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Abstract

Buildup of internal self-stresses in hyperstatic adaptive structures resists actuation.

A recent paper by Guest and Hutchinson shows that periodic infinite truss structures

cannot be both statically and kinematically determinate structures; therefore, a rigid

infinite lattice bar framework must be hyperstatic. This paper shows that it is possi-

ble to design adaptive periodic infinite truss structures that can achieve any state of

uniform strain without energy cost by actuating only a subset of the bars in a coordi-

nated fashion. We show that actuation of only 3 bars in two dimensions or 6 bars in

three dimensions per unit cell is required. A mathematical apparatus is developed and

an example of such a bitriangular lattice structure is given, along with accompanying

illustrations. Supporting animations can be found at the authors’ website.
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1 Introduction

The mechanical performance of pin-jointed bar frameworks, referred to simply as trusses in

this paper, is a useful guide to the performance of the same framework but with welded

joints (Pellegrino and Calladine, 1986). Materials with lattice-like structures find numerious

applications due to their excellent mechanical properties, and can be effectively modeled

as infinite periodic trusses. New advances in manufacturing techniques have enabled engi-

neers to create lattice materials with lattice parameters on the order of 0.5mm; also, truss

structures with strut diameters of only 50µm have been manufactured [see (Deshpande et

al., 2001) and references therein]. One novel application of such materials is in adaptive

structures, where certain bars act as actuators and are used to precisely control the global

shape of the structure (Hutchinson et al., 2002).

Infinite bar frameworks offer many open mathematical questions. Much is known about

the rigidity of finite bar frameworks in Euclidean space, particularly in the plane. Infinite

systems are difficult to deal with mathematically, but are relevant to the study of large

lattice truss structures, and therefore deserve special attention. We believe that repetitive

bar frameworks on a flat torus (i.e., with periodic boundary conditions), in a suitably-defined

limit of an infinite torus, can be used as a basis for simplified but rigorous models of lattice

materials. In this work we study actuation in such periodic frameworks.

In a recent paper, Guest and Hutchinson (2002) discuss the prospect of designing an

infinite lattice truss structure that is both statically and kinematically determinate. In the

aformentioned paper, the authors conclude that it is impossible to design such a structure

based on some counting arguments. We will revisit this problem from a different mathemati-

cal perspective to further illucidate this important fact. The importance of this investigation

comes from the fact that statically and kinematically determinate structures, called (gener-

ically) isostatic structures in this report, can be used as “ideal” adaptive structures, since

the length of any bar can be changed (actuated) independently of other bars. By combining

actuation in a number of strategically placed bars, one can achieve useful deformations of

the global structure, while still preserving mechanical stability (i.e., rigidity or stiffness). See

Hutchinson et al. (2002) for details.
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The negative result of the above paper should not, however, be taken as an indication

that it is impossible to design a lattice truss that can be used to build “ideal” large adaptive

structures. Indeed, in this paper we propose a method to design infinite lattice (i.e., periodic

or repetitive) truss (i.e., pin-jointed bar framework) structures in which any global deforma-

tion can be achieved without energy cost by repetitively (periodically) actuating d (d+ 1) /2

(3 in two, or 6 in three dimensions) bars per unit cell. By a global deformation, we mean a

state of uniform strain, which is modelled as a deformation of the underlying lattice vectors

of the repetitive structure.

The full derivation of this relatively simple theoretical result is given here. Some of the

mathematical apparatus is presented in higher generality than needed in order to enable

extensions in the future, and also to point to some results interesting from a mathematical

perspective along the way. Some of these are not needed in order to understand this report

and can simply be skipped (sections 2.1.1, 5 and 5.1).

Our expectation is that the basic idea of using periodic actuation of d (d+ 1) /2 per unit

cell can be used to design real adaptive lattice trusses. Such adaptive structures would be

able to achieve any global deformation in which the strain gradient is small (that is, the

strain does not change appreciably over the lengthscale of a unit cell) with very small energy

cost (internal resistance).

Further discussion and animations of all the figures given in this paper can be found at

our website (Donev, 2002).

