerate solid phase for hard-disk dimers [248, 249]. In this Chapter , we study a
system of hard rectangles of aspect ratio two, i.e., hard-square dimers (or dominos), and demonstrate that it
exhibits a phases with both of these unusual properties [81]. The liquid shows quasi-long-range tetratic order,
with no nematic order. The solid phase we observe is a nonperiodic tetratic phase having the structure of a
random tiling of the square lattice with dominos with the well-known degeneracy entropy 1.79kB per particle.
Our simulations do not conclusively establish the thermodynamic stability of this orientationally disordered
solid; however, there are strong indications that this phase is glassy. Our observations are consistent with a
KTHNY two-stage phase transition scenario with two continuous phase transitions, the first from isotropic
to tetratic liquid, and the second from tetratic liquid to solid. We obtain similar results with both a classical
Monte Carlo method using true rectangles and a novel molecular dynamics algorithm employing rectangles
with rounded corners.

12.1 Introduction

Hard-particle systems have provided a simple and rich model for investigating phase behavior and transport
in atomic and molecular materials. It is long-known that a pure hard-core exclusion potential can lead to
a variety of behaviors depending on the degree of anisotropy of the particles, including the occurrence of
isotropic and nematic liquids, layered smectic, and ordered solid phases [250]. Through computer investiga-
tions of various particle shapes, other phases have been found, such as the biaxial [251] (recently synthesized
in the laboratory [252]) and cubatic phases in three dimensions, in which the axes of symmetry of the indi-
vidual particles align along two or three perpendicular axes (directors). One only need look at simple shapes
in two dimensions to discover interesting phases. In recent work, Wojciechowski et al. studied hard squares
and found the first example of a tetratic liquid phase at intermediate densities [247]. In a tetratic liquid,
there is (quasi) long-range orientational ordering along two perpendicular axes, but only short-range trans-
lational ordering. The solid phase is the expected square lattice, with quasi-long-range periodic ordering.
On the other hand, by studying hard-disk dimers (two disks fused at a point on their boundary), they have
identified the first example of a nonperiodic solid phase at high densities [248]. In this phase, the centroids
of the particles are ordered on the sites of a triangular lattice. However, the orientations of the dimers are
disordered, leading to a high degeneracy entropy of the nonperiodic solid and a lower free energy as compared
to periodic solids. An experimental study of orientational ordering in nonequilibrium (quasi)two-dimensional
systems was recently performed using vibrated granular monolayers [200]. It was found that the exact parti-
cle shape impacts the nature of the orientational ordering substantially, with tetratic ordering appearing for
rectangles (monolayers of cylinders) even for high aspect ratios, and nematic ordering appearing for more
rounded particles.
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We look at systems of rectangles of aspect ratio α = a/b = 2, i.e., hard-square dimers (or dominos).
Since the aspect ratio is far from unity, it is not clear a priori whether nematic or tetratic orientational
ordering (or both) will appear. Theoretical investigations of tetratic ordering, similar to Onsager’s studies
of nematic ordering, were performed by Zwanzig for a restricted-orientation model of a system of hard rods
[253]. Zwanzig found a phase transition into a nematic phase at sufficiently high densities for very elongated
rods. The theory was however focused on three-dimensional systems of very elongated rods. Furthermore,
restricted-orientation models have been shown to be misleading [254]. Recent Density Functional Theory
calculations [255], extending previous work based on scaled-particle theory [256], have predicted that for
α = 2 the tetratic phase is only metastable with respect to the ordered solid phase in which all particles
are aligned. However, these calculations are only approximate and the authors point out that tetratic order
is still possible in spatially ordered phases. An obvious candidate for forming a stable tetratic phase are
dominos: two dominos paired along their long edges form a square, and these squares can then form a square
lattice assuming one of two random orientations, thus forming a tetratic phase with degeneracy entropy
of ln(

√
2). In fact, one does not need to pair up the rectangles but rather simply tile a square lattice

with dominos which randomly assume one of the two preferred perpendicular directions. The degeneracy
entropy of this domino tiling has been calculated exactly to be (2G/π)kB ≈ 0.58313kB [257, 258], where
G =

∑∞
n=0 (−1)n(2n+ 1)−2 ≈ 0.91597 is Catalan’s constant.

At high densities, free-volume theory [250] predicts that the configurational entropy (per particle) diverges
like

sFV ∼ f ln(1− φ/φc) + sc,

where f is the (effective) number of degrees of freedom per particle, φc is the volume fraction (density) at
close packing, and sc is an additive constant due to collective exclusion-volume effects (see Chapters 6 and
13). Therefore, the densest solid is thermodynamically favored, but if several solids have the same density
the additive factor matters, as discussed in see Chapter 6. Therefore, for hard rectangles, for which the
maximal density is φc = 1 and is achieved by a variety of packings, the degeneracy entropy can dominate sc

and thus the nonperiodic random tiling can be thermodynamically favored. Indeed, our simulations of the
hard-domino system produce high-density phases with structures very similar to that of a random covering
of the square lattice with dimers. However, additional free-energy calculations and more sophisticated Monte
Carlo simulations of the solid phase are necessary for definite answers.

The phase transitions in two-dimensional systems are of interest to the search for continuous KTHNY
[47, 48, 49] transitions between the disordered liquid and the ordered solid phase. At present there is no
agreement on the nature of the transition even for the hard-disk system. A previous study of the melting
of a square-lattice crystal, stabilized by the addition of three-body interactions, found evidence of a (direct)
first-order melting [259]. Our observations for the domino system are relatively consistent with a KTHNY-
like two-stage transition: a continuous phase transition from an isotropic to a tetratic liquid with long-range
tetratic order around φ ≈ 0.7, and then another continuous transition from tetratic liquid to tetratic solid
with quasi-long-range translational order φ ≈ 0.8. However, we cannot rule out the possibility of a weak
first-order phase transition between the two phases without more detailed simulations.

This chapter is organized as follows. In Section 12.2, we present the simulation techniques used to
generate equilibrated systems at various densities. In Section 12.3, we analyze the properties of the various
states, focusing on the orientational and translational ordering in the high-density phases. We conclude with
a summary of the results and suggestions for future work in Section 12.4.

12.2 Simulation Techniques

In this section, we provide additional details on the MC and MD algorithms we implemented. It is important
to point out that it is essential to implement techniques for speeding up the near-neighbour search, in both
MC and MD. For rectangles with a small aspect ratio, we employ the well-known technique of splitting
the domain of simulation into cells (bins) larger than a particle diameter D =

√
a2 + b2, and consider as

neighbors only particles whose centroids belong to neighboring cells. Additional special techniques more
suitable for very aspherical particles or systems near jamming are described in Ref. [11].
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12.2.1 Monte Carlo

We have implemented a standard MC algorithm in the NV T ensemble, with the additional provision of
changing the density by growing or shrinking the particles in small increments. Each rectangle is described by
the location of its centroid (x, y) and orientation θ. For increased computational speed the pair (sin θ, cos θ)
may be used to represent the orientation. In a trial MC step, a rectangle is chosen at random and its
coordinates are changed slightly, either translationally (∆x,∆y) or orientationally (∆θ). Every move has an
equal chance of being translational or orientational. The rectangle’s new position is then compared against
nearby rectangles for overlap; if there is no overlap, the trial move is accepted. We call a sequence of N
trials a cycle. The simulation evolves through stages, defined by a speed ncycles/stage. At the end of a
cycle, pressure data are collected by the virtual-scaling method of Eppenga and Frenkel [166]. Namely,
p = PV/NkT = 1 + φα/2 where α is the rate at which growing the particles causes overlaps. At the end of
a stage, order parameters and other statistics are collected, and then the packing fraction φ is changed by a
small value ∆φ; it may be increased, decreased, or not changed at all. If ∆φ > 0, then φ cannot necessarily
change by ∆φ every stage, because the increase could create overlaps. We scale down the increase by factors
of 2 until a ∆φeff is found that does not cause any overlaps when applied. Typical values for runs are
ncycles/stage = 1000 and ∆φ = ±1 × 10−5. Since there is a limit on how fast one can increase the density
in such a Monte Carlo simulation, especially at very high densities, we use Molecular Dynamics to compress
systems to close packing.

The overlap test is by far the largest computational bottleneck in the MC program. The overlap test
for two rectangles is based on the following fact: Two rectangles R1 and R2 do not overlap if and only if a
separating line ` can be drawn such that all four corners of R1 lie on one side of the line and all four corners
of R2 lie on the other side [133]. The corners of both rectangles are allowed to coincide with `. Without loss
of generality, we may assume ` is drawn parallel to one of the rectangles’ major axes and runs exactly along
that rectangle’s side. The problem of testing all possible lines ` thus reduces to testing the eight lines that
coincide with the edges of R1 and R2. The test can be optimized somewhat further, as illustrated in Fig.
12.1. An axis ā of R1 is chosen. The distance from the center of R2 to ā is found. Then the distance d0

of closest approach of R2 to a is found by subtracting a sine and a cosine; this distance corresponds to the
corner of R2 that is closest to ā. By comparing d0 with the length b of the other semiaxis of R1, two possible
lines `, corresponding to two opposite sides of R1, can be tested at once. If d0 < b, there is an overlap. In
this way, four different values of d0 are calculated; one for each axis of each rectangle. If no comparison finds
an overlap, there is no overlap.

12.2.2 Molecular Dynamics

MC simulations are typically the most efficient when one is only interested in stable equilibrium properties.
Using the overlap potentials described in Section see Chapter 6, we have implemented the MD algorithm
described in Chapter 3 for superellipses and superellipsoids. A superellipse with semiaxes a and b is given
by the equation [∣∣∣x

a

∣∣∣2ζ

+
∣∣∣y
b

∣∣∣2ζ
]1/ζ

≤ 1,

where ζ ≥ 1 is an exponent. When ζ = 1 we get the simple ellipse, and when ζ →∞ we obtain a rectangle
with sides 2a and 2b. The higher the exponent the sharper the corners become. The floating-point cost of
the algorithm increases as the exponent increases, while the numerical stability decreases. We have used an
exponent ζ = 7.5 for the studies presented here (for this exponent the ratio of the areas of the superellipse
and the true rectangle is 0.9934). Figure 12.2 gives an illustration of the particle shape.

There are some advantages of the MD simulation over MC. The shapes of the particles can change
arbitrarily fast in an easily controlled manner by simply adding a dynamic growth rate γ = da/dt = αdb/dt.
If γ > 0, i.e., the density is increasing, two colliding particles simply get an extra repulsive boost that ensures
no overlaps are created. The velocities are periodically rescaled to T = 1 to compensate for the induced
heating or cooling due to the particle growth [11]. In general, (common) MC methods do not work well
near close packing, while MD methods, especially event-driven ones, can successfully be used to study the
neighbourhood of jamming points. Additionally, pressure measurement is more natural in the MD method,
as the pressure can be directly obtained from time averages of the momentum exchange in binary collisions
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Figure 12.1: Illustration of the optimized overlap test for two rectangles. The axes are ā and b̄, with semiaxes
a and b, and the length from ā to the closest corner of R2 is d0. (Left) If d0 ≥ b, then the rectangles do not
overlap. (Right) If d0 < b, then the rectangles overlap.

Figure 12.2: An snapshot of a few superellipses (exponent ζ = 7.5) used in the MD simulations. It can be
seen that the particle shape is very close to a rectangle.
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between particles. We have found this pressure measurement to be much more precise than using virtual
particle scaling in MC simulations.

12.3 Results

By using either the MC or the MD algorithm with small particle growth rate (∆φ or γ), we have traced the
(quasi)equilibrium phase behavior of systems of dominos over a range of densities. In this section, we present
several techniques for measuring orientational and translational order for a given configuration of particles,
as well as the results of such measurements for the generated states. We have tested our codes by first
applying them to hard squares and comparing the results to those in Ref. [247], and we have observed good
quantitative agreement throughout. Our MC pressure measurement systematically slightly underestimates
the pressure compared to the NPT ensemble used in Ref. [247] and to our MD simulations. We present
some of the results for the MC, and others for the MD simulations, marking any quantitative differences.
The two techniques always produced qualitatively identical results.

Describing the statistical properties of the observed states would require specifying all of the n-particle
correlation functions. The most important is the pair correlation function g2(r, ψ,∆θ). Given a particle,
g2(r, ψ,∆θ) is the probability density of finding another particle whose centroid is a distance r away (from
the centroid of the particle), at a displacement angle of ψ (relative to the first particle’s coordinate axes),
and with a orientation of ∆θ (relative to the particle’s orientation). The normalization of g2 is such that
it is identically unity for an ideal gas. We will use an equivalent representation where we fix a particle
at the origin such that the longer rectangle axis is along the x axes, and represent pair correlations with
g2(∆x,∆y,∆θ), giving the probability density that there is another particle whose centroid is at position
(∆x,∆y) and whose major axis is at a relative angle of ∆θ. Since a three-dimensional function is rather
difficult to calculate accurately and visualize, we can separate the translational and orientational components
and average over some of the dimensions to reduce it to a one- or two-dimensional function.

The symmetry and nature of ordering in condensed phases is most easily accessed by using order pa-
rameters; specifically these would be scalar order metrics, which are typically averaged forms of local order
parameters. Several types of order metrics are commonly applied in studies of two-dimensional hard-particle
systems: orientational, bond-orientational, and translational order metrics, or combinations of orientational
and bond-orientational order metrics [260]. We will present results for each of these types of ordering for the
domino system. It would be useful to construct bond-orientational and translational order metrics that do
not depend on splitting each domino into two squares in the future.

