- Reemergence Mechanisms for North Pacific Sea Ice Revealed
- through Nonlinear Laplacian Spectral Analysis
- ³ MITCHELL BUSHUK, * DIMITRIOS GIANNAKIS, AND ANDREW J. MAJDA

Courant Institute of Mathematical Sciences, New York University, New York, New York

E-mail: bushuk@cims.nyu.edu

^{*} Corresponding author address: Mitch Bushuk, Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY, 10012.

ABSTRACT

4

This paper studies spatiotemporal modes of variability of sea ice concentration and sea surface temperature (SST) in the North Pacific sector in a comprehensive climate model and observations. These modes are obtained via nonlinear Laplacian spectral analysis (NLSA), a recently developed data analysis technique for high-dimensional nonlinear datasets. The existing NLSA algorithm is modified to allow for a scale-invariant coupled analysis of multiple variables in different physical units. The coupled NLSA modes are utilized to investigate 10 North Pacific sea ice reemergence: a process in which sea ice anomalies originating in the 11 melt season (spring) are positively correlated with anomalies in the growth season (fall) 12 despite a loss of correlation in the intervening summer months. It is found that a low-13 dimensional family of NLSA modes is able to reproduce the lagged correlations observed in sea ice data from the North Pacific Ocean. This mode family exists in both model output and observations, and is closely related with the North Pacific Gyre Oscillation 16 (NPGO), a low-frequency pattern of North Pacific SST variability. Moreover, this mode 17 family provides a mechanism for sea ice reemergence, in which summer SST anomalies store 18 the memory of spring sea ice anomalies, allowing for sea ice anomalies of the same sign 19 to appear in the fall season. Lagged correlations in model output and observations are 20 significantly strengthened by conditioning on the NPGO mode being active, in either positive 21 or negative phase. Another family of NLSA modes, related to the Pacific Decadal Oscillation (PDO), is found to capture a winter-to-winter reemergence of SST anomalies.

24 1. Introduction

Sea ice is a complex and critical component of the climate system. Existing at the 25 interface between the atmosphere and the ocean, it modulates the atmosphere's ability to force the ocean through wind, and the ocean's ability to force the atmosphere through sea 27 surface temperatures (SSTs). It also regulates turbulent heat transfer between the two 28 media. Sea ice is a truly multi-scale phenomenon: its dynamics are heavily influenced by 29 large-scale circulation of the ocean and atmosphere, as well as by small-scale thermodynamic 30 and mechanical processes. Understanding the dynamics of sea ice and its relationship to the 31 atmosphere and ocean is of critical importance to twenty-first century scientists, as sea 32 ice is extremely sensitive to greenhouse warming effects (Walsh 1983). Through the ice-33 albedo feedback mechanism, sea ice has the potential to change rapidly and influence other 34 components of the climate system (Budyko 1969; Curry et al. 1995). 35

Two regions of high Arctic sea ice variability and interesting sea ice dynamics are the
Bering Sea and the Sea of Okhotsk in the North Pacific Ocean. Empirical orthogonal function
(EOF) analysis of North Pacific sea ice observational data shows a leading mode which is
a sea ice dipole between the Okhotsk and Bering seas, and a second mode with spatially
uniform ice changes over the domain (Deser et al. 2000; Liu et al. 2007). Other authors have
also found evidence of a Bering-Okhotsk dipole (Cavalieri and Parkinson 1987; Fang and
Wallace 1994).

The primary hypothesis from earlier work on North Pacific sea ice is that atmospheric patterns such as the Aleutian low and the Siberian high drive sea ice variability (Parkinson 1990; Cavalieri and Parkinson 1987; Sasaki and Minobe 2006). The study of Blanchard-Wrigglesworth et al. (2011), hereafter BW, suggests that the ocean may also play an important role in sea ice variability. BW found that Arctic sea ice has "memory", in which anomalies of a certain sign in the melt season (spring) tend to produce anomalies of the same sign in the growth season (fall). Additionally, they found that the intervening summer sea ice cover was not strongly correlated with the spring anomalies. This phenomenon, termed

sea ice reemergence, was observed in the fall-spring variety described above, as well as a summer-summer reemergence. BW propose a mechanism for the spring-fall reemergence in which spring sea ice anomalies induce an SST anomaly of opposite sign, which persists over the summer months. When the ice edge returns to this spatial location in the fall, the SST anomaly reproduces a sea ice anomaly of the same sign as the spring. The phenomenon of reemergence has also been observed in North Pacific Ocean data (Alexander et al. 1999), in the form of a winter-to-winter SST reemergence.

In this study, we seek an understanding of the coupled variability of sea ice and SST 58 in the North Pacific Ocean. To achieve this, we utilize a recent data analysis technique known as nonlinear Laplacian spectral analysis (NLSA, Giannakis and Majda 2013, 2012c), 60 which is a nonlinear manifold generalization of singular spectrum analysis (SSA, Vautard 61 and Ghil 1989; Broomhead and King 1986; Ghil et al. 2002). Given a time series of high-62 dimensional data, NLSA yields a set of spatiotemporal modes, analogous to extended EOFs, 63 and a corresponding set of temporal patterns, analogous to principal components (PCs). In applications involving North Pacific SST from climate models (Giannakis and Majda 2012a), these include intermittent type modes not found in SSA that carry low variance but 66 are important as predictor variables in regression models (Giannakis and Majda 2012b). 67

The original NLSA algorithm was designed for analysis of a single scalar or vector-valued 68 variable, thus modifications to the algorithm are required in order to perform a coupled analvsis of multiple variables in different physical units. Here, we investigate the phenomenon of sea ice reemergence using the spatiotemporal modes of variability extracted through coupled 71 NLSA of sea ice concentration and SST from a 900-yr control integration of the Community Climate System Model version 3 (CCSM3, Collins et al. 2006), and in 34 years of sea ice 73 and SST satellite observations from the Met Office Hadley Center Sea Ice and Sea Surface 74 Temperature (HADISST, Rayner et al. 2003) dataset. We find that the sea ice reemergence 75 mechanism suggested by BW can be reproduced in both model output and observations us-76 ing low-dimensional families of NLSA modes, with the intermittent modes playing a crucial

role in this mechanism. Moreover, we find that the reemergence of correlation, in both sea ice and SST, is significantly strengthened by conditioning on certain low-frequency modes 79 being active. These low-frequency modes reflect the North Pacific SST variability of the North Pacific Gyre Oscillation (NPGO, Di Lorenzo et al. 2008) and the Pacific Decadal Oscillation (PDO, Mantua and Hare 2002). We find that the NPGO is related to the sea ice reemergence of BW, while the PDO is related to SST reemergence (Alexander et al. 1999). The plan of this paper is as follows. In section 2, we introduce the coupled NLSA 84 algorithm. In section 3, we describe the CCSM3 and HADISST datasets. In section 4, we describe modes of variability captured by coupled NLSA when applied to North Pacific sea ice and SST from CCSM3. In section 5, we find reduced subsets of NLSA modes that are able to reproduce the lagged correlation structure of BW, and we provide a mechanism for the observed sea ice memory. We also investigate SST reemergence. In section 6, we compare the results from CCSM3 to observations, by performing similar analyses on the HADISST dataset. We conclude in section 7. Movies illustrating the dynamic evolution of modes are 91 available as online supplementary material.

₉₃ 2. The coupled NLSA algorithm

102

of a high-dimensional time series from a single scalar or vector-valued variable. This study seeks to perform a coupled analysis of sea ice and SST, thus it was necessary to modify the NLSA algorithm to allow for an analysis of multiple variables with, in general, different physical units.

Let x_t^1 and x_t^2 be two signals, each sampled uniformaly at time step δt . Let x_t^1 be sampled over d_1 gridpoints and x_t^2 be sampled over d_2 gridpoints. Following Giannakis and Majda (2013, 2012c) and the techniques of SSA, we choose some time-lagged embedding window

The original NLSA algorithm (Giannakis and Majda 2013, 2012c) is designed for analysis

 $\Delta t = q \delta t$, and we embed our data in the higher-dimensional space $H_1 = \mathbb{R}^{d_1 q}$ and $H_2 = \mathbb{R}^{d_2 q}$

under the delay-coordinate mappings

$$x_t^1 \mapsto X_t^1 = (x_t^1, x_{t-\delta t}^1, ..., x_{t-(q-1)\delta t}^1),$$

 $x_t^2 \mapsto X_t^2 = (x_t^2, x_{t-\delta t}^2, ..., x_{t-(q-1)\delta t}^2).$

Next, for each variable we compute the phase space velocities, ξ_i^1 and ξ_i^2 , viz.

$$\xi_i^1 = X_i^1 - X_{i-1}^1,$$

$$\xi_i^2 = X_i^2 - X_{i-1}^2.$$
(1)

These vectors have a natural geometric interpretation as the vector field on the data manifold driving the dynamics (Giannakis 2014).

NLSA algorithms utilize a set of natural orthonormal basis functions on the nonlinear 107 data manifold to describe temporal patterns analogous to PCs. These basis functions are 108 eigenfunctions of a graph Laplacian operator (see (3), ahead) computed from a pairwise 109 kernel function K on the data. The graph Laplacian eigenfunctions form a complete basis 110 on the data manifold and are ordered in terms of increasing eigenvalue. These eigenvalues 111 can be interpreted as squared "wavenumbers" on the data manifold (Giannakis and Majda 112 2014). Performing a spectral truncation in terms of the leading l eigenfunctions acts as a 113 filter for the data, which removes high wavenumber energy, while retaining the energy at low 114 wavenumbers. This truncation penalizes highly oscillatory features on the data manifold, 115 and emphasizes slowly varying ones. 116

In the coupled NLSA approach introduced here, the pairwise kernel function K is constructed using the idea of scale invariance. In particular, we compute the Gaussian kernel K_{ij} so that physical variables are made dimensionless, allowing for direct comparison of
different variables:

$$K_{ij} = \exp\left(-\frac{\|X_i^1 - X_j^1\|^2}{\epsilon \|\xi_i^1\| \|\xi_j^1\|} - \frac{\|X_i^2 - X_j^2\|^2}{\epsilon \|\xi_i^2\| \|\xi_j^2\|}\right).$$
 (2)

Here, ϵ is a parameter that controls the locality of the Gaussian kernel, and $\|\cdot\|$ is the standard Euclidean norm. Heuristically, K_{ij} represents the likelihood of a random walker on the data manifold transitioning from state i to state j. Note that this random walk is

introduced solely for the purpose of evaluating orthonormal basis functions on the discrete data manifold. In particular, the random walk has no relation to the actual dynamics of the system. This kernel depends on the phase velocity magnitude $\|\xi_i\|$ from (1) in the sense that states with a large (small) velocity magnitude have appreciable transition probability to a larger (smaller) number of states, due to the Gaussian having a larger (smaller) width. As a result, the algorithm has enhanced skill in capturing transitory events characterized by large $\|\xi_i\|$ (Giannakis and Majda 2012c). Using the graph Laplacian approach of Coifman and Lafon (2006), we compute the Laplacian matrix L via the following steps:

$$Q_{i} = \sum_{j=1}^{s-q} K_{ij},$$

$$\tilde{K}_{ij} = \frac{K_{ij}}{Q_{i}^{\alpha} Q_{j}^{\alpha}},$$

$$D_{i} = \sum_{j=1}^{s-q} \tilde{K}_{ij},$$

$$P_{ij} = \frac{\tilde{K}_{ij}}{D_{i}},$$

$$L = I - P,$$

where P is a transition matrix, I is the identity matrix, and α is a normalization parameter. For this study, we will use $\alpha = 0$, which is a conventional choice for this class of algorithms. From here, the algorithm proceeds analogously to NLSA. We solve the eigenvalue problem

$$L\phi_i = \lambda \phi_i, \tag{3}$$

and recover a set of discrete Laplacian eigenfunctions $\{\phi_1, \phi_2, \dots, \phi_{s-q}\}$ defined on the data manifold. The transition matrix P also defines an invariant measure $\vec{\mu}$ on the discrete data manifold, given by

$$\vec{\mu}P = \vec{\mu}$$

where μ_i represents the volume occupied by the sample $X_i = (X_i^1, X_i^2)^t$ on the data manifold.