2 Mechanical Equilibrium

Consider a large d-dimensional pin-jointed bar framework in Euclidean space (and unspecified

boundaries) which has a repetitive structure, i.e., it is created by periodically repeating a

basic building block. We model such a framework as an idealized infinite periodic network

with a (reference) unit cell specified via the lattice vectors (generators) {λ1, . . . ,λd}. Denote

the positions of the N joints (nodes) within a unit cell with r, with node i being at ri. Let

the number of bars per unit cell be M and the lattice vectors be columns in a d-by-d lattice

matrix Λ. The choice of unit cell and lattice vectors is not unique; however, there is a
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primitive unit cell with Np nodes and Mp arcs per unit cell and lattice Λp which is repeated

several times along each coordinate dimension to obtain the reference unit cell. If we form a

diagonal matrixNc from the number of repetitions of the primitive cell along each dimension,

then Λ = ΛpNc, N = NcNp and M = NcMp, where Nc is the total number of primitive cells

contained within the unit cell, Nc = |Nc|. We use || to denote a matrix determinant.

So far we described an infinite network in Eucledian space with no boundary conditions.

In this work we impose periodic boundary conditions, that is to say, we focus on deformations

of the network which are periodic with periodicity determined by the lattice Λ. Mathemat-

ically, we wrap the network around a (flat) topological torus defined with the choice of unit

cell. The reader should keep in mind the important distinction between the infinite struc-

ture which is obtained by periodically repeating the unit cell in Eucledian space (this is

a “universal cover” of the torus in topological jargon), in which deformations need not be

periodic, and the finite network on a torus, which is used to model periodic deformations of

the infinite network. The remainder of this paper discusses the network on a torus, unless

otherwise indicated.

Initially we focus on small (infinitesimal) deformations of the network from its original

configuration (e.g., ∆Λ), however, the results are also relevant to large deformations, as

discussed in section 4.2. One can either consider a fictional evolution (time) parameter

t on which all quantities depend and consider directions of deformation (i.e., infinitesimal

deformations) of the network (for example dΛ/dt), or consider small but finite displacements

(e.g., ∆Λ) up to first order. We chose the latter simply because the notation is simpler and

the presentation clearer, and because we wish to avoid references to dynamics of the system.

2.1 Macroscopic Strain

The macroscopic strain ε in a periodic network is related to the deformation of the lattice

∆Λ by the relation

ε = (∆Λ)Λ−1. (1)

4



To see this, note that the deformation of the lattice causes a displacement of the lattice point

P (this is a vector of integer lattice coordinates) positioned at rP = ΛP of

∆rP = (∆Λ)P =
[
(∆Λ)

(
Λ−1

)]
rP,

which gives the strain (tensor)

ε =∇r (∆r) = (∆Λ)Λ
−1.

Of course, the strain needs to be symmetric, εT = ε. It turns out that this condition

eliminates rotations of the lattice, since rotations of the lattice produce skewsymmetric

strains. Because rotations of the lattice belong to the category of trivial motions, which

we will try to eliminate from the onset in order to simplify later counting, we will use the

strain ε as a variable instead of the deformed lattice (I + ε)Λ. This is only strictly valid

for infinitesimal lattice deformations; finite lattice deformations in this model are to be

considered as an integral of infinitesimal deformations with symmetric strain.

In order to simplify matrix algebra later on, we will need to represent the strain as a

vector ε̂ with d (d+ 1) /2 coordinates containing only the lower or only the upper triangle of

the strain components. How we order the triangle into the vector is immaterial and a matter

of convention (e.g., ordering by diagonals starting from the main diagonal or ordering by

columns). This ordering establishes a correspondence s ≡ (p, q) between component ε̂s and

component εp,q = εq,p = ε̂s. The usual convention (in three dimensions) is to use the column

vector of strains

ε̂ =




ε1,1

ε2,2

ε3,3

2ε2,3

2ε1,3

2ε1,2




,

which contains additional factors of 2 that we omit (see also section 2.5).
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2.1.1 Invariance of the Macroscopic Strain

The unit cell of a periodic system is not uniquely defined. For example, one may take a

larger unit cell as the reference cell, i.e., take the lattice to be a sublattice of the original

lattice:

Λ′ = ΛNc,

where Nc is a diagonal matrix with positive integer entries. Now consider a lattice deforma-

tion with periodicity determined by Λ in the primed notation, where ∆Λ′ = (∆Λ)Nc. The

macroscopic strain is

ε′ = (∆Λ)Λ−1 = (∆Λ)
(
NcN

−1
c

)
Λ−1 = ε,

i.e., the strain is independent of the exact choice of the unit cell. This is a very important

invariance property which makes our results more physical. We will give an expression for

the macroscopic stress in the network later, which also possesses this kind of invariance.

2.2 Elastic Energy

We denote by {i, j} the bar (arc) connecting joints (nodes) i and j and append the subscript

ij to all quantities associated with this bar. The elastic energy stored in the structure is a

sum over the energies stored in each bar:

E (r, ε,µ) =
∑

{i,j}

Eij [µij, lij (ri, rj, ε)] .