12.3.1 Equation Of State

The pressure as a function of density can be most accurately measured in the MD simulations. There is no
exact theory that can predict the entire equation of state (EOS) for a given many-particle system. However,
there are two simple theories that produce remarkably good predictions for a variety of systems studied in
the literature. For the isotropic fluid (gas) phase of a system of hard dominos, scaled-particle theory (SPT)
[261] predicts

p =
1

1− φ
+

9
2π

φ

(1− φ)2
, (12.1)

and modifications to account for possible orientational ordering are discussed in Refs. [256, 255]. For the
solid phase, free-volume (FV) theory predicts a divergence of the pressure near close packing of the form [c.f.
Eq. (5.24)]

p =
3

1− φ/φc
, (12.2)

and (liquid-state) density functional theory can be used to make quantitative predictions at intermediate
densities [255]. For superellipses with exponent ζ = 7.5 the maximal density is somewhat less than 1 and we
take it to be equal to the ratio of the areas of the particle and a true rectangle, φc ≈ 0.9934.

The numerical EOS from the NV T MD simulation are shown in Fig. 12.3 for both a slow compression
starting from an isotropic liquid and a decompression starting from a perfect random domino tiling generated
with the help of random spanning trees, as explained in Ref. [262]. We note that the random domino tiling
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Figure 12.3: Reduced pressure p = PV/NkT in a system of N = 5000 superellipses with exponent ζ = 7.5
during MD runs with γ = ±2.5·10−5. The predictions of simple versions of SPT and FV theory are also shown
for comparison. The agreement with FV predictions is not perfect; a numerical fit produces a coefficient
2.9 instead of 3 in the numerator of Eq. (12.2). Particularly noticeable are the change in slope around
φ ≈ 0.72 and also the transition onto a solid branch well-described by free-volume approximation around
φ ≈ 0.8. Starting the decompression from an ordered tiling in which all rectangles are aligned produces
identical pressure to within the accuracy available. Systems of N = 1250 and N = 10000 particles, as well
as a wide range of particle growth rates, were investigated to ensure that there were no strong finite-size
or hysteresis effects. In faster compressions of an isotropic liquid one gets smaller final densities due to the
occurrence of defects such as vacancies or grain boundaries.

used was generated inside a square box (see Fig. 12.11) even though periodic boundary conditions were used
in the actual simulation. We expect this to have a very small effect [263]. It is clearly seen from the figure
that there is a transition from the liquid to the solid branch in the region φ ≈ 0.7 and φ ≈ 0.8, although no
clear discontinuities or a hysteresis loop are seen (which would be indicative of a first-order phase transition).
Compressing an isotropic liquid invariably freezes some defects and thus the jamming density is smaller (and
the pressure is thus higher) than in the perfect crystal.

12.3.2 Orientational Order

Orientational order can be measured via the orientational correlation function of order m

Gm(r) = 〈cos(m∆θ)〉r, (12.3)

where m is an integer and the average is taken over all pairs of particles that are at a distance between r and
r + dr apart from each other. The one-dimensional function Gm(r) can be thought of as giving normalized
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Fourier components of the distribution of relative orientations versus interparticle distance. When m = 2, it
measures the degree of nematic ordering (parallel alignment of the particles’ major axes), and when m = 4 it
measures the degree of tetratic ordering (parallel alignment of the particles’ axes). The infinite-distance value
lim

r→∞
Gm(r) = Sm gives a scalar measure of the tendency of the particles to align with a global coordinate

system; S2 is the usual nematic order parameter, and S4 is the tetratic order parameter. They can be very
easily calculated from an alternative definition

Sm = max
θ0
〈cos[m(θ − θ0)]〉 , (12.4)

which can be converted into an eigenvalue problem (in any dimension) for the case m = 2 [264]. When
m = 4, we can rewrite it in the same form as m = 2 by replacing θ with 2θ. The vector nm = (cos θ0, sin θ0)
determines a natural coordinate system for orientationally ordered phases. It is commonly called the director
for nematic phases (m = 2), and we will refer to it as a bidirector for tetratic phases (m = 4).

In two-dimensional liquid-crystalline phases, it is expected that there can be no long-range orientational
ordering, but rather only quasi-long-range orientational ordering [265]. Based on elasticity theory with a
single renormalized Frank’s constant K̃ = πK/(8kBT ), it is predicted [266] that there will be a power-law
decay of the correlations at large distances, Gm(r) ∼ r−η, where

η = m2/16K. (12.5)

This would imply that Sm vanishes with increasing system size,

Sm ∼ N−η/4. (12.6)

We note that this prediction is based on literature for the nematic phase. We are not aware of any theoretical
work explicitly for a tetratic phase.

The KTHNY theories predict that the isotropic liquid first undergoes a defect-mediated second-order
transition into an orientationally quasi-ordered but translationally disordered state when K̃ = 1 by discli-
nation pair binding. At higher densities there is another second-order phase transition into a solid that has
long-range orientational order and quasi-long range translational order, mediated by dislocation pair binding.
The validity of this theory is still contested even for hard disks [267], and its applicability to systems where
there is strong coupling between orientational and translational molecular degrees of freedom is questionable.
Additionally, the basic theory needs to be modified to include three independent elastic moduli as opposed
to only two in the case of six-fold rotational symmetry.

The observed change in S4 as an isotropic liquid is slowly compressed is shown in Fig. 12.4 for both
MD and MC runs. It is clearly seen that tetratic order appears in the system around φ ≈ 0.7 and increases
sharply as the density is increased, approaching perfect order (S4 = 1) at close packing. Throughout this
run S2 remains close to zero and thus no spontaneous nematic ordering is observed. It is important to
note that superellipsoids are not perfect rectangles and have rounded sides. It is therefore not unexpected
that they show less of a tendency toward tetratic (right-angle) ordering, and have the isotropic-tetratic
(IT) transition at slightly higher densities. Additionally, the MD runs show more (correlated) variability
due to the strong correlations between successive states (snapshots), and MD compressions lead to states
with more pronounced defects. Therefore, we prefer to consider the MC results, other than at very high
densities when we have to resort to MD studies. We have also performed runs decreasing the density of
a random domino tiling, which has no nematic but has perfect tetratic order, and the resulting S4 is also
shown in the figure. Only a mild hysteresis is seen, especially for the MC runs, which would be indicative
of a continuous IT transition, or at least a weakly discontinuous one. We note that we have never observed
a phase boundary between a crystallized region and a disordered liquid, which would be indicative of a
first-order phase transition.

Figure 12.5 shows G4(r) for a collection of states in the vicinity of the IT transition, thoroughly equi-
librated using MC, on both a log-linear (lower densities) and a log-log (higher densities) scale. It is seen
that there is a clear change in the long-range behavior of G4(r) as the density crosses above φc ≈ 0.70, from
an exponential decay typical of an isotropic liquid, to a slower-than exponential decay at higher densities.
The decay tails at higher densities are rather consistent with a power-law decay, and the fitted exponents η
are shown in Fig. 12.6. It can be seen that η crosses the value ηc = 1 predicted by KTHNY theory when
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Figure 12.4: Values of the order metrics S4 [c.f. Eq. (12.4)], Tk [c.f. Eq. (12.8)], and Ψ4 [c.f. Eq. (12.7)]
for snapshot configurations along compression (marked with a plus sign in the legend) and decompression
(marked with a minus sign) MC and MD runs. A transition in S4 is visible around φ ≈ 0.7, and a transition
in Tk is indicated around φ ≈ 0.8. The hysteresis between compression and decompression runs is stronger
the larger the system size and the larger the expansion rate γ, especially in MD runs.

φ ≈ 0.71, which is very consistent with the estimates of the location of the IT transition through the other
methods above. It is not clear to us why the authors of Ref. [247] used the value of the exponent predicted by
KTHNY theory for the bond-bond orientational order in the hard-disk system, ηc = 1/4, instead of ηc = 1.
The somewhat higher values for S4 for the system with N = 1250 relative to the system with N = 5000
particles are quantitatively well-explained by Eq. (12.6) using the values of η from Fig. 12.6. However, in
order to unambiguously determine whether the decay in G4(r) is of a power-law form, larger systems should
be studied and the scaling with system size determined carefully. Such studies are numerically very challeng-
ing and conflicting observations have been made even for the simplest case of hard disks. Unfortunately, for
rectangles and superellipses, computational limitations presently prevent us from thoroughly equilibrating
samples of more than 10000 particles.

12.3.3 Bond-Orientational Order

It is geometrically intuitive that orientational ordering is related to translational ordering, especially for
elongated particles which need to coordinate orientational and translational degrees of freedom in order to
avoid overlap at higher densities. From the observations above, we are motivated to look for translational
order of the kind present in a random domino tiling. Looking at the centroids of the dominos themselves
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Figure 12.5: (Left): Log-linear plot of G4(x) for thoroughly equilibrated samples of N = 10000 particles,
showing the decay of orientational ordering with distance x = r/D. The isotropic-tetratic transition occurs
between φ = 0.69 and 0.70, when the tail behavior of G4(r) changes from exponential (short-ranged) to
slower-than-exponential. (Right): Log-log plot of G4(x) for equilibrated systems of N = 5000 particles,
showing power-law decay indicative of quasi-long-range tetratic order. The fitted values of the power-law
exponent are shown in Fig. 12.6.
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Figure 12.6: Log-linear plot of 1/η, where η is the exponent of decay of G4(r) found by fitting the G4(x)
data in Fig. 12.5 to a power-law curve, G4(x) = Cx−η.

does not reveal a simple pattern. However, if we split each rectangle into two squares and look at the
centroids of the 2N squares, translational order will be manifested through the appearance of an underlying
square-lattice.

From studies of other two-dimensional hard-particle systems, it has become clear that correlations between
the orientations of the bonds connecting nearby particles can be (quasi) long-ranged. We have measured the
four-fold bond-orientational order in the system of 2N half-domino squares via the scalar order metric Ψ4

defined by

Ψ4 exp (iω) =
1

2N

2N∑
i=1

1
Nneigh

Nneigh∑
j=1

exp (4iθij) , (12.7)

where θij is the orientation of the line connecting the centroids of nearby squares, and the sum for each
particle is over the 4 particles whose centroids are closest, i.e., Nneigh = 4. Here ω is an angle giving
the orientation of the global axes of four-fold alignment of the bonds. Other definitions of neighbors are
possible. For example, Delaunay neighbours in the Voronoi tessellation of the point pattern formed by the
centroids [260]; however, ambiguity is always present and the results are not very sensitive on the exact
definition of neighbors so long as the average number of neighbors is close to 4. We find that for dominos,
Ψ4 qualitatively follows the behavior of S4 very closely, as illustrated in Fig. 12.4, i.e., orientational ordering
and bond-orientational ordering appear simultaneously, just as for the hard-square system [247].

12.3.4 Translational Order

Measuring (quasi)long-range translational order is more difficult than measuring orientational or bond-
orientational ordering. Translational order is typically manifested via the appearance of a long-ranged
periodic pattern for the centroids of the particles, in our case, the centroids of the half dominos. Such
periodicity is most easily quantified by the Fourier transform of the square (half-domino) centroids, i.e., the
structure factor

S(k) =
1
N

∣∣∣∣∣∣
N∑

j=1

exp
(
ikT rj

)∣∣∣∣∣∣
2

.

In a translationally disordered state, S(k) is of order one and decays to unity for large k. For long-ranged
periodic systems, S(k) shows sharp Bragg peaks at the reciprocal lattice vectors, while for quasi-long-range
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order the peaks have power-law wings. It is however difficult to exactly determine when true peaks replace
the finite humps that exist due to short-range translational ordering in the liquid state.

It would be convenient to have a scalar metric of translational order similar to S4 for tetratic order. We
use the averaged value of S(k) over the first four Bragg peaks

Tk =
1

2N

[
S(

2π
ã

n‖) + S(
2π
ã

n⊥)
]
, (12.8)

where ã = a/
√
φ is the expected spacing of the underlying square lattice, and n‖ and n⊥ are two perpendicular

unit vectors determining the orientation of the square lattice. For a liquid Tk ≈ 0, and in the tiling limit
Tk = 1 (however, defects can disrupt periodicity and significantly reduce the value of Tk below unity).
When decompressing a prepared tiling, we already know n‖ = (1, 0) and it is best to use this known value.
However, when compressing a liquid, we have no way of knowing the final orientation of the lattice. We have
tried using the bidirector n‖ = n4, as determined during the measurement of S4. This method does not
appear to work well because even small fluctuations in the director cause large fluctuations in Tk. Better
results were obtained by using n‖ = (cosω, sinω) as determined from Eq. 12.7, as was done in Ref. [260];
however, the large fluctuations remained. We therefore chose to do a brute-force search for the unit vector
n‖ that maximizes Tk, i.e., we rotate the presumed square lattice in small increments and find the optimal
orientation.

A fundamental problem with Tk measured in this way is that it is smaller than unity away from the tiling
limit even in a perfectly periodic domino system, since the two squares forming the domino are always closer
than they would be if they were not glued together. In Fig. 12.4, we show the values of Tk along with S4. It
is seen that for the decompression run, Tk starts at unity and decays continuously until it apparently goes
to zero around φ ≈ 0.8. We are therefore led to believe that there is a second transition from tetratic liquid
to tetratic solid at φ ≈ 0.8. However, the transition is not sharp and the value of Tk is already too small to
confidently distinguish it from zero. It is therefore possible that translational ordering appears as soon as
tetratic ordering does, around φ ≈ 0.7, as would be the case if a (mild) first-order phase transition existed
around this density.

In addition to reciprocal space S(k), one can also look at the center-to-center-distance distribution func-
tion g2(r) for the squares (half dominos). However, quantitative analysis of g2(r) is made difficult because
of oscillations due to exclusion effects and also due to the coupling to orientation. Instead of presenting
such a one-dimensional pair correlation function, we present g2(∆x,∆y), which is simply the orientationally-
averaged g2(∆x,∆y,∆θ). In Figs. 12.7, 12.8 and 12.9 we show a snapshot of a system of N = 5000 dominos,
along with the corresponding g2(∆x,∆y) and S(~k), for three densities, corresponding to an isotropic liquid,
a tetratic liquid [i.e., a state with (quasi-) long range tetratic but only short-range translational order], and
a tetratic solid [i.e., a state with (quasi-) long range tetratic and translational order]. For the g2(∆x,∆y)
plots, we have drawn the expected underlying square lattice at that density. Note that g2(∆x,∆y) always
has two sharp peaks corresponding to the square glued to the one under consideration in the dimer (domino).