Let $X^1: \mathbb{R}^{s-q} \to \mathbb{R}^{qd_1}$ and $X^2: \mathbb{R}^{s-q} \to \mathbb{R}^{qd_2}$ be the data matrices for our two s-sample data sets:

$$X^{1} = \begin{bmatrix} X_{q+1}^{1} & X_{q+2}^{1} & \dots & X_{s}^{1} \end{bmatrix},$$
$$X^{2} = \begin{bmatrix} X_{q+1}^{2} & X_{q+2}^{2} & \dots & X_{s}^{2} \end{bmatrix}.$$

Projecting X^1 and X^2 onto the leading l Laplacian eigenfunctions, we construct linear maps $A^1_l: \mathbb{R}^l \mapsto \mathbb{R}^{qd_1}$ and $A^2_l: \mathbb{R}^l \mapsto \mathbb{R}^{qd_2}$, given by

$$A_l^1 = X^1 \mu \Phi, \quad A_l^2 = X^2 \mu \Phi.$$

In the above, Φ is a matrix whose columns are the leading l Laplacian eigenfunctions, and μ 143 is a diagonal matrix with entries $\vec{\mu}$ along the diagonal. Singular value decomposition (SVD) 144 of the operators A_l^1 and A_l^2 yields sets of spatiotemporal modes u_k^1 and u_k^2 of dimension qd_1 145 and qd_2 , respectively, analogous to extended EOFs, and temporal modes $v_k^1(t)$ and $v_k^2(t)$ 146 of length s-q, analogous to PCs. Projecting the modes from lagged embedding space to 147 physical space, we obtain spatiotemporal patterns $\tilde{u}_k^1(t)$ and $\tilde{u}_k^2(t)$ for the two original fields. 148 It should be noted that, while the SVD is performed on each operator individually, the 149 resulting spatiotemporal patterns $\{u_k^1\}$ and $\{u_k^2\}$, and principal components $\{v_k^1\}$ and $\{v_k^2\}$, 150 are inherently coupled. This is because these operators are constructed using the same 151 l-dimensional set of eigenfunctions, which have been computed using the full multivariate 152 dataset. 153

Another natural possibility for performing coupled NLSA is to perform an initial normalization of each physical variable to unit variance, and subsequently perform the standard

NLSA algorithm on the concatenated dataset. A problem with this approach is that we artificially impose the variance ratio of the two variables, without incorporating any information
about their relative variabilities. An appealing feature of the coupled approach described
above is that the variance ratio between variables is automatically chosen by the algorithm
in a dynamically motivated manner. We term the approach outlined in this section "phase

velocity normalization" and the normalization to unit variance "variance normalization."
We will return to these issues in section 4a. Another appealing aspect of the algorithm
above is that it can be naturally generalized from two variables to many variables.

3. Dataset description

165 a. CCSM3 model output

This study analyzes model output from a 900-yr equilibrated control integration of 166 CCSM3 (Collins et al. 2006). We use CCSM3 monthly averaged sea ice concentration and 167 SST data, which come from the Community Sea Ice Model (CSIM, Holland et al. 2006) and 168 the Parallel Ocean Program (POP, Smith and Gent 2004), respectively. The model uses a 169 T42 spectral truncation for the atmospheric grid (roughly $2.9^{\circ} \times 2.9^{\circ}$), and the ocean and 170 sea ice variables are defined on the same grid, of 1° nominal resolution. This study focuses 171 on the North Pacific sector of the ocean, which we define as the region 120°E–110°W and 172 20°N-65°N (Teng and Branstator 2011). Note that the seasonal cycle has not been removed 173 from this dataset. 174

Sea ice concentration is only defined for the northern part of this domain, thus we have 175 $d_1 = 3750$ sea ice spatial gridpoints, and $d_2 = 6671$ SST spatial gridpoints. Using an 176 embedding window of q=24 (Giannakis and Majda 2012c), this yields lagged embedding 177 dimensions of $qd_1 = 90,000$ and $qd_2 = 160,104$. The value of q = 24 months was used as the 178 time lag because the resulting embedding window is longer than the seasonal cycle, which is 179 a primary source of non-Markovianity in this dataset. A number of q values $\in [1,48]$ were tested, including q's relatively prime to 12. It was found that the results were qualitatively 181 similar for sufficiently large q, i.e. $q \ge 12$, and sensitive to q for q < 12 (see also Giannakis 182 and Majda 2013).

84 b. Observational data

We also study the Met Office Hadley Center Sea Ice and Sea Surface Temperature (HadISST) dataset (Rayner et al. 2003), which consists of monthly averaged sea ice and SST data on a 1° latitude-longitude grid. We use the satellite era data from January 1979-August 2013. Note that all ice-covered gridpoints in the HADISST dataset were assigned an SST value of -1.8° C, the freezing point of salt water at a salinity of 35 parts per thousand. Moreover, the trend in the dataset was removed by computing a long-term linear trend for each month of the year, and removing the respective linear trend from each month.

4. Coupled sea ice-SST spatiotemporal modes of variability in CCSM3

We apply the coupled NLSA algorithm described in Section 2 to the CCSM3 sea ice and 194 SST datasets, using an embedding window of $\Delta t = 24$ months, and choosing the parameter 195 ϵ , which controls the locality of the Gaussian kernel, as $\epsilon = 1.4$. We include a discussion 196 of the of the robustness of results with respect to changes in ϵ in section 4a. Note that 197 the time mean at each gridpoint has been subtracted from the dataset, but the seasonal 198 cycle has not been subtracted. Utilizing the spectral entropy criterion outlined in Giannakis 199 and Majda (2012a, 2013), we choose a truncation level of l=22, and express the lagged 200 embedding matrices X^{ICE} and X^{SST} in the basis of the leading 22 Laplacian eigenfunctions, 201 yielding the operators $A_l^{\rm ICE}$ and $A_l^{\rm SST}$. Singular value decomposition of $A_l^{\rm ICE}$ produces a 202 set of l temporal patterns, v_k^{ICE} , of length s-q, analogous to PCs and l corresponding 203 spatiotemporal patterns, u_k^{ICE} , of dimension qd_1 , analogous to extended EOFs. Similarly, 204 SVD of $A_l^{\rm SST}$ produces temporal patterns, $v_k^{\rm SST}$, and corresponding spatiotemporal patterns 205 u_k^{SST} , of dimension qd_2 . Each variable has its own set of principal components, but we find 206 that each sea ice PC is strongly correlated with a particular SST PC. Therefore, it is natural to consider the corresponding spatiotemporal patterns as a pattern of coupled SST-sea ice variability.

Figure 1a shows the singular values of the operators $A_l^{\rm ICE}$ and $A_l^{\rm SST}$ using the phase velocity normalization approach outlined in section 2 and the variance normalization approach mentioned at the end of section 2. Also shown are the singular values from SSA performed on the unit variance normalized dataset. Note that the SST singular values decay much more rapidly than the sea ice singular values, indicating that the SST signal has more variability stored in its leading modes than the sea ice signal.

Figure 1b shows a plot of the normalized relative entropy vs truncation level l, computed 216 using the approach of Giannakis and Majda (2012a, 2013). As $l \to \infty$, and in the case of 217 uniform measure $\vec{\mu}$ and phase velocity ξ , the results of NLSA converge to SSA. The spectral 218 entropy criterion provides a heuristic guideline for choosing l, designed to select l large-219 enough to reproduce the crucial features of the data, but small-enough to filter out highly 220 oscillatory features of the data (Giannakis and Majda 2014). The latter would be present 221 in the SSA limit mentioned above. In the normalized relative entropy plot, spikes represent 222 the addition of qualitatively new features to the data, and suggest possible truncation levels. 223 Here, seeking a parsimonious description of the data, we select a truncation level of l=22. 224

225 a. Temporal modes and sea ice-SST coupling

232

Coupled NLSA yields three distinct families of of modes: periodic, low-frequency, and intermittent modes. Figures 2 and 3 summarize the temporal patterns $v_k^{\rm ICE}$ and $v_k^{\rm SST}$, respectively, showing snapshots of the $v_k^{\rm ICE}$ and $v_k^{\rm SST}$ time series, power spectral densities, and autocorrelation functions. We use the letters P, L, and I to designate periodic, low-frequency, and intermittent modes, respectively.

The periodic modes exist in doubly degenerate pairs with temporal patterns $v_k(t)$ that

The leading two pairs of periodic modes carry more variance than any of the low-frequency

are sinusoidal with a relative phase of $\pi/2$, and with frequencies of integer multiples of 1 yr⁻¹.

or intermittent modes, and represent annual and semiannual variability, respectively. The low-frequency modes carry the majority of their spectral power over interannual to decadal timescales, and have a typical decorrelation time of 3–4 years.

The intermittent modes are characterized by broadband spectral power centered on a 237 base frequency of oscillation with some bias towards lower frequencies. Similar to the pe-238 riodic modes, these modes come in nearly degenerate pairs. The temporal behavior of the 239 intermittent modes resembles a periodic signal modulated by a low frequency envelope. In the spatial domain, they are characterized by a bursting-type behavior with periods of qui-241 escence followed by periods of strong activity. The intermittent modes carry lower variance than their low-frequency and periodic counterparts (see Fig. 1a), however they play a cru-243 cial role in explaining the sea ice reemergence mechanism, as will be demonstrated in the 244 following sections of this paper. Elsewhere (Giannakis and Majda 2012b), it has been demon-245 strated that this class of modes has high significance in external-factor regression models for 246 low-frequency modes, in which the intermittent modes are used as prescribed external factors 247 (forcings). Intermittent type modes highlight the main difference between SSA and NLSA: 248 NLSA captures low-variance patterns of potentially high dynamical significance using a small 249 set of modes, while classical SSA does not. 250

The sea ice PCs, v_k^{ICE} , are certainly not independent of the SST PCs, v_k^{SST} . We find that each sea ice PC is strongly correlated with a certain SST PC. In Fig. 4, we show correlations between selected sea ice and SST PCs. Motivated by these correlations, we define the following coupled modes of sea ice-SST variability: $\mathbf{P}_1 = (P_1^{\text{ICE}}, P_1^{\text{SST}})$, $\mathbf{P}_2 = (P_2^{\text{ICE}}, P_2^{\text{SST}})$, $\mathbf{P}_3 = (P_3^{\text{ICE}}, P_3^{\text{SST}})$, $\mathbf{P}_4 = (P_4^{\text{ICE}}, P_4^{\text{SST}})$, $\mathbf{L}_1 = (L_1^{\text{ICE}}, L_2^{\text{SST}})$, $\mathbf{L}_2 = (L_3^{\text{ICE}}, L_1^{\text{SST}})$, $\mathbf{I}_1 = (I_1^{\text{ICE}}, I_3^{\text{SST}})$, $\mathbf{I}_2 = (I_2^{\text{ICE}}, I_3^{\text{SST}})$, $\mathbf{I}_3 = (I_3^{\text{ICE}}, I_3^{\text{SST}})$, $\mathbf{I}_4 = (I_4^{\text{ICE}}, I_1^{\text{SST}})$, $\mathbf{I}_5 = (I_5^{\text{ICE}}, I_8^{\text{SST}})$, $\mathbf{I}_6 = (I_6^{\text{ICE}}, I_7^{\text{SST}})$, $\mathbf{I}_7 = (I_7^{\text{ICE}}, I_6^{\text{SST}})$, and $\mathbf{I}_8 = (I_8^{\text{ICE}}, I_8^{\text{SST}})$. Note that the mode pairs $\{\mathbf{P}_1, \mathbf{P}_2\}$, $\{\mathbf{P}_3, \mathbf{P}_4\}$, $\{\mathbf{I}_1, \mathbf{I}_2\}$, $\{\mathbf{I}_3, \mathbf{I}_4\}$, $\{\mathbf{I}_5, \mathbf{I}_6\}$, and $\{\mathbf{I}_7, \mathbf{I}_8\}$ are degenerate modes with a relative phase of $\pi/2$.

A number of different values of ϵ , the locality parameter of the Gaussian kernel, were

tested to examine the robustness of these results. We find that the modes are very similar for

260

values of $\epsilon \in [1, 2]$. For values of ϵ outside this interval, we observe a less clean split between \mathbf{L}_2 and certain intermittent modes, resulting in modes with power spectra that resemble a combination of the low-frequency and intermittent modes. We find that the periodic modes and modes $\{\mathbf{L}_1, \mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_5, \mathbf{I}_6\}$, which will be important later in the paper, are much more robust with respect to changes in ϵ . These modes are very similar for values of $\epsilon \in [0.5, 5]$.

66 b. Spatiotemporal modes

Figure 5 shows the spatial patterns of the coupled modes defined above at a snapshot in time. Movie 1, showing the evolution of these spatial patterns, is available in the online supplementary material, and is much more illuminating.