Here we assume a central-force network in which the energy stored in a bar only depends on

the length of the bar

lij = ‖rij‖ = ‖ri − rj +Λnij‖

and on the activation bar parameter µij (such as temperature, applied voltage, etc.).

The quantity nij appears because of the periodic nature of the structure and is a vector

giving the number of unit cells that the bar {i, j} “crosses” over. If we think of the periodic

network as a graph G embedded in a flat torus defined by the lattice Λ, the integer data
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n is now to be considered part of the combinatorial part of the network, which we will

denote with G = (G,n), and specifies how the network wraps around the torus, i.e., is part

of the network connectivity information. The embedding (geometry) part of the problem

specification on the other hand is characterized by the configuration p = (r,Λ). Therefore,

a periodic network is specified with N = (G,p) = [(G,n) , (r,Λ)]. This is to be compared to

the usual specification of a network embedded in Euclidean space, N = (G, r), which lacks

the periodicity information.

We can rewrite the length of bar {i, j} as

lij = ‖rij + (∆ri −∆rj) + εΛnij‖ = ‖rij +Tij∆r+ Sij ε̂‖ ,

where Tij is a [d×Nd] matrix (with simple structure) and Sij is a
[
d× d(d+1)

2

]
matrix, in

order to emphasize the linearity of the expression inside the norm. We will denote by

uij =
rij

lij

the unit vector along the current position of the bar {i, j}.

It is easy to see that uniform translations are also trivial (i.e., length-preserving) motions

of the periodic network. To eliminate these from consideration, we will freeze (pin) joint 1

(i.e., ∆r1 = 0 will not be included in ∆r), leaving the number of degrees of freedom at

Nf = d (N − 1) +
d (d+ 1)

2
. (2)

Therefore, we will take the Nf -dimensional vector

∆p = (∆r, ε̂) = (∆r2, . . . ,∆rn, ε̂)

as the characterization of the deformation. Any nonzero infinitesimal ∆p that does not

change the bar lengths is a mechanism of the periodic structure. Notice that there are no

trivial mechanisms in this new notation.
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2.3 Force Equilibrium

We will use the notation∇p and∇r instead of the more appropriate∇∆p and∇∆r to avoid

symbol havoc.

At equilibrium we have energy stationarity, i.e., there are no energy-beneficial deforma-

tions to first order, so that

∇pE = (∇pl) (∇lE) = Rf = 0.

This is just a mechanical equilibrium condition. Here f = ∇lE =
{
∂Eij(µij ,lij)

∂lij

}
are the

elastic forces (tension or compression) in the bars, and R = ∇pl is the rigidity matrix of

the periodic network. Note that in rigidity theory literature RT is usually called the rigidity

matrix (in engineering literature, R is sometimes called the compatibility matrix, while RT

is called the equilibrium matrix). It is closely related to the usual rigidity matrix, but with

d (d+ 1) /2 rows appended corresponding to equilibrium with respect to the macroscopic

strains, i.e., to equilibrium of the macroscopic stresses.

Our first task is to derive the form of this rigidity matrix (since we have a new non-

standard piece appended to it). The column of R corresponding to the bar {i, j} is

Rij =∇p (lij) =




Aij

−

Lij




The first piece of this is the corresponding column of the usual rigidity matrix:

Aij =∇r (lij) =

i→

j →




...

uij
...

−uij
...




,
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and the second piece is due to the periodicity of the network:

Lij =∇ε̂ (lij) =
{
∇ε̂ [ε (ε̂)Λn]

}
uij,

which in matrix form is

Lij =




(S1Λnij)
T
uij

...
(
Sd(d+1)/2Λnij

)T
uij



. (3)

Here Ss = ∇ε̂s
[ε (ε̂)] has nonzero entries only at positions (p, q) and (q, p) (recall that

s ≡ (p, q) determined how the vectorization of the upper/lower triangle of ε was done to

obtain ε̂). We can also write this in indicial form suitable for computational use as

(Lij)s =




(Λnij)p (uij)q + (Λnij)q (uij)p

(Λnij)p (uij)q if p = q




. (4)

2.4 Adaptive Networks

A network is perfectly adaptive if the lengths of all its bars can be changed (actuated)

independently of one another. Actuation of the bars will induce a commensurate deformation

of the structure. It is also desirable that there be a unique deformation corresponding to

every actuation. It is easy to see that in order for this to be true the rigidity matrix R must

be invertible, since the change of the bar lengths ∆l (alternatively ∆l can be thought of as

the rate of bar elongation/contraction) during a small deformation ∆p (alternatively joint

velocities) is to first order

∆l = (∇pl)
T ∆p = RT∆p.

