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ABSTRACT4

This paper studies spatiotemporal modes of variability of sea ice concentration and sea5

surface temperature (SST) in the North Pacific sector in a comprehensive climate model and6

observations. These modes are obtained via nonlinear Laplacian spectral analysis (NLSA),7

a recently developed data analysis technique for high-dimensional nonlinear datasets. The8

existing NLSA algorithm is modified to allow for a scale-invariant coupled analysis of multiple9

variables in different physical units. The coupled NLSA modes are utilized to investigate10

North Pacific sea ice reemergence: a process in which sea ice anomalies originating in the11

melt season (spring) are positively correlated with anomalies in the growth season (fall)12

despite a loss of correlation in the intervening summer months. It is found that a low-13

dimensional family of NLSA modes is able to reproduce the lagged correlations observed14

in sea ice data from the North Pacific Ocean. This mode family exists in both model15

output and observations, and is closely related with the North Pacific Gyre Oscillation16

(NPGO), a low-frequency pattern of North Pacific SST variability. Moreover, this mode17

family provides a mechanism for sea ice reemergence, in which summer SST anomalies store18

the memory of spring sea ice anomalies, allowing for sea ice anomalies of the same sign19

to appear in the fall season. Lagged correlations in model output and observations are20

significantly strengthened by conditioning on the NPGO mode being active, in either positive21

or negative phase. Another family of NLSA modes, related to the Pacific Decadal Oscillation22

(PDO), is found to capture a winter-to-winter reemergence of SST anomalies.23
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1. Introduction24

Sea ice is a complex and critical component of the climate system. Existing at the25

interface between the atmosphere and the ocean, it modulates the atmosphere’s ability to26

force the ocean through wind, and the ocean’s ability to force the atmosphere through sea27

surface temperatures (SSTs). It also regulates turbulent heat transfer between the two28

media. Sea ice is a truly multi-scale phenomenon: its dynamics are heavily influenced by29

large-scale circulation of the ocean and atmosphere, as well as by small-scale thermodynamic30

and mechanical processes. Understanding the dynamics of sea ice and its relationship to the31

atmosphere and ocean is of critical importance to twenty-first century scientists, as sea32

ice is extremely sensitive to greenhouse warming effects (Walsh 1983). Through the ice-33

albedo feedback mechanism, sea ice has the potential to change rapidly and influence other34

components of the climate system (Budyko 1969; Curry et al. 1995).35

Two regions of high Arctic sea ice variability and interesting sea ice dynamics are the36

Bering Sea and the Sea of Okhotsk in the North Pacific Ocean. Empirical orthogonal function37

(EOF) analysis of North Pacific sea ice observational data shows a leading mode which is38

a sea ice dipole between the Okhotsk and Bering seas, and a second mode with spatially39

uniform ice changes over the domain (Deser et al. 2000; Liu et al. 2007). Other authors have40

also found evidence of a Bering-Okhotsk dipole (Cavalieri and Parkinson 1987; Fang and41

Wallace 1994).42

The primary hypothesis from earlier work on North Pacific sea ice is that atmospheric43

patterns such as the Aleutian low and the Siberian high drive sea ice variability (Parkinson44

1990; Cavalieri and Parkinson 1987; Sasaki and Minobe 2006). The study of Blanchard-45

Wrigglesworth et al. (2011), hereafter BW, suggests that the ocean may also play an im-46

portant role in sea ice variability. BW found that Arctic sea ice has “memory”, in which47

anomalies of a certain sign in the melt season (spring) tend to produce anomalies of the same48

sign in the growth season (fall). Additionally, they found that the intervening summer sea49

ice cover was not strongly correlated with the spring anomalies. This phenomenon, termed50
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sea ice reemergence, was observed in the fall-spring variety described above, as well as a51

summer-summer reemergence. BW propose a mechanism for the spring-fall reemergence in52

which spring sea ice anomalies induce an SST anomaly of opposite sign, which persists over53

the summer months. When the ice edge returns to this spatial location in the fall, the SST54

anomaly reproduces a sea ice anomaly of the same sign as the spring. The phenomenon of55

reemergence has also been observed in North Pacific Ocean data (Alexander et al. 1999), in56

the form of a winter-to-winter SST reemergence.57

In this study, we seek an understanding of the coupled variability of sea ice and SST58

in the North Pacific Ocean. To achieve this, we utilize a recent data analysis technique59

known as nonlinear Laplacian spectral analysis (NLSA, Giannakis and Majda 2013, 2012c),60

which is a nonlinear manifold generalization of singular spectrum analysis (SSA, Vautard61

and Ghil 1989; Broomhead and King 1986; Ghil et al. 2002). Given a time series of high-62

dimensional data, NLSA yields a set of spatiotemporal modes, analogous to extended EOFs,63

and a corresponding set of temporal patterns, analogous to principal components (PCs).64

In applications involving North Pacific SST from climate models (Giannakis and Majda65

2012a), these include intermittent type modes not found in SSA that carry low variance but66

are important as predictor variables in regression models (Giannakis and Majda 2012b).67

The original NLSA algorithm was designed for analysis of a single scalar or vector-valued68

variable, thus modifications to the algorithm are required in order to perform a coupled anal-69

ysis of multiple variables in different physical units. Here, we investigate the phenomenon of70

sea ice reemergence using the spatiotemporal modes of variability extracted through coupled71

NLSA of sea ice concentration and SST from a 900-yr control integration of the Community72

Climate System Model version 3 (CCSM3, Collins et al. 2006), and in 34 years of sea ice73

and SST satellite observations from the Met Office Hadley Center Sea Ice and Sea Surface74

Temperature (HADISST, Rayner et al. 2003) dataset. We find that the sea ice reemergence75

mechanism suggested by BW can be reproduced in both model output and observations us-76

ing low-dimensional families of NLSA modes, with the intermittent modes playing a crucial77
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role in this mechanism. Moreover, we find that the reemergence of correlation, in both sea78

ice and SST, is significantly strengthened by conditioning on certain low-frequency modes79

being active. These low-frequency modes reflect the North Pacific SST variability of the80

North Pacific Gyre Oscillation (NPGO, Di Lorenzo et al. 2008) and the Pacific Decadal81

Oscillation (PDO, Mantua and Hare 2002). We find that the NPGO is related to the sea ice82

reemergence of BW, while the PDO is related to SST reemergence (Alexander et al. 1999).83

The plan of this paper is as follows. In section 2, we introduce the coupled NLSA84

algorithm. In section 3, we describe the CCSM3 and HADISST datasets. In section 4, we85

describe modes of variability captured by coupled NLSA when applied to North Pacific sea86

ice and SST from CCSM3. In section 5, we find reduced subsets of NLSA modes that are87

able to reproduce the lagged correlation structure of BW, and we provide a mechanism for88

the observed sea ice memory. We also investigate SST reemergence. In section 6, we compare89

the results from CCSM3 to observations, by performing similar analyses on the HADISST90

dataset. We conclude in section 7. Movies illustrating the dynamic evolution of modes are91

available as online supplementary material.92

2. The coupled NLSA algorithm93

The original NLSA algorithm (Giannakis and Majda 2013, 2012c) is designed for analysis94

of a high-dimensional time series from a single scalar or vector-valued variable. This study95

seeks to perform a coupled analysis of sea ice and SST, thus it was necessary to modify96

the NLSA algorithm to allow for an analysis of multiple variables with, in general, different97

physical units.98

Let x1t and x2t be two signals, each sampled uniformaly at time step δt. Let x1t be sampled99

over d1 gridpoints and x2t be sampled over d2 gridpoints. Following Giannakis and Majda100

(2013, 2012c) and the techniques of SSA, we choose some time-lagged embedding window101

∆t = qδt, and we embed our data in the higher-dimensional space H1 = Rd1q and H2 = Rd2q
102
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under the delay-coordinate mappings103

x1t 7→ X1
t = (x1t , x

1
t−δt, ..., x

1
t−(q−1)δt),

x2t 7→ X2
t = (x2t , x

2
t−δt, ..., x

2
t−(q−1)δt).

Next, for each variable we compute the phase space velocities, ξ1i and ξ2i , viz.104

ξ1i = X1
i −X1

i−1,

ξ2i = X2
i −X2

i−1.