1) Periodic modes

270

281

The pair of annual periodic modes, $\{P_1, P_2\}$, have a sea ice pattern which involves 271 spatially uniform growth in the Bering and Okhotsk Sea from October to March and spatially 272 uniform melt from April to September. The SST pattern is intensified in the western part 273 of the basin and along the West Coast of North America. Moreover, it is relatively uniform 274 zonally, and out of phase with the annual periodic sea ice anomalies. The semiannual pair 275 of modes, $\{P_3, P_4\}$, have a sea ice pattern with strong amplitude in the southern part of 276 the Bering and Okhotsk seas and much weaker amplitude in the northern part of these seas. The SST pattern of these modes is, again, relatively uniform zonally and intensified in the 278 western part of the basin. The higher-frequency periodic modes have more spatial structure 279 and zonal variability, as well as smaller amplitude. 280

2) Low-frequency modes

The leading low-frequency mode, L_1 , has an SST pattern that resembles the NPGO (Di Lorenzo et al. 2008), which is the second leading EOF of seasonally detrended Northeast

Pacific ($180^{\circ}W - 110^{\circ}W$ and $25^{\circ}N - 62^{\circ}N$) SST. Computing pattern correlations between 284 EOFs of Northeast Pacific SST and the q SST spatial patterns of L_1 , we find a maximum 285 pattern correlation of 0.94 with EOF 2, the NPGO mode. If we consider basin-wide SST 286 patterns, we find that the SST pattern of L_1 has a maximum pattern correlation of 0.82 287 with EOF 3 of North Pacific (120°E – 110°W and 20°N – 65°N) SST. EOF 3 has a pattern 288 correlation of 0.91 with the NPGO, thus this mode seems to reflect the basin-wide pattern 289 of variability corresponding to the NPGO mode of the Northeast Pacific. In light of these correlations, we call L_1 the NPGO mode. Note that these SST EOFs were computed using 291 SST output from the CCSM3 model. The NPGO mode has its dominant sea ice signal in the Bering Sea, and its amplitude is largest in the southern part of the Bering Sea. Its SST 293 pattern has a strong anomaly of opposite sign, spatially coincident with the sea ice anomaly, 294 as well as a weaker anomaly extending further southward and eastward in the domain. 295

The second low-frequency mode, L_2 , has a spatial pattern resembling the PDO, which is 296 the leading EOF of seasonally detrended North Pacific SST data (Mantua and Hare 2002). 297 Computing pattern correlations between EOF 1 of North Pacific SST (the PDO) and the 298 SST pattern of L_2 , we find a maximum pattern correlation of 0.99. Also, EOF 1 of Northeast 299 Pacific SST (which has a 0.99 pattern correlation with the PDO) has a maximum pattern 300 correlation of 0.98 with the SST pattern of L_2 . In light of these correlations, we call L_2 the 301 PDO mode. The sea ice component of the PDO mode consists of sea ice anomalies along 302 the Kamchatka Peninsula, and in the southern and eastern parts of the Sea of Okhotsk. The SST pattern consists of a large-scale SST anomaly along the Kuroshio extension region, and 304 an anomaly of the opposite sign along the west coast of North America. 305

3) Intermittent modes

306

The leading pair of intermittent modes, $\{I_1, I_2\}$, have a base frequency of 1 yr⁻¹ and are characterized by a strong pulsing sea ice anomaly in the southern Bering Sea and a weaker anomaly of opposite sign in the Sea of Okhotsk. The SST pattern consists of a strong pulsing

dipole anomaly in the Bering Sea and weaker small-scale temperature anomalies that prop-310 agate eastward along the Kuroshio extension region. The next pair of annual intermittent 311 modes, $\{I_3, I_4\}$, have sea ice anomalies that originate in the Bering Sea and propagate along 312 the Kamchatka peninsula into the Sea of Okhotsk. The SST pattern is a basin-wide signal, 313 with strong intermittent anomalies along the Kuroshio extension region, as well as in the Sea 314 of Okhotsk and Bering Sea. The semiannual intermittent mode pairs $\{I_5, I_6\}$ and $\{I_7, I_8\}$, 315 are active in similar parts of the domain as $\{I_1, I_2\}$ and $\{I_3, I_4\}$, respectively, and have finer 316 spatial structure compared with their annual counterparts. 317

318 c. Connection between low-frequency and intermittent modes

The intermittent modes have time series which appear to be a periodic mode modulated 319 by a low-frequency signal. What low-frequency signal is modulating these modes? It turns 320 out that most intermittent modes can be directly associated with a certain low-frequency 321 mode from NLSA. Figure 6 shows time series snapshots for the annual and semiannual intermittent SST modes, $I_1^{\rm SST},\,I_3^{\rm SST},\,I_5^{\rm SST},$ and $I_7^{\rm SST},$ and low-frequency envelopes defined by $L_1^{\rm SST}$ 323 (the PDO mode) and $L_2^{\rm SST}$ (the NPGO mode). We observe that $I_3^{\rm SST}$ and $I_7^{\rm SST}$ fit inside the 324 NPGO envelope, and do not fit inside the PDO envelope. Similarly, $I_1^{\rm SST}$ and $I_5^{\rm SST}$ fit inside 325 the PDO envelope and not the NPGO envelope. Despite clearly being modulated by a cer-326 tain low-frequency mode, the intermittent modes are not simply products of a periodic mode 327 and a low-frequency mode. The sea ice modes also share a similar relationship between the 328 low frequency and intermittent modes. $\{I_1^{\text{ICE}}, I_2^{\text{ICE}}\}$, and $\{I_5^{\text{ICE}}, I_6^{\text{ICE}}\}$ are clearly modulated 329 by $L_1^{
m ICE}$ (the NPGO mode). $\{I_3^{
m ICE},I_4^{
m ICE}\}$, and $\{I_7^{
m ICE},I_8^{
m ICE}\}$ are not as clearly modulated by 330 a certain low-frequency mode, but they are most closely associated with $L_3^{\rm ICE}$ (the PDO 331 mode). 332

The intermittent modes have important phase relationships with their corresponding periodic modes. We find that the intermittent modes tend to either phase lock such that they are in phase or out of phase with the periodic mode, and this phase locking is determined

by the sign of the low-frequency signal that modulates the intermittent mode. However, 336 the intermittent modes also experience other phase relationships with the periodic modes, 337 particularly during transitions between the two phase-locked regimes. In Fig. 7 we show 338 three characteristic phase relationships between the intermittent and periodic modes. These 339 plots, as well as the corresponding visualization in movie 2, show evolution of the intermittent 340 modes $\{I_1^{\rm ICE},I_2^{\rm ICE}\}$ in the $I_1^{\rm ICE}-I_2^{\rm ICE}$ complex plane (blue dots) and the periodic modes $\{P_1^{\rm ICE},P_2^{\rm ICE}\}$ in the $P_1^{\rm ICE}-P_2^{\rm ICE}$ plane (red dots). The periodic modes trace a circle in the $P_1^{\rm ICE}-P_2^{\rm ICE}$ complex plane, and the intermittent modes trace out a more complicated trajectory. Also, plotted in cyan along the real axis is the value of $L_1^{\rm ICE}$, the NPGO mode. We find that $\{I_1^{\rm ICE},I_2^{\rm ICE}\}$ is in phase with $\{P_1^{\rm ICE},P_2^{\rm ICE}\}$ when $L_1^{\rm ICE}>0$ and out of phase when $L_1^{\text{ICE}} < 0$. Finally, the green dot is the ratio of $\{I_1^{\text{ICE}}, I_2^{\text{ICE}}\}$ to $\{P_1^{\text{ICE}}, P_2^{\text{ICE}}\}$, where 346 the ratio is taken by first writing these points in complex polar form. If $\{I_1^{\rm ICE},I_2^{\rm ICE}\}$ were 347 indeed the product of $\{P_1^{\text{ICE}}, P_2^{\text{ICE}}\}$ and L_1^{ICE} , we would expect this green dot to be perfectly 348 coincident with the cyan dot for $L_1^{
m ICE}$. We observe that the intermittent mode is close to 349 being a product of these two, yet is not an exact product (e.g., Fig. 7b). A similar phase 350 behavior is observed for most other intermittent modes, but in some cases the near product 351 relationship does not apply. For instance, $\{I_1^{\rm SST}, I_2^{\rm SST}\}$ are near products of $\{P_1^{\rm SST}, P_2^{\rm SST}\}$ and 352 $L_1^{
m SST}$, but the corresponding ice modes, $\{I_3^{
m ICE},I_4^{
m ICE}\}$, deviate significantly from the product of 353 $\{P_1^{\rm ICE},P_2^{\rm ICE}\}$ and $L_3^{\rm ICE}$. In section 5 ahead, we will see that the phase relationships between the intermittent and periodic modes have important implications for explaining reemergence.

d. Comparison with SSA

In addition to NLSA, we also performed SSA on the coupled sea ice-SST dataset. These
calculations were done by normalizing both variables to unit variance, and then performing
SSA on the concatenated dataset. SSA produces periodic and low-frequency modes, and
also two modes whose temporal patterns loosely resemble the intermittent modes of NLSA,
with a broadband power spectrum around a certain base frequency and a bias towards lower

frequencies. The periodic modes of SSA are very similar to the periodic modes of NLSA, 362 but we observe a number of differences in the non-periodic modes. NLSA produces two low-363 frequency modes, which correlate strongly with the NPGO and PDO, respectively. SSA, on 364 the other hand, produces a large number of low-frequency modes, most of which correlate 365 most strongly with the PDO. For example, if we consider EOFs of North Pacific SST, we 366 find that the leading eight low-frequency modes of SSA all correlate most strongly with the PDO (EOF 1). If we consider EOFs from the Northeast Pacific, we find that low-frequency modes 1, 2, 4, 5, 7, and 8 all correlate most strongly with the PDO (EOF 1) and modes 3 369 and 6 correlate most strongly with the NPGO (EOF 3). Low-frequency mode 3 has pattern 370 correlations of 0.83 and 0.87 with the PDO and NPGO, respectively, and its spatial pattern 371 looks like a mixed PDO-NPGO signal. The NLSA modes cleanly split low-frequency SST 372 patterns between different modes, whereas SSA tends to mix these patterns over a large 373 number of low-frequency modes. A consequence of this is that NLSA may be more effective 374 at capturing patterns of variability using a small subset of modes. The two SSA modes 375 that have a broadband power spectrum centered on a base frequency are different from the 376 intermittent modes of NLSA in that their temporal patterns are not modulated by any of 377 the the low-frequency SSA modes. Rather, these time series evolve independently of the 378 other SSA modes. In the supplementary material, we present temporal patterns of selected 379 SSA modes in Figure 1, and the spatiotemporal evolution of these modes in Movie 7. 380

We also performed NLSA on the unit variance dataset as a comparison with the phase velocity normalization presented above. We find three low-frequency modes, and pairs of annual and semiannual intermittent modes associated with these modes. A primary difference is that, unlike the phase velocity results above, the low-frequency modes do not cleanly split into patterns associated with the NPGO and PDO. Rather, low-frequency modes 1 and 2 correlate most strongly with the PDO (this is true for both North Pacific and Northeast Pacific EOFs). Low-frequency mode 3 has correlations of 0.81 and 0.89 with the PDO and NPGO (defined using Northeast Pacific EOFs), respectively, and has a spatial pattern that

reflects a mixed NPGO-PDO signal. Preliminary results of NLSA on sea ice and sea level pressure indicate that the differences between unit variance normalization and the phase velocity approach may be more pronounced when one of the variables is significantly faster and noisier than the other.

5. Sea ice reemergence via NLSA

 $^{
m 394}$ a. Sea ice reemergence in the North Pacific

Inspired by the sea ice reemergence mechanism put forward by BW, we study time lagged 395 correlations of sea ice in the North Pacific sector of the ocean. We focus on the Bering and Okhotsk seas, the two primary areas of sea ice variability in the North Pacific. BW observe a spring-fall sea ice reemergence, in which sea ice anomalies of a certain sign in spring tend to produce anomalies of the same sign in the fall, despite lagged correlations dropping to near 399 zero in the intervening summer months. The authors propose that spring sea ice anomalies 400 create an anomaly of opposite sign in SST, and this SST imprint is retained over the summer 401 months as the sea ice melts and the sea ice edge moves northwards. In the fall, the sea ice 402 edge begins to move southward and when it reaches the SST anomaly it reinherits an ice 403 anomaly of the same sign as the spring. It is by this proposed mechanism that SST stores 404 the memory of melt season sea ice anomalies, allowing the same anomaly to be reproduced 405 in the growth season.

407 b. Correlation methodology

BW compute time-lagged correlations for total arctic sea ice area as a method for examining sea ice reemergence. One drawback to this approach is that dynamically relevant spatial structures, such as sea ice dipoles, are integrated away when only considering total sea ice area. In order to capture the memory in sea ice spatial patterns, we perform time-lagged pattern correlations on the sea ice concentration data.

Specifically, we compute time lagged pattern correlations using the following methodology. First, we define $\bar{a}_m(x,y)$, the average sea ice concentration in a given month m, as a function of space. Let T be the number of samples of month m, and let m_k correspond to sample number 12(k-1) + m, the mth month of the kth year. We set

$$\bar{a}_m(x,y) = \frac{\sum_{k=1}^{T} a_{m_k}(x,y)}{T}.$$
(4)

Next, we define the pattern correlation between times $m_k=12(k-1)+m$ and $m_j'=12(j-1)+m'$ as

$$P_{m_k m'_j} = \frac{\left\langle a_{m_k}(x, y) - \bar{a}_m(x, y), a_{m'_j}(x, y) - \bar{a}_{m'}(x, y) \right\rangle}{\|a_{m_k}(x, y) - \bar{a}_m(x, y)\| \|a_{m'_j}(x, y) - \bar{a}_{m'}(x, y)\|}.$$
 (5)

In the above, $\langle \cdot, \cdot \rangle$ and $\| \cdot \|$ denote the Euclidean (area-weighted) inner product and twonorm with respect to the spatial gridpoints (x, y). Finally, we define the time lagged pattern correlation between months m and $m + \tau$ as the time average of all pattern correlations:

$$C_{m,m+\tau} = \frac{\sum_{k=1}^{T-2} P_{m_k m_j'}}{T-2},\tag{6}$$

where $m_k = 12(k-1) + m$ and $m'_j = 12(j-1) + m' = m_k + \tau$. Note that time averaging is done over T-2 samples, because for lags up to 24 months there are only T-2 pairs of m_k and $m_k + \tau$.