This relation is bijective only when R is invertible. We will come to the same conclusion

but in a much more general setting later on.

2.5 Macroscopic Stress

The condition of mechanical equilibrium
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Rf = 0

reduces to the Nd microscopic force balances at each node

∑

{i,j}

fijAij = 0,

as well as the d (d+ 1) /2 conditions that there be no macroscopic stresses:

σ̂ =
1

|Λ|

∑

{i,j}

fijLij = 0. (5)

Here σ̂ is the vectorized version of the upper or lower triangle of the symmetrized macroscopic

stress (tensor) σ, and we normalized with the reciprocal unit cell volume |Λ| in order to get

the correct units of stress. This is expected since stress is the strain gradient of the energy

density, and not of energy. To be in agreement with standard convention (which adds factors

of 2 to the off-diagonal strains), one should add a factor of 1/2 in Eq. (4) for the off-diagonal

stresses, to obtain:

(Lij)s =
1

2

[
(Λnij)p (uij)q + (Λnij)q (uij)p

]
,

or consider a matrix form of the (unsymmetrized) stress tensor

σ =
1

|Λ|

∑

{i,j}

fij
[
uTij (Λnij)

]
, (6)

which more clearly displays the tensor character through the use of the diadic product

uTij (Λnij).

We note that the expression for the macroscopic stress (5) is invariant with respect to

choosing a different unit cell as the reference cell, as it should on physical grounds. However,

this is difficult to show in general as n depends non-trivially on the choice of the cell, and

we do not give such a proof here.

It is important to point out that equivalent results for the macroscopic stress in a force
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network have appeared elsewhere. Compare (5) to the expressions found in Latzel et al.

(2000) (and references therein) for the macroscopic stress in a disordered network (recast

into a form more suitable for our presentation):

σ =
1

V

∑

{i,j}∈V

fijlij
(
uiju

T
ij

)
=
1

V

∑

i∈V, j /∈V

fij
(
uijr

T
i

)
, (7)

The second expression in Eq. (7) only involves microscopic forces crossing the boundary of a

given reference (averaging) volume V , i.e. only the bars {i, j} ∈ ∂V . For a periodic system

it is natural to take the unit cell as the averaging volume. Consider a bar {i, j} with nonzero

nij. It will appear twice in the sum in Eq. (7), once as the “original” bar with direction uij,

and once as an “image” bar {i′, j′} with ui′j′ = −uij and ri′ = ri −Λnij + lijuij. Therefore

the contribution from this bar to the averaged macroscopic stress in Eq. (7) is

1

|Λ|
fij

[
uTij (Λnij)

]
−
1

|Λ|
fijlij

(
uiju

T
ij

)
.

The first term in this expression is identical to the one in Eq. (6). If we take a large unit

cell, in the spirit of the averaging in Eq. (7), the second term will become negligible.

2.6 Stiffness Matrix

Another important matrix describing the given network is the stiffness matrix, which is the

Hessian of the energy with respect to deformations:

H =∇
2
ppE = (∇pR) f +R

(
∇

T
pf
)
.

We now take a crucial simplifying step valid for the rest of this paper: The periodic structure

is unloaded and is in equilibrium, i.e.,

f = 0,

so that we get

H = R
(
∇

T
pf
)
= R [(∇pl) (∇lf)]

T = RCRT ,
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where C = ∇
2
llE = Diag

{
∂2Eij(µij ,lij)

∂l2
ij

}
is a diagonal matrix containing the individual bar

stiffnesses. We call H the stiffness matrix of the network.

3 Actuation

We now consider activating an unstressed network in equilibrium by actuating some of its

bars, i.e., by changing µ. Taking the equilibrium condition

∇pE = 0,

and differentiating with respect to µ, we get for small actuations

(
∇
2
pµE

)
∆µ+

(
∇
2
ppE

)
∆p = 0,

which gives the deformation ∆p induced by the actuation ∆µ. If we further simplify

G =∇
2
pµE = (∇pl)

[
∇
2
lµE

]
= RC̃,

where C̃ =∇
2
lµE = Diag

{
∂2Eij(µij ,lij)

∂lij∂µij

}
is a diagonal matrix, we get

∆p = −H−1RC̃∆µ. (8)

Equation (8) gives the sought-after relation between the actuation and the induced defor-

mation, and assumes that H is invertible (see section 5).