(1)

These vectors have a natural geometric interpretation as the vector field on the data manifold105

driving the dynamics (Giannakis 2014).106

NLSA algorithms utilize a set of natural orthonormal basis functions on the nonlinear107

data manifold to describe temporal patterns analogous to PCs. These basis functions are108

eigenfunctions of a graph Laplacian operator (see (3), ahead) computed from a pairwise109

kernel function K on the data. The graph Laplacian eigenfunctions form a complete basis110

on the data manifold and are ordered in terms of increasing eigenvalue. These eigenvalues111

can be interpreted as squared “wavenumbers” on the data manifold (Giannakis and Majda112

2014). Performing a spectral truncation in terms of the leading l eigenfunctions acts as a113

filter for the data, which removes high wavenumber energy, while retaining the energy at low114

wavenumbers. This truncation penalizes highly oscillatory features on the data manifold,115

and emphasizes slowly varying ones.116

In the coupled NLSA approach introduced here, the pairwise kernel function K is con-117

structed using the idea of scale invariance. In particular, we compute the Gaussian kernel118

Kij so that physical variables are made dimensionless, allowing for direct comparison of119

different variables:120

Kij = exp

(
−
‖X1

i −X1
j ‖2

ε‖ξ1i ‖‖ξ1j ‖
−
‖X2

i −X2
j ‖2

ε‖ξ2i ‖‖ξ2j ‖

)
. (2)

Here, ε is a parameter that controls the locality of the Gaussian kernel, and ‖ · ‖ is the121

standard Euclidean norm. Heuristically, Kij represents the likelihood of a random walker122

on the data manifold transitioning from state i to state j. Note that this random walk is123
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introduced solely for the purpose of evaluating orthonormal basis functions on the discrete124

data manifold. In particular, the random walk has no relation to the actual dynamics of125

the system. This kernel depends on the phase velocity magnitude ‖ξi‖ from (1) in the sense126

that states with a large (small) velocity magnitude have appreciable transition probability127

to a larger (smaller) number of states, due to the Gaussian having a larger (smaller) width.128

As a result, the algorithm has enhanced skill in capturing transitory events characterized by129

large ‖ξi‖ (Giannakis and Majda 2012c). Using the graph Laplacian approach of Coifman130

and Lafon (2006), we compute the Laplacian matrix L via the following steps:131

Qi =

s−q∑
j=1

Kij,

K̃ij =
Kij

Qα
i Q

α
j

,

Di =

s−q∑
j=1

K̃ij,

Pij =
K̃ij

Di

,

L = I − P,

where P is a transition matrix, I is the identity matrix, and α is a normalization parameter.132

For this study, we will use α = 0, which is a conventional choice for this class of algorithms.133

From here, the algorithm proceeds analogously to NLSA. We solve the eigenvalue problem134

Lφi = λφi, (3)

and recover a set of discrete Laplacian eigenfunctions {φ1, φ2, . . . , φs−q} defined on the data135

manifold. The transition matrix P also defines an invariant measure ~µ on the discrete data136

manifold, given by137

~µP = ~µ,

where µi represents the volume occupied by the sample Xi = (X1
i , X

2
i )t on the data manifold.138
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Let X1 : Rs−q 7→ Rqd1 and X2 : Rs−q 7→ Rqd2 be the data matrices for our two s-sample139

data sets:140

X1 =

[
X1
q+1 X1

q+2 . . . X1
s

]
,

X2 =

[
X2
q+1 X2

q+2 . . . X2
s

]
.

Projecting X1 and X2 onto the leading l Laplacian eigenfunctions, we construct linear maps141

A1
l : Rl 7→ Rqd1 and A2

l : Rl 7→ Rqd2 , given by142

A1
l = X1µΦ, A2

l = X2µΦ.

In the above, Φ is a matrix whose columns are the leading l Laplacian eigenfunctions, and µ143

is a diagonal matrix with entries ~µ along the diagonal. Singular value decomposition (SVD)144

of the operators A1
l and A2

l yields sets of spatiotemporal modes u1k and u2k of dimension qd1145

and qd2, respectively, analogous to extended EOFs, and temporal modes v1k(t) and v2k(t)146

of length s − q, analogous to PCs. Projecting the modes from lagged embedding space to147

physical space, we obtain spatiotemporal patterns ũ1k(t) and ũ2k(t) for the two original fields.148

It should be noted that, while the SVD is performed on each operator individually, the149

resulting spatiotemporal patterns {u1k} and {u2k}, and principal components {v1k} and {v2k},150

are inherently coupled. This is because these operators are constructed using the same151

l-dimensional set of eigenfunctions, which have been computed using the full multivariate152

dataset.153

Another natural possibility for performing coupled NLSA is to perform an initial nor-154

malization of each physical variable to unit variance, and subsequently perform the standard155

NLSA algorithm on the concatenated dataset. A problem with this approach is that we arti-156

ficially impose the variance ratio of the two variables, without incorporating any information157

about their relative variabilities. An appealing feature of the coupled approach described158

above is that the variance ratio between variables is automatically chosen by the algorithm159

in a dynamically motivated manner. We term the approach outlined in this section “phase160
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velocity normalization” and the normalization to unit variance “variance normalization.”161

We will return to these issues in section 4a. Another appealing aspect of the algorithm162

above is that it can be naturally generalized from two variables to many variables.163

3. Dataset description164

a. CCSM3 model output165

This study analyzes model output from a 900-yr equilibrated control integration of166

CCSM3 (Collins et al. 2006). We use CCSM3 monthly averaged sea ice concentration and167

SST data, which come from the Community Sea Ice Model (CSIM, Holland et al. 2006) and168

the Parallel Ocean Program (POP, Smith and Gent 2004), respectively. The model uses a169

T42 spectral truncation for the atmospheric grid (roughly 2.9◦ × 2.9◦), and the ocean and170

sea ice variables are defined on the same grid, of 1◦ nominal resolution. This study focuses171

on the North Pacific sector of the ocean, which we define as the region 120◦E–110◦W and172

20◦N–65◦N (Teng and Branstator 2011). Note that the seasonal cycle has not been removed173

from this dataset.174

Sea ice concentration is only defined for the northern part of this domain, thus we have175

d1 = 3750 sea ice spatial gridpoints, and d2 = 6671 SST spatial gridpoints. Using an176

embedding window of q = 24 (Giannakis and Majda 2012c), this yields lagged embedding177

dimensions of qd1 = 90,000 and qd2 = 160,104. The value of q = 24 months was used as the178

time lag because the resulting embedding window is longer than the seasonal cycle, which is179

a primary source of non-Markovianity in this dataset. A number of q values ∈ [1, 48] were180

tested, including q’s relatively prime to 12. It was found that the results were qualitatively181

similar for sufficiently large q, i.e. q ≥ 12, and sensitive to q for q < 12 (see also Giannakis182

and Majda 2013).183
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b. Observational data184

We also study the Met Office Hadley Center Sea Ice and Sea Surface Temperature185

(HadISST) dataset (Rayner et al. 2003), which consists of monthly averaged sea ice and186

SST data on a 1◦ latitude-longitude grid. We use the satellite era data from January 1979-187

August 2013. Note that all ice-covered gridpoints in the HADISST dataset were assigned an188

SST value of −1.8◦C, the freezing point of salt water at a salinity of 35 parts per thousand.189

Moreover, the trend in the dataset was removed by computing a long-term linear trend for190

each month of the year, and removing the respective linear trend from each month.191

4. Coupled sea ice-SST spatiotemporal modes of vari-192

ability in CCSM3193

We apply the coupled NLSA algorithm described in Section 2 to the CCSM3 sea ice and194

SST datasets, using an embedding window of ∆t = 24 months, and choosing the parameter195

ε, which controls the locality of the Gaussian kernel, as ε = 1.4. We include a discussion196

of the of the robustness of results with respect to changes in ε in section 4a. Note that197

the time mean at each gridpoint has been subtracted from the dataset, but the seasonal198

cycle has not been subtracted. Utilizing the spectral entropy criterion outlined in Giannakis199

and Majda (2012a, 2013), we choose a truncation level of l = 22, and express the lagged200

embedding matrices X ICE and XSST in the basis of the leading 22 Laplacian eigenfunctions,201

yielding the operators AICE
l and ASST

l . Singular value decomposition of AICE
l produces a202

set of l temporal patterns, vICE
k , of length s − q, analogous to PCs and l corresponding203

spatiotemporal patterns, uICE
k , of dimension qd1, analogous to extended EOFs. Similarly,204

SVD of ASST
l produces temporal patterns, vSSTk , and corresponding spatiotemporal patterns205

uSSTk , of dimension qd2. Each variable has its own set of principal components, but we find206

that each sea ice PC is strongly correlated with a particular SST PC. Therefore, it is natural207
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to consider the corresponding spatiotemporal patterns as a pattern of coupled SST-sea ice208

variability.209

Figure 1a shows the singular values of the operators AICE
l and ASST

l using the phase ve-210

locity normalization approach outlined in section 2 and the variance normalization approach211

mentioned at the end of section 2. Also shown are the singular values from SSA performed212

on the unit variance normalized dataset. Note that the SST singular values decay much more213

rapidly than the sea ice singular values, indicating that the SST signal has more variability214

stored in its leading modes than the sea ice signal.215

Figure 1b shows a plot of the normalized relative entropy vs truncation level l, computed216

using the approach of Giannakis and Majda (2012a, 2013). As l → ∞, and in the case of217

uniform measure ~µ and phase velocity ξ, the results of NLSA converge to SSA. The spectral218

entropy criterion provides a heuristic guideline for choosing l, designed to select l large-219

enough to reproduce the crucial features of the data, but small-enough to filter out highly220

oscillatory features of the data (Giannakis and Majda 2014). The latter would be present221

in the SSA limit mentioned above. In the normalized relative entropy plot, spikes represent222

the addition of qualitatively new features to the data, and suggest possible truncation levels.223

Here, seeking a parsimonious description of the data, we select a truncation level of l = 22.224

a. Temporal modes and sea ice-SST coupling225

Coupled NLSA yields three distinct families of of modes: periodic, low-frequency, and226

intermittent modes. Figures 2 and 3 summarize the temporal patterns vICE
k and vSSTk , re-227

spectively, showing snapshots of the vICE
k and vSSTk time series, power spectral densities,228

and autocorrelation functions. We use the letters P , L, and I to designate periodic, low-229

frequency, and intermittent modes, respectively.230

The periodic modes exist in doubly degenerate pairs with temporal patterns vk(t) that231

are sinusoidal with a relative phase of π/2, and with frequencies of integer multiples of 1 yr−1.232