12.3.5 Solid Phase

The investigations of ordering presented so far suggest that the domino system is very similar to the hard-
square system [247] when dominos are split into two squares. Essentially, around φ ≈ 0.7 the centroids of the
squares form a disordered square lattice and their orientations align with the orientation of the square lattice,
and the lattice itself orders over large distances at higher densities, leading to a tetratic solid. However, a
fundamental question remains concerning the way in which the squares are joined to form the dominos in
the thermodynamically-stable solid phase. There are two likely possibilities: The tiling shows (translational)
ordering itself, or the tiling is “random”. In the context of a discrete system like domino tilings, the concept
of a random tiling is mathematically well-defined in terms of maximizing entropy [263, 268]. This random
tiling has a positive degeneracy entropy 0.58313kB , unlike ordered tilings such as the nematic tiling (in which
all dominos are aligned).

Our compressions of isotropic liquids have invariably led to apparently disordered domino tilings upon
spontaneous “freezing”, albeit with some frozen defects. This suggests that the disordered tiling has lower
free energy than ordered tilings. However, it is also possible that the disorder is simply dynamically trapped
when the tetratic liquid freezes. In fact, starting a decompression run from an aligned nematic tiling shows
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Figure 12.7: A snapshot configuration of a system of N = 5000 dominos at φ = 0.7 (top) with inset with
threefold magnification showing local packing structure, along with g2(∆x,∆y) overlayed over the underlying
square lattice (bottom left) and S(~k) (bottom right), obtained after splitting each domino into two squares.
It is clear that the system is isotropic from the rotational symmetry of S(~k). Only short-range order is visible
in g2(∆x,∆y), confirming that this is an isotropic liquid.
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Figure 12.8: A system of N = 5000 dominos as in Fig. 12.7 but at φ = 0.750, which shows a tetratic
liquid phase. Four-fold broken symmetry is seen in S(~k), but without pronounced sharp peaks. The range of
ordering in g2(r) has increased, but still appears of much shorter range than the size of the system, as seen
clearly in the plot of the actual domino configuration. It is interesting that g2(∆x,∆y) is very anisotropic,
being much stronger to the side of a square relative to its diagonals. No phase boundary characteristic of
first-order transitions is visible.
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Figure 12.9: A system of N = 5000 dominos as in Figs. 12.7 and 12.8 but at φ = 0.825. The structure
factor shows sharp peaks (maximum value is above 10) on the sites of a (reciprocal) square lattice, and g2(r)
shows longer-ranged translational ordering, indicating a solid phase. Visual inspection of the configuration
confirms that the translational ordering spans the system size and shows some vacancies consisting of only
a single square (half a particle).
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that the tiling configuration is preserved until melting into a tetratic liquid occurs somewhat below φ ≈ 0.8.
This is demonstrated in Fig. 12.10, where both S4 and S2 as well as Tk are shown along a decompression run
starting with both a disordered and an ordered tiling. It is seen that S2 drops sharply around φ ≈ 0.8 while
S4 remains positive until φ ≈ 0.7, clearly demonstrating the thermodynamic stability of the tetratic liquid
phase in the intermediate density range. Subsequent compression of this liquid would lead to a disordered
tiling without any trace of the initial nematic ordering.
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Figure 12.10: Nematic, tetratic, and translational order metrics as a domino tiling in which all rectangles
are aligned is slowly decompressed from close-packing. The nematic crystal spontaneously realigned to a
different orientation of the director from the starting one at around φ ≈ 0.84, causing some fluctuations and
a drop in Tk which are likely just a finite-size (boundary) effect.

It is intuitive to expect that the free-volume contribution to the free energy is minimized for ordered tilings
at high densities. However, we also expect that solid phase is ergodic in the sense that transitions between
alternative tiling configurations will occur in long runs of very large systems, so that in the thermodynamic
limit the space of all tilings will be explored. This amounts to a positive contribution to the entropy of
the disordered tiling due to its degeneracy, and it is this entropy that can thermodynamically stabilize the
disordered tiling even in the close-packed limit. A closer analysis similar to that carried for hard-disk dimers
in Refs. [248, 249] is necessary. In particular, including collective Monte Carlo trial moves that transition
between different tiling configurations, as well as relaxation of the dimensions of the unit cell (important
for smaller solid systems), is important. Furthermore, only free-energy calculations can determine the free-
volume entropies of various tiling patterns. The algorithm presented in Chapter 6 could be used to measure
those free energies, however, this requires developing robust overlap potentials for one particle contained
within another (its bounding neighborhood), which has not yet been achieved even for ellipses, as discussed
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in Chapter 2.
We conjecture that, just like the hard-disk dimer system, the hard-square dimer system has a thermody-

namically stable nonperiodic solid phase. Even if this conjecture is false and the nematic phase is thermo-
dynamically favored at sufficiently high densities, our simulations indicate that the dynamics is glassy; that
is to say, the system gets trapped in disordered tilings even for very long runs, unlike the hard-disk system,
where crystallization occurs easily. As in the hard dumbbell (fused hard-disk dimers) system, we expect
that for aspect ratios close to, but not exactly, two, the nonperiodic solid will be replaced by a nematic (and
possibly periodic) phase at the highest densities [249, 269]. This is because reaching the maximal density
φ = 1 seems to require aligning the rectangles. It is interesting, however, that at least for rational, and
certainly for integer aspect ratios such as α = 3, there is the possibility of disordered solid phases being
stable even in the close-packed limit. On physical grounds we expect the phase diagram to vary smoothly
with aspect ratio, rather than depending sensitively on the exact value of α, and the determination of the
phase diagram around α = 1 and α = 2, even if only qualitatively, is an important challenge for future
research.

Accepting for a moment the existence of a nonperiodic solid phase, it remains to verify that the compressed
systems we obtain in our simulations are indeed like (maximal entropy) random tilings of the plane with
dimers. This is hard to do rigorously, as it requires comparing all correlation functions between a random
tiling and our compressed systems. Figure 12.11 shows a visual comparison of a random tiling of a large
square, generated using random spanning trees by a program provided to us by the authors of Ref. [262],
and a system of superellipses compressed to φ = 0.95 (close to the achievable maximum for our MD program
for such high superellipse exponents). While the translational ordering in the compressed solid is clearly
not perfect as it is for the true tiling, visual inspection suggests close similarity between the the local tiling
patterns of the two systems. Note that the primary type of defect that we observe are single-square vacancies,
i.e., half-dominos missing from the true tiling of the plane. The number of vacancies observed during slow
compressions is small and we do not expect it to affect thermodynamic properties significantly. In Fig.
12.12, we show g2(∆x,∆y) for the true tiling, along with the difference in g2 between the true tiling and the
compressed solid. Here we do not split the rectangles into two squares, i.e., the figure shows the probability
density of observing a centroid of another rectangle at (∆x,∆y) given a rectangle at the origin oriented with
the long side along the x axis. It can be seen that there is a close match between the random tiling and the
compressed solid, at least at the two-body correlation level.

12.4 Conclusions

The results we presented highlight the unusual properties of the simple hard-rectangle system when the
aspect ratio is α = 2, hopefully stimulating further research into the hard-rectangle system. For square
dimers (dominos), in addition to the expected low-density isotropic liquid phase, a stable tetratic liquid
phase is clearly observed, in which there is four-fold orientational ordering but no translational ordering.
A tetratic solid phase closely connected to random domino tilings is observed and we conjecture that it is
thermodynamically stabilized by its positive degeneracy entropy. The transitions between the phases are
consistent with a KTHNY-like sequence of two continuous transitions. If this is indeed the case, then the
hard dimer system provides an excellent model for the study of continuous transitions, with a rather large gap
in density between the two presumed transitions ∆φ ≈ 0.1, unlike the hard-disk system. Random jammed
packings of rectangles seem to be translationally ordered, similar to the behavior for disks [72] but unlike
spheres which can jam in disordered configurations [58]. However, unlike disks, the systems of rectangles
show orientational disorder, once again illustrating the geometric richness of even the simplest hard-particle
models.

Further investigations are needed for the domino system to conclusively determine its phase behavior.
Improved MC with collective moves that explore multiple tilings, as well as allow for relaxation of the
boundary conditions, should be implemented. Additionally, the free energies of the different phases should
be computed so that the exact locations of the phase transitions could be identified. The final goal is to
completely characterize the phase diagram of the hard rectangle system in the α−φ plane, as has been done,
for example, for diskorectangles [266] and ellipses [271]. In addition to nematic and smectic phases, novel
liquid crystal phases with tetratic order may be discovered.
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Figure 12.11: A comparison between a true random tiling of a square with dominos [262] (top), and the unit
cell of a system of N = 5000 superellipses with exponent ζ = 7.5 slowly compressed from isotropic liquid to
φ = 0.95 (bottom). The compressed system is not a perfect tiling due its lower density and frozen defects, as
well as the rounding of the superellipses relative to true rectangles. Therefore at large scales the two systems
look different. However a closer local examination reveals similar tiling patterns in the two systems, typical
of “random” tilings.
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Figure 12.12: (Left): Center-center pair correlation function g2(∆x,∆y) for the perfect random tiling in
Fig. 12.11. This g2 is a collection of δ-functions whose heights can also be calculated exactly [270] (the
calculation is nontrivial and we have not performed it). We have normalized g2 so that the highest peaks
have a value of one. (Right): The absolute value of the difference between g2(∆x,∆y) for the two systems
shown in Fig. 12.11, shown on a coarse-enough scale so that the broadening of the peaks due to thermal
motion is not visible. The color table used in this figure is discrete in order to highlight the symmetry and
hide small fluctuations due to finite system size. The difference in g2 is almost entirely within the smallest
interval of the color table (less than 0.1, gray), with only some peaks showing differences up to 0.25.
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Chapter 13

Configurational Entropy of Binary
Hard-Disk Glasses

In this chapter we study the thermodynamics of a binary hard disk mixture where the ratio of disk diameters
is κ = 1.4 [57, 83]. We use the algorithm from Chapter 6 to calculate the free volume entropy of glassy
configurations and from these entropies we obtain the configurational entropy (degeneracy) as a function
of density. We find that the configurational entropy of the glasses near the kinetic glass transition is very
close to the mixing entropy, suggesting that the degeneracy is zero only for the phase-separated crystal. We
demonstrate that there is no ideal glass transition in a binary hard-disk mixture by explicitly constructing an
exponential number of jammed packings with densities spanning the spectrum from the accepted“amorphous”
glassy state to the phase-separated crystal. Thus the configurational entropy cannot be zero for an ideal
amorphous glass, presumed distinct from the crystal in numerous theoretical and numerical estimates in
the literature. This objection parallels our previous critique of the idea that there is a most-dense random
(close) packing for hard spheres [58]. We also perform free energy calculations to determine the equilibrium
phase behavior of the system, and predict a first-order freezing transition at a density below the kinetic
glass transition, which appears strongly kinetically suppressed and is not observed directly. New simulation
techniques are needed in order to gain more complete understanding of the thermodynamic and kinetic
behavior of the binary-disk mixture, and in particular of the demixing process during crystallization.

13.1 Introduction

Understanding the glass transition in dense or supercooled liquids remains one of the challenges of condensed
matter physics. In particular, considerable effort has been directed at identifying the cause of the dramatic
slowdown of the dynamics in the vicinity of the kinetic glass transition, as evidenced in a decrease of the
diffusion coefficient and an increase in relaxation times. One possibility is that a thermodynamic transition
different from the usual liquid-solid transition underlies the kinetic one. One scenario originally suggested by
Adam and Gibbs [272] relates the slow diffusion to a vanishing of the number of alternative configurations
available to the liquid, leading to an ideal thermodynamic glass transition when the liquid has no choice but to
remain trapped in one of few glassy configurations. An important basic assumption in these considerations
is that crystalline configurations, which are thermodynamically favored, are kinetically inaccessible and
therefore the liquid is restricted to exploring “amorphous” configurations. In particular, the term amorphous
has become implicitly attached to the term glass, and crystalline configurations have been assumed to be
qualitatively different from glassy ones. In this chapter, we study a specific model glass former, namely,
a binary hard disk mixture, and show that, for this model, the presumed “ideal glass” is in fact a phase-
separated crystal, and that that there is no special amorphous (random) state, but rather a continuum of
states from the most disordered one to the most ordered one [58].
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13.1.1 Inherent-Structure Formalism

An inherent-structure formalism was proposed by Stillinger and Weber and has since been used extensively
in the analysis of the thermodynamics of supercooled liquids [29, 273]. The “inherent-structures” of hard-
particle systems are in fact (collectively) jammed packings [75], which are mechanically stable packings where
the particles are trapped in a static configuration despite thermal or external agitation. For soft-particle
systems, an essential quantity in this thermodynamic analysis is the number of distinct energy minima
(basins) with a given energy per particle. For hard-particle systems this becomes the number of distinct
jammed packings Ng(φJ) = exp [Nsc(φJ)] with jamming packing fraction (density) φJ , where sc(φJ) is the
configurational entropy, or degeneracy, per particle. It is assumed that the liquid remains in the vicinity of
these jamming basins for long periods of time, jumping from one basin to another as it explores the available
configuration space. Denser packings are favored in terms of their free-volume; the most favored one being
the crystal of density φmax. However, it is reasonable to assume that the degeneracy sc(φJ) decreases with
increasing φJ . The liquid achieves minimum free energy by trading off degeneracy for free volume, so that at
a given density φ it predominantly samples glasses with jamming density φ̂J(φ). The theory of cooperatively
rearranging regions developed by Adam and Gibbs [272] proposes that the structural relaxation time in the
metastable liquid is on the order of

τ(φ) ∼ exp

 C

Tsc

[
φ̂J(φ)

]
 ,

and therefore diverges at the ideal glass transition.
We can approximate the free-volume contribution to the free-energy (per particle) of a glass close to the

jamming point with Eq. (6.2),

fg (φ, φJ) = −d ln
(

1− φ

φJ

)
− fJ (φJ) .