3.1 Actuation Energy

Some activations will not cost any energy beyond that needed to induce the actuation ∆µ,

but others will induce self-stresses in the structure and therefore cost energy. The elastic

energy stored in the network due to the stresses induced by the actuation is of second order
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in ∆µ, and is given by

∆E =
1

2

[
∆µT Ĉ∆µ+∆rTH∆r

]
+∆rTG∆µ,

where Ĉ =∇
2
µµE = Diag

{
∂2Eij(µij ,lij)

∂2µij

}
. Using relation (8) this simplifies to

∆E =
1

2
∆µTK∆µ,

where

K = Ĉ−GTH−1G = Ĉ− C̃RTH−1RC̃.

Therefore, any activations ∆µ that lie in the null eigenspace of the matrix K will cost no

energy up to second order, i.e., they will induce no self-stresses in the network.

In this work we focus on the simplest type of actuation: One in which the actuation is

achieved by changing the equilibrium lengths l of the bars (say by heating/cooling them or

applying a voltage), i.e.,

µ ≡ l,

where the elastic energy is some strictly convex function of the length mismatch:

Eij = Eij(lij − lij).

Furthermore, we assume that only a subset of the arcs can be actuated, and we take the

[M ×M ] diagonal matrix D = Diag {0 or 1} to be the indicator of which arcs can be acti-

vated: a 1 on the diagonal indicating the arc is active, and a 0 indicating it is inactive (i.e.,

its length is fixed). We denote withMa the number of active arcs. With these simplifications

we have

C̃ = −CD and Ĉ = C,

which gives

K = C1/2 (I −Q)C1/2, (9)
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where

Q = DC1/2RT
(
RCRT

)−1
RC1/2D. (10)

The meaning of the multiplications with D here is that we are extracting an [MA ×MA] sub-

matrixQa corresponding to the rows and columns of the active arcs fromC
1/2RT

(
RCRT

)−1
RC1/2.

We can also take the case when all arcs are identical in the sense of their stiffness being the

same, C = cI, to get the simpler expression

Q = DRT
(
RRT

)−1
RD. (11)

3.2 Ideal Activations

Now we are in a position to clearly state the condition that there exist ideal actuations ∆µ,

i.e., actuations that induce no self-stresses and cost no energy: Q must have a nonempty

eigenspace of eigenvalue 1. To every independent eigenvector of Q with eigenvalue 1 corre-

sponds an independent ideal actuation.

It may not be obvious that Q will ever have eigenvalues 1. However, notice that ifD = I,

i.e., if all arcs are active, then all eigenvalues of Q are all 1 or 0. The “bad” eigenvalues

0 correspond to actuations in the null-space of R, i.e., to self-stresses of the network. All

the other eigenvalues of unity are “good” eigenvalues. This is a very intuitive result: If the

lengths of the bars are changed along a direction that is a self-stress of the network, then this

will induce no useful deformation, ∆p = 0, but it will induce the corresponding self-stress

and store elastic energy in the network. Otherwise, the actuation of the bar lengths will

produce a deformation and cost no energy.

The main point to get across is that Q usually has eigenvalues 1, even when not all arcs

are active. This means that in most networks it is possible to change the lengths of only

a small subset of the bars, in a coordinated manner (i.e., not independent of one another),

while not changing the length of the other bars. To our knowledge, this crucial observation

has heretofore not been made.
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3.3 Isostatic Unit Cells

The best case, i.e., the most adaptive network, is obtained when R is invertible. In other

words, the unit cell is isostatic, or kinematically and statically determinate. However, note

that this does not mean that the infinite lattice network is also isostatic (this important

point will be discussed later). When R is invertible we have that

Q = D2 or equivalently Qa = I,

which means that the lengths of all of the active arcs can be changed periodically indepen-

dently without affecting the lengths of the other bars, i.e., without inducing stresses.

This occurs in the case of finite isostatic structures. However, here we are considering

infinite periodic networks in which the actuation is also periodic, i.e., the lengths of all the

image arcs of a given active arc are changed in unison. This is the main difference from

having an infinite network in Euclidean space that is isostatic, in which case the length

of any of the arcs can be changed independently of all other arcs. Therefore, we will say

isostatic unit cell and not isostatic structure. The real structure we have in mind is an

infinite structure made by repeating the unit cell periodically.

The expressions given in the previous sections simplify considerably when R is invertible.