The leading two pairs of periodic modes carry more variance than any of the low-frequency233
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or intermittent modes, and represent annual and semiannual variability, respectively. The234

low-frequency modes carry the majority of their spectral power over interannual to decadal235

timescales, and have a typical decorrelation time of 3–4 years.236

The intermittent modes are characterized by broadband spectral power centered on a237

base frequency of oscillation with some bias towards lower frequencies. Similar to the pe-238

riodic modes, these modes come in nearly degenerate pairs. The temporal behavior of the239

intermittent modes resembles a periodic signal modulated by a low frequency envelope. In240

the spatial domain, they are characterized by a bursting-type behavior with periods of qui-241

escence followed by periods of strong activity. The intermittent modes carry lower variance242

than their low-frequency and periodic counterparts (see Fig. 1a), however they play a cru-243

cial role in explaining the sea ice reemergence mechanism, as will be demonstrated in the244

following sections of this paper. Elsewhere (Giannakis and Majda 2012b), it has been demon-245

strated that this class of modes has high significance in external-factor regression models for246

low-frequency modes, in which the intermittent modes are used as prescribed external factors247

(forcings). Intermittent type modes highlight the main difference between SSA and NLSA:248

NLSA captures low-variance patterns of potentially high dynamical significance using a small249

set of modes, while classical SSA does not.250

The sea ice PCs, vICE
k , are certainly not independent of the SST PCs, vSSTk . We find that251

each sea ice PC is strongly correlated with a certain SST PC. In Fig. 4, we show correlations252

between selected sea ice and SST PCs. Motivated by these correlations, we define the follow-253

ing coupled modes of sea ice-SST variability: P1 = (P ICE
1 , P SST

1 ), P2 = (P ICE
2 , P SST

2 ), P3 =254

(P ICE
3 , P SST

3 ), P4 = (P ICE
4 , P SST

4 ), L1 = (LICE
1 , LSST

2 ), L2 = (LICE
3 , LSST

1 ), I1 = (I ICE
1 , ISST3 ),255

I2 = (I ICE
2 , ISST4 ), I3 = (I ICE

3 , ISST2 ), I4 = (I ICE
4 , ISST1 ), I5 = (I ICE

5 , ISST8 ), I6 = (I ICE
6 , ISST7 ),256

I7 = (I ICE
7 , ISST6 ), and I8 = (I ICE

8 , ISST5 ). Note that the mode pairs {P1,P2}, {P3,P4},257

{I1, I2}, {I3, I4}, {I5, I6}, and {I7, I8} are degenerate modes with a relative phase of π/2.258

A number of different values of ε, the locality parameter of the Gaussian kernel, were259

tested to examine the robustness of these results. We find that the modes are very similar for260
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values of ε ∈ [1, 2]. For values of ε outside this interval, we observe a less clean split between261

L2 and certain intermittent modes, resulting in modes with power spectra that resemble a262

combination of the low-frequency and intermittent modes. We find that the periodic modes263

and modes {L1, I1, I2, I5, I6}, which will be important later in the paper, are much more264

robust with respect to changes in ε. These modes are very similar for values of ε ∈ [0.5, 5].265

b. Spatiotemporal modes266

Figure 5 shows the spatial patterns of the coupled modes defined above at a snapshot267

in time. Movie 1, showing the evolution of these spatial patterns, is available in the online268

supplementary material, and is much more illuminating.269

1) Periodic modes270

The pair of annual periodic modes, {P1,P2}, have a sea ice pattern which involves271

spatially uniform growth in the Bering and Okhotsk Sea from October to March and spatially272

uniform melt from April to September. The SST pattern is intensified in the western part273

of the basin and along the West Coast of North America. Moreover, it is relatively uniform274

zonally, and out of phase with the annual periodic sea ice anomalies. The semiannual pair275

of modes, {P3,P4}, have a sea ice pattern with strong amplitude in the southern part of276

the Bering and Okhotsk seas and much weaker amplitude in the northern part of these seas.277

The SST pattern of these modes is, again, relatively uniform zonally and intensified in the278

western part of the basin. The higher-frequency periodic modes have more spatial structure279

and zonal variability, as well as smaller amplitude.280

2) Low-frequency modes281

The leading low-frequency mode, L1, has an SST pattern that resembles the NPGO282

(Di Lorenzo et al. 2008), which is the second leading EOF of seasonally detrended Northeast283
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Pacific (180◦W – 110◦W and 25◦N – 62◦N) SST. Computing pattern correlations between284

EOFs of Northeast Pacific SST and the q SST spatial patterns of L1, we find a maximum285

pattern correlation of 0.94 with EOF 2, the NPGO mode. If we consider basin-wide SST286

patterns, we find that the SST pattern of L1 has a maximum pattern correlation of 0.82287

with EOF 3 of North Pacific (120◦E – 110◦W and 20◦N – 65◦N) SST. EOF 3 has a pattern288

correlation of 0.91 with the NPGO, thus this mode seems to reflect the basin-wide pattern289

of variability corresponding to the NPGO mode of the Northeast Pacific. In light of these290

correlations, we call L1 the NPGO mode. Note that these SST EOFs were computed using291

SST output from the CCSM3 model. The NPGO mode has its dominant sea ice signal in292

the Bering Sea, and its amplitude is largest in the southern part of the Bering Sea. Its SST293

pattern has a strong anomaly of opposite sign, spatially coincident with the sea ice anomaly,294

as well as a weaker anomaly extending further southward and eastward in the domain.295

The second low-frequency mode, L2, has a spatial pattern resembling the PDO, which is296

the leading EOF of seasonally detrended North Pacific SST data (Mantua and Hare 2002).297

Computing pattern correlations between EOF 1 of North Pacific SST (the PDO) and the298

SST pattern of L2, we find a maximum pattern correlation of 0.99. Also, EOF 1 of Northeast299

Pacific SST (which has a 0.99 pattern correlation with the PDO) has a maximum pattern300

correlation of 0.98 with the SST pattern of L2. In light of these correlations, we call L2 the301

PDO mode. The sea ice component of the PDO mode consists of sea ice anomalies along302

the Kamchatka Peninsula, and in the southern and eastern parts of the Sea of Okhotsk. The303

SST pattern consists of a large-scale SST anomaly along the Kuroshio extension region, and304

an anomaly of the opposite sign along the west coast of North America.305

3) Intermittent modes306

The leading pair of intermittent modes, {I1, I2}, have a base frequency of 1 yr−1 and are307

characterized by a strong pulsing sea ice anomaly in the southern Bering Sea and a weaker308

anomaly of opposite sign in the Sea of Okhotsk. The SST pattern consists of a strong pulsing309
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dipole anomaly in the Bering Sea and weaker small-scale temperature anomalies that prop-310

agate eastward along the Kuroshio extension region. The next pair of annual intermittent311

modes, {I3, I4}, have sea ice anomalies that originate in the Bering Sea and propagate along312

the Kamchatka peninsula into the Sea of Okhotsk. The SST pattern is a basin-wide signal,313

with strong intermittent anomalies along the Kuroshio extension region, as well as in the Sea314

of Okhotsk and Bering Sea. The semiannual intermittent mode pairs {I5, I6} and {I7, I8},315

are active in similar parts of the domain as {I1, I2} and {I3, I4}, respectively, and have finer316

spatial structure compared with their annual counterparts.317

c. Connection between low-frequency and intermittent modes318

The intermittent modes have time series which appear to be a periodic mode modulated319

by a low-frequency signal. What low-frequency signal is modulating these modes? It turns320

out that most intermittent modes can be directly associated with a certain low-frequency321

mode from NLSA. Figure 6 shows time series snapshots for the annual and semiannual inter-322

mittent SST modes, ISST1 , ISST3 , ISST5 , and ISST7 , and low-frequency envelopes defined by LSST
1323

(the PDO mode) and LSST
2 (the NPGO mode). We observe that ISST3 and ISST7 fit inside the324

NPGO envelope, and do not fit inside the PDO envelope. Similarly, ISST1 and ISST5 fit inside325

the PDO envelope and not the NPGO envelope. Despite clearly being modulated by a cer-326

tain low-frequency mode, the intermittent modes are not simply products of a periodic mode327

and a low-frequency mode. The sea ice modes also share a similar relationship between the328

low frequency and intermittent modes. {I ICE
1 , I ICE

2 }, and {I ICE
5 , I ICE

6 } are clearly modulated329

by LICE
1 (the NPGO mode). {I ICE

3 , I ICE
4 }, and {I ICE

7 , I ICE
8 } are not as clearly modulated by330

a certain low-frequency mode, but they are most closely associated with LICE
3 (the PDO331

mode).332

The intermittent modes have important phase relationships with their corresponding333

periodic modes. We find that the intermittent modes tend to either phase lock such that they334

are in phase or out of phase with the periodic mode, and this phase locking is determined335
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by the sign of the low-frequency signal that modulates the intermittent mode. However,336

the intermittent modes also experience other phase relationships with the periodic modes,337

particularly during transitions between the two phase-locked regimes. In Fig. 7 we show338

three characteristic phase relationships between the intermittent and periodic modes. These339

plots, as well as the corresponding visualization in movie 2, show evolution of the intermittent340

modes {I ICE
1 , I ICE

2 } in the I ICE
1 − I ICE

2 complex plane (blue dots) and the periodic modes341

{P ICE
1 , P ICE

2 } in the P ICE
1 − P ICE

2 plane (red dots). The periodic modes trace a circle in342

the P ICE
1 − P ICE

2 complex plane, and the intermittent modes trace out a more complicated343

trajectory. Also, plotted in cyan along the real axis is the value of LICE
1 , the NPGO mode.344