425 c. Time lagged pattern correlations in the North Pacific sector

We compute time lagged pattern correlations in the North Pacific sector for all months and lags from 0 to 23 months, the results of which are shown in Fig. 8. In Fig. 8, the white boxes are not significant at the 95% level using a t-distribution statistic. All colored boxes are significant at the 95% level. Figure 8a shows time lagged total area correlations

computed in the same way as BW, except being done for the North Pacific rather than the 430 entire Arctic. We observe a similar correlation structure to that of BW, with one noteable 431 difference. There is an initial decay of correlation over a 3–6 month timescale, after which, for 432 the months of January–July, we observe an increase in correlation. This region of increased 433 correlation is analogous to the "summer limb" of BW. In this summer limb, we can see natural 434 pairings of spring months and the corresponding fall months in which the spring anomaly 435 reemerges. These pairings are July-October, June-November, May-December, April-January, and March-January/February; they represent months at which the sea ice edge is similar in 437 melt and growth seasons. A main difference between the North Pacific and the entire Arctic is that the North Pacific data does not contain a "winter limb" of anomalies produced in fall 439 that are reproduced the following summer. This is because the North Pacific contains very 440 little sea ice in the summer months. Figure 9 shows the monthly mean values plus/minus one 441 standard deviation of North Pacific SST and sea ice concentration in the CCSM3 dataset. 442 We see that the sea ice concentration is close to zero in the summer months and, moreover, 443 there is significantly higher sea ice variability in high sea ice months. 444

Figure 8b shows lagged pattern correlations for North Pacific sea ice. As expected, the 445 correlations are significantly weaker than in the total area lagged correlation case, since 446 having a pattern correlation in anomalies is a much more stringent test than simply having 447 correlations in total area of anomalies. Despite being weaker, the pattern correlations still 448 have the "summer limb" structure observed in Fig. 8a, and these correlations are significant at the 95% level. Most lagged pattern correlations besides the inital decay and the summer 450 limb are not significant at the 95% level. Figures 8c and 8d show lagged pattern correlations 451 for the Bering $(165^{\circ}E - 160^{\circ}W \text{ and } 55^{\circ} - 65^{\circ}N)$ and Okhotsk $(135^{\circ}E - 165^{\circ}E \text{ and } 42^{\circ} - 65^{\circ}N)$ 452 Seas, respectively. Each of these seas has a similar lagged pattern correlation structure to 453 the full North Pacific sector in Fig. 8b. 454

Next, we seek to reproduce the lagged pattern correlations seen in the raw sea ice data using a low dimensional subset of coupled NLSA modes. We find that in each sea, a different

set of modes is active, thus we choose to focus on the Bering and Okhotsk seas individually. 457 In the Bering Sea, we find that modes $\{L_1, I_1, I_2, I_5, I_6\}$ qualitatively reproduce the lagged 458 pattern correlation structure seen in raw data. L_1 is the NPGO mode and the other modes 459 are the annual and semiannual intermittent modes which are modulated by the NPGO 460 envelope. Moreover, this set appears to be the minimal subset, as smaller subsets of modes 461 are unable to reproduce the correlation structure of the raw data. Figure 8e shows Bering Sea lagged pattern correlations computed using this three mode family, which we call the NPGO family. We see that this family has a very similar summer limb to the raw data, 464 except with higher correlations, since this three-mode family decorrelates more slowly than the raw data. 466

Attempting a similar construction in the Okhotsk Sea, we find that modes $\{L_2, I_3, I_4, I_7, I_8\}$ 467 do the best job of reproducing the lagged pattern correlation structure. However, this mode 468 family has clear deficiencies, as can be seen in Fig. 8f. In particular, this mode family fails 469 to reproduce the summer decorrelation that is observed in the raw data and also has a less 470 contiguous summer limb. L_2 is the PDO mode and these intermittent modes are the annual 471 and semiannual intermittent modes most closely associated to the PDO. Note that these 472 intermittent modes are not perfectly modulated by the PDO, which may explain why this 473 PDO family is unable to capture the sea ice reemergence signal as well as the NPGO family. 474 Instead, in section 5f ahead we will see that this PDO family is more closely related to SST 475 reemergence (Alexander et al. 1999)

Many other NLSA mode subsets were tested, but were unable to reproduce the correlation structure of the raw data as well as the subsets above. Also, the same procedure was performed using SSA modes, and it was found that small subsets of SSA modes (fewer than modes) were unable to reproduce the lagged correlation structure of the raw data.

481 d. A sea ice reemergence mechanism revealed through coupled NLSA

Using the low-dimensional family of modes $\{L_1, I_1, I_2, I_5, I_6\}$, active in the Bering Sea, to 482 reconstruct patterns in the spatial domain, we observe sea ice and SST patterns which are 483 remarkably consistent with the mechanism suggested by BW. Figure 10 shows the evolution 484 of the three-mode family over the course of a year. These spatial patterns are composites, 485 obtained by averaging over all years in which the NPGO is active in its positive phase (defined 486 as $L_2^{\rm SST}>1.5$). A very similar spatiotemporal pattern, with opposite sign, occurs in years 487 when the NPGO is active in its negative phase. The dynamic evolution of this three-mode 488 family is shown in movie 3. In January, there is a positive sea ice anomaly and a negative 489 SST anomaly in the southern part of the Bering Sea. The main SST anomaly extends 490 slightly further south than the sea ice anomaly, and there is also a weaker negative anomaly 491 extending southward and eastward in the domain. The positive ice anomalies continue to 492 move southward through the growth season, until reaching the maximum ice extent in March. 493 The SST anomaly has not changed significantly from January and is primarily localized to 494 the ice anomaly region. In particular, there is no SST anomaly in the northern part of the 495 Bering Sea. The melt season begins in April, and in May we observe that the sea ice anomaly 496 has moved northward. The SST anomaly has also extended northward while maintaing its 497 southern extent from March. In July the sea ice retreats further and only a weak positive 498 anomaly remains in the Bering Sea. By September essentially no sea ice anomaly remains 499 in the Bering Sea. Despite the sea ice anomaly being absent in September, the SST has a 500 strong negative anomaly throughout the entire Bering Sea region. The northern Bering sea, 501 previously free of SST anomalies, now has a negative anomaly, imprinted by the positive sea 502 ice anomalies moving through the region during the melt season. As the sea ice returns to the 503 domain in October–December, the ice interacts with the SST anomaly, using the cold SST to 504 grow additional ice, and reproduces the positive ice anomaly that we observed in the spring. In November, part of the northern Bering Sea's negative SST anomaly has been wiped out, 506 and the ice has begun to redevelop its positive anomaly. The ice continues to grow stronger 507

positive anomalies as it moves southward and in January the cycle roughly repeats again.

We observe this mechanism with the NPGO mode in both positive and negative phase.

As could be expected from Fig. 8f, the mode family $\{\mathbf{L}_2, \mathbf{I}_3, \mathbf{I}_4, \mathbf{I}_7, \mathbf{I}_8\}$ does not have a clear sea ice reemergence in the Okhotsk Sea. This family does exhibit a winter-winter persistence of ice anomalies, but the anomalies tend to unrealistically persist over the intervening summer months.

514 e. Reemergence conditioned on low-frequency modes

We earlier noted that the NPGO mode family $\{L_1, I_1, I_2, I_5, I_6\}$ is able to reproduce the 515 lagged correlation structure seen in sea ice data in the Bering Sea. Additionally, we know that 516 the intermittent modes within the mode families identified here are modulated by the low-517 frequency mode of that family. Thus, in order to determine whether a given mode family is 518 active, we can simply assess whether or not the corresponding low-frequency mode is active. 519 Given these observations, one would expect to see an enhanced reemergence structure if 520 we performed lagged correlations on the raw sea ice data, conditional on a certain low-521 frequency mode being active. Indeed, if we condition on the NPGO being active, we observe 522 an enhanced summer limb in the lagged pattern correlation structure of the Bering Sea raw 523 data. Similarly, if we condition on the NPGO being inactive, we find that the summer limb 524 is significantly weakened. Figure 11 shows conditional lagged pattern correlations for these 525 various cases. Note that the NPGO is defined as "active" over the time interval $[t, t + \Delta t]$ if 526 $|L_2^{\rm SST}| > 1.5$. The NPGO index is defined for $t \in [1, s-q]$. 527 This summer limb strengthening has implications for regional sea ice predictibility. In

This summer limb strengthening has implications for regional sea ice predictibility. In particular, tracking the NPGO index should help one predict whether a given spring anomaly in the Bering sea will return the following fall.

531 f. Connection to other reemergence phenomena

BW also note a summer-to-summer reemergence in Arctic sea ice, which is connected to 532 persistence in sea ice thickness anomalies. This summer-to-summer reemergence is not seen 533 in the North Pacific sector, since the North Pacific is essentially sea ice free for the months 534 of July through October (see Fig. 9). 535 Another reemergence phenomenon active in the North Pacific sector is the winter-to-536 winter SST reemergence studied by Alexander et al. (1999). This reemergence consists of 537 the formation of an SST anomaly in winter months, a weakening of the anomaly over the 538 summer due to the presence of a seasonal thermocline, and a subsequent re-strengthening 539 the following winter. To investigate the presence of SST reemergence in the coupled NLSA 540 modes, we perform a lagged correlation analysis analogous to the sea ice study above. 541 We focus on the domains of active SST reemergence defined by Alexander et al. (1999): 542 the central $(26^{\circ} - 42^{\circ}\text{N}, 164^{\circ} - 148^{\circ}\text{W})$, eastern $(26^{\circ} - 42^{\circ}\text{N}, 132^{\circ} - 116^{\circ}\text{W})$, and western $(38^{\circ} - 42^{\circ}N, 160^{\circ} - 180^{\circ}E)$ Pacific. For each of these domains, time lagged pattern correlations of SST were computed, including conditioning on certain low-frequency SST modes 545 being active. It was found that correlations were significantly strengthened when the PDO 546 mode (L_2) was active, and were relatively unaffected by the state of the NPGO mode (L_1) . 547 Figure 12 shows time-lagged pattern correlations for the central, eastern, and western Pacific 548 domains, for both the raw SST data, and the raw SST data conditioned on an active PDO. 549 In the central and eastern parts of the basin, we observe a strengthened reemergence signal 550 when the PDO is active, as there is a clear drop in correlation over the summer months 551 and a significantly stronger increase in correlation the following winter. In the western part 552 of the basin, the reemergence signal is clear without any PDO conditioning. With an ac-553 tive PDO, the correlations become stronger, and the summer decorrelation remains visible. Note that, unlike North Pacific sea ice reemergence, the SST correlations do not vanish over

the summer months. Rather, they simply weaken over the summer and re-strengthen the

556

557

following winter.

Following the sea ice approach above, we seek a low-dimensional family of NLSA modes 558 that reflect the lagged correlation structure of the raw data. We find that the PDO mode 559 family, $\{L_2, I_3, I_4, I_7, I_8\}$, has the highest skill in reproducing the observed correlations. Fig-560 ure 13 shows a composite reconstruction of the SST patterns of the PDO family, where the 561 composite is taken over years where the PDO index is high $(L_1^{\rm SST} > 1.5)$. SST reemergence 562 is most strikingly observed in the central Pacific. We observe a strong negative SST anomaly in January and March, which begins to decay in May, and is significantly weaker, yet still positive, in September. The anomaly begins to strengthen in November, and the pattern 565 roughly repeats again the following year. As could be expected by the lagged correlations, we observe stronger SST persistence in the western Pacific, however a summer weakening and 567 winter re-strengthening is nonetheless visible. The anomaly strength is significantly smaller 568 in the eastern Pacific domain, but a similar SST reemergence with positive anomalies can 569 be observed, though the signal is poorly represented with the colorbar of Fig. 13 (chosen for 570 the entire North Pacific). Note that there is also an active SST reemergence with positive 571 anomalies along the Alaska-British Columbia coastline. When the PDO is active in its neg-572 ative phase, a similar pattern is observed, with opposite sign. The dynamic evolution of the 573 PDO mode family is shown in Movie 4. An interesting topic of future study would be to 574 investigate whether the vertical structure of this reemergence mechanism can be captured 575 by a low dimensional family of NLSA modes. 576

6. Comparison with Observations

578 a. Coupled NLSA on a short time series

To this point, all results have been derived from analysis of a 900-yr CCSM3 model integration. Given the relative shortness of most observational climate time series, a natural question is whether the coupled NLSA approach can be applied to a shorter time series for the purposes of exploratory data analysis. Given that NLSA is based upon sufficient

exploration of a high-dimensional manifold, a short observational time series provides a stringent test for the algorithm. Nevertheless, it is plausible that certain coarse-grained nonlinear geometric features are adequately sampled (in particular, the periodic dimension associated with the seasonal cycle, which is crucial for reemergence). To test the feasibility of NLSA in this environment, we studied the HADISST dataset, which consists of 34 years of satellite observations of sea ice and SST.