In particular, the relation between actuation (bar elongations) and deformation (induced

strain and joint displacements) is unique and invertible and given by

RT∆p = D∆µ. (12)

The rest of this paper assumes R is invertible, and also that isostaticity is a generic property,

i.e., it is determined primarily by G [see Graver et al. (1991) for details], and not by the

particular configuration p. That isostaticity is a generic property for networks on a deforming

torus has not yet been rigorously proven to our knowledge. Our assumption is that the unit

cell of the adaptive periodic framework under consideration is generically isostatic.
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4 Adaptive Periodic Networks

The main goal of this work is to find an infinite repetitive network which can be deformed

uniformly in an arbitrary manner just by actuating a small subset of the bars in each unit

cell. Since there are d (d+ 1) /2 independent strains, we need at least this many active bars.

The only requirement is that actuating each active arc induces a nonzero strain, and that

the strains induced by actuating different active arcs be linearly independent. If this is the

case then we can achieve any strain by combining the individual actuations accordingly.

In mathematical terms, what we need is the submatrix formed from the last d (d+ 1) /2

rows of R−T , and a basis B (R) for it (i.e., d (d+ 1) /2 columns which are linearly indepen-

dent):

B (R) = R−T
[
last

d (d+ 1)

2
rows, active arcs colums

]
. (13)

Choosing the arcs corresponding to these columns as the active arcs gives us an infinite

perfectly adaptive network. Any desired strain ε̂ can be achieved by using the actuation

∆µa = ∆µactive arcs = [B (R)]
−1
ε̂.

4.1 The Bitriangular Lattice

We have constructed a simple example of a rigid (defined in the context of infinite structures

more precisely later) two-dimensional lattice whose unit cell is isostatic as defined above,

and identified 3 arcs suitable to be used for actuation. In doing so, we looked for periodic

subnetworks of the triangular lattice whose unit cell consists of 2 × 2 = 4 unit cells of the

triangular lattice. Since there are n = 4 joints per unit cell in such a unit cell, there need

to be 9 bars in an isostatic unit cell, and so 3 bars need to be removed from the 12 bars

present in the original triangular lattice. We found that removing three bars forming a

(small) triangle produces a lattice which is rigid and whose unit cell is isostatic, and we call

this the bitriangular lattice, since it is composed of two kinds of triangles (small and large).

For this lattice, it turns out that actuating any of the 3 bars forming the (remaining)

small triangle does not produce any lattice deformation (global strain). Therefore, one should

actuate 3 of the 6 bars bounding the larger triangle. We chose to use the 3 odd (or even)
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arcs as actuators, as shown in Figure 1. Therefore, in this example lattice one third of the

bars are active.

Actuating each of the 3 active arcs produces an independent global uniform strain. Figure

2 shows one of these (equivalent) independent actuation modes. By combining these 3 de-

formations one can achieve any uniform strain in the infinite lattice. Animations illustrating

how to uniformly shrink or expand the structure, i.e., achieve

ε = ±



−1 0

0 −1


 ,

are shown on the authors’ website.

4.2 Large Deformations

The mathematics above was concerned with infinitesimal deformations. However, it should

be stressed that an adaptive periodic network (with a generically isostatic unit cell and

appropriately chosen d (d+ 1) /2 active arcs) can be finitely uniformly deformed without

storing energy. To do this, an ordinary differential equation (ODE) system needs to be solved.

Assume we want to achieve a time-dependent rate of strain dε (t) /dt, which integrated over

time gives the desired deformation. This can be done by employing the (coordinated) time-

dependent actuation µa (t), which can be found as a solution to the ODE system (with the

appropriate initial conditions)

dµa (t)

dt
= {B [R (t)]}−1

dε̂ (t)

dt
, (14)

dΛ (t)

dt
=

dε (t)

dt
Λ (t) , (15)

dr (t)

dt
= B̃ [R (t)]

dµa (t)

dt
. (16)

Here B̃ (R) denotes the submatrix of R−T corresponding to the joint degrees of freedom and

the active arcs:

B̃ (R) = R−T [first (N − 1) d rows, active arcs colums] .
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We stress the fact that in Eqs.(14)-(16) the rigidity matrix R (t) is also time-dependent,

since it depends on the current configuration. Solving this ODE system tells us both how to

actuate the active arcs and how the network deforms in time.

We illustrate such an ideal finite actuation with the bitriangular lattice by solving the

above ODE to achieve a large deformation in which we shrink the unit cell by 25% also

make it into a square (from the original rhomboidal unit cell, as illustrated in Figure 3) and

showing the result in Figure 4.