We find that {I ICE
1 , I ICE

2 } is in phase with {P ICE
1 , P ICE

2 } when LICE
1 > 0 and out of phase345

when LICE
1 < 0. Finally, the green dot is the ratio of {I ICE

1 , I ICE
2 } to {P ICE

1 , P ICE
2 }, where346

the ratio is taken by first writing these points in complex polar form. If {I ICE
1 , I ICE

2 } were347

indeed the product of {P ICE
1 , P ICE

2 } and LICE
1 , we would expect this green dot to be perfectly348

coincident with the cyan dot for LICE
1 . We observe that the intermittent mode is close to349

being a product of these two, yet is not an exact product (e.g., Fig. 7b). A similar phase350

behavior is observed for most other intermittent modes, but in some cases the near product351

relationship does not apply. For instance, {ISST1 , ISST2 } are near products of {P SST
1 , P SST

2 } and352

LSST
1 , but the corresponding ice modes, {I ICE

3 , I ICE
4 }, deviate significantly from the product of353

{P ICE
1 , P ICE

2 } and LICE
3 . In section 5 ahead, we will see that the phase relationships between354

the intermittent and periodic modes have important implications for explaining reemergence.355

d. Comparison with SSA356

In addition to NLSA, we also performed SSA on the coupled sea ice-SST dataset. These357

calculations were done by normalizing both variables to unit variance, and then performing358

SSA on the concatenated dataset. SSA produces periodic and low-frequency modes, and359

also two modes whose temporal patterns loosely resemble the intermittent modes of NLSA,360

with a broadband power spectrum around a certain base frequency and a bias towards lower361
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frequencies. The periodic modes of SSA are very similar to the periodic modes of NLSA,362

but we observe a number of differences in the non-periodic modes. NLSA produces two low-363

frequency modes, which correlate strongly with the NPGO and PDO, respectively. SSA, on364

the other hand, produces a large number of low-frequency modes, most of which correlate365

most strongly with the PDO. For example, if we consider EOFs of North Pacific SST, we366

find that the leading eight low-frequency modes of SSA all correlate most strongly with the367

PDO (EOF 1). If we consider EOFs from the Northeast Pacific, we find that low-frequency368

modes 1, 2, 4, 5, 7, and 8 all correlate most strongly with the PDO (EOF 1) and modes 3369

and 6 correlate most strongly with the NPGO (EOF 3). Low-frequency mode 3 has pattern370

correlations of 0.83 and 0.87 with the PDO and NPGO, respectively, and its spatial pattern371

looks like a mixed PDO-NPGO signal. The NLSA modes cleanly split low-frequency SST372

patterns between different modes, whereas SSA tends to mix these patterns over a large373

number of low-frequency modes. A consequence of this is that NLSA may be more effective374

at capturing patterns of variability using a small subset of modes. The two SSA modes375

that have a broadband power spectrum centered on a base frequency are different from the376

intermittent modes of NLSA in that their temporal patterns are not modulated by any of377

the the low-frequency SSA modes. Rather, these time series evolve independently of the378

other SSA modes. In the supplementary material, we present temporal patterns of selected379

SSA modes in Figure 1, and the spatiotemporal evolution of these modes in Movie 7.380

We also performed NLSA on the unit variance dataset as a comparison with the phase381

velocity normalization presented above. We find three low-frequency modes, and pairs of382

annual and semiannual intermittent modes associated with these modes. A primary differ-383

ence is that, unlike the phase velocity results above, the low-frequency modes do not cleanly384

split into patterns associated with the NPGO and PDO. Rather, low-frequency modes 1 and385

2 correlate most strongly with the PDO (this is true for both North Pacific and Northeast386

Pacific EOFs). Low-frequency mode 3 has correlations of 0.81 and 0.89 with the PDO and387

NPGO (defined using Northeast Pacific EOFs), respectively, and has a spatial pattern that388
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reflects a mixed NPGO-PDO signal. Preliminary results of NLSA on sea ice and sea level389

pressure indicate that the differences between unit variance normalization and the phase390

velocity approach may be more pronounced when one of the variables is significantly faster391

and noisier than the other.392

5. Sea ice reemergence via NLSA393

a. Sea ice reemergence in the North Pacific394

Inspired by the sea ice reemergence mechanism put forward by BW, we study time lagged395

correlations of sea ice in the North Pacific sector of the ocean. We focus on the Bering and396

Okhotsk seas, the two primary areas of sea ice variability in the North Pacific. BW observe a397

spring-fall sea ice reemergence, in which sea ice anomalies of a certain sign in spring tend to398

produce anomalies of the same sign in the fall, despite lagged correlations dropping to near399

zero in the intervening summer months. The authors propose that spring sea ice anomalies400

create an anomaly of opposite sign in SST, and this SST imprint is retained over the summer401

months as the sea ice melts and the sea ice edge moves northwards. In the fall, the sea ice402

edge begins to move southward and when it reaches the SST anomaly it reinherits an ice403

anomaly of the same sign as the spring. It is by this proposed mechanism that SST stores404

the memory of melt season sea ice anomalies, allowing the same anomaly to be reproduced405

in the growth season.406

b. Correlation methodology407

BW compute time-lagged correlations for total arctic sea ice area as a method for examin-408

ing sea ice reemergence. One drawback to this approach is that dynamically relevant spatial409

structures, such as sea ice dipoles, are integrated away when only considering total sea ice410

area. In order to capture the memory in sea ice spatial patterns, we perform time-lagged411
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pattern correlations on the sea ice concentration data.412

Specifically, we compute time lagged pattern correlations using the following methodol-413

ogy. First, we define ām(x, y), the average sea ice concentration in a given month m, as a414

function of space. Let T be the number of samples of month m, and let mk correspond to415

sample number 12(k − 1) +m, the mth month of the kth year. We set416

ām(x, y) =

T∑
k=1

amk
(x, y)

T
. (4)

Next, we define the pattern correlation between times mk = 12(k − 1) + m and m′j =417

12(j − 1) +m′ as418

Pmkm
′
j

=

〈
amk

(x, y)− ām(x, y), am′
j
(x, y)− ām′(x, y)

〉
‖amk

(x, y)− ām(x, y)‖‖am′
j
(x, y)− ām′(x, y)‖

. (5)

In the above, 〈·, ·〉 and ‖ · ‖ denote the Euclidean (area-weighted) inner product and two-419

norm with respect to the spatial gridpoints (x, y). Finally, we define the time lagged pattern420

correlation between months m and m+ τ as the time average of all pattern correlations:421

Cm,m+τ =

T−2∑
k=1

Pmkm
′
j

T − 2
, (6)

where mk = 12(k − 1) +m and m′j = 12(j − 1) +m′ = mk + τ . Note that time averaging is422

done over T − 2 samples, because for lags up to 24 months there are only T − 2 pairs of mk423

and mk + τ .424

c. Time lagged pattern correlations in the North Pacific sector425

We compute time lagged pattern correlations in the North Pacific sector for all months426

and lags from 0 to 23 months, the results of which are shown in Fig. 8. In Fig. 8, the427

white boxes are not significant at the 95% level using a t–distribution statistic. All colored428

boxes are significant at the 95% level. Figure 8a shows time lagged total area correlations429
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computed in the same way as BW, except being done for the North Pacific rather than the430

entire Arctic. We observe a similar correlation structure to that of BW, with one noteable431

difference. There is an initial decay of correlation over a 3–6 month timescale, after which, for432

the months of January–July, we observe an increase in correlation. This region of increased433

correlation is analogous to the “summer limb” of BW. In this summer limb, we can see natural434

pairings of spring months and the corresponding fall months in which the spring anomaly435

reemerges. These pairings are July-October, June-November, May-December, April-January,436

and March-January/February; they represent months at which the sea ice edge is similar in437

melt and growth seasons. A main difference between the North Pacific and the entire Arctic438

is that the North Pacific data does not contain a “winter limb” of anomalies produced in fall439

that are reproduced the following summer. This is because the North Pacific contains very440

little sea ice in the summer months. Figure 9 shows the monthly mean values plus/minus one441

standard deviation of North Pacific SST and sea ice concentration in the CCSM3 dataset.442