The (total) volume of configuration space corresponding to jamming density φJ is a sum over all of the
sc(φJ) basins, and therefore the contribution to the free energy from the glasses with jamming density φJ is
approximately

f (φ, φJ) = fg (φ, φJ) + sc(φJ).

At a given density φ the jamming density that maximizes f is the one that dominates the thermodynamic
integrals, and it is found from the solution φ̂J(φ) of the equation

∂f

∂φJ

∣∣∣∣
φJ=φ̂J (φ)

=

− d

φ
(
1− φ

φJ

) − ∂fJ (φJ)
∂φJ

+
∂sc (φJ)
∂φJ


φJ=φ̂J (φ)

= 0. (13.1)

As expected, the pressure of the metastable glass is equal to the pressure of just one of the jamming basins
and is not affected by the fact that the packing explores multiple (statistically identical) basins

p = φ
df

dφ
= φ

∂f

∂φJ

∂φJ

∂φ
+ φ

∂f

∂φ
= φ

∂f

∂φ
=

d(
1− φ

φJ

) .
The configurational entropy sc(φJ) must vanish above some density φmax

J , if nothing else than because
φmax

J ≤ φmax = π/
√

18. The conjectured ideal glass state corresponds to the point where the number of
available basins becomes subexponential, that is, sc(φIG

J ) = 0. The usual assumption in the literature is that
sc(φJ) is an inverted parabola and that fJ is constant, and this assumption gives a monotonically increasing
φ̂J(φ) [274, 50, 273]. At densities above an ideal glass transition density φIG, defined via φ̂J(φIG) = φIG

J , the
liquid becomes permanently trapped in the ideal glass state. A crucial unquestioned assumption has been
that φIG

J < φmax, i.e., that there is a gap in the density of jammed states between the amorphous and crystal
ones. We will explicitly show that this assumption is flawed for the binary hard-disk mixture we study, and
suggest that this is the case in other similar models, contrary to numerous estimates for φIG

J in the literature
[50, 181, 180, 275, 183, 276].
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13.2 Equilibrium Phase Diagram

In this section we use molecular dynamics to observe the equation of state for monodisperse and bidisperse
hard disk systems and also to calculate the excess free energy per particle relative to the ideal gas at
different densities. We use the MD data to estimate the location of the freezing transition in a binary hard
disk mixture. We predict that at a freezing density φF ≈ 0.775, a crystal of density 0.8415 composed of
predominantly large particles should start precipitating from the liquid mixture. Our study here is similar
to that carried out in significant detail for soft disks (interacting via an inverse 12-th power potential) in
Ref. [51].

13.2.1 Monodisperse Hard-Disk Systems

Whether the liquid-solid transition for the monodisperse hard disk system is a continuous (second-order)
transition or a discontinuous first-order transition is still disputed [267]. We will not try to resolve this
question here, however, we must briefly examine the thermodynamics of monodisperse disks as this will be
necessary in order to study mixtures. In Fig. 13.1 we show the equation of state (EOS) for monodisperse
hard disks, obtained through molecular dynamics at different particle growth rates γ. A more detailed
description of the procedure is in Section 1.2 and an analogous plot for three dimensions is given in Fig. 1.3.
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Figure 13.1: The equation of state for the monodisperse system of N = 4096 hard disks, as is shown in
Fig. 1.3 for hard spheres. Molecular dynamics runs are started with from isotropic liquid and the density
increased slowly at different particle growth rates γ, as shown in units of 10−6 in the legend. The g4 equation
of state for the liquid [c.f. Eq. (2) in Ref. [277]] and the joint liquid-crystal EOS from Ref. [277] are also
shown for comparison. It is seen that for γ < 10−5, the system has sufficient time to equilibrate for all
densities shown and the pressure follows the true equilibrium EOS. We do not show the equivalent curves for
runs starting with a perfect triangular crystal and decreasing the density (i.e., γ < 0), since there is virtually
no hysteresis observed from the EOS obtained by increasing the density.
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Unlike in three dimensions, there is no clear discontinuity between the EOS of the isotropic liquid and
the triangular crystal. Slowing the rate of density increase allows us to find the true equilibrium EOS, as
demonstrated by the fact that the observed EOS in Fig. 1.3 barely changes even though γ is decreased by
more than an order of magnitude. The transition between the liquid and solid phases occurs in the density
range φ ≈ 0.70 − 0.72, which would also be the best estimate for the coexistence region assuming that the
transition is first order. Even if the transition is first-order, however, the change in entropy between the liquid
and solid is very small and therefore for the purposes of free-energy calculations we can assume that there
is a continuous transition, i.e., that the free energy per particle fmono(φ) is a unique and smooth function
of density. We will therefore not explicitly distinguish between the liquid and solid (and possible hexatic
phase) of the monodisperse hard disk system, but rather consider them as a single phase.
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Figure 13.2: The excess free energy per particle ∆f for a monodisperse system of hard disks, obtained through
integration of the joint (global) liquid/solid EOS proposed in Ref. [277], through the BCMD algorithm for
SOC systems, and from the most accurate EOS from liquid-state theory [277]. It is seen that in the solid
phase, φ > 0.72, the free energy of the SOC model closely matches that obtained by assuming a continuous
EOS, demonstrating that the entropy jump between the liquid and solid phases at the transition, is too small
to be measured, if it exists at all (see also Fig. 13.12).

The numerical EOS pmono(φ) is well-fitted by the semi-empirical joint liquid-solid EOS proposed in Ref.
[277]. In Fig. 13.2 we show the free energy obtained by using the BCMD algorithm from Chapter 6 with
bounding cells of diameter twice larger than the diameter of the disks, i.e., ∆µ = 1. As discussed in more
detail in Section 6.3.5, the BCMD algorithm calculates the free energy of a single-occupancy cell (SOC)
solid in which each particle is restricted to remain within its bounding cell. For sufficiently high densities
this gives a very good approximation to the free-volume contribution to the free-energy. For the crystal the
configurational entropy is identically zero and therefore the free-volume term is the only contribution to the
thermodynamic free energy. The figure shows that fmono(φ) is indeed (nearly) continuous when going from
the liquid to the solid state. We note that one can avoid analytical approximations completely and obtain
fmono(φ) numerically with high accuracy by simply integrating the pressure from the low-densities (where a
low-order virial expansion is accurate), using the pressure from an MD simulation with sufficiently small γ.
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13.2.2 Binary Mixtures of Hard Disks

We study a binary mixture of disks with a third (composition xB = 1/3) of the disks having a diameter (size
dispersity) κ = 1.4 times larger than the remaining two thirds (xA = 2/3). Bidisperse disk packings with this
aspect ratio and xA = xB = 1/2 have been studied1 as model glass formers [51]. For this κ, it is believed that
the high-density phase is a phase-separated crystal [61]. It can be proved that the highest density achievable
with two disks of size ratio κ < 1.348 is the same as for monodisperse disks, φmax = π/

√
12 [278], although we

are not aware of any proof that this highest density is only achievable in phase-separated configurations. For
large size dispersity, denser packings exist where the small and large disks are mixed [61, 67]. For small size
dispersity, a substitutional triangular crystal, in which the large and small disks are randomly mixed, will be
thermodynamically favored over the phase-separated crystal at intermediate densities because of its higher
degeneracy entropy [279, 280]. We will assume here that for κ = 1.4 the crystal phase is a phase-separated
mixture of monodisperse triangular crystals and neglect any solubility of one type of disks into the crystal
of the other type, since such solubility is expected to be negligible due to the large difference in size between
the small and large disks [280].

Figure 13.3: An schematic illustration of the Eutectic phase diagram assumed to apply to binary mixtures
of hard disks with dispersity κ = 1.4. The monodisperse phases are denoted by A and B, and the liquid
mixture by AB. The horizontal axes is the composition xA, and the vertical axes is the pressure P . The
location of the particular composition we study here is marked by a blue vertical line, along with the freezing
point F , the melting point M , and the eutectic point E.

We also expect that the full (over all compositions) equilibrium phase diagram for this size dispersity
will be of the eutectic type [280], as schematically illustrated in Fig. 13.3. At low pressures, the equilibrium
phase is a mixed isotropic liquid AB. Upon increasing the pressure a freezing point is reached, and phase
separation begins by precipitation of a monodispersed phase B composed of large particles in mechanical
equilibrium with the surrounding liquid AB (depleted in large particles). When the pressure exceeds the
melting point complete phase separation between the large and small disks occurs and the mixed liquid phase
ceases to exist. It is important to note that the equilibrium phase diagram is typically presented at constant
pressure and composition, whereas our simulations are carried out at constant volume and composition.
For sufficiently large systems the two ensembles must agree, however, for finite systems (we typically use
N = 4096 = 642 disks) coexistence is difficult to observe directly due to the surface-tension between the
coexisting phases.

The chemical potential in a monodisperse system is µ = f + p, where f is the free energy per particle
and p is the reduced pressure [116], while the pressure is P = pφ/Vp, where Vp is the volume of a particle
and we have assumed that kT = 1. The free-energy f can be calculated using the BCMD algorithm from
Chapter 6. The freezing point is the equilibrium point for phase B and phase AB at a given composition
xA = 1 − xB . It can be determined by equating the (relative) chemical potential of particle type B inside
the mixture AB, µ(B)

AB , with the chemical potential of the pure B phase, µ(B)
B , at equal pressures of the the

1Our choice of composition is closer to the estimated eutectic point for disk mixtures with κ = 1.4 [51] than the commonly-
used xA = xB = 1/2, and also leads to equal area fractions of the large and small disks.
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two phases,

µ
(B)
AB = µ

(B)
B

PAB = PB . (13.2)

Carrying out several detailed calculations gives the following expressions for the required chemical potentials:

µ
(B)
B (φB) = ∆fB + pB + lnφB − d lnκ

µ
(B)
AB(φAB) = ∆fAB + pAB

κd

xA + xBκd
− xAµ̃B + lnφAB − xA

κd − 1
xA + xBκd

+ ln
xB

xA + xBκd
.

Calculating the relative chemical potential µ(B)
AB requires calculating the sensitivity of the excess free energy

of the mixture with respect to the composition (at constant density),

µ̃B =
(
∂∆fAB

∂xA

)
φ

,

in addition to the excess free energies and pressure at a fixed composition. This can be done numerically
by calculating the excess free energy for mixtures with slightly differing compositions via thermodynamic
integration starting at low densities (where a liquid theory approximate EOS works well enough). The
condition of equal pressures gives

π =
φABpAB(φAB)
xA + xBκd

=
φBpB(φB)

κd
,

which can be used to express both φAB and φB as functions of π and then solve the equation µ
(B)
AB(π) =

µ
(B)
B (π) [c.f. Eq. (13.2)].

We do not give the full details of this calculation here, and merely state the result. Our free-energy
calculations predict that at the freezing density φF ≈ 0.775, a crystal of density 0.8415 composed of predom-
inantly large particles should start precipitating from the liquid mixture. As we will see shortly, nucleation is
kinetically strongly suppressed due to the need for large-scale diffusion of large disks toward the nucleus [281],
and in fact, we have not observed spontaneous crystallization even in simulations lasting tens of millions of
collisions per particle well above the estimated freezing density.

We note in passing that had we used the best theoretical liquid-state predictions for the EOS of the
liquid mixture, as discussed in Ref. [282], instead of the numerical EOS, we would not predict a freezing
transition at φF ≈ 0.775. Instead, at all pressures the mixture would be predicted to be more stable,
µB(AB) < µB(B). As we will show in Section 13.3.1, the liquid-state theoretical prediction for the EOS is
not sufficiently accurate at the densities above φ ≈ 0.75. We are not aware of any better analytical form of
the EOS for mixtures, and therefore prefer to use an explicit numerical EOS for the liquid state. Also note
that predicting the melting point and eutectic points requires knowing the EOS for the liquid mixture at all
compositions, and we have not tried to calculate them in this work as our focus is on the freezing transition
and in particular the kinetic glass transition, at a fixed composition. In Ref. [51] an approximate EOS
based on an effective single-component system was constructed and the eutectic point estimated to occur at
a composition of xA = 0.75. It is believed that mixtures closer to the eutectic composition are better glass
formers, and this was one of our reasons for choosing a composition xA = 2/3 instead of the commonly used
xA = 1/2.

13.2.2.1 Phase-Separated Crystal Phase

We briefly examine the phase-separated crystal A + B, which we call the crystal phase even though one of
the monodisperse phases could in fact be liquid (i.e., not possess long-range translational order). If phase
separation is complete, at a given overall density φ the density of each of the phases φA(φ) and φB(φ) can
be determined from the condition of mechanical equilibrium between the phases

P =
pmono(φA)φA

V A
p

=
pmono(φB)φB

V B
p

=
pmono(φB)φB

κdV A
p

,
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along with the condition that the overall density be φ,

1
φ

=
1

xA + xBκd

(
xA

φA
+
xBκ

d

φB

)
.

The solution to these equations is shown in Fig. 13.4. It is seen that at a given density the phase B,
composed of large particles, is at a higher density and thus higher reduced pressure. At a density of φ ≈ 0.75
the small-particle phase A melts to a liquid, i.e., loses its translational order.
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Figure 13.4: The densities φA(φ) and φB(φ) of the large- and small-particle phases in a fully phase-separated
mixture at overall density φ. It is seen that the large-particle solid melts into a liquid at around φ ≈ 0.75,
and at φ ≈ 0.65 the small-particle solid also melts. Note that this calculation assumes that there is no mixing
between the small and large particles, which is only true at very high densities.