5 Rigidity of the Adaptive Network

This paper is concerned with the deformability of infinite periodic networks. One important

assumption made throughout this is that the structure has no mechanisms (flexes), i.e.,

deformations ∆p which change no bar lengths. This is a very important property for an

adaptive structure, since it provides for uniqueness of the relationship between actuation

and induced deformation. It is customary in rigidity theory to simply call such a flex-free

structure a rigid framework. It may be better in the context of real applications to use the

term stiff framework. A stiff structure for us is one which can support a given set of loads

without too large of a deformation, defined in an application specific context.

In the above analysis, the assumption that H is invertible was based on the rigidity of

the unit cell. However, here we are really considering rigidity of the infinite network. What

exactly does rigidity mean in the context of infinite structures? It appears that this has not

been carefully investigated. It is not necessary that the same concept of rigidity be extended

from finite to infinite structures, but rather, to understand what are the relevant mathe-

matical idealizations for modeling real large periodic trusses. Note that for the bitriangular

lattice truss we can show analytically that it is (infinitesimally) rigid for all choices of unit

cell. We do not reproduce this argument due to Robert Connelly here.

The mathematical framework which we believe is suitable for analysing infinite (i.e., very

large) repetitive networks is the following:

Take a primitive lattice Λp for the periodic network and the flat torus that this lattice defines.

Now consider rigidity of the framework on this torus. This means looking at deformations
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which have a repetition (period) of one unit cell plus deformations of the lattice. Notice that

this is only a very small subset of all the possible deformations of the infinite network, which

need not be periodic at all. Then take a sublattice of the primitive lattice, Λ = ΛpNc, Nc

integer, and the larger torus that it defines and consider rigidity of the network on this torus.

It should be obvious that many of the properties depend on Nc. Here Nc can in a sense

be viewed as the “wavelength” at which the repetitive framework is analysed. A related

novel systematic analysis is briefly explained in Hutchinson et al., and consists of looking

for “canonical” flexes, which can be thought of as the Fourier components of the flexes of

a repetitive structure. A similar procedure can be applied when the lattice is allowed to

deform and also when the self-stresses of a structure are considered, but further discussion

is postponed for future work.

5.1 Determinacy of Infinite Periodic Networks

In this subsection, we revisit the subject of isostaticity of infinite periodic networks, from

the perspective of the above model of rigidity on an enlarging torus. We arrive to the same

conclusion as Guest and Hutchinson (2002): It is not possible to make an isostatic infinite

periodic structure. However, our arguments use periodic boundary conditions.

For simplicity, we will focus on two dimensions, but the results apply as well to arbitrary

space dimensions. Referring to Eq. (2), in order for a network on a torus with lattice Λ to

be isostatic it must be that

M = 2(N − 1) + 3 = 2N + 1, (17)

where as before N > 1 is the number of nodes in the unit cell and M is the number of bars

per unit cell. It is the extra +1 that is of great importance in Eq.(17). Now consider a larger

torus, with a lattice Λ′ = ΛNc. When wrapped around this torus the network has

M ′ = NcM = 2NcN +Nc > 2NcN + 1 = 2N
′ + 1,

where Nc = |Nc| is the number of unit cells fitting in the larger torus. Therefore, on the
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larger torus the network necessarily is overbraced, i.e., it must have self-stresses. This also

means that it is possible for the infinite network to be sufficiently constrained and have no

periodic mechanisms if its primitive cell is isostatic, as with the bitriangular lattice.

The essence of this argument is that counting equilibrium is not maintained as different

tori are considered. If the network has no small-period (short-wavelength) mechanisms (i.e.,

it is rigid on a small torus), then it must have self-stresses of larger period (long-wavelength).

If the network has no self-stresses on a large torus, it must have shorter-period mechanisms.

It should be evident that any mechanism/self-stress can be replicated infinitely many times

to produce a mechanism/self-stress of the infinite structure, i.e., of the periodic network

wrapped around an infinite torus.

6 Future Directions

There are many directions along which future research can be based. The basic question

to consider is how applicable this work is to achieving arbitrary deformations in infinite

adaptive structures. It is clear that when the strain is non-uniform there will be some self-

stresses induced during actuation and therefore zero energy storage is not possible. However,

an expansion analysis is needed to determine how the expanded actuation energy depends

on the (small) strain gradient.