We see that the sea ice concentration is close to zero in the summer months and, moreover,443

there is significantly higher sea ice variability in high sea ice months.444

Figure 8b shows lagged pattern correlations for North Pacific sea ice. As expected, the445

correlations are significantly weaker than in the total area lagged correlation case, since446

having a pattern correlation in anomalies is a much more stringent test than simply having447

correlations in total area of anomalies. Despite being weaker, the pattern correlations still448

have the “summer limb” structure observed in Fig. 8a, and these correlations are significant449

at the 95% level. Most lagged pattern correlations besides the inital decay and the summer450

limb are not significant at the 95% level. Figures 8c and 8d show lagged pattern correlations451

for the Bering (165◦E – 160◦W and 55◦ – 65◦N) and Okhotsk (135◦E – 165◦E and 42◦ – 65◦N)452

Seas, respectively. Each of these seas has a similar lagged pattern correlation structure to453

the full North Pacific sector in Fig. 8b.454

Next, we seek to reproduce the lagged pattern correlations seen in the raw sea ice data455

using a low dimensional subset of coupled NLSA modes. We find that in each sea, a different456
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set of modes is active, thus we choose to focus on the Bering and Okhotsk seas individually.457

In the Bering Sea, we find that modes {L1, I1, I2, I5, I6} qualitatively reproduce the lagged458

pattern correlation structure seen in raw data. L1 is the NPGO mode and the other modes459

are the annual and semiannual intermittent modes which are modulated by the NPGO460

envelope. Moreover, this set appears to be the minimal subset, as smaller subsets of modes461

are unable to reproduce the correlation structure of the raw data. Figure 8e shows Bering462

Sea lagged pattern correlations computed using this three mode family, which we call the463

NPGO family. We see that this family has a very similar summer limb to the raw data,464

except with higher correlations, since this three–mode family decorrelates more slowly than465

the raw data.466

Attempting a similar construction in the Okhotsk Sea, we find that modes {L2, I3, I4, I7, I8}467

do the best job of reproducing the lagged pattern correlation structure. However, this mode468

family has clear deficiencies, as can be seen in Fig. 8f. In particular, this mode family fails469

to reproduce the summer decorrelation that is observed in the raw data and also has a less470

contiguous summer limb. L2 is the PDO mode and these intermittent modes are the annual471

and semiannual intermittent modes most closely associated to the PDO. Note that these472

intermittent modes are not perfectly modulated by the PDO, which may explain why this473

PDO family is unable to capture the sea ice reemergence signal as well as the NPGO family.474

Instead, in section 5f ahead we will see that this PDO family is more closely related to SST475

reemergence (Alexander et al. 1999)476

Many other NLSA mode subsets were tested, but were unable to reproduce the correlation477

structure of the raw data as well as the subsets above. Also, the same procedure was478

performed using SSA modes, and it was found that small subsets of SSA modes (fewer than479

25 modes) were unable to reproduce the lagged correlation structure of the raw data.480
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d. A sea ice reemergence mechanism revealed through coupled NLSA481

Using the low-dimensional family of modes {L1, I1, I2, I5, I6}, active in the Bering Sea, to482

reconstruct patterns in the spatial domain, we observe sea ice and SST patterns which are483

remarkably consistent with the mechanism suggested by BW. Figure 10 shows the evolution484

of the three-mode family over the course of a year. These spatial patterns are composites,485

obtained by averaging over all years in which the NPGO is active in its positive phase (defined486

as LSST
2 > 1.5). A very similar spatiotemporal pattern, with opposite sign, occurs in years487

when the NPGO is active in its negative phase. The dynamic evolution of this three-mode488

family is shown in movie 3. In January, there is a positive sea ice anomaly and a negative489

SST anomaly in the southern part of the Bering Sea. The main SST anomaly extends490

slightly further south than the sea ice anomaly, and there is also a weaker negative anomaly491

extending southward and eastward in the domain. The positive ice anomalies continue to492

move southward through the growth season, until reaching the maximum ice extent in March.493

The SST anomaly has not changed significantly from January and is primarily localized to494

the ice anomaly region. In particular, there is no SST anomaly in the northern part of the495

Bering Sea. The melt season begins in April, and in May we observe that the sea ice anomaly496

has moved northward. The SST anomaly has also extended northward while maintaing its497

southern extent from March. In July the sea ice retreats further and only a weak positive498

anomaly remains in the Bering Sea. By September essentially no sea ice anomaly remains499

in the Bering Sea. Despite the sea ice anomaly being absent in September, the SST has a500

strong negative anomaly throughout the entire Bering Sea region. The northern Bering sea,501

previously free of SST anomalies, now has a negative anomaly, imprinted by the positive sea502

ice anomalies moving through the region during the melt season. As the sea ice returns to the503

domain in October–December, the ice interacts with the SST anomaly, using the cold SST to504

grow additional ice, and reproduces the positive ice anomaly that we observed in the spring.505

In November, part of the northern Bering Sea’s negative SST anomaly has been wiped out,506

and the ice has begun to redevelop its positive anomaly. The ice continues to grow stronger507
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positive anomalies as it moves southward and in January the cycle roughly repeats again.508

We observe this mechanism with the NPGO mode in both positive and negative phase.509

As could be expected from Fig. 8f, the mode family {L2, I3, I4, I7, I8} does not have a clear510

sea ice reemergence in the Okhotsk Sea. This family does exhibit a winter-winter persistence511

of ice anomalies, but the anomalies tend to unrealistically persist over the intervening summer512

months.513

e. Reemergence conditioned on low-frequency modes514

We earlier noted that the NPGO mode family {L1, I1, I2, I5, I6} is able to reproduce the515

lagged correlation structure seen in sea ice data in the Bering Sea. Additionally, we know that516

the intermittent modes within the mode families identified here are modulated by the low-517

frequency mode of that family. Thus, in order to determine whether a given mode family is518

active, we can simply assess whether or not the corresponding low–frequency mode is active.519

Given these observations, one would expect to see an enhanced reemergence structure if520

we performed lagged correlations on the raw sea ice data, conditional on a certain low-521

frequency mode being active. Indeed, if we condition on the NPGO being active, we observe522

an enhanced summer limb in the lagged pattern correlation structure of the Bering Sea raw523

data. Similarly, if we condition on the NPGO being inactive, we find that the summer limb524

is significantly weakened. Figure 11 shows conditional lagged pattern correlations for these525

various cases. Note that the NPGO is defined as “active” over the time interval [t, t+ ∆t] if526

|LSST
2 | > 1.5. The NPGO index is defined for t ∈ [1, s− q].527

This summer limb strengthening has implications for regional sea ice predictibility. In528

particular, tracking the NPGO index should help one predict whether a given spring anomaly529

in the Bering sea will return the following fall.530
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f. Connection to other reemergence phenomena531

BW also note a summer-to-summer reemergence in Arctic sea ice, which is connected to532

persistence in sea ice thickness anomalies. This summer-to-summer reemergence is not seen533

in the North Pacific sector, since the North Pacific is essentially sea ice free for the months534

of July through October (see Fig. 9).535

Another reemergence phenomenon active in the North Pacific sector is the winter-to-536

winter SST reemergence studied by Alexander et al. (1999). This reemergence consists of537

the formation of an SST anomaly in winter months, a weakening of the anomaly over the538

summer due to the presence of a seasonal thermocline, and a subsequent re-strengthening539

the following winter. To investigate the presence of SST reemergence in the coupled NLSA540

modes, we perform a lagged correlation analysis analogous to the sea ice study above.541

We focus on the domains of active SST reemergence defined by Alexander et al. (1999):542

the central (26◦ − 42◦N, 164◦ − 148◦W), eastern (26◦ − 42◦N, 132◦ − 116◦W), and western543

(38◦ − 42◦N, 160◦ − 180◦E) Pacific. For each of these domains, time lagged pattern corre-544

lations of SST were computed, including conditioning on certain low-frequency SST modes545

being active. It was found that correlations were significantly strengthened when the PDO546

mode (L2) was active, and were relatively unaffected by the state of the NPGO mode (L1).547

Figure 12 shows time-lagged pattern correlations for the central, eastern, and western Pacific548

domains, for both the raw SST data, and the raw SST data conditioned on an active PDO.549

In the central and eastern parts of the basin, we observe a strengthened reemergence signal550

when the PDO is active, as there is a clear drop in correlation over the summer months551

and a significantly stronger increase in correlation the following winter. In the western part552

of the basin, the reemergence signal is clear without any PDO conditioning. With an ac-553

tive PDO, the correlations become stronger, and the summer decorrelation remains visible.554

Note that, unlike North Pacific sea ice reemergence, the SST correlations do not vanish over555

the summer months. Rather, they simply weaken over the summer and re-strengthen the556

following winter.557
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Following the sea ice approach above, we seek a low-dimensional family of NLSA modes558

that reflect the lagged correlation structure of the raw data. We find that the PDO mode559

family, {L2, I3, I4, I7, I8}, has the highest skill in reproducing the observed correlations. Fig-560

ure 13 shows a composite reconstruction of the SST patterns of the PDO family, where the561

composite is taken over years where the PDO index is high (LSST
1 > 1.5). SST reemergence562

is most strikingly observed in the central Pacific. We observe a strong negative SST anomaly563

in January and March, which begins to decay in May, and is significantly weaker, yet still564

positive, in September. The anomaly begins to strengthen in November, and the pattern565

roughly repeats again the following year. As could be expected by the lagged correlations, we566

observe stronger SST persistence in the western Pacific, however a summer weakening and567

winter re-strengthening is nonetheless visible. The anomaly strength is significantly smaller568

in the eastern Pacific domain, but a similar SST reemergence with positive anomalies can569

be observed, though the signal is poorly represented with the colorbar of Fig. 13 (chosen for570

the entire North Pacific). Note that there is also an active SST reemergence with positive571

anomalies along the Alaska-British Columbia coastline. When the PDO is active in its neg-572

ative phase, a similar pattern is observed, with opposite sign. The dynamic evolution of the573