We performed coupled NLSA on the HADISST dataset in a completely analogous manner 589 to the CCSM3 results above, using a value of $\epsilon = 0.8$, a truncation level of l = 22, and a 590 lagged embedding window of $\Delta t = 24$ months. The resulting temporal modes have very 591 similar characteristics to the temporal modes of the CCSM3 dataset, cleanly splitting into 592 periodic, low-frequency and intermittent modes. We find that the periodic and intermittent 593 modes come in doubly degenerate pairs, and that each intermittent mode is modulated by 594 a certain low-frequency mode. Also, we find that each SST PC is highly correlated with 595 a certain sea ice PC, motivating the definition of coupled sea ice-SST modes of variability. 596 For the sake of brevity, we only define the coupled modes that will be discussed in the 597 $\text{following sections: } \mathbf{L}_1 = (L_1^{\text{ICE}}, L_2^{\text{SST}}), \, \mathbf{L}_2 = (L_2^{\text{ICE}}, L_1^{\text{SST}}), \, \mathbf{I}_1 = (I_1^{\text{ICE}}, I_4^{\text{SST}}), \, \mathbf{I}_2 = (I_2^{\text{ICE}}, I_3^{\text{SST}}), \, \mathbf{I}_3 = (I_2^{\text{ICE}}, I_3^{\text{SST}}), \, \mathbf{I}_4 = (I_1^{\text{ICE}}, I_2^{\text{SST}}), \, \mathbf{I}_{1} = (I_1^{\text{ICE}}, I_2^{\text{SST}}), \, \mathbf{I}_{2} = (I_2^{\text{ICE}}, I_3^{\text{SST}}), \, \mathbf{I}_{3} = (I_2^{\text{ICE}}, I_3^{\text{SST}}), \, \mathbf{I}_{4} = (I_2^{\text{ICE}}, I_3^{\text{SST}}), \, \mathbf{I}_{5} =$ 598 $\mathbf{I}_{3} = (I_{3}^{\text{ICE}}, I_{2}^{\text{SST}}), \ \mathbf{I}_{4} = (I_{4}^{\text{ICE}}, I_{1}^{\text{SST}}), \ \mathbf{I}_{5} = (I_{5}^{\text{ICE}}, I_{7}^{\text{SST}}), \ \mathbf{I}_{6} = (I_{6}^{\text{ICE}}, I_{8}^{\text{SST}}), \ \mathbf{I}_{7} = (I_{7}^{\text{ICE}}, I_{5}^{\text{SST}}),$ $\mathbf{I}_8=(I_8^{\mathrm{ICE}},I_6^{\mathrm{SST}}).$ Time series snapshots, autocorrelation functions, and power spectral 600 densities for the leading low-frequency ice modes and an annual and semiannual intermittent 601 mode are shown in Figure 14.

Similar to the CCSM3 results, the spatial patterns of these modes have correspondences
with the NPGO and PDO. We find that \mathbf{L}_1 has a maximum pattern correlation of 0.65 with
EOF 2 of Northeast Pacific SST, and \mathbf{L}_2 has a maximum pattern correlation of 0.90 with
EOF 1 of North Pacific SST. Note that these EOFs were computed using SST output of
HADISST. In light of these correlations, we call \mathbf{L}_1 the NPGO mode and \mathbf{L}_2 the PDO mode.
The sea ice patterns of these modes have some notable differences from their CCSM3
counterparts. \mathbf{L}_1 has strong sea ice anomalies in the Bering Sea, but also has strong anomalies

of the opposite sign in the Sea of Okhotsk. This pattern of sea ice variability is consistent with the leading sea ice EOF found in Deser et al. (2000) and Liu et al. (2007). L₂ consists of a strong sea ice anomaly throughout the Okhotsk Sea, and also an anomaly of the same sign in the southern part of the Bering Sea. Each of these low-frequency modes modulates a pair of annual and a pair of semiannual intermittent modes. These intermittent modes are active in similar parts of the domain as the low-frequency modes, and have finer spatial structures, as we also observed with the CCSM3 results.

517 b. Sea ice reemergence in observations

With these coupled observational modes at our disposal, we now investigate North Pa-618 cific sea ice reemergence in the observational record. First, we compute time lagged pattern 619 correlations in the North Pacific sector, shown in Fig. 15a. We observe that there is no 620 reemergence signal visible in these correlations. This is also the case for correlations com-621 puted over the Bering and Okhotsk Seas individually. Despite the lack of reemergence in 622 the observational data, we examine a number of NLSA mode subsets for the presence of 623 a reemergence signal. We find the strongest signal with the mode family $\{L_1, I_1, I_2, I_5, I_6\}$, 624 where the correlations are computed over the Bering Sea. The correlations are shown in 625 Fig. 15b. This family also has signs of a reemergence signal in the Okhotsk Sea, except that 626 the ice anomalies anti-correlate over the summer months, instead of simply decorrelating. 627 Does this mode family have any explanatory power with regards to sea ice reemergence? 628 The answer appears to be yes. Fig. 15c shows North Pacific lagged pattern correlations, 629 conditional on the NPGO mode, L_1 , being active. We observe an emphasized reemergence 630 limb in years when the NPGO mode is active. A similar appearance of a summer limb is 631 observed in the Bering Sea, but not in the Okhotsk, when conditioning on an active NPGO. A sea ice-SST reconstruction for the year 2001, using the mode family $\{L_1, I_1, I_2, I_5, I_6\}$, 633 is shown in Figure 16. This family shares some similarities to the NPGO mode family 634 found in CCSM3, with the NPGO mode modulating the annual and semiannual intermittent 635

modes, but also has many clear differences. In the winter months, we observe strong sea ice 636 anomalies of opposite sign in the Bering and Okhotsk seas. The Okhotsk anomalies were 637 not present in the CCSM3 results. Spatially coincident with these ice anomalies, we observe 638 SST anomalies of the opposite sign. We also observe strong SST anomalies throughout 639 most of the North Pacific basin, especially along the Kuroshio extension region. This is different from the CCSM3 results, in which the SST anomalies of the NPGO family were primarily contained in the northern portion of the domain. During the months of July-October the Bering and Okhotsk Seas are relatively ice free, and we observe persistence 643 of SST anomalies of opposite sign to the ice anomalies. Compared to CCSM3 results, the summer SST anomalies do not cover the Bering Sea as completely; there is a portion of the 645 northwest Bering sea that remains anomaly-free over the summer. In the late fall and early 646 winter, sea ice anomalies reappear in the Bering and Okhotsk seas, adopting the same sign 647 they had the previous winter. This cycle roughly repeats itself the following winter. This 648 family reflects the same SST-sea ice reemergence mechanism as seem in CCSM3, albeit in a 649 slightly less clean manner. 650

Why is the North Pacific sea ice reemergence signal significantly stronger in CCSM3 651 than in observations? One possibility is that the CCSM3 model overemphasizes the winter-652 to-winter persistence of the ice and SST anomalies associated with the NPGO. Another 653 possibility is that the raw observational data, after linear detrending, contains a residual 654 signal associated with a nonlinear trend. This nonlinear trend may act to obscure the reemergence signal in the raw data, though we find that the reemergence signal is sufficiently 656 strong to be recoverable in the NPGO-conditioned data. Yet another possibility is that over 657 the relatively short observational record, the low-frequency NPGO mode has been generally 658 inactive, and a longer time series would reveal the reemergence signal. 659

To investigate the latter possibility, we divided the 900-year CCSM3 record into a number of 34 year datasets, analogous to the length of the observational record, and performed lagged correlations on each of these short timeseries. We found significant variation in the sea ice reemergence signal over these different datasets, including some sets where the reemergence signal was absent, much like in observations. There were other 34 year datasets which contained a much stronger reemergence limb, quite similar to the conditional lagged correlations of Fig. 11b. Therefore, it is plausible that the record of satellite observations is simply too short to provide a sufficient sampling of low-frequency variability of the coupled ocean-sea ice system, and correlations computed using this dataset may not fully reflect the intrinsic variability of this system. We also computed lagged correlations of the sea ice observations in other parts of the Arctic Ocean, and found strong reemergence signals in the Barents and Kara Seas, the Labrador Sea, and the Greenland Sea.

672 c. SST reemergence in observations

We also investigate SST reemergence in the HADISST dataset by computing time lagged 673 pattern correlations in the North Pacific. Fig. 17a shows lagged correlations of the raw SST data and Fig. 17b shows lagged correlations conditional on the PDO mode, L_2 , being active. We observe a strengthened winter-to-winter SST reemergence when the PDO is active. We 676 also conditioned on other low-frequency modes, and found that the PDO produces the most 677 prominent strengthening of correlation. Note that these correlations are computed over the 678 entire North Pacific domain, rather than the smaller domains considered in section 5f. This 679 choice was made because the conditional correlations were quite noisy when performed over 680 the smaller domains, since the PDO is only "active" for about 25\% of the observational 681 record. 682

The coupled NLSA observational modes also have a mode family $\{\mathbf{L}_2, \mathbf{I}_3, \mathbf{I}_4, \mathbf{I}_7, \mathbf{I}_8\}$, which is analogous to the PDO family of CCSM3. In Fig. 18 we show an SST reconstruction for the year 2005 using this mode family. We observe an active SST reemergence in the central and eastern Pacific domains, but there is not a clear reemergence in the western Pacific. The reemergence in the central and eastern Pacific happens at different times of year, with weakest anomalies in September and November, respectively. Similar to the CCSM3 results, the observational PDO family has a large-scale anomaly along the Kuroshio extension region, and significant variability in the central Pacific. A primary difference is that the observational PDO family has much stronger anomalies along the west coast of North America than the PDO family of CCSM3.

³ 7. Conclusions

In this work, we have studied reemergence mechanisms for North Pacific sea ice in com-694 prehensive climate model output and in satellite observations. We have introduced a new 695 modification to the NLSA algorithm for high-dimensional time series (Giannakis and Ma-696 jda 2013, 2012c), which allows for a scale-invariant coupled analysis of multiple variables 697 in different physical units. This algorithm computes a kernel matrix using the individual 698 phase space velocities for each variable, simultaneously removing physical units from the 699 analysis, as well as implicitly selecting the variance ratio between the two variables. This 700 coupled NLSA algorithm was applied to North Pacific SST and sea ice concentration data 701 from a 900 year CCSM3 control integration, and a set of temporal patterns, analogous to 702 PCs, and spatiotemporal patterns, analogous to extended EOFs, were obtained. The same analysis was performed on the 34 year record of sea ice and SST satellite observations. The modes recovered by coupled NLSA include periodic and low-frequency patterns of variabil-705 ity of sea ice and SST, as well as intermittent patterns not captured by SSA. The leading 706 low-frequency modes correlate well with the familiar PDO and NPGO patterns of North 707 Pacific SST variability. The intermittent modes have a base frequency of oscillation and are 708 modulated by either the PDO or NPGO low-frequency signal, and tend to either be in phase 709 or out of phase with their corresponding periodic cycle. 710

Using the modes obtained via coupled NLSA, we investigated the phenomenon of sea rize reemergence suggested by BW, in the North Pacific region. In the CCSM3 data, it was found that the raw sea ice data of the North Pacific exhibited a similar reemergence

of correlation to that seen by BW, a noteable difference being the lack of a "winter limb." 714 Seeking a low-dimensional family of modes to explain this reemergence process, we found that 715 the NPGO and its corresponding annual and semiannual intermittent modes were able to 716 reproduce the lagged correlations seen in the Bering Sea. Moreover, reconstructing patterns 717 in the spatial domain, we found that this low-dimensional family demonstrates a sea ice 718 reemergence mechanism, in which summer SST stores the memory of springtime sea ice anomalies, remarkably well. It was also found that conditioning the raw sea ice data on the NPGO being active, led to a significantly strengthened "summer limb" in the lagged 721 correlations of the Bering Sea, which has implications for regional predictability of sea ice 722 reemergence. Also, the family of NLSA modes related to the PDO was able capture a 723 winter-to-winter reemergence of SST anomalies, both in lagged correlations and in spatial 724 reconstructions. 725

The raw observational sea ice record does not contain a sea ice reemergence signal in the 726 North Pacific sector. However, when conditioned on the NPGO mode being active, a clear 727 summer limb appears in the raw data lagged correlations. Additionally, an analogous NPGO 728 family exists for the observations, and displays a similar SST-sea ice reemergence mechanism. 729 An enhanced winter-to-winter SST reemergence was found when conditioning on an active 730 PDO. Also, the observational modes have a PDO family, which exhibits SST reemergence 731 in the North Pacific. In future work, we plan to add North Pacific sea level pressure to our 732 coupled analysis to gain insight into the variability of the coupled atmosphere-sea ice-ocean system.

Acknowledgments.

735

We would like to thank two anonymous reviewers for their valuable comments and suggestions. The authors would like to acknowledge the support of ONR MURI grant 25-74200-738 F7112 and ONR DRI grant N00014-14-1-0150. M. Bushuk was supported by the NYU Abu Dhabi Research Institute, under project G1204, and by NSERC PGS-D award 404213. We

 $_{740}\,$ would also like to thank David Holland for helpful discussions.