Below a certain density the large particles should start diffusing into the phase of small particles, forming
a mixture AB. We used molecular dynamics to observe this melting of the phase-separated crystal, start-
ing from a high-density phase-separated mixture and reducing the density slowly. However, as Fig. 13.5
illustrates, even the slowest MD runs did not achieve true equilibrium, as seen by the strong dependence of
the observed EOS on γ. It is seen that below a density of φ ≈ 0.8, the phase-separated crystal is no longer
stable and large particles start diffusing in the small-particle phase. This diffusion is very slow and even
tens of millions of collisions per particle cannot equilibrate the phase-separated systems properly. A similar
observation was made for a binary mixture of soft disks in Ref. [51] and it was concluded that“heterogeneous
simulations can no longer [below the glass transition temperature] help us to identify the thermodynamically
stable phase.” In our simulations, long MD runs at a fixed density observed complete melting at a density
φ = 0.765 and therefore it is clear that at this density the stable phase is the mixed liquid. However, at
φ = 0.775 only partial melting occured and a crystallite of large particles remained stable for very long
periods of time.

13.3 Is There an Ideal Binary Disk Glass?

Previous simulations have cast doubt on the existence of ideal glass transitions in hard-particle systems
[217, 283]. In particular, it has already been suggested that the slope of sc(φJ) at φIG

J dramatically affects
the location of the presumed transition; an infinite slope shifts the transition to zero temperature [284].
Questions have also been raised about the validity of extrapolations into temperature/density regions that
are inaccessible to accurate computer simulations [182], as well as the impact of finite-size effects [285].
Here, we present clear evidence that the concept of an ideal glass transition is flawed for distinctly different
reasons. Specifically, for our model, we explicitly construct an exponential number of jammed packings with
jamming densities φJ that span from the accepted “amorphous” state with φg

J ≈ 0.84 to that of the crystal,
with φmax = π/

√
12 ≈ 0.91, thus clearly showing that the configurational entropy cannot be zero for the
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Figure 13.5: Equation of state as observed at different negative rates γ (shown in units of 10−6 in the legend),
starting from a phase separated crystal. We also show the EOS obtained by compressing a dilute liquid with
γ = 10−6, forming a glass at high densities. It is seen that the phase-separated samples fall out of equilibrium
at densities below φ ≈ 0.8, when sluggish diffusion of large particles into the small-particle solid begins. At
sufficiently low densities complete melting into a mixed isotropic liquid occurs and the EOS matches the one
measured by compressing a liquid. For comparison, we also show the EOS for the monodisperse hard disk
system from Fig. 13.1. Note that the EOS of the phase-separated crystal does not perfectly match that of
the monodisperse crystal because of the finite-size effects coming from the interface between the large- and
small-particle solids.

hypothetical most-dense amorphous (ideal) glass distinct from the crystal. This objection is in the same
spirit as the critique of the concept of random close packing (RCP) raised in Ref. [58], namely, that there
is a continuous tradeoff between disorder (closely linked to degeneracy) and density, making the definition
of a most-dense random packing ill-defined. Instead, Ref. [58] replaces RCP with the maximally random
jammed (MRJ) state, i.e., the most disordered of all jammed states.

13.3.1 Kinetic Glass Transition

The calculation of the true equilibrium liquid equation of state (EOS) is not possible inside the glassy
region with conventional simulation methods, especially for large system sizes [286, 182, 287, 285]. We
produce glasses by starting with a low-density liquid and growing the particle diameters at a growth rate
γ = dD/dt � 1 [75], for a very wide range of compression rates γ, as shown in Fig. 13.6. As seen in the
figure, at densities below φ ≈ 0.775 the runs at different expansion rates are all in quasi-equilibrium and
follow approximately the same EOS, namely, the EOS of the isotropic mixed liquid. After this density, fast
compressions fall out of equilibrium and follow a glassy EOS, leading to a disordered jammed packing. Up
to a density of about φg ≈ 0.8, the slowest runs follow the same EOS, which suggests that this is the EOS
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of the super-compressed liquid, i.e., the metastable extension of the liquid branch.
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Figure 13.6: The equation of state φ̃J(φ) for N = 4096 disks as observed by compressing a liquid with
different expansion rates γ (shown in units of 10−6 in the legend). At densities below φ ≈ 0.775 the runs
at different expansion rates follow the EOS of the mixed liquid, however, after a kinetic glass transition
density φg ≈ 0.8 the systems become trapped in glassy configurations even for the slowest runs. Note that
we have run many more expansion rates over different density ranges and here we only show a representative
sample. For comparison, we also show the theoretical liquid mixture EOS from Ref. [282], using either the
Henderson (g2) or improved (g4) EOS for the monodisperse liquid, as given by Eq. (2) in Ref. [277]. It is
seen that the theoretical liquid theory prediction is not sufficiently accurate at these densities. The EOS for
the SOC-constrained (estimated) MRJ glass is also shown.

This kind of liquid-branch extension cannot be obtained using MD for monodisperse spheres in three
dimensions since slow compressions crystallize after the melting density is surpassed, and therefore theoretical
predictions about the existence or analytical form of such a hypothetical branch [276, 274] cannot be verified
computationally. For the binary disk system, where crystallization does not occur, the results in Fig. 13.6
suggest that one can numerically study the liquid branch with high accuracy at least up to a density of
φg ≈ 0.8. In order to analytically extend the liquid EOS beyond this density we have fitted a cubic function
to φ̃J(φ) for the slowest runs up to the density where slowing down the compression by an order of magnitude
does not change the observed pressure (within statistical variability). The fit

φ̃J(φ) = 3.136− 8.4826φ+ 10.277φ2 − 4.0356φ3 (13.3)

is shown in Fig. 13.6, however, it should be emphasized that it is just a fit and there is no reason to believe
it is quantitatively accurate much beyond φ ≈ 0.8 . It is important to point out that in order to prepare
a system in an (metastable) equilibrium liquid configuration at such high densities, one must compress the
(stable) liquid from lower density (at least φ ≈ 0.75) very slowly. Quenching the liquid fast to a high density
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produces states that are clearly not in any kind of thermodynamic equilibrium, even though they will appear
stable due to very large relaxation times.
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Figure 13.7: The relaxation of the pressure during long molecular runs at a fixed density φ = 0.8, for several
of the glasses produced during the compressions shown in Fig. 13.6 (γ is shown in units of 10−6 in the
legend). For comparison, we show the pressure predicted by the liquid branch extension in Eq. (13.3).

As seen in Fig. 13.6, above the kinetic glass transition density φg ≈ 0.8, the systems become trapped
in glassy configurations even for the slowest runs and jam in disordered jammed packings with jamming
densities φJ ≈ 0.85. Note that different definitions can be used for what the glass transition density is, here,
we take it to be the maximal density at which our simulations can equilibrate (not necessarily in the true
equilibrium state, but possibly also in a metastable liquid state) the binary mixtures. We also see in Fig.
13.6 that the nonequilibrium glassy EOS is very well described by an empirical linear relation

φ̃J = (1 + α)φJ − αφ, (13.4)

where α ≈ 0.133, over a wide range of φ > φg. We do not yet have a theoretical understanding of this relation.
It is clear from the figure that even the slowest compressions fall out of equilibrium at a density around φg,
so that equilibrating the liquid in reasonable time is not possible beyond this kinetic glass-transition density.
Very long MD runs, with as many as 50 million collisions per particle, have failed to equilibrate our samples
at a fixed φ = 0.8, and in fact very different microstructures all remained stable for very long periods of time.
This is shown in Fig. 13.7, where we show the evolution of the pressure during long molecular dynamics
runs at φ = 0.8 for several of the states in Fig. 13.6, at fixed density. For the glasses produced with faster
expansion rates the initial pressure is higher and then decays more rapidly, however, a very slow residual
decay of the pressure is seen in all of the samples, indicating the occurrence of very slow structural relaxation.

The final jamming densities of the glasses compressed at different rates are shown in Fig. 13.8. Note that
slower compressions consistently yield denser packings with no hints of the existence of a densest glass. Fast
compressions produce packings that are not truly jammed [75] and subsequent relaxation of these systems
increases the density to around φJ ≈ 0.847. This behavior of our hard-disk systems is closely related to the
observation that supercooled liquids sample saddle points with the saddle index diminishing only below the
temperature where even the slowest cooling schedules fall out of equilibrium [288, 289], i.e., the kinetic glass
transition temperature. Observations similar to those in in Fig. 13.8 have already been made for systems
of soft particles, e.g., the energy of the lowest inherent-structure sampled has been shown to continuously
decrease for slower cooling [290].

In Fig. 13.9 we show the EOS for the SOC-constrained solids obtained by taking a snapshot of a
configuration liquid at densities ranging from 0.7 (well within the equilibrated liquid density range) to
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Figure 13.8: Final jamming density φJ for different numbers of particles N , with and without additional
relaxation (and subsequent slow compression) to ensure a truly jammed packing has been reached.
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Figure 13.9: The EOS for SOC solids obtained by bounding each disk within a cell of twice its size, starting
with liquid or glass configurations generated by saving snapshot configurations during one of the slowest
compression shown in Fig. 13.6 (γ = 10−7, replicated from Fig. 13.6 for comparison) and then compressing
the SOC solid at γ = 10−6 to near jamming. The initial densities φ0 go from 0.7 to 0.825 and in the legend
we only mark the first and last curves since φ0 can be read from the starting point of the each curve. Also
shown is the relaxation of the pressure (i.e., increase in φJ) after the cell constraints are removed.
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0.825 (well within the out of equilibrium glassy density range), and enclosing it with a bounding cell with
∆µ = 1. The liquid/glass configurations were generated by saving snapshot configurations during the slowest
compression shown in Fig. 13.6 (γ = 10−7). In the SOC models we measure the reduced pressure p through
the momentum exchange during interparticle collisions, and do not include the pressure on the walls of the
cells pc. The SOC solid has a lower pressure than the unconstrained liquid because of the presence of cells,
and the difference between the two diminishes as the density increases, becoming virtually negligible beyond
the kinetic glass transition density. It is interesting to observe that the EOS of the SOC solids also follows
Eq. (13.4) closely. The compressions of the SOC solids generated from liquid snapshots seem to produce
jammed packings at densities as low as φJ ≈ 0.83. However, these packings are unstable once the bounding
cells are removed and molecular dynamics is run at a constant density, as shown in Fig. 13.6. In particular,
this subsequent relaxation leads to glasses with φJ ≈ 0.85, which is our best estimate for the MRJ density,
as discussed in more detail shortly.

13.3.2 Configurational Entropy of Glasses

In this section we focus on calculating the free-volume and configurational contributions to the entropy of
the dense liquid and glassy states obtained by compressing a liquid at different rates γ.

The quantity Ng(φJ) = exp [Nsc(φJ)] has recently been estimated via explicit enumeration for binary
mixtures of relatively small numbers of hard disks [66]. These studies have observed an approximately
Gaussian Ng(φJ) that is peaked at a density φMRJ ≈ 0.842, interpreted to correspond to the MRJ state for
this system. Such a Gaussian Ng(φJ) corresponds to an inverted parabola for sc(φJ), as has been assumed
in previous studies of the thermodynamics of binary disk glasses [50]. For large systems, such enumeration
is not yet possible and thermodynamics has been used to obtain estimates of sc(φJ), namely, it is estimated
as the difference between the entropy (per particle) of the liquid sL(φ) and the entropy of the “glass” sg(φ),

sc

[
φ̂J(φ)

]
= sL(φ)− sg(φ). (13.5)

Here sL is obtained via thermodynamic integration of the equilibrium liquid equation of state (EOS) from
the ideal gas limit, while sg is defined as the entropy of the system constrained to vibrate around a single
basin with jamming density φJ , without the possibility of particle rearrangements. There is significant
ambiguity in defining these constraints; however, at least in the truly glassy region, the system is typically
spontaneously constrained (jammed) by virtue of a very slow rearrangement dynamics, so that sg can be
defined reasonably precisely.

Formally, one can always partition configuration space into disjoint basins, each basin centered around a
jammed configuration. For soft spheres such a partitioning can be defined by associating with each energy
minimum (inherent structure) the basin of states for which gradient descent leads to the energy minimum
under consideration. Such a partition is only useful, however, if the configurational volume (free energy) of a
given basin sg(φ, φJ) can be estimated easily, so that the number of basins can be calculated from Eq. (13.5).
Note that the number of basins can only be estimated using thermodynamics up to exponential factors in
N . We define the glass free-volume entropy fg = −sg as the free energy of the SOC-constrained glass, where
the cell is sufficiently large so that the pressure on the cell walls pc is negligible, and small enough to prevent
particle rearrangements2. The measured fg obviously depends on the chosen bounding cell scaling (relative
to the particles) µ = 1 + ∆µ, unless the pressure on the cell walls pc(∆µ) decays sufficiently rapidly so that
truncating its integral at a given ∆µmax does not substantially increase the free energy.

In Fig. 13.10 we show pc(∆µ) for SOC-constrained glasses at several different densities (as in Fig. 13.9,
but this time shrinking the bounding cells rather than growing the particles). We see that at densities above
the kinetic glass transition, within numerical accuracy, pc(∆µ) goes to zero as ∆µ increases. However, for
densities below the kinetic glass transition pc(∆µ) clearly remains positive and therefore the fg measured
for the SOC glass will show significant dependence on the choice of cell cutoff. Closely related methods
have previously been used to calculate sc [181, 183, 291], with similar, though less accurate results. For
soft-particle glasses an alternative method is to use the harmonic approximation to the vibrational entropy
at an energy minimum as an estimate of sg [180, 275]. All methods are rigorous only in the jamming or

2We have found ∆µ = 1, i.e., a cell diameter twice the diameter of the disk it bounds, sufficiently small to prevent particle
rearrangements, see Fig. 13.10.
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Figure 13.10: The averaged pressure on the bounding cell walls pc(∆µ) as a function of the size of the cells
for SOC glasses at several different densities. Similar results are shown in Ref. [184]. For comparison, the
cell pressure that would be measured if the bounding cells are disjoint is shown. Note that when pc becomes
very small the simulation is not able to measure it accurately within the time interval over which particle-cell
collisional momentum transfer is averaged.