Moreover, the simple analysis given in this work considered infinite structures. How does

finiteness affect the deformability of repetitive structures? If the corrections induced by

finite size are too large, they may compound together to completely overwhelm the first-

order terms and thus make the proposed actuation mechanism unusable. Both numerical

and analytical studies of non-uniformly deformed finite, but large, structures would thus be

an obvious next step.

Another line of research to be pursued is to find the “best” isostatic unit cells. Based on

the analysis we have given, there is no criterion beyond isostaticity and stiffness to consider

when choosing among different lattices. Some of the higher-order corrections discussed above

may be the guiding principle in choosing between candidate lattices. Additionally, we did

assume an unloaded structure. In a real application an adaptive structure would be used
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to move loads. Are there higher-order corrections under global loading which differentiate

betweeen different lattices? If yes, is this load-specific or are some lattices universally better?

Hutchinson et al. (2002) point to other desirable qualities of the lattice structure, such as

isotropic stiffness and high buckling and isotropic in-plane yield strength, and show that a

structure like the Kagome lattice, which does not have an isostatic unit cell, is very effective

in the context of adaptive structures. A comparison between this lattice and the bitriangular

lattice in a practical setting might be a useful future project.

7 Acknowledgements

The authors would like to thank Robert Connelly for his help in developing the theoretical

aspects of this work, and Simon Guest and John Hutchinson for useful comments that helped

improve an earlier draft.

References

[1] Deshpande, V.S., Fleck, N.A., Ashby, M.F., 2001. Effective Properties of the Octet-Truss

Lattice Material. J. Mech. Phys. Solids, 49, 1747-1769.

[2] Guest, S.D., Hutchinson, J.W., 2002. On the Determinacy of Repetitive Structures. J.

Mech. Phys. Solids, to be published.

[3] Graver, J., Servatius, B., Servatius, H., 1991. Combinatorial Rigidity. Graduate Studies

in Mathematics vol. 2., American Mathematical Society.

[4] Hutchinson, R.G., Wicks, N., Evans, A.G., Fleck, N.A., Hutchinson, J.W., 2002. Kagome

Plate Structures for Actuation. Submitted for publication.

[5] Latzel, M., Luding, S., Herrmann, H.J., 2000. Macroscopic Material Properties From

Quasi-Static, Microscopic Simulations of a Two-Dimensional Shear Cell. Granular Matter

2 (3), 123-135.

21



[6] Pellegrino, S., Calladine, C.R., 1986. Matrix Analysis of Statically and Kinematically

Indeterminate Frameworks. Int. J. Solids Structures, 22 (4), 409-428.

[7] Donev, A., 2002. URL: http://atom.princeton.edu/donev/Trusses/

ActuationTrusses.html.

22



Figure 1: The unit cell of the bitriangular framework. The 4 joints in the unit cell are shown
as circles, while the 9 bars in the unit cell are shown with a solid line. The 3 active arcs
are shown with thicker lines, and the periodic images of the arcs with non-zero nc are also
shown with dashed lines.

Figure 2: An activation mode of the bitriangular framework. The figure shows the defor-
mation induced in the framework as one of the active bars is elongated by ∆l = αt as a
sequence of time frames with t = 0,∆t, 2∆t, 3∆t for some arbitrarily scaled ∆t and α, in the
sequence: upper left, upper right, lower left, lower right. The corresponding deformations
when each of the remaining 2 active arcs are actuated can be predicted from symmetry con-
siderations. Note that we assume infinitesimal deformations but show a larger deformation
for visualization purposes, which explains why some of the non-actuated bars also change
their length (to second order).

Figure 3: A finite deformation of the bitriangular lattice. A large deformation of the the
unit cell of the bitriangular lattice is shown using the lattice vectors. The original vectors
are shown with a solid line, while the final ones are shown with a dashed line. During
this deformation, the unit cell shrinks and becomes a square. We ensure that the lattice
does not rotate so that it is possible to achieve this deformation by integrating a symmetric
(time-dependent) strain rate.

Figure 4: Achieving the deformation from Figure 3. This sequence of time frames (as in Fig.
2) shows how one can achieve a global uniform deformation of the bitriangular structure
during which the unit cell shrinks and becomes square by only actuating the 3 active arcs.
Notice that the inactive arcs do not change length and therefore this actuation does not
store any elastic energy. The mathematics used to produce this illustration is given in the
ODE system of Eqs.(14)-(16).
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Figure 1: Donev, Torquato
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Figure 2: Donev, Torquato

25



Figure 3: Donev, Torquato
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Figure 4: Donev, Torquato
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