PDO mode family is shown in Movie 4. An interesting topic of future study would be to574

investigate whether the vertical structure of this reemergence mechanism can be captured575

by a low dimensional family of NLSA modes.576

6. Comparison with Observations577

a. Coupled NLSA on a short time series578

To this point, all results have been derived from analysis of a 900-yr CCSM3 model579

integration. Given the relative shortness of most observational climate time series, a natural580

question is whether the coupled NLSA approach can be applied to a shorter time series581

for the purposes of exploratory data analysis. Given that NLSA is based upon sufficient582
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exploration of a high-dimensional manifold, a short observational time series provides a583

stringent test for the algorithm. Nevertheless, it is plausible that certain coarse-grained584

nonlinear geometric features are adequately sampled (in particular, the periodic dimension585

associated with the seasonal cycle, which is crucial for reemergence). To test the feasibility586

of NLSA in this environment, we studied the HADISST dataset, which consists of 34 years587

of satellite observations of sea ice and SST.588

We performed coupled NLSA on the HADISST dataset in a completely analogous manner589

to the CCSM3 results above, using a value of ε = 0.8, a truncation level of l = 22, and a590

lagged embedding window of ∆t = 24 months. The resulting temporal modes have very591

similar characteristics to the temporal modes of the CCSM3 dataset, cleanly splitting into592

periodic, low-frequency and intermittent modes. We find that the periodic and intermittent593

modes come in doubly degenerate pairs, and that each intermittent mode is modulated by594

a certain low-frequency mode. Also, we find that each SST PC is highly correlated with595

a certain sea ice PC, motivating the definition of coupled sea ice-SST modes of variability.596

For the sake of brevity, we only define the coupled modes that will be discussed in the597

following sections: L1 = (LICE
1 , LSST

2 ), L2 = (LICE
2 , LSST

1 ), I1 = (I ICE
1 , ISST4 ), I2 = (I ICE

2 , ISST3 ),598

I3 = (I ICE
3 , ISST2 ), I4 = (I ICE

4 , ISST1 ), I5 = (I ICE
5 , ISST7 ), I6 = (I ICE

6 , ISST8 ), I7 = (I ICE
7 , ISST5 ),599

I8 = (I ICE
8 , ISST6 ). Time series snapshots, autocorrelation functions, and power spectral600

densities for the leading low-frequency ice modes and an annual and semiannual intermittent601

mode are shown in Figure 14.602

Similar to the CCSM3 results, the spatial patterns of these modes have correspondences603

with the NPGO and PDO. We find that L1 has a maximum pattern correlation of 0.65 with604

EOF 2 of Northeast Pacific SST, and L2 has a maximum pattern correlation of 0.90 with605

EOF 1 of North Pacific SST. Note that these EOFs were computed using SST output of606

HADISST. In light of these correlations, we call L1 the NPGO mode and L2 the PDO mode.607

The sea ice patterns of these modes have some notable differences from their CCSM3608

counterparts. L1 has strong sea ice anomalies in the Bering Sea, but also has strong anomalies609
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of the opposite sign in the Sea of Okhotsk. This pattern of sea ice variability is consistent610

with the leading sea ice EOF found in Deser et al. (2000) and Liu et al. (2007). L2 consists611

of a strong sea ice anomaly throughout the Okhotsk Sea, and also an anomaly of the same612

sign in the southern part of the Bering Sea. Each of these low-frequency modes modulates613

a pair of annual and a pair of semiannual intermittent modes. These intermittent modes614

are active in similar parts of the domain as the low-frequency modes, and have finer spatial615

structures, as we also observed with the CCSM3 results.616

b. Sea ice reemergence in observations617

With these coupled observational modes at our disposal, we now investigate North Pa-618

cific sea ice reemergence in the observational record. First, we compute time lagged pattern619

correlations in the North Pacific sector, shown in Fig. 15a. We observe that there is no620

reemergence signal visible in these correlations. This is also the case for correlations com-621

puted over the Bering and Okhotsk Seas individually. Despite the lack of reemergence in622

the observational data, we examine a number of NLSA mode subsets for the presence of623

a reemergence signal. We find the strongest signal with the mode family {L1, I1, I2, I5, I6},624

where the correlations are computed over the Bering Sea. The correlations are shown in625

Fig. 15b. This family also has signs of a reemergence signal in the Okhotsk Sea, except that626

the ice anomalies anti-correlate over the summer months, instead of simply decorrelating.627

Does this mode family have any explanatory power with regards to sea ice reemergence?628

The answer appears to be yes. Fig. 15c shows North Pacific lagged pattern correlations,629

conditional on the NPGO mode, L1, being active. We observe an emphasized reemergence630

limb in years when the NPGO mode is active. A similar appearance of a summer limb is631

observed in the Bering Sea, but not in the Okhotsk, when conditioning on an active NPGO.632

A sea ice-SST reconstruction for the year 2001, using the mode family {L1, I1, I2, I5, I6},633

is shown in Figure 16. This family shares some similarities to the NPGO mode family634

found in CCSM3, with the NPGO mode modulating the annual and semiannual intermittent635

26



modes, but also has many clear differences. In the winter months, we observe strong sea ice636

anomalies of opposite sign in the Bering and Okhotsk seas. The Okhotsk anomalies were637

not present in the CCSM3 results. Spatially coincident with these ice anomalies, we observe638

SST anomalies of the opposite sign. We also observe strong SST anomalies throughout639

most of the North Pacific basin, especially along the Kuroshio extension region. This is640

different from the CCSM3 results, in which the SST anomalies of the NPGO family were641

primarily contained in the northern portion of the domain. During the months of July–642

October the Bering and Okhotsk Seas are relatively ice free, and we observe persistence643

of SST anomalies of opposite sign to the ice anomalies. Compared to CCSM3 results, the644

summer SST anomalies do not cover the Bering Sea as completely; there is a portion of the645

northwest Bering sea that remains anomaly-free over the summer. In the late fall and early646

winter, sea ice anomalies reappear in the Bering and Okhotsk seas, adopting the same sign647

they had the previous winter. This cycle roughly repeats itself the following winter. This648

family reflects the same SST-sea ice reemergence mechanism as seem in CCSM3, albeit in a649

slightly less clean manner.650

Why is the North Pacific sea ice reemergence signal significantly stronger in CCSM3651

than in observations? One possibility is that the CCSM3 model overemphasizes the winter-652

to-winter persistence of the ice and SST anomalies associated with the NPGO. Another653

possibility is that the raw observational data, after linear detrending, contains a residual654

signal associated with a nonlinear trend. This nonlinear trend may act to obscure the655

reemergence signal in the raw data, though we find that the reemergence signal is sufficiently656

strong to be recoverable in the NPGO-conditioned data. Yet another possibility is that over657

the relatively short observational record, the low-frequency NPGO mode has been generally658

inactive, and a longer time series would reveal the reemergence signal.659

To investigate the latter possibility, we divided the 900-year CCSM3 record into a number660

of 34 year datasets, analogous to the length of the observational record, and performed661

lagged correlations on each of these short timeseries. We found significant variation in662
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the sea ice reemergence signal over these different datasets, including some sets where the663

reemergence signal was absent, much like in observations. There were other 34 year datasets664

which contained a much stronger reemergence limb, quite similar to the conditional lagged665

correlations of Fig. 11b. Therefore, it is plausible that the record of satellite observations is666

simply too short to provide a sufficient sampling of low-frequency variability of the coupled667

ocean-sea ice system, and correlations computed using this dataset may not fully reflect668

the intrinsic variability of this system. We also computed lagged correlations of the sea ice669

observations in other parts of the Arctic Ocean, and found strong reemergence signals in the670

Barents and Kara Seas, the Labrador Sea, and the Greenland Sea.671

c. SST reemergence in observations672

We also investigate SST reemergence in the HADISST dataset by computing time lagged673

pattern correlations in the North Pacific. Fig. 17a shows lagged correlations of the raw SST674

data and Fig. 17b shows lagged correlations conditional on the PDO mode, L2, being active.675

We observe a strengthened winter-to-winter SST reemergence when the PDO is active. We676

also conditioned on other low-frequency modes, and found that the PDO produces the most677

prominent strengthening of correlation. Note that these correlations are computed over the678

entire North Pacific domain, rather than the smaller domains considered in section 5f. This679

choice was made because the conditional correlations were quite noisy when performed over680

the smaller domains, since the PDO is only “active” for about 25% of the observational681

record.682

The coupled NLSA observational modes also have a mode family {L2, I3, I4, I7, I8}, which683

is analogous to the PDO family of CCSM3. In Fig. 18 we show an SST reconstruction for684

the year 2005 using this mode family. We observe an active SST reemergence in the central685

and eastern Pacific domains, but there is not a clear reemergence in the western Pacific.686