T → 0 limit, and are approximate for truly equilibrated liquids, so the quantitative results at low φ should
be interpreted with caution.

The excess free energy of the SOC glassy mixtures is shown in Fig. 13.11, along with the free energy
of the most-equilibrated liquid/glass fL(φ) obtained by integrating the numerical EOS from the ideal-gas
limit. We see that the free energy of the SOC glasses is substantially higher than that of the unconstrained
liquid at all densities, however, the difference becomes approximately constant at high densities and seems
to approach the entropy of mixing smix = xA lnxA + xB lnxB ≈ 0.6365. With this observation in mind, we
show the measured sc(φ) = sL(φ)− sg(φ) for the different glass compressions in Fig. 13.12. For comparison,
the results for a slow compression of a monodisperse system are also shown, and the entropy of mixing
smix = xA lnxA + xB lnxB has been subtracted from sc. It is seen that for the monodisperse case sc − smix

(smix = 0 in this case) becomes very nearly zero after the liquid freezes (around φ ≈ 0.7), indicating a
continuous or a very mildly discontinuous liquid-solid phase transition (see also Fig. 13.2).

More interesting is the fact that sc − smix also becomes nearly zero for the binary glasses around the
kinetic phase transition (around φ ≈ 0.8). This important observation has not been made before. It means
that the estimated number of packings that the liquid samples near the glass transition is very close to
smix, which is also the entropy of the uncorrelated ensemble of discrete states in which a fraction xA of the
particles is chosen to be large and the remaining particles are chosen to be small. It is interesting to observe
that the parabolic fit to sc(φJ) from the work in Ref. [66], if constrained to equal the mixing entropy at
the maximum, passes through zero at φ ≈ 0.9, much higher than the extrapolation in [50] and close to the
crystal jamming density. We note that all measurements of sc in the literature that we are aware of are
above or close to sc near the kinetic glass transition, and all estimates of the zero crossing of sc are based
on extrapolations beyond this point without numerical support [50, 181, 180, 275, 183, 276].
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Figure 13.11: The excess free energy of the compressed liquid/glass phase (with and without smix), and of
phase-separated SOC-constrained crystals (note that the cell constraints prevent mixing at any density).
Also shown are the predictions for an ideal phase-separated mixture, which does not perfectly match with
that of the SOC solids even at high densities because of the entropic cost of the interface between the large-
and small-particle solids.

13.3.3 Micro-Segregated Glasses

The observations made in Fig. 13.12 strongly suggest that extrapolations of sc above the kinetic transition,
predicting an ideal glass transition at density below the maximal possible density, are flawed. The only way
to get zero configurational entropy is to get rid of the entropy of mixing, i.e., to fully demix the two types of
disks. In fact, an exponential number of amorphous jammed packings exist over the whole density range from
that accepted as the MRJ density φMRJ ≈ 0.84 to that of the phase-separated crystal φmax ≈ 0.91. Lower-
density jammed packings also exist [66]; however, they do not have thermodynamic significance and thus our
simulations do not generate them. In our simulations we observe that higher φJ implies micro-segregation
in the form of increased clustering of the large particles. This has been most vividly demonstrated in Ref.
[51]. This observation suggests that one can generate denser packings by artificially encouraging clustering,
i.e., increasing the amount of (spatial) ordering in the packings.

To achieve clustering, we start from a monodisperse (κ = 1) triangular crystal at pressure p = 100 in
which a third of the particles has been selected as being “large”. The large particles then slowly grow in
diameter while the system is kept in (quasi)equilibrium at a constant (isotropic) pressure using a Parinello-
Rahman-like variation of the MD algorithm [11], as described in Section 3.2.4.2. When κ = 1.4 we stop
the process and then slowly compress the system to jamming. By spatially biasing the initial partitioning
into large and small disks, we can achieve a desired level of clustering and higher jamming densities for the
final packings. Figure 13.13 illustrates two different jammed packings, one with an uncorrelated random
choice of large disks, and another with correlations encouraging micro-segregation. The packing produced
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Figure 13.12: Estimated sc(φ)−smix for monodisperse and bidisperse systems of N = 4096 disks, as obtained
from (sufficiently slow) compressions with a range of γ’s.

by an uncorrelated random assignment of small versus large particles is the most disordered packing, i.e., it
is representative of the MRJ state for this binary hard disk mixtures.

Figure 13.13: The microstructure of a packing without (left, φJ ≈ φMRJ ≈ 0.846) and with moderate
clustering (right,φJ ≈ 0.850).

For the purpose of creating clustered initial assignments of “small” or “large” (i.e., A or B) labels, we
use a level-cut of a Gaussian random field (GRF) [292]. Specifically, we construct a discretized GRF on a
square lattice of 4096 = 642 [293], and assign label A to all sites where the filed has value larger than a
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certain cutoff (chosen so that two thirds of the disks are labeled A), and label B otherwise. By using suitably
chosen parameters for a flexible family of pair correlation functions originally proposed by Matern [294] we
were able to generate different levels of clustering, as illustrated in the inset in Fig. 13.15. Specifically,
the two parameters for the Matern correlation are the correlation length R and the interface smoothness
parameter 0 < ν < 1. Increasing R or ν increases the clustering, and we used five values of R going from 1
to 5, along with five values of ν going from 0.1 to 0.5, for a total of 25 different types of micro-segregated
initial configurations. Higher values of R and ν produce denser packings as the B disks are grown in size at
constant pressure, as illustrated in Fig. 13.14.
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Figure 13.14: Converting an initially monodisperse disk packing of N = 4096 disks into a jammed binary
disk packing by slowly growing a chosen third of the disks at a growth rate γ = 10−5 while keeping the
pressure at p ≈ 100. Here we used a leveled GRF with the Matern correlation in order to generate clustered
initial configuration. It is seen that the estimated jamming density φ̃J(κ) decreases from φ̃J ≈ 0.91 as the
size dispersity κ grows to the final value of κ = 1.4. The final jamming density is larger the more clustered
the initial configuration is.

To determine the configurational entropy (degeneracy) for a given choice of the GRF parameters, we use
a recently-developed algorithm for obtaining numerical approximations of the entropy (per site) of lattice
systems [295]. In principle the true degeneracy can be calculated by measuring the probability p(C) of
observing a particular configuration C of a rectangular window of n × m sites, and then calculating the
entropy per site

sn,m = lim
n,m→∞

Sn,m

nm
= lim

n,m→∞

{
− 1
nm

∑
C

[p(C) ln p(C)]

}
,

where the sum is over all of the possible 2nm configurations. In Ref. [295] the above limit is approximated
accurately and efficiently with small windows by exploiting a Markov approximation, to obtain

sn,m ≈ Sn,m − Sn−1,m − Sn,m−1 + Sn−1,m−1.

This approximation is seen to converge relatively fast, as demonstrated in Fig. 13.15 for the 25 different
choices of parameters R and ν for the Matern correlation function. We have used windows of 4 × 4 sites,
since calculating Sn,m requires generating many GRFs for the same correlation function and counting the
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Figure 13.15: The Markov approximation sn,n to the entropy per site for n = 2−4 [295], for different choices
of the parameters R and ν for the Matern correlation function in the GRF. It is seen that s3,3 is close to
s4,4, suggesting that s4,4 is a good approximation to the true entropy per site, especially for less clustered
configurations (i.e., higher s4,4). (Inset) Sample realizations of the partitionings into large and small sites
on a 642 grid, for several values of R and ν.

probabilities of observing different configurations of a window of size n × m sites. This process becomes
prohibitively expensive for n = m = 5.

We will assume that a different assignment of A and B labels will produce a distinct jammed packing,
i.e., that the configurational entropy sc for the jammed packings generated with a particular choice of GRF is
well-approximated by s4,4 from Fig. 13.15. Figure 13.16 shows our results for sc versus the jamming density
φJ , for the 25 different choices of the GRF parameters. The results clearly show that in order to increase
φJ one must sacrifice degeneracy (sc). The figure also shows the first measured, rather than extrapolated,
estimate of sc(φJ). This observed sc(φJ) only goes to zero for the phase-separated crystal state, rather than
the hypothetical amorphous ideal glass state postulated by extrapolations.

It is not a priori obvious that sc(R, ν) is strongly correlated with φJ(R, ν), since they both depend on
both R and ν. This is demonstrated to be the case in Fig. 13.17, where we show color plots of sc(R, ν)
and φJ(R, ν) over the grid of 25 values for (R, ν), and a strong correlation between the two is clearly seen.
This may be however due to the particular choice of the correlation function in the GRF. Ideally, what we
are interested in thermodynamically is the highest sc at a given φJ , i.e., the type of micro-clustering that
decreases the degeneracy the least in order to increase the jamming density by a given amount from φMRJ .
We do not know how to calculate the true sc(φJ), or how to construct samples representative of the most
disordered samples at densities other than φMRJ . The results obtained for the particular way we generated
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Figure 13.16: The measured degeneracy of packings of N = 4096 disks obtained by using different parameters
of a random Gaussian field with Matern correlations [292], as a function of the jamming density. For
comparison, we have shown sc(φ = 0.825) for the three compressions shown in Fig. 13.12, and an exponential
fit to the data.

micro-segregated samples, shown in Fig. 13.16, show a rapid drop in sc away from the MRJ point. That is,
one must cluster significantly before seeing an appreciable increase in the jamming density.

Figure 13.17: A demonstration that sc(R, ν) (right) is strongly correlated with φJ(R, ν) (left). The x-axes
of the color plots is ν, and the y-axes is R. If a similarly strong correlation exists for different choices of
clustering correlations, it is important to determine whether the sc(φJ) we calculate here continues to apply.

A calculation of fJ for the different micro-segregated glasses, using the BCMD algorithm, shows that fJ

is essentially constant independent of (R, ν), at least to within statistical fluctuations. Substituting this in
Eq. (13.1) together with the exponential fit sc(φJ) from 13.16 predicts that for densities lower than φ ≈ 0.8
the equilibrated liquid samples the MRJ basin, φ̂J(φ) = φMRJ , and for higher densities the liquid samples
the phase-separated crystal basin, φ̂J(φ) = φmax. On the other hand, the smoothly increasing φJ(γ) in Fig.
13.8, the spontaneous clustering seen for supercooled soft disks in Ref. [51], and the widely-observed lowering
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of the energies of the sampled inherent structures for soft-sphere glasses upon supercooling [290], all suggest
that φ̂J(φ) should be continuously increasing for very dense liquids. Such behavior of φ̂J(φ), at least within
the inherent-structure formalism we consider here, requires that sc(φJ) decay very slowly around φMRJ , so
that the liquid prefers to loose degeneracy by ordering (clustering) in order to gain free volume. In fact, the
expected behavior in sc(φJ) is that it would be quadratic around φMRJ , i.e., close to an inverted parabola
with a maximum at φMRJ . We expect that there exist an exponential number of ordered jammed states with
densities lower than φMRJ , and therefore that sc(φJ) is a smooth function, rather than having a cusp-like
maximum or sharp discontinuity at φMRJ .

13.4 Conclusions

Continuing on work in Ref. [58], we explicitly demonstrated that the concept of random close packing as
the most-dense jammed amorphous packing is flawed. By trading off degeneracy for density in a continuous
manner, we constructed an exponential number of amorphous jammed packings with densities spanning the
range from the most disordered to most ordered jammed states. We explicitly calculated, as opposed to
extrapolated, the degeneracy entropy for densities well above that of the postulated ideal glass transition,
and found that the degeneracy is positive for all“amorphous”states and vanishes only for the phase-separated
crystal. For the maximally random jammed state, the found a degeneracy entropy very close to the mixing
entropy. Furthermore, our free-energy calculations predict a thermodynamic crystallization well-below the
kinetic glass transition, casting additional doubt on the search for a thermodynamic origin of the glass
transition. Although the present study focused on the hard-disk binary mixture, the fundamental principles
are general enough to be applicable to a host of related systems, notably, both mono- and bi-disperse with
hard-core and soft interactions.

It is important to point out that our argument has nothing to do with mixing macroscopic liquid and
crystal domains (with sharp and identifiable interfaces that make for a negligible reduction in density)
in order to get mixed states of intermediate densities. Instead, we construct an exponential number of
amorphous configurations that show no signs of crystal nuclei. Artificially mixing large crystal domains with
large liquid domains severely underestimates the number of available jamming configurations, since near the
glass transition the configurational entropy is close to the entropy of the completely mixed system. For the
binary hard disk system, there is no sharp boundary between crystal and liquid states. The micro-separated
samples we constructed in our work are not mixtures of a liquid and a crystal phase. They are disordered
(amorphous) states which have no qualitative difference from the liquid state. In particular, they do not have
(quasi)long-range order, and do not have macroscopic domains that could be considered crystal. Perhaps
more significantly, these states are not artificial constructions in which we just mixed some crystal and liquid
in a trivial manner. Rather, our choice was motivated by careful observations of the actual thermodynamic
and kinetic behavior of hard disk mixtures. Namely, as we decreased the compression rate (cooling rate for
soft disks), we saw spontaneous microclustering happening (this has been observed in other systems). If
we had many more decades of computational power, we believe we would see micro-segregated glassy states
appear spontaneously.