REFERENCES

- Alexander, M. A., C. Deser, and M. S. Timlin, 1999: The reemergence of SST anomalies in the North Pacific Ocean. *J. Climate*, **12**, 2419–2433.
- Blanchard-Wrigglesworth, E., K. C. Armour, C. M. Bitz, and E. DeWeaver, 2011: Persistence
- and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J.
- 747 Climate, **24**, 231–250.
- Broomhead, D. S. and G. P. King, 1986: Extracting qualitative dynamics from experimental
 data. Phys. D, 20 (2-3), 217-236, doi:10.1016/0167-2789(86)90031-x.
- Budyko, M., 1969: The effect of solar radiation variations on the climate of the earth. *Tellus*,
 21, 611–619.
- Cavalieri, D. J. and C. L. Parkinson, 1987: On the relationship between atmospheric cir-
- culation and the fluctuations in the sea ice extents of the Bering and Okhotsk Seas. J.
- Geophys. Res., 92(C7), 7141-7162.
- Coifman, R. R. and S. Lafon, 2006: Diffusion maps. Appl. Comput. Harmon. Anal., 21(1),
 5–30, doi:10.1016/j.acha.2006.04.006.
- Collins, W. D., et al., 2006: The Community Climate System Model version 3 (CCSM3). J.
 Climate, 19, 2122–2143.
- Curry, J. A., J. L. Schramm, and E. E. Ebert, 1995: Sea ice-albedo climate feedback mechanism. J. Climate, 8, 240–247.
- Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. *J. Climate*, **13**, 617–633.

- Di Lorenzo, E., et al., 2008: North Pacific Gyre Oscillation links ocean climate and ecosystem 763 change. Geophys. Res. Lett, 35, L08607, doi:10.1029/2007GL032838. 764
- Fang, Z. and J. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its 765 relation to atmospheric forcing. J. Climate, 7, 1897–1914. 766
- Ghil, M., et al., 2002: Advanced spectral methods for climatic time series. Rev. Geophys., 767 **40(1)**, 3.1–3.41. 768
- Giannakis, D., 2014: Dynamics-adapted cone kernels. SIAM J. Appl. Dyn. Sys., submitted. 769
- Giannakis, D. and A. J. Majda, 2012a: Comparing low-frequency and intermittent variability 770 in comprehensive climate models through nonlinear Laplacian spectral analysis. Geophys. 771 Res. Lett, 39, L10710, doi:10.1029/2012GL051575.

772

- Giannakis, D. and A. J. Majda, 2012b: Limits of predictability in the North Pacific sec-773 tor of a comprehensive climate model. Geophys. Res. Lett, 39, L24602, doi:10.1029/ 774 2012GL054273. 775
- Giannakis, D. and A. J. Majda, 2012c: Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc. Natl. Acad. Sci., 109, 2222–2227. 777
- Giannakis, D. and A. J. Majda, 2013: Nonlinear Laplacian spectral analysis: Capturing 778 intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat. 779 Anal. Data Min., 6 (3), 180–194, doi:10.1002/sam.11171. 780
- Giannakis, D. and A. J. Majda, 2014: Data-driven methods for dynamical systems: Quanti-781 fying predictability and extracting spatiotemporal patterns. Mathematical and Computa-782 tional Modeling: With Applications in Engineering and the Natural and Social Sciences, 783 R. Melnik, Ed., Wiley, Hoboken, 288. 784
- Holland, M. M., C. Bitz, E. Hunke, W. Lipscomb, and J. Schramm, 2006: Influence of the 785 sea ice thickness distribution on polar climate in CCSM3. J. Stat. Phys., 19, 2398–2414. 786

- Liu, J., Z. Zhang, R. M. Horton, C. Wang, and X. Ren, 2007: Variability of North Pacific sea ice and East Asia-North Pacific winter climate. *J. Climate*, **20**, 1991–2001.
- Mantua, N. J. and S. Hare, 2002: The Pacific Decadal Oscillation. J. Oceanogr., 58, 35–44,
 doi:10.1023/A:1015820616384.
- Parkinson, C. L., 1990: The impacts of the Siberian high and Aleutian low on the sea ice
 cover of the Sea of Okhotsk. *Ann. Glaciology*, **14**, 226–229.
- Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell,
- E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and
- night marine air temperature since the late nineteenth century. J. Geophys. Res., 108,
- ⁷⁹⁶ 4407, doi:10.1029/2002JD002670.
- Sasaki, Y. N. and S. Minobe, 2006: Seasonally dependent interannual variability of sea ice
- in the Bering Sea and its relation to atmospheric fluctuations. J. Geophys. Res., 110,
- 799 C05 011.
- 800 Smith, R. and P. Gent, 2004: Reference manual for the Parallel Ocean Program (POP):
- Ocean component of the Community Climate System Model (CCSM2.0 and 3.0). Tech.
- Rep. LAUR-02-2484, Los Alamos National Laboratory, 75 pp.
- Teng, H. and G. Branstator, 2011: Initial value predictability in prominent modes of North
- Pacific subsurface temperature in a coupled GCM. Climate Dyn., 36, 1813–1834.
- Vautard, R. and M. Ghil, 1989: Singular spectrum analysis in nonlinear dynamics, with
- applications to paleoclimatic time series. *Phys. D*, **35**, 395–424, doi:10.1016/0167-2789(89)
- 90077-8.
- Walsh, J., 1983: The role of sea ice in climatic variability: Theories and evidence. Atmos.-
- 809 Ocean, **21**, 229–242.

List of Figures

835

836

1 (a) Singular values from coupled NLSA with phase velocity normalization 811 (black and red markers show ice and SST singular values, respectively), vari-812 ance normalization (cyan markers), and SSA (blue line). The singular values 813 have been normalized so that $\sigma_1 = 1$. Low-frequency modes are indicated by 814 "○", periodic modes by "×", and intermittent modes by "□". (b) Normal-815 ized relative entropy for $A_l^{\rm ICE}$ and $A_l^{\rm SST}$ vs truncation level l. Spikes in the 816 relative entropy curve indicate possible candidates for the choice of truncation 817 level. 40 818 2 Snapshots of the time series, power spectral density, and autocorrelation func-819 tions for the sea-ice PCs (v_k) from coupled NLSA. Shown here are the annual 820 periodic $(P_1^{\rm ICE})$ and semiannual periodic $(P_3^{\rm ICE})$ modes, the NPGO mode 821 $(L_1^{
m ICE}),$ the PDO mode $(L_2^{
m ICE}),$ annual intermittent modes $(I_1^{
m ICE}$ and $I_3^{
m ICE}),$ 822 and semiannual intermittent modes ($I_5^{\rm ICE}$ and $I_7^{\rm ICE}$). The autocorrelation ver-823 tical scale is [-1,1]. The power spectral densities (f_k) were estimated over 824 the full 900 year timeseries via the multitaper method with time-bandwidth 825 41 product p = 6 and K = 2p - 1 = 11 Slepian tapers. 826 3 Snapshots of the time series, power spectral density, and autocorrelation func-827 tions for the SST PCs (v_k) from coupled NLSA. Shown here are the annual pe-828 riodic (P_1^{SST}) and semiannual periodic (P_3^{SST}) modes, the PDO mode (L_1^{SST}) , 829 the NPGO mode $(L_2^{\rm SST})$, annual intermittent modes $(I_1^{\rm SST})$ and $I_3^{\rm SST}$, and 830 semiannual intermittent modes ($I_5^{
m SST}$ and $I_7^{
m SST}$). The autocorrelation vertical 831 scale is [-1,1]. The power spectral densities (f_k) were estimated over the full 832 900 year timeseries via the multitaper method with time-bandwidth product 833 p = 6 and K = 2p - 1 = 11 Slepian tapers. 42 834

4 Correlations between selected SST and and sea ice principal components. Note that each SST PC can be associated with a single sea ice PC.

43

- 5 Snapshots of raw data and spatiotemporal modes from coupled NLSA. See 837 movie 1 for the dynamic evolution of these modes. 838
- Time series of intermittent modes $I_1^{\rm SST}, I_3^{\rm SST}, I_5^{\rm SST}, I_7^{\rm SST}$ plotted in blue, and 6 839 low-frequency envelopes defined by $L_1^{\rm SST}$ (PDO) and $L_2^{\rm SST}$ (NPGO) plotted in 840 red.

841

44

45

46

47

48

- Phase evolution of intermittent modes $\{I_1^{\rm ICE},I_2^{\rm ICE}\}$ in the $I_1^{\rm ICE}-I_2^{\rm ICE}$ plane 7 842 (blue dots) and periodic modes $\{P_1^{\rm ICE},P_2^{\rm ICE}\}$ in the $P_1^{\rm ICE}-P_2^{\rm ICE}$ plane (red 843 dots), where the present value is shown with the larger dot and the smaller 844 dots show the previous six values. The cyan dot shows the value of $L_1^{\rm ICE}$ plotted along the real axis, and the green dot shows the ratio of $\{I_1^{\text{ICE}}, I_2^{\text{ICE}}\}$ 846 to $\{P_1^{\text{ICE}}, P_2^{\text{ICE}}\}\$, a test for how close the intermittent modes are to being a 847 product of periodic and low-frequency modes. (A) shows an in phase regime, 848 (B) shows and out of phase regime and (C) shows a transition regime. See 849 movie 2 for a more illuminating time evolution. 850
- 8 Lagged correlations for North Pacific sea ice for all months and lags from 0 851 to 23 months. (A) shows the lagged correlation structure in total arctic sea 852 ice area, computed following the methodology of BW. All other panels are 853 lagged pattern correlations: (B) North Pacific with raw data; (C) and (D) 854 are computed in the Bering and Okhotsk Seas, respectively, using raw data; 855 (E) Bering Sea with modes $\{L_1, I_1, I_2, I_5, I_6\}$; (F) Okhotsk Sea with modes 856 $\{L_2, I_3, I_4, I_7, I_8\}$. Colored boxes indicate correlations which are significant at 857 the 95% level based on a *t*-test. 858
- 9 Monthly mean sea ice concentration and SST from CCSM3, with the dashed 859 line showing $\pm 1\sigma$. The SST variance is relatively uniform across all months, 860 while the sea ice variance is much larger in high concentration months. 861

- Sea Ice and SST patterns for different months of the year, reconstructed using $\{L_1, I_1, I_2, I_5, I_6\}$. These spatial patterns are composites, obtained by averag-ing over all years in which the NPGO is active, in its positive phase (defined as $L_2^{\rm SST} > 1.5$). The Bering Sea (boxed) exhibits a spring-fall sea ice reemer-gence. Positive spring sea ice anomalies imprint negative SST anomalies as they move northward during the melt season. The SST anomalies persist through the summer months, and when the ice returns in the growth sea-son, the positive sea ice anomaly is reproduced. See movie 3 for the dynamic evolution of this mode family.
 - Lagged pattern correlations for raw sea ice data in the Bering Sea, conditional on the NPGO principal component being active. (A) shows the Bering result with no conditioning. (B) and (C) show the Bering sea conditioned on $|L_2^{\rm SST}| > 1.5$ (all values above the 82nd percentile) and $|L_2^{\rm SST}| < 1$ (all values below the 65th percentile), respectively. Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

Lagged correlations for North Pacific SST for all months and lags from 0 to 23 months. (A), (C), and (E) show lagged correlations of raw SST data in the central, eastern, and western Pacific, respectively. (B), (D), and (F), show lagged correlations in the same domains, conditional on $|L_1^{\rm SST}| > 1.5$ (all values above the 82nd percentile). Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

SST patterns for different month of the year, reconstructed using $\{\mathbf{L}_2, \mathbf{I}_3, \mathbf{I}_4, \mathbf{I}_7, \mathbf{I}_8\}$.

These spatial patterns are composites, obtained by averaging over all years in which the PDO is active, in its positive phase (defined as $L_1^{\text{SST}} > 1.5$).

The central, eastern, and western Pacific domains are boxed. The central pacific exhibits a reemergence of SST anomalies, while weaker reemergences are present in the eastern and western Pacific. The dynamic evolution of this mode family is shown in Movie 4.

52

53

54

55

- Snapshots of the time series, power spectral density, and autocorrelation functions for the sea-ice PCs (v_k) from coupled NLSA on the HADISST dataset. Shown here are two low-frequency modes $(L_1^{\rm ICE})$ and $L_2^{\rm ICE}$, an annual intermittent mode $(I_1^{\rm ICE})$ and a semiannual intermittent mode $(I_5^{\rm ICE})$. The autocorrelation vertical scale is [-1,1]. The power spectral densities (f_k) were estimated over the 34 year record via the multitaper method with time-bandwidth product p=6 and K=2p-1=11 Slepian tapers.
- Lagged correlations for North Pacific Sea Ice from the HADISST dataset for all months and lags from 0 to 23 months. (A) Shows lagged correlation for raw North Pacific sea ice data, (B) shows lagged correlations for the Bering Sea computed using the mode family $\{\mathbf{L}_1, \mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_5, \mathbf{I}_6\}$, and (C) shows lagged correlations in the North Pacific for the raw data, conditional on $|L_2^{\text{SST}}| > 1$ (all values above the 75th percentile). Colored boxes indicate correlations which are significant at the 95% level based on a t-test.
- Sea ice and SST patterns for year 2001, reconstructed from the HADISST dataset using modes $\{\mathbf{L}_1, \mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_5, \mathbf{I}_6\}$. The Bering and Okhotsk Seas (both boxed) exhibit a spring-fall sea ice reemergence. See movie 5 for the dynamic evolution of this mode family.