The reemergence in the central and eastern Pacific happens at different times of year, with687

weakest anomalies in September and November, respectively. Similar to the CCSM3 results,688
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the observational PDO family has a large-scale anomaly along the Kuroshio extension region,689

and significant variability in the central Pacific. A primary difference is that the observational690

PDO family has much stronger anomalies along the west coast of North America than the691

PDO family of CCSM3.692

7. Conclusions693

In this work, we have studied reemergence mechanisms for North Pacific sea ice in com-694

prehensive climate model output and in satellite observations. We have introduced a new695

modification to the NLSA algorithm for high-dimensional time series (Giannakis and Ma-696

jda 2013, 2012c), which allows for a scale-invariant coupled analysis of multiple variables697

in different physical units. This algorithm computes a kernel matrix using the individual698

phase space velocities for each variable, simultaneously removing physical units from the699

analysis, as well as implicitly selecting the variance ratio between the two variables. This700

coupled NLSA algorithm was applied to North Pacific SST and sea ice concentration data701

from a 900 year CCSM3 control integration, and a set of temporal patterns, analogous to702

PCs, and spatiotemporal patterns, analogous to extended EOFs, were obtained. The same703

analysis was performed on the 34 year record of sea ice and SST satellite observations. The704

modes recovered by coupled NLSA include periodic and low-frequency patterns of variabil-705

ity of sea ice and SST, as well as intermittent patterns not captured by SSA. The leading706

low-frequency modes correlate well with the familiar PDO and NPGO patterns of North707

Pacific SST variability. The intermittent modes have a base frequency of oscillation and are708

modulated by either the PDO or NPGO low-frequency signal, and tend to either be in phase709

or out of phase with their corresponding periodic cycle.710

Using the modes obtained via coupled NLSA, we investigated the phenomenon of sea711

ice reemergence suggested by BW, in the North Pacific region. In the CCSM3 data, it712

was found that the raw sea ice data of the North Pacific exhibited a similar reemergence713
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of correlation to that seen by BW, a noteable difference being the lack of a “winter limb.”714

Seeking a low-dimensional family of modes to explain this reemergence process, we found that715

the NPGO and its corresponding annual and semiannual intermittent modes were able to716

reproduce the lagged correlations seen in the Bering Sea. Moreover, reconstructing patterns717

in the spatial domain, we found that this low-dimensional family demonstrates a sea ice718

reemergence mechanism, in which summer SST stores the memory of springtime sea ice719

anomalies, remarkably well. It was also found that conditioning the raw sea ice data on720

the NPGO being active, led to a significantly strengthened “summer limb” in the lagged721

correlations of the Bering Sea, which has implications for regional predictability of sea ice722

reemergence. Also, the family of NLSA modes related to the PDO was able capture a723

winter-to-winter reemergence of SST anomalies, both in lagged correlations and in spatial724

reconstructions.725

The raw observational sea ice record does not contain a sea ice reemergence signal in the726

North Pacific sector. However, when conditioned on the NPGO mode being active, a clear727

summer limb appears in the raw data lagged correlations. Additionally, an analogous NPGO728

family exists for the observations, and displays a similar SST-sea ice reemergence mechanism.729

An enhanced winter-to-winter SST reemergence was found when conditioning on an active730

PDO. Also, the observational modes have a PDO family, which exhibits SST reemergence731

in the North Pacific. In future work, we plan to add North Pacific sea level pressure to our732

coupled analysis to gain insight into the variability of the coupled atmosphere-sea ice-ocean733

system.734
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List of Figures810

1 (a) Singular values from coupled NLSA with phase velocity normalization811

(black and red markers show ice and SST singular values, respectively), vari-812

ance normalization (cyan markers), and SSA (blue line). The singular values813

have been normalized so that σ1 = 1. Low-frequency modes are indicated by814

“©”, periodic modes by “×”, and intermittent modes by “�”. (b) Normal-815

ized relative entropy for AICE
l and ASST

l vs truncation level l. Spikes in the816

relative entropy curve indicate possible candidates for the choice of truncation817

level. 40818

2 Snapshots of the time series, power spectral density, and autocorrelation func-819

tions for the sea-ice PCs (vk) from coupled NLSA. Shown here are the annual820

periodic (P ICE
1 ) and semiannual periodic (P ICE

3 ) modes, the NPGO mode821

(LICE
1 ), the PDO mode (LICE

2 ), annual intermittent modes (I ICE
1 and I ICE

3 ),822

and semiannual intermittent modes (I ICE
5 and I ICE

7 ). The autocorrelation ver-823

tical scale is [-1,1]. The power spectral densities (fk) were estimated over824

the full 900 year timeseries via the multitaper method with time-bandwidth825

product p = 6 and K = 2p− 1 = 11 Slepian tapers. 41826

3 Snapshots of the time series, power spectral density, and autocorrelation func-827

tions for the SST PCs (vk) from coupled NLSA. Shown here are the annual pe-828

riodic (P SST
1 ) and semiannual periodic (P SST

3 ) modes, the PDO mode (LSST
1 ),829

the NPGO mode (LSST
2 ), annual intermittent modes (ISST1 and ISST3 ), and830

semiannual intermittent modes (ISST5 and ISST7 ). The autocorrelation vertical831

scale is [-1,1]. The power spectral densities (fk) were estimated over the full832

900 year timeseries via the multitaper method with time-bandwidth product833

p = 6 and K = 2p− 1 = 11 Slepian tapers. 42834

4 Correlations between selected SST and and sea ice principal components. Note835

that each SST PC can be associated with a single sea ice PC. 43836
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5 Snapshots of raw data and spatiotemporal modes from coupled NLSA. See837

movie 1 for the dynamic evolution of these modes. 44838

6 Time series of intermittent modes ISST1 , ISST3 , ISST5 , ISST7 plotted in blue, and839

low-frequency envelopes defined by LSST
1 (PDO) and LSST

2 (NPGO) plotted in840

red. 45841

7 Phase evolution of intermittent modes {I ICE
1 , I ICE

2 } in the I ICE
1 − I ICE

2 plane842

(blue dots) and periodic modes {P ICE
1 , P ICE

2 } in the P ICE
1 − P ICE

2 plane (red843

dots), where the present value is shown with the larger dot and the smaller844

dots show the previous six values. The cyan dot shows the value of LICE
1845

plotted along the real axis, and the green dot shows the ratio of {I ICE
1 , I ICE

2 }846

to {P ICE
1 , P ICE

2 }, a test for how close the intermittent modes are to being a847

product of periodic and low-frequency modes. (A) shows an in phase regime,848

(B) shows and out of phase regime and (C) shows a transition regime. See849

movie 2 for a more illuminating time evolution. 46850

8 Lagged correlations for North Pacific sea ice for all months and lags from 0851

to 23 months. (A) shows the lagged correlation structure in total arctic sea852

ice area, computed following the methodology of BW. All other panels are853

lagged pattern correlations: (B) North Pacific with raw data; (C) and (D)854

are computed in the Bering and Okhotsk Seas, respectively, using raw data;855

(E) Bering Sea with modes {L1, I1, I2, I5, I6}; (F) Okhotsk Sea with modes856

{L2, I3, I4, I7, I8}. Colored boxes indicate correlations which are significant at857

the 95% level based on a t-test. 47858

9 Monthly mean sea ice concentration and SST from CCSM3, with the dashed859

line showing ±1σ. The SST variance is relatively uniform across all months,860

while the sea ice variance is much larger in high concentration months. 48861

36



10 Sea Ice and SST patterns for different months of the year, reconstructed using862

{L1, I1, I2, I5, I6}. These spatial patterns are composites, obtained by averag-863

ing over all years in which the NPGO is active, in its positive phase (defined864

as LSST
2 > 1.5). The Bering Sea (boxed) exhibits a spring-fall sea ice reemer-865

gence. Positive spring sea ice anomalies imprint negative SST anomalies as866

they move northward during the melt season. The SST anomalies persist867

through the summer months, and when the ice returns in the growth sea-868

son, the positive sea ice anomaly is reproduced. See movie 3 for the dynamic869

evolution of this mode family. 49870

11 Lagged pattern correlations for raw sea ice data in the Bering Sea, condi-871

tional on the NPGO principal component being active. (A) shows the Bering872

result with no conditioning. (B) and (C) show the Bering sea conditioned on873

|LSST
2 | > 1.5 (all values above the 82nd percentile) and |LSST

2 | < 1 (all values874

below the 65th percentile), respectively. Colored boxes indicate correlations875

which are significant at the 95% level based on a t-test. 50876

12 Lagged correlations for North Pacific SST for all months and lags from 0877

to 23 months. (A), (C), and (E) show lagged correlations of raw SST data878

in the central, eastern, and western Pacific, respectively. (B), (D), and (F),879

show lagged correlations in the same domains, conditional on |LSST
1 | > 1.5 (all880

values above the 82nd percentile). Colored boxes indicate correlations which881

are significant at the 95% level based on a t-test. 51882
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13 SST patterns for different month of the year, reconstructed using {L2, I3, I4, I7, I8}.883