Unfortunately, our results do not resolve the mystery of the glass transition. In fact, the complete
thermodynamic behavior of hard disk mixtures remains unclear. Free-energy calculations predicted a freezing
transition, but it could not be observed directly with classical MD due to the dramatic kinetic slowdown
near the glass transition. Such free-energy calculations proceed in reverse order: One assumes what the
equilibrium structures are, and then selects the one with the lowest free energy. At high densities, however,
it is not clear what the properties of the liquid phase are, end whether it exists at all. it is hoped that the
inherent structure formalism, i.e., the partitioning of the available configuration space into jamming basins,
can describe the thermodynamic properties well. For hard sphere systems, this requires the identification
and counting of distinct configurations in a statistical ensemble of jammed packings. This has been done
by direct enumeration for small systems, however, enumeration is not possible for large systems. In this
work, we identified distinct packings for hard disk mixtures with distinct partitionings of the disks in a
monodisperse triangular crystal into small and large disks. Such an identification converts the difficult
geometrical problem of packing disks into a much simpler combinatorial problem of generating partitionings
of the triangular lattice. This identification was suggested by the fact that the calculated configurational
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entropy near the glass transition is very close to the mixing entropy.
For the purposes of calculating configurational entropy, it is not necessary that the identification be

one-to-one, rather, only that the number of jammed packings corresponding to a given partitioning is sub-
exponential in N , and vice-versa. Starting with a given partitioning, we described a procedure for generating
a corresponding packing using MD. While it is not trivial to prove mathematically that this generates a
unique and distinct packing, we expect that this would be the case if the MD algorithm would be run for
an infinitely long time at infinite pressure. In the other direction, starting with a given jammed isostatic
bidisperse packing, one can shrink the diameters of the large particles and maintain the existing contacts, as
discussed in Section 4.5, while also maintaining jamming. Along the way, new contacts will be formed and old
contacts broken, and the path of the algorithm is not unique, but it is expected that the number of different
choices that can be made is subexponential in N . In the end this procedure will generate a monodisperse
jammed packing where the disks are labeled small and large. Our analysis in Chapter 4 suggested that the
majority of strictly jammed monodisperse disk packings are the triangular packings with vacancies. These
arguments suggest that for hard disk mixtures there may indeed be a strong correspondence between jammed
packings and partitionings of the triangular lattice. It would be a useful future exercises to consider adding
vacancies to the initial triangular configurations before applying the Gaussian random fields to them. This
might increase sc(φ) and produce the expected inverted parabolic shape, and in particular, generate jammed
packings at densities below φMRJ .

An important avenue of research is the development of algorithms to equilibrate liquids at densities
higher than the kinetic glass transition. It is clear that such algorithms must be very different from classical
MD, however, despite the fact that several algorithms have helped significantly reduce the simulation times
necessary to equilibrate supercooled or super-compressed liquids [286, 182, 287, 285], true thermodynamic
(meta) equilibrium for samples of reasonable size has not yet been achieved at sufficiently high densities to
properly elucidate the thermodynamics of disordered solids. Finally, the continued failure to identify any
thermodynamic origin to the glass transition suggests that the kinetics of supercooled and super-compressed
liquids needs to be understood better. We believe that the hard sphere system is an ideal model for such
studies, and described at least one avenue of research in Section 4.5.
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Chapter 14

Conclusions and Future Directions

In this dissertation we studied the statistical and thermodynamic properties of ordered and disordered
jammed packings of hard frictionless particles computationally, theoretically, and experimentally. We reached
several novel and important conclusions, which we briefly highlight here.

In the first part of this thesis we focused on computational and theoretical work. In Chapter 2 we
showed that overlap potentials originally designed for ellipsoids by Perram and Wertheim for hard ellipsoids
can be generalized to arbitrary convex shapes and given a very useful geometric interpretation. We used
these overlap potentials to develop a very efficient event-driven molecular dynamics (MD) algorithm for hard
particles in Chapter 3 and used this algorithm to generalize the Lubachevsky-Stillinger packing generation
algorithm to nonspherical particle shapes. In Chapter 4 we demonstrated that the concept of jamming can
be formalized for hard spheres and designed a mathematical programming algorithm to rigorously test for
jamming, rather then relying on dubious heuristics or unsupported assumptions as is typically found in the
literature. In Chapter 5 we generated for the first time jammed disordered packings of hard ellipsoids and
found that they have a surprisingly high density in addition to having a high contact number. We also
showed that the generated packings are collectively jammed despite being hypostatic, thus demonstrating by
example that the isostatic conjecture, commonly taken for granted in the granular media literature, does not
apply to nonspherical particles. Finally, in Chapter 6 we extended our MD algorithm to rigorously calculate
the free energy of nearly jammed hard-particle packings.

In the second part of this thesis we applied the computational and theoretical tools from the first part
to the study of the statistical and thermodynamic properties of disordered and ordered packings of hard
particles. In Chapter 7 we demonstrated that the computationally-generated packings of frictionless particles
closely resemble those produced in experiments with hard spheres and ellipsoids. In Chapter 8 we discovered
the densest known crystal packing of ellipsoids by using molecular dynamics. In Chapter 9 we observed that
disordered jammed hard sphere packings are strictly isostatic and found an unusual power-law divergence
in the number of near contacts. In Chapter 10 we showed that disordered jammed hard sphere packings
are hyperuniform and additionally have an unusual non-analytic linear behavior of the structure factor near
the origin not found in liquids. In Chapter 11 we found that disordered sphere packings in dimensions d =
4, 5 and 6 have very similar properties to those in three dimensions, but with a pronounced pair decorrelation
in higher dimensions for distances larger than the hard core. In Chapter 12 we discovered that hard dominos
form a disordered solid or glass phase with tetratic order, but no crystal periodicity. Finally, in Chapter 13
we demonstrated that there is no ideal glass transition for binary hard disks of size dispersity 1.4.

14.1 Future Directions

This dissertation identified many open problems and suggested numerous avenues for future research. In
this section we point to certain promising directions that our work has identified, and also point to questions
that have not yet been addressed properly.
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14.1.1 Molecular Dynamics

In Chapter 2 we developed PW-type overlap potentials for the case of one convex particle contained within
another, however, we found that the inner PW potential is difficult and expensive to calculate numerically
in a stable way. The inner PW potential is essential in the EDMD algorithm of Chapter 3 when using near-
neighbor lists and when calculating the free energy using the BCMD algorithm from Chapter 6. Therefore,
development of alternative overlap potentials or alternative evaluation of the inner PW overlap potential
is an important task. Additionally, developing overlap potentials for nonsmooth particle shapes, and in
particular for shapes with flat edges and sharp corners, is needed in order to extend the work we presented
here to particle shapes other than smooth convex ones.

In Chapter 3 we demonstrated that event-driven molecular dynamics is an essential tool in the study of
hard-particle packings, both because it is the only rigorous way to study the dynamics in the jamming limit,
and because it can be implemented very efficiently. However, even today’s sophisticated single-processor com-
puters are not sufficiently powerful to carry out certain important studies of very large systems, nonspherical
shapes, or systems in higher dimensions. Parallelization of the EDMD algorithm is highly non-trivial; how-
ever, it is a worthy task to undertake. Predicting the time of collision of two moving nonspherical particles
can also be improved, either by using techniques other than bounding spheres in order to narrow the search
intervals during which a collision may happen, or by improving the algorithm to search those intervals for
a collision. While we have made substantial progress in tailoring the EDMD algorithm to systems of very
elongated or very flat particles, the improvements are still not sufficient to efficiently deal with very large
aspect ratios. It is an open challenge to develop an algorithm to improve the efficiency of building the near-
neighbor lists for very oblate particles. Finally, improving the search for neighbors in systems with large size
dispersity between the particles is a barely-explored research area.

14.1.2 Generating Jammed Packings

The generation of jammed packings of hard particles is a non-trivial task, and in this work we primarily
focused on variations on the Lubachevsky-Stillinger molecular dynamics algorithm. It is important to explore
alternative algorithms, and in particular, algorithms based on energy minimization in soft-particle systems,
as well as algorithms based on contact networks. Algorithms that use deformable particles instead of per-
fectly hard ones are important because realistic particles are not perfectly hard. Furthermore, sophisticated
mathematical programming techniques can be used to efficiently produce packings that are guaranteed to
be very close to a true jamming point, including for strict jamming. Molecular dynamics on the other hand
relies on the natural dynamics in the system, which slows down dramatically in the jamming limit and may
get trapped in packings that are not truly jammed. Additionally, MD is not able to generate truly strictly
jammed packings. Algorithms based on contact networks are important because they guarantee the produc-
tion of an ideal (within the numerical tolerances used) collectively or strictly jammed packing. Furthermore,
with the help of better theoretical understanding of the conditions that a given contact network be realizable
as a jammed packing, there is the potential of developing algorithms that rigorously enumerate all jammed
packings by enumerating contact networks. Such algorithms will surely be prohibitive for very large packings.
However, designing rigorous algorithms is important even if only applicable to small systems.

Improved packing-generation algorithms are needed in order to identify MRJ packings for a variety of
systems. Understanding the behavior of the packing algorithms, and in particular, the influence of the
various control parameters on the density and amount of ordering in the produced packings, is necessary in
order to avoid heuristics or guesses for what the “correct” parameters are. In two dimensions, it is not yet
firmly established whether there really are no disordered non-crystalline strictly jammed packings, or whether
crystallization is observed in packing algorithms simply because it is favored by the (thermo)dynamics of the
algorithms commonly in use. Designing algorithms aimed at generating packings other than MRJ packings,
is also important. In particular, it is important to generate lower- and higher-density disordered jammed
structures. The LS algorithm does not produce jammed packings with densities below that of the MRJ state
because such low-density jammed packings are thermodynamically-unfavored. In Chapter 13 we constructed
disordered jammed packings of binary hard disks spanning the density range from the most disordered to
the most ordered. Can we do the same in three dimensions for monodisperse spheres?

Finally, adding friction to packing-generation algorithms is an important task for future research.
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14.1.3 Better Understanding of Jamming

In Chapter 4 we demonstrated the importance and usefulness of including the lattice vectors as degrees of
freedom when discussing jamming. In particular, we related lattice deformations to macroscopic strain and
demonstrated that the Lagrange multipliers corresponding to the strain degrees of freedom can be interpreted
as macroscopic stress. It is important to explicitly derive second-order derivatives of overlap between particles
with respect to strain degrees of freedom, in order to extend the second-order conditions for jamming from
Chapter 5 to strict jamming, and also express the elastic moduli in terms of the forces and stiffnesses of
the interparticle contacts. Several other calculations carried out in this work should be extended to second
order, and in particular, the sensitivity of the jamming density with respect to changes of the particle shapes
or other perturbations should be calculated to second order.

Deformation of the lattice vectors can be seen as a modification of the boundary conditions to allow
for macroscopic degrees of freedom. Additionally, modifications of standard periodic boundary conditions
to include non-periodic motions is important. A periodic packing can be considered to be a small part of
an infinite repetitive packing, and looking for unjamming motions with periodic boundary conditions cor-
responds to looking for unjamming motions of the infinite packing that have a single Bloch wave (Fourier)
component. However, the infinite system may also possess unjamming motions (modes) that have larger
wave-lengths, and Bloch wave (Fourier) decomposition is a natural way to extend the concept of unjamming
motions to infinite (repetitive) systems. The difficulty with using standard Bloch wave (Fourier) decom-
positions is that impenetrability constraints are inequalities, rather than equalities, which cannot easily be
decomposed into inequalities for each of the wavevectors using standard orthogonality relations. However,
both the self stresses and the first-order flexes in a packing are solutions to systems of equalities and they
can be decomposed into Fourier components.

For standard periodic boundary conditions, image particles move exactly the same way as their originals.
In particular, for nonspherical particles, the orientation of image particles is identical to the orientation of
the corresponding original particle. Extensions of periodic boundary conditions to break strict periodicity
would enable one to calculate the stresses, strains, and stiffnesses appearing in micropolar elasticity theories,
such as Cosserat Elasticity.

Finally, future work should consider the mathematics of jamming for packings of hard particles that are
convex, but not necessarily smooth or strictly convex. In particular, particles with sharp corners and/or
flat edges (e.g., squares, cubes, etc.) are of interest. We also believe that jamming in frictional packings,
even for the case of spheres, is not well-understood. Mathematical programming, and in particular (linear)
complementarity models, can be used to rigorously study mechanical equilibrium and stability in frictional
packings.

14.1.4 Understanding (Dis)Order

In this work we expended considerable effort in understanding and defining rigorously the concept of jamming.
However, an equally important task is to better quantify the concept of randomness, and in particular, to
design order metrics for jammed packings of hard particles from “first principles”. Only once this is done
can the study of “random jammed” packings be freed of heuristics and assumptions.

In Chapter 13 we proposed a way to quantify disorder for jammed hard disk packings through the entropy
of a partitioning of the sites of a triangular lattice into “large” and “small” ones. In particular, more ordered
packings correspond to partitionings drawn from an ensemble of smaller entropy (degeneracy). The concept
of entropy as an information measure is well-understood in the context of discrete systems such as lattices,
and extending this to constrained but continuous systems such as jammed particle packings is a challenging
task. Nonetheless, it offers hope of discovering a universal order metric, or in other words, understanding
the very concept of order mathematically. One possible approach is to consider the ensemble of all jammed
packings for a finite number of particles, give a unit weight to every packing, and consider the distribution of
macroscopic properties such as density in that ensemble. It is not however obvious that equal weight should
be given to every packing, and a different weighting may be appropriate in different contexts.

Understanding order will also help understand the geometric structure of MRJ packings. Why are
disordered sphere packings prepared by a variety of algorithms at a density around φ ≈ 0.64, exhibiting very
similar structure? In Chapter 13 we proposed that disordered binary disk packings may be considered as
continuous deformations of the monodisperse triangular crystal. In Chapter 11 we suggested that disordered
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hard sphere packings in dimension higher than two may be deformations (perturbations) of the crystal,
however, an explicit construction of such a deformation is lacking. If disordered packings could indeed be
described as perturbations of certain regular and easy-to-characterize packings, such as crystal packings or
polytetrahedral packings in curved spaces, the structure of disordered packings could be quantified from
“first principles”.