908	17	Lagged correlations for North Pacific SST from the HADISST dataset for all	
909		months and lags from 0 to 23 months. (A) Shows lagged correlation for raw	
910		North Pacific SST data, (B) shows lagged correlations in the North Pacific for	
911		the raw data, conditional on $ L_1^{\rm SST} >1.5$ (all values above the 75th percentile).	
912		Colored boxes indicate correlations which are significant at the 95% level based	
913		on a t-test.	56
914	18	SST patterns for year 2005, reconstructed from the HADISST dataset using	
915		modes $\{L_2, I_3, I_4, I_7, I_8\}$. The central, eastern, and western Pacific domains	
916		are boxed. The central and eastern Pacific exhibit a reemergence of SST	
917		anomalies. See movie 6 for the dynamic evolution of this mode family.	57

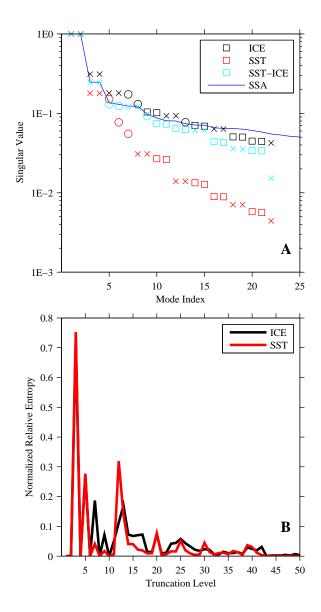


FIG. 1. (a) Singular values from coupled NLSA with phase velocity normalization (black and red markers show ice and SST singular values, respectively), variance normalization (cyan markers), and SSA (blue line). The singular values have been normalized so that $\sigma_1 = 1$. Low-frequency modes are indicated by " \bigcirc ", periodic modes by " \times ", and intermittent modes by " \square ". (b) Normalized relative entropy for A_l^{ICE} and A_l^{SST} vs truncation level l. Spikes in the relative entropy curve indicate possible candidates for the choice of truncation level.

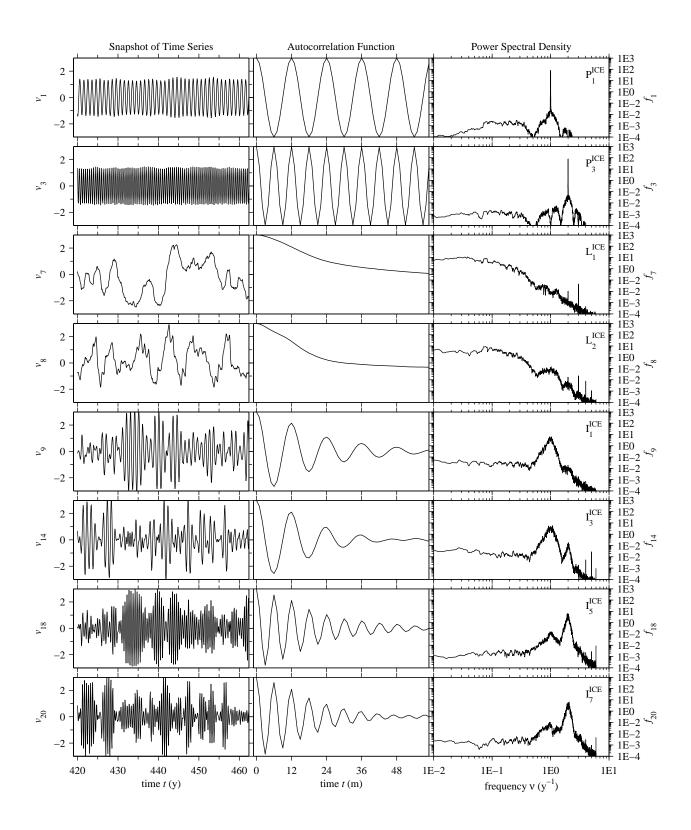


FIG. 2. Snapshots of the time series, power spectral density, and autocorrelation functions for the sea-ice PCs (v_k) from coupled NLSA. Shown here are the annual periodic $(P_1^{\rm ICE})$ and semiannual periodic $(P_3^{\rm ICE})$ modes, the NPGO mode $(L_1^{\rm ICE})$, the PDO mode $(L_2^{\rm ICE})$, annual intermittent modes $(I_1^{\rm ICE})$ and $I_3^{\rm ICE}$, and semiannual intermittent modes $(I_5^{\rm ICE})$ and $I_7^{\rm ICE}$. The autocorrelation vertical scale is [-1,1]. The power spectral densities (f_k) were estimated over the full 900 year timeseries via the multitaper method with time-bandwidth product p=6 and K=2p-1=11 Slepian tapers.

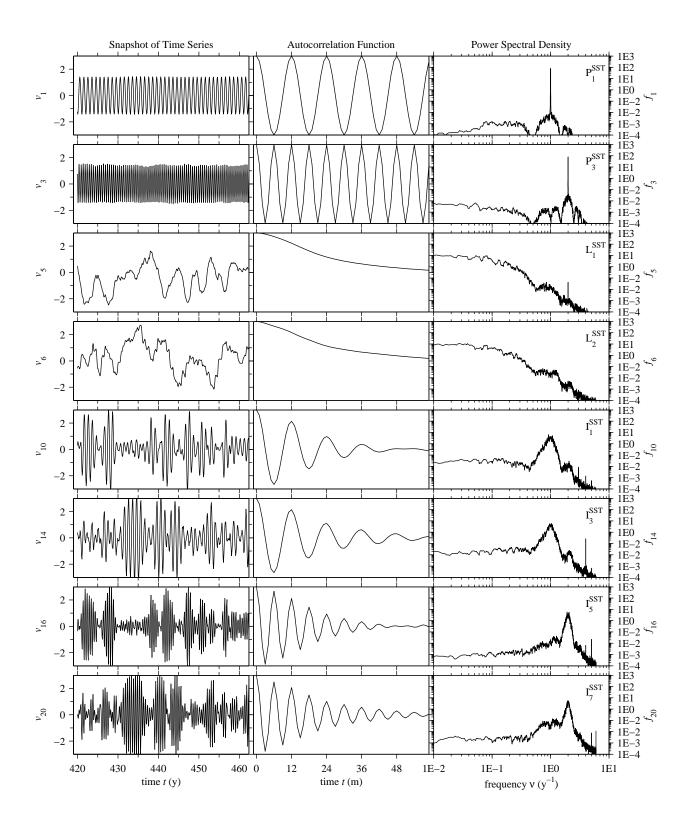


FIG. 3. Snapshots of the time series, power spectral density, and autocorrelation functions for the SST PCs (v_k) from coupled NLSA. Shown here are the annual periodic $(P_1^{\rm SST})$ and semiannual periodic $(P_3^{\rm SST})$ modes, the PDO mode $(L_1^{\rm SST})$, the NPGO mode $(L_2^{\rm SST})$, annual intermittent modes $(I_1^{\rm SST}$ and $I_3^{\rm SST})$, and semiannual intermittent modes $(I_5^{\rm SST}$ and $I_7^{\rm SST})$. The autocorrelation vertical scale is [-1,1]. The power spectral densities (f_k) were estimated over the full 900 year timeseries via the multitaper method with time-bandwidth product p=6 and K=2p-1=11 Slepian tapers.

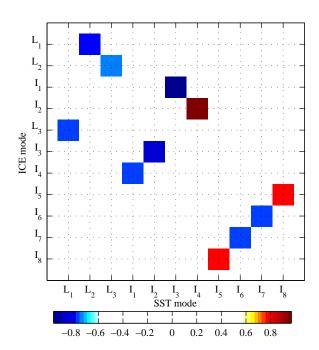


Fig. 4. Correlations between selected SST and and sea ice principal components. Note that each SST PC can be associated with a single sea ice PC.

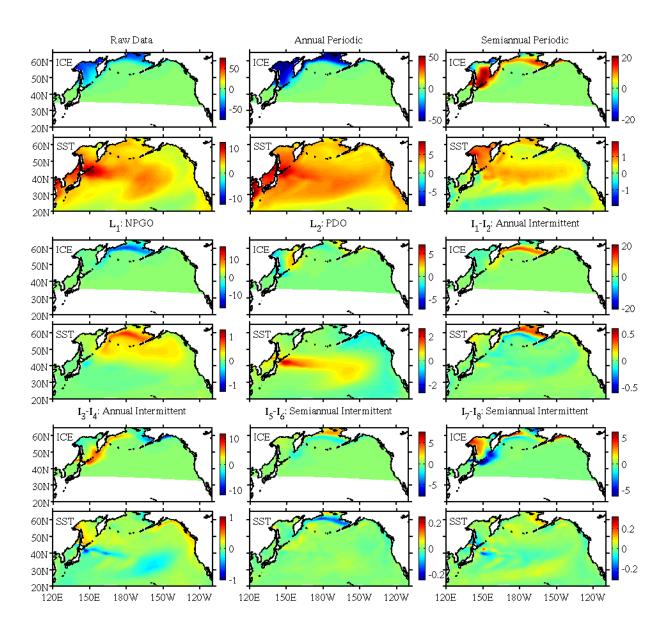


Fig. 5. Snapshots of raw data and spatiotemporal modes from coupled NLSA. See movie 1 for the dynamic evolution of these modes.

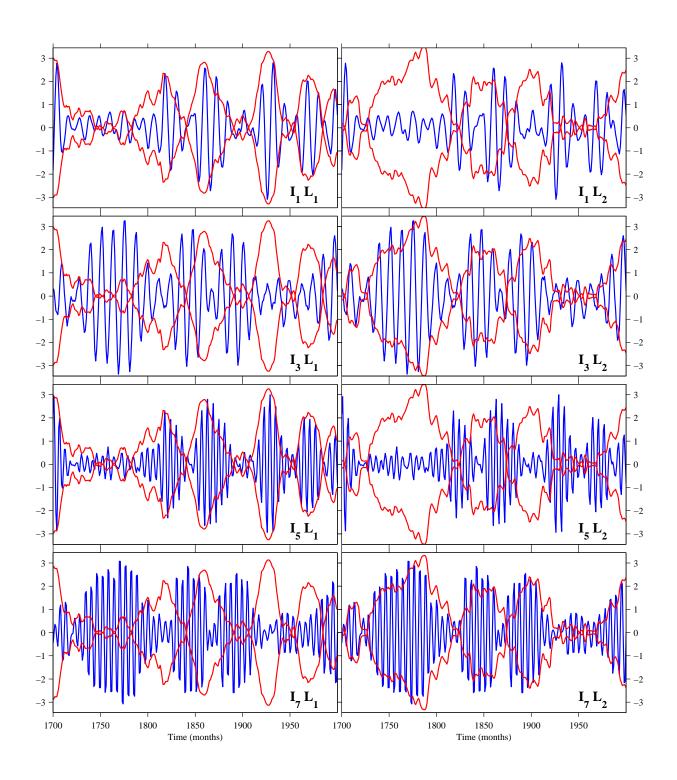
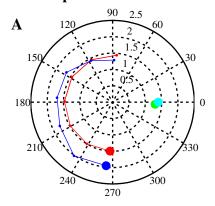
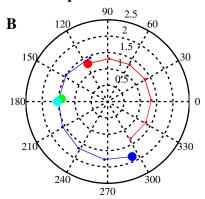


Fig. 6. Time series of intermittent modes $I_1^{\rm SST}, I_3^{\rm SST}, I_5^{\rm SST}, I_7^{\rm SST}$ plotted in blue, and low-frequency envelopes defined by $L_1^{\rm SST}$ (PDO) and $L_2^{\rm SST}$ (NPGO) plotted in red.

In phase: NPGO > 1



Out of phase: NPGO < -1



Transition: NPGO inactive

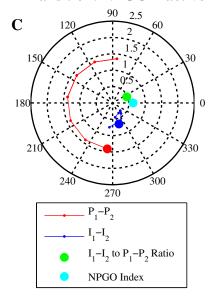


FIG. 7. Phase evolution of intermittent modes $\{I_1^{\rm ICE},I_2^{\rm ICE}\}$ in the $I_1^{\rm ICE}-I_2^{\rm ICE}$ plane (blue dots) and periodic modes $\{P_1^{\rm ICE},P_2^{\rm ICE}\}$ in the $P_1^{\rm ICE}-P_2^{\rm ICE}$ plane (red dots), where the present value is shown with the larger dot and the smaller dots show the previous six values. The cyan dot shows the value of $I_1^{\rm ICE}$ plotted along the real axis, and the green dot shows the ratio of $\{I_1^{\rm ICE},I_2^{\rm ICE}\}$ to $\{P_1^{\rm ICE},P_2^{\rm ICE}\}$, a test for how close the intermittent modes are to being a product of periodic and low-frequency modes. (A) shows an in phase regime, (B) shows and out of phase regime and (C) shows a transition regime. See movie 2 for a more illuminating time evolution.