These spatial patterns are composites, obtained by averaging over all years884

in which the PDO is active, in its positive phase (defined as LSST
1 > 1.5).885

The central, eastern, and western Pacific domains are boxed. The central886

pacific exhibits a reemergence of SST anomalies, while weaker reemergences887

are present in the eastern and western Pacific. The dynamic evolution of this888

mode family is shown in Movie 4. 52889

14 Snapshots of the time series, power spectral density, and autocorrelation func-890

tions for the sea-ice PCs (vk) from coupled NLSA on the HADISST dataset.891

Shown here are two low-frequency modes (LICE
1 and LICE

2 ), an annual intermit-892

tent mode (I ICE
1 ) and a semiannual intermittent mode (I ICE

5 ). The autocorre-893

lation vertical scale is [-1,1]. The power spectral densities (fk) were estimated894

over the 34 year record via the multitaper method with time-bandwidth prod-895

uct p = 6 and K = 2p− 1 = 11 Slepian tapers. 53896

15 Lagged correlations for North Pacific Sea Ice from the HADISST dataset for897

all months and lags from 0 to 23 months. (A) Shows lagged correlation for898

raw North Pacific sea ice data, (B) shows lagged correlations for the Bering899

Sea computed using the mode family {L1, I1, I2, I5, I6}, and (C) shows lagged900

correlations in the North Pacific for the raw data, conditional on |LSST
2 | > 1901

(all values above the 75th percentile). Colored boxes indicate correlations902

which are significant at the 95% level based on a t-test. 54903

16 Sea ice and SST patterns for year 2001, reconstructed from the HADISST904

dataset using modes {L1, I1, I2, I5, I6}. The Bering and Okhotsk Seas (both905

boxed) exhibit a spring-fall sea ice reemergence. See movie 5 for the dynamic906

evolution of this mode family. 55907
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17 Lagged correlations for North Pacific SST from the HADISST dataset for all908

months and lags from 0 to 23 months. (A) Shows lagged correlation for raw909

North Pacific SST data, (B) shows lagged correlations in the North Pacific for910

the raw data, conditional on |LSST
1 | > 1.5 (all values above the 75th percentile).911

Colored boxes indicate correlations which are significant at the 95% level based912

on a t-test. 56913

18 SST patterns for year 2005, reconstructed from the HADISST dataset using914

modes {L2, I3, I4, I7, I8}. The central, eastern, and western Pacific domains915

are boxed. The central and eastern Pacific exhibit a reemergence of SST916

anomalies. See movie 6 for the dynamic evolution of this mode family. 57917
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Fig. 2. Snapshots of the time series, power spectral density, and autocorrelation functions
for the sea-ice PCs (vk) from coupled NLSA. Shown here are the annual periodic (P ICE

1 ) and
semiannual periodic (P ICE

3 ) modes, the NPGO mode (LICE
1 ), the PDO mode (LICE

2 ), annual
intermittent modes (I ICE

1 and I ICE
3 ), and semiannual intermittent modes (I ICE

5 and I ICE
7 ).

The autocorrelation vertical scale is [-1,1]. The power spectral densities (fk) were estimated
over the full 900 year timeseries via the multitaper method with time-bandwidth product
p = 6 and K = 2p− 1 = 11 Slepian tapers.
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Fig. 3. Snapshots of the time series, power spectral density, and autocorrelation functions
for the SST PCs (vk) from coupled NLSA. Shown here are the annual periodic (P SST

1 ) and
semiannual periodic (P SST

3 ) modes, the PDO mode (LSST
1 ), the NPGO mode (LSST

2 ), annual
intermittent modes (ISST1 and ISST3 ), and semiannual intermittent modes (ISST5 and ISST7 ).
The autocorrelation vertical scale is [-1,1]. The power spectral densities (fk) were estimated
over the full 900 year timeseries via the multitaper method with time-bandwidth product
p = 6 and K = 2p− 1 = 11 Slepian tapers.
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Fig. 5. Snapshots of raw data and spatiotemporal modes from coupled NLSA. See movie 1
for the dynamic evolution of these modes.
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Fig. 7. Phase evolution of intermittent modes {I ICE
1 , I ICE

2 } in the I ICE
1 − I ICE

2 plane (blue
dots) and periodic modes {P ICE

1 , P ICE
2 } in the P ICE

1 − P ICE
2 plane (red dots), where the

present value is shown with the larger dot and the smaller dots show the previous six values.
The cyan dot shows the value of LICE

1 plotted along the real axis, and the green dot shows
the ratio of {I ICE

1 , I ICE
2 } to {P ICE

1 , P ICE
2 }, a test for how close the intermittent modes are to

being a product of periodic and low-frequency modes. (A) shows an in phase regime, (B)
shows and out of phase regime and (C) shows a transition regime. See movie 2 for a more
illuminating time evolution.
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Fig. 8. Lagged correlations for North Pacific sea ice for all months and lags from 0 to 23
months. (A) shows the lagged correlation structure in total arctic sea ice area, computed
following the methodology of BW. All other panels are lagged pattern correlations: (B)
North Pacific with raw data; (C) and (D) are computed in the Bering and Okhotsk Seas,
respectively, using raw data; (E) Bering Sea with modes {L1, I1, I2, I5, I6}; (F) Okhotsk Sea
with modes {L2, I3, I4, I7, I8}. Colored boxes indicate correlations which are significant at
the 95% level based on a t-test.
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Fig. 9. Monthly mean sea ice concentration and SST from CCSM3, with the dashed line
showing ±1σ. The SST variance is relatively uniform across all months, while the sea ice
variance is much larger in high concentration months.
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Fig. 10. Sea Ice and SST patterns for different months of the year, reconstructed using
{L1, I1, I2, I5, I6}. These spatial patterns are composites, obtained by averaging over all
years in which the NPGO is active, in its positive phase (defined as LSST

2 > 1.5). The Bering
Sea (boxed) exhibits a spring-fall sea ice reemergence. Positive spring sea ice anomalies
imprint negative SST anomalies as they move northward during the melt season. The SST
anomalies persist through the summer months, and when the ice returns in the growth
season, the positive sea ice anomaly is reproduced. See movie 3 for the dynamic evolution
of this mode family.
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Fig. 11. Lagged pattern correlations for raw sea ice data in the Bering Sea, conditional on the
NPGO principal component being active. (A) shows the Bering result with no conditioning.
(B) and (C) show the Bering sea conditioned on |LSST

2 | > 1.5 (all values above the 82nd
percentile) and |LSST

2 | < 1 (all values below the 65th percentile), respectively. Colored boxes
indicate correlations which are significant at the 95% level based on a t-test.
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Fig. 12. Lagged correlations for North Pacific SST for all months and lags from 0 to 23
months. (A), (C), and (E) show lagged correlations of raw SST data in the central, eastern,
and western Pacific, respectively. (B), (D), and (F), show lagged correlations in the same
domains, conditional on |LSST

1 | > 1.5 (all values above the 82nd percentile). Colored boxes
indicate correlations which are significant at the 95% level based on a t-test.
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Fig. 13. SST patterns for different month of the year, reconstructed using {L2, I3, I4, I7, I8}.
These spatial patterns are composites, obtained by averaging over all years in which the PDO
is active, in its positive phase (defined as LSST

1 > 1.5). The central, eastern, and western
Pacific domains are boxed. The central pacific exhibits a reemergence of SST anomalies,
while weaker reemergences are present in the eastern and western Pacific. The dynamic
evolution of this mode family is shown in Movie 4.
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Fig. 14. Snapshots of the time series, power spectral density, and autocorrelation functions
for the sea-ice PCs (vk) from coupled NLSA on the HADISST dataset. Shown here are two
low-frequency modes (LICE

1 and LICE
2 ), an annual intermittent mode (I ICE

1 ) and a semiannual
intermittent mode (I ICE

5 ). The autocorrelation vertical scale is [-1,1]. The power spectral
densities (fk) were estimated over the 34 year record via the multitaper method with time-
bandwidth product p = 6 and K = 2p− 1 = 11 Slepian tapers.
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Fig. 15. Lagged correlations for North Pacific Sea Ice from the HADISST dataset for all
months and lags from 0 to 23 months. (A) Shows lagged correlation for raw North Pacific
sea ice data, (B) shows lagged correlations for the Bering Sea computed using the mode
family {L1, I1, I2, I5, I6}, and (C) shows lagged correlations in the North Pacific for the raw
data, conditional on |LSST

2 | > 1 (all values above the 75th percentile). Colored boxes indicate
correlations which are significant at the 95% level based on a t-test.
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Fig. 16. Sea ice and SST patterns for year 2001, reconstructed from the HADISST dataset
using modes {L1, I1, I2, I5, I6}. The Bering and Okhotsk Seas (both boxed) exhibit a spring-
fall sea ice reemergence. See movie 5 for the dynamic evolution of this mode family.
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Fig. 17. Lagged correlations for North Pacific SST from the HADISST dataset for all
months and lags from 0 to 23 months. (A) Shows lagged correlation for raw North Pacific
SST data, (B) shows lagged correlations in the North Pacific for the raw data, conditional
on |LSST

1 | > 1.5 (all values above the 75th percentile). Colored boxes indicate correlations
which are significant at the 95% level based on a t-test.
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Fig. 18. SST patterns for year 2005, reconstructed from the HADISST dataset using modes
{L2, I3, I4, I7, I8}. The central, eastern, and western Pacific domains are boxed. The central
and eastern Pacific exhibit a reemergence of SST anomalies. See movie 6 for the dynamic
evolution of this mode family.
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