14.1.5 Dynamics in Nearly Jammed Packings

Our work has made it clear that the study of nearly jammed packings requires the use of mathematical pro-
gramming techniques. Unjamming motions at very high densities are collective and involve careful correlated
motion of most if not all of the particles in the packing, and such collective motions cannot be efficiently
found using Monte Carlo or Molecular Dynamics methods because of the long separation of time scales
between local rattling motion and collective rearrangements. We designed rigorous algorithms to test for
jamming in ideal packings of hard spheres and ellipsoids. It remains a challenge for the future to develop
quadratic programming techniques for studying collective rearrangements in non-ideal (hypostatic) jammed
packings of hard nonspherical particles, as discussed in Chapter 5. Even for spheres, a quantitative under-
standing of the performance of the randomized linear programming algorithm from Chapter 4 is lacking, for
example, the probability of detecting unjamming motions when such motions exist has not been estimated
for non-ideal packings. This probability should be estimated analytically for isostatic sphere packings by
using the (simplex) jamming polytope picture we discussed extensively in this work.

In this work we formalized the notion of jamming as a permanent arrest of the packing structure. However,
this rigorous formalism only applies to finite ideal packings. Understanding the nature of unjamming motions
in large non-ideal packings quantitatively is needed in order to give insight into the dynamics of large nearly
jammed packings. In particular, to understand why large nearly jammed packings remain within a jamming
basin for long periods of time even though there are unjamming motions leading to different (possibly
thermodynamically favored) basins. Understanding the dynamics near the jamming point is essential to the
study of the kinetic glass transition. This work has identified two avenues of research that would be useful
in this respect. For small systems it should be possible to rigorously identify all of the jammed states as well
as the transition states and paths between the different jamming basins. This would enable a prediction of
transition rates between different jammed packings, and comparison with numerical transition rates would
test whether the assumptions underlying the transition rate theory (for example, ergodicity, separation of
positions and velocities in phase space, etc.) are correct. Calculation of such transition rates at different
densities could elucidate the origin and nature of the kinetic glass transition.

For large systems, rigorous and full enumeration of the transition states and paths will not be possible.
However, a better understanding of the shape of the jamming polytope and its elongated directions would give
insight into the dynamics near the jamming point. In this respect, it is believed that the multitude of near
contacts in disordered jammed packings is an essential ingredient to the (mechanical) stability of jammed
packings. Isostatic packings, as we find disordered sphere packings to be, are marginally rigid, that is, the
removal of even a single contact destroys the jamming property. Furthermore, the extreme protuberance of
the simplex jamming polytope makes some of the vertices of this polytope become unjamming motions at
densities very close to the jamming density. Are these unjamming motions blocked by some of the multitude
of near contacts present in disordered packings? An analysis of unjamming motions and dynamics in nearly
jammed packings must focus on non-ideal packings and take into account the near contacts in addition to
the true contacts.

14.1.6 Thermodynamics of Nearly Jammed Packings

More detailed analysis of the jamming basin J∆R for isostatic sphere packings near the jamming point,
going beyond the simplex picture, is needed in order to gain better insight into the thermodynamics of
nearly jammed packings. In particular, it is important to develop an equation of state for nearly jammed
packings that includes higher-order terms than the free-volume pressure. This will require considering both
the influence of the multitude of near contacts and the influence of the curvature of the faces of the jamming
“polytope”.

Knowing the pressure as a function of jamming gap gives the bulk modulus of the packing, and in
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particular, in the jamming limit B ∼ p2. Calculating the shear modulus of nearly jammed packings is an
important open problem. Calculations using the simplex polytope picture show that the shear modulus
scales with pressure with a power lower than that of the bulk modulus, that is, that G/B → 0. Some recent
theoretical work on soft spheres has suggested that G ∼ p3/2 [173]. Establishing such a result for hard
sphere packings is a challenging but important problem. Characterizing the actual non-anharmonic elastic
response of nearly jammed packings is even more important, since the very definition of elastic moduli relies
on assumptions about harmonic macroscopic elastic behavior. Such assumptions rigorously break down in
the jamming limit, since the mechanical behavior of jammed packings cannot be described by linear elasticity
[111]. However, experiments and simulations have shown that sufficiently far from the jamming point there
is some merit to considering the macroscopic response of dense liquids/glasses through linear elasticity.

Formally, the single-cell occupancy (SOC) constraints described in Chapter 6 give a rigorous definition of
the free energy of a nearly jammed packing. However, it is not clear whether the free energy or its derivatives
(such as pressure or elastic moduli) can be calculated analytically for SOC solids and used to approximate, in
a controlled manner, the properties of the unconstrained system. The algorithms we designed in this work can
be used to probe these issues numerically, and the jamming polytope picture extended to SOC-constrained
systems.

14.1.7 Further Applications

The algorithms and theories we designed can be applied to the study of a wide range of systems. The
BCMD algorithm we developed should be applied to the determination of free energies of solid phases and
thus the phase diagrams for various particle shapes, and in particular ellipsoids and superellipsoids (especially
shapes approaching rectangles, cubes, cylinders, etc.). The identification of the solid phases, i.e., the densest
packings, for different particle shapes can be carried out using molecular dynamics as we did in Chapter 8
for ellipsoids.

Statistical characterization of random ellipse and random ellipsoid packings, similar to the one we carried
out for spheres, is still lacking. In this work we focused on nearly spherical ellipsoids, however, it is also
important to understand the behavior of ellipsoids with large aspect ratios. Studying other particle shapes,
and in particular superellipsoids, may give surprising new insights about packings. One still-unresolved
question of interest involves shape dependence of the packing-fraction ratio for amorphous vs. crystalline
arrangements of identical hard particles. It will be enlightening eventually to establish for various particle
shapes: (a) what particle shapes yield the attainable lower and upper limits for this ratio, (b) whether the
upper limit can equal or exceed unity, and (c) whether there are useful correlations between this ratio and
features of the equilibrium phase diagrams or glassy behavior.
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[292] S. Marčelja. Entropy of phase-separated structures. Physica A, 231:168–177, 1996.
[293] B. Kozintsev and B. Kedem. Generation of ”Similar” Images From a Given Discrete Image. J. Comp.

Graph. Stat, 9:286–302, 2000. Software for gaussian package is at http://www.math.umd.edu/~bnk/
CLIP/clip.gauss.htm.

[294] B. Matern. Spatial Variation, volume 36 of Lecture Notes in Statistics. Springer Verlag, Berlin, 1960.
[295] P. Attard. In Statistical Physics on the Eve of the Twenty-First Century, chapter Markov Superposition

Expansion for the Entropy and Correlation Functions in Two and Three Dimensions. World Scientific,
Singapore, 1999.

296

http://www.math.umd.edu/~bnk/CLIP/clip.gauss.htm
http://www.math.umd.edu/~bnk/CLIP/clip.gauss.htm

	Abstract
	Acknowledgements
	Contents
	Introduction and Overview
	Generating Packings using Molecular Dynamics
	Other Packing Algorithms

	Disordered Jammed Packings of Hard Spheres
	The Maximally Random Jammed (MRJ) State
	Polydisperse Packings

	Summary of Research
	Generating Jammed Hard-Particle Packings
	Jamming in Hard-Particle Packings
	Statistical Properties of Random Hard-Sphere Packings
	Jammed Packings of Hard Ellipsoids
	Thermodynamics of Hard-Particle Systems

	Notation
	Matrix and Vector Notation
	Cross Products
	Representing Rigid-Body Orientations
	Particle Packings


	I Jamming: Theory and Algorithms
	Overlap Potentials for Hard Particles
	Nonoverlap Constraints
	The PW Overlap Potential for Convex Particles
	Evaluating 
	Time Derivatives of 
	Configurational Derivatives of 

	Hard Ellipsoids
	Ellipsoids
	Ellipsoid Overlap Potentials
	Time Derivatives of the Overlap Potentials
	Configurational Derivatives of AB
	Surface-Surface Distance
	Two Near-Spheres (Nearly) Touching

	Generalized Ellipsoids
	Superellipsoids
	Geometric Properties
	Evaluating the Overlap Function
	Time Derivatives

	Conclusions

	Molecular Dynamics for Nonspherical Particles
	Introduction
	Preliminaries
	Particle Shape
	Molecular Dynamics
	Boundary Conditions
	EDMD in Different Ensembles

	Speeding Up the Search for Neighbors
	The Cell Method
	The Near-Neighbor List (NNLs) Method
	Very Aspherical Particles

	EDMD Algorithm
	History
	Notation
	Processing the Current Event
	Predicting The Next Event
	Binary Collisions
	Boundary Events
	Building and Updating the NNLs
	Strengths of the Algorithm

	Ellipses and Ellipsoids
	Predicting Collisions
	Processing Binary Collisions

	Performance Results
	Tuning the NNLs

	Conclusions

	Jamming in Hard-Sphere Packings
	Introduction
	Jamming in Hard-Sphere Packings
	Jamming as Isolation in Configuration Space 
	Three Jamming Categories
	Unjamming Motions
	Jamming and Forces

	Linear Programming Algorithm to Test for Jamming
	Approximation of Small Displacements
	Randomized Linear Programming (LP) Algorithm
	Dealing with Interparticle Gaps

	Boundary Conditions
	Repetitive (Periodic) Packings
	Boundary Conditions for Unjamming Motions
	Rigidity Matrix for Periodic Boundary Conditions
	Collective Jamming
	Strict Jamming
	Strict Jamming and Macroscopic Rigidity

	Beyond the ASD: Transition States and Paths
	Vertices of JR
	The Salsburg Approach

	Algorithmic Details
	Algorithm: Ideal Packings
	Algorithm: Nonideal Packings
	Numerical Implementation

	Results
	Periodic Lattice Packings
	Results for Disordered Hard Sphere and Disk Packings

	Conclusions

	Hypostatic Jammed Packings of Hard Ellipsoids
	Introduction
	MRJ Packings of Hard Ellipsoids
	Impenetrability and Interparticle Forces
	The Rigidity Matrix
	Interparticle Forces

	The Isostatic Conjecture
	Jamming, Rigidity and Stability
	Isostaticity

	Conditions for Jamming
	First-Order Terms
	Second-Order Terms
	Testing for Jamming in Ideal Packings
	An Example: Rectangular Lattice of Ellipses
	Outside the Kinematic Perspective

	Numerically Testing for Jamming in Hypostatic Ellipsoid Packings
	Verification of Second-Order Jamming 
	Extensions to Non-Ideal Packings

	Nearly Jammed Packings
	First-Order Jammed Packings
	Second-Order Jammed Packings
	Pressure Scaling for Hypostatic Jammed Ellipsoid Packings

	Energy Minima in Systems of Deformable Particles
	Stable Energy Minima Correspond to Jammed Packings
	Hessian Eigenvalues and Jamming
	An Example of Pre-Stress Stability

	Packings of Nearly Spherical Ellipsoids
	Rotations and Translations Are Not Equal
	Maintaining Jamming Near the Sphere Point
	Contact Number Near the Sphere Point

	Conclusions

	Free Energy of Nearly Jammed Packings
	Introduction
	Background
	Jamming Polytope
	Isostatic Packings

	Molecular Dynamic Method for Measuring f
	Basic Algorithm
	Elastic Collision Law
	Billiards Algorithm for Volume Calculation
	Algorithmic Details
	Illustrative Example: Dense Hard-Sphere Liquid

	Results
	Hard-Sphere Crystals
	Isostatic Jammed Packings: Spheres
	Isostatic Jammed Packings: Ellipses

	Conclusions


	II (Nearly) Jammed Packings: Applications
	Packings of Spheres and Ellipsoids in Finite Containers
	Introduction
	Bulk Packing of M&M'S Candies"472
	Finite Packings
	Simulations
	Experiments

	Conclusions

	Unusually Dense Crystal Packings of Ellipsoids
	Introduction
	The Densest Known Ellipsoid Packing
	MD Simulations
	Explicit Construction

	Thermodynamics
	Crystal Nucleation and Glassiness

	Nearly Spherical Ellipsoids
	Global Optimization Approach

	Densification by Changing the Ellipsoid Shape
	Spheres
	Ellipsoids

	Conclusions

	Pair Correlation Function of Jammed Sphere Packings
	Introduction
	Theoretical Considerations
	Interparticle Force Networks
	Pair Correlation Function Around Contact

	Computational Results
	Disordered Packings
	Ordered Packings
	Partially Crystallized Packings

	Conclusions

	Density Fluctuations in Jammed Sphere Packings
	Introduction
	MRJ Packings Are Saturated
	Structure Factor Near k=0
	Direct Correlation Function

	Number Fluctuations
	Tail of the Total Correlation Function
	Conclusions

	Packing Hyperspheres in High Dimensions
	Introduction
	Previous Work
	Simulation Procedure

	Thermodynamic Properties
	Equilibrium Properties
	Kinetic Glass Transition

	Disordered Jammed Packings
	Pair Correlations
	Isostaticity

	Conclusions

	Tetratic Order in Systems of Hard Dominos
	Introduction
	Simulation Techniques
	Monte Carlo
	Molecular Dynamics

	Results
	Equation Of State
	Orientational Order
	Bond-Orientational Order
	Translational Order
	Solid Phase

	Conclusions

	Configurational Entropy of Binary Hard-Disk Glasses
	Introduction
	Inherent-Structure Formalism

	Equilibrium Phase Diagram
	Monodisperse Hard-Disk Systems
	Binary Mixtures of Hard Disks

	Is There an Ideal Binary Disk Glass?
	Kinetic Glass Transition
	Configurational Entropy of Glasses
	Micro-Segregated Glasses

	Conclusions

	Conclusions and Future Directions
	Future Directions
	Molecular Dynamics
	Generating Jammed Packings
	Better Understanding of Jamming
	Understanding (Dis)Order
	Dynamics in Nearly Jammed Packings
	Thermodynamics of Nearly Jammed Packings
	Further Applications


	Bibliography