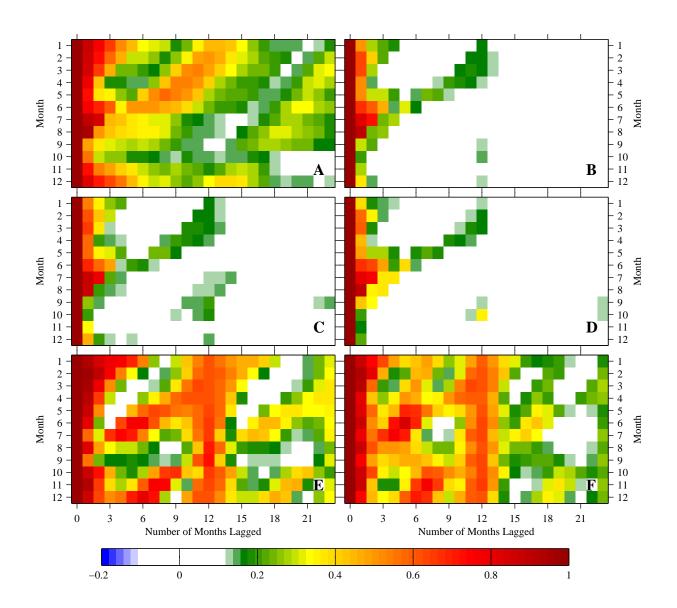


FIG. 8. Lagged correlations for North Pacific sea ice for all months and lags from 0 to 23 months. (A) shows the lagged correlation structure in total arctic sea ice area, computed following the methodology of BW. All other panels are lagged pattern correlations: (B) North Pacific with raw data; (C) and (D) are computed in the Bering and Okhotsk Seas, respectively, using raw data; (E) Bering Sea with modes $\{L_1, I_1, I_2, I_5, I_6\}$; (F) Okhotsk Sea with modes $\{L_2, I_3, I_4, I_7, I_8\}$. Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

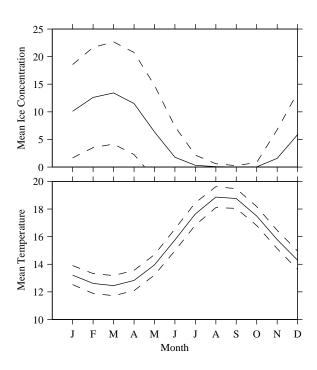


FIG. 9. Monthly mean sea ice concentration and SST from CCSM3, with the dashed line showing $\pm 1\sigma$. The SST variance is relatively uniform across all months, while the sea ice variance is much larger in high concentration months.

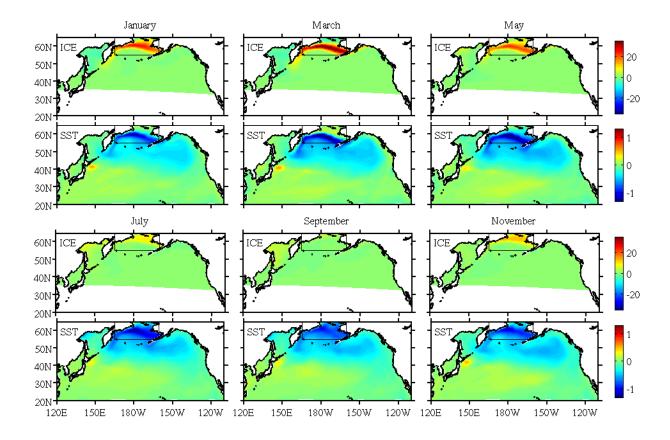


FIG. 10. Sea Ice and SST patterns for different months of the year, reconstructed using $\{\mathbf{L}_1, \mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_5, \mathbf{I}_6\}$. These spatial patterns are composites, obtained by averaging over all years in which the NPGO is active, in its positive phase (defined as $L_2^{\text{SST}} > 1.5$). The Bering Sea (boxed) exhibits a spring-fall sea ice reemergence. Positive spring sea ice anomalies imprint negative SST anomalies as they move northward during the melt season. The SST anomalies persist through the summer months, and when the ice returns in the growth season, the positive sea ice anomaly is reproduced. See movie 3 for the dynamic evolution of this mode family.

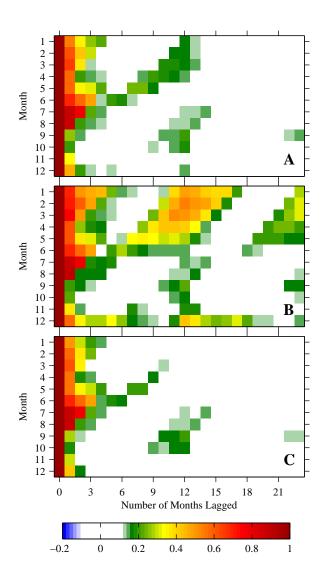


FIG. 11. Lagged pattern correlations for raw sea ice data in the Bering Sea, conditional on the NPGO principal component being active. (A) shows the Bering result with no conditioning. (B) and (C) show the Bering sea conditioned on $|L_2^{\rm SST}| > 1.5$ (all values above the 82nd percentile) and $|L_2^{\rm SST}| < 1$ (all values below the 65th percentile), respectively. Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

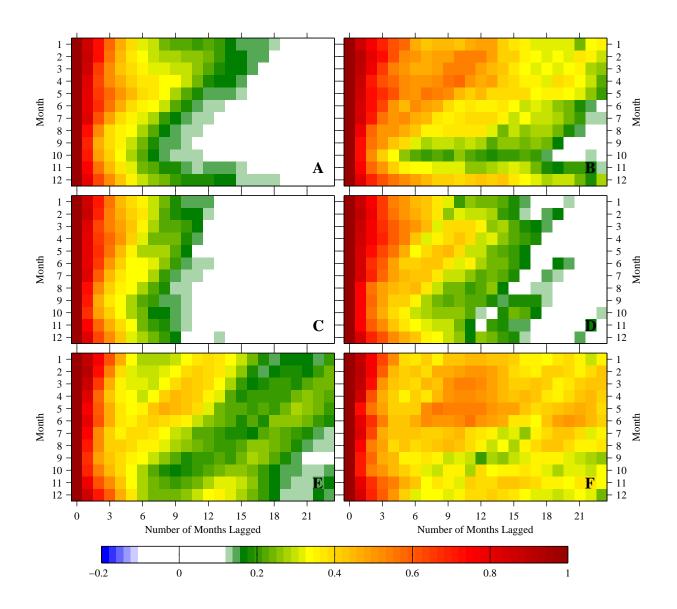


FIG. 12. Lagged correlations for North Pacific SST for all months and lags from 0 to 23 months. (A), (C), and (E) show lagged correlations of raw SST data in the central, eastern, and western Pacific, respectively. (B), (D), and (F), show lagged correlations in the same domains, conditional on $|L_1^{\rm SST}| > 1.5$ (all values above the 82nd percentile). Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

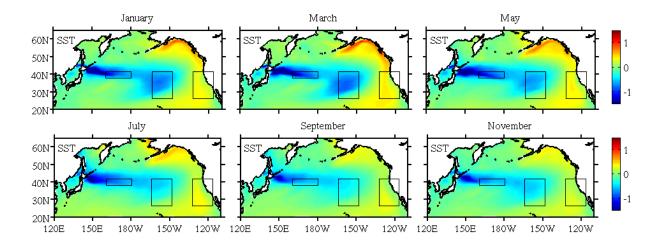


FIG. 13. SST patterns for different month of the year, reconstructed using $\{\mathbf{L}_2, \mathbf{I}_3, \mathbf{I}_4, \mathbf{I}_7, \mathbf{I}_8\}$. These spatial patterns are composites, obtained by averaging over all years in which the PDO is active, in its positive phase (defined as $L_1^{\text{SST}} > 1.5$). The central, eastern, and western Pacific domains are boxed. The central pacific exhibits a reemergence of SST anomalies, while weaker reemergences are present in the eastern and western Pacific. The dynamic evolution of this mode family is shown in Movie 4.

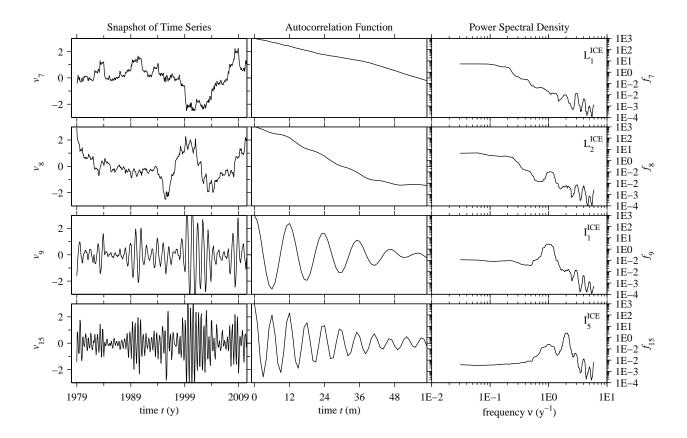


FIG. 14. Snapshots of the time series, power spectral density, and autocorrelation functions for the sea-ice PCs (v_k) from coupled NLSA on the HADISST dataset. Shown here are two low-frequency modes $(L_1^{\rm ICE})$ and $L_2^{\rm ICE}$, an annual intermittent mode $(I_1^{\rm ICE})$ and a semiannual intermittent mode $(I_5^{\rm ICE})$. The autocorrelation vertical scale is [-1,1]. The power spectral densities (f_k) were estimated over the 34 year record via the multitaper method with time-bandwidth product p=6 and K=2p-1=11 Slepian tapers.

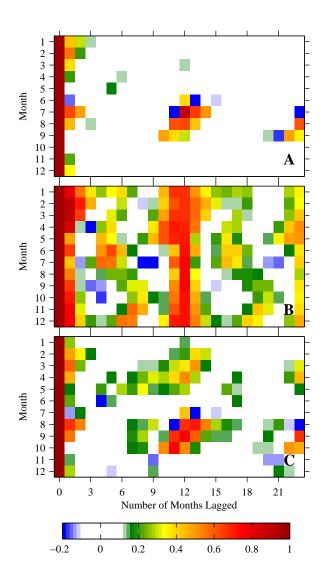


FIG. 15. Lagged correlations for North Pacific Sea Ice from the HADISST dataset for all months and lags from 0 to 23 months. (A) Shows lagged correlation for raw North Pacific sea ice data, (B) shows lagged correlations for the Bering Sea computed using the mode family $\{\mathbf{L}_1, \mathbf{I}_1, \mathbf{I}_2, \mathbf{I}_5, \mathbf{I}_6\}$, and (C) shows lagged correlations in the North Pacific for the raw data, conditional on $|L_2^{\text{SST}}| > 1$ (all values above the 75th percentile). Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

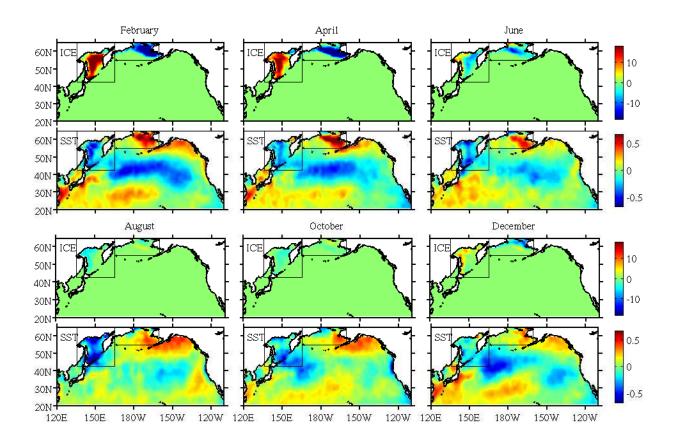


FIG. 16. Sea ice and SST patterns for year 2001, reconstructed from the HADISST dataset using modes $\{L_1, I_1, I_2, I_5, I_6\}$. The Bering and Okhotsk Seas (both boxed) exhibit a springfall sea ice reemergence. See movie 5 for the dynamic evolution of this mode family.

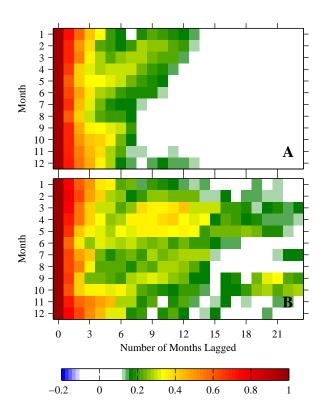


Fig. 17. Lagged correlations for North Pacific SST from the HADISST dataset for all months and lags from 0 to 23 months. (A) Shows lagged correlation for raw North Pacific SST data, (B) shows lagged correlations in the North Pacific for the raw data, conditional on $|L_1^{\rm SST}| > 1.5$ (all values above the 75th percentile). Colored boxes indicate correlations which are significant at the 95% level based on a t-test.

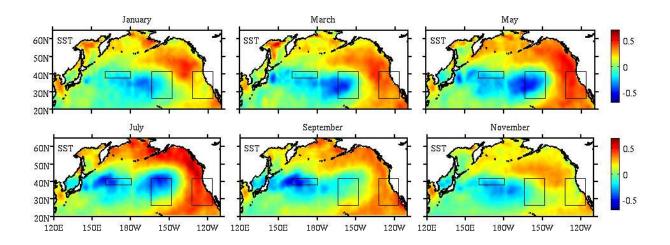


FIG. 18. SST patterns for year 2005, reconstructed from the HADISST dataset using modes $\{L_2, I_3, I_4, I_7, I_8\}$. The central, eastern, and western Pacific domains are boxed. The central and eastern Pacific exhibit a reemergence of SST anomalies. See movie 6 for the dynamic evolution of this mode family.