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Abstract. The stochastic multicloud model (SMCM) was recently developed (Khouider, Biello, and
Majda, 2010) to represent the missing variability in general circulation models due to unresolved features of
organized tropical convection. This research aims at finding a robust calibration methodology for the SMCM
to estimate key model parameters from data. We formulate the calibration problem within a Bayesian
framework to derive the posterior distribution over the model parameters. The main challenge here is due
to the likelihood function which requires solving a large system of differential equations (the Kolmogorov
equations) as many times as there are data points, which is prohibitive both in terms of computation time
and storage requirements. The most attractive numerical techniques to compute the transient solutions to
large Markov chains are based on matrix exponentials, but none is unconditionally acceptable for all classes of
problems. We develop a parallel version of a preconditioning technique known as the Uniformization Method,
using the PETSc (Portable, Extensible Toolkit for Scientific Computation) suite of sparse matrix-vector
operations. The parallel Uniformization Method allows for fast and scalable approximations of large sparse
matrix exponentials, without sacrificing accuracy. Sampling of the high dimensional posterior distribution
is achieved via the standard Markov Chain Monte Carlo. The robustness of the calibration procedure is
tested using synthetic data produced by a simple toy climate model. A sensitivity study to the length of the
data time series and to the prior distribution is presented, and a sequential learning strategy is also tested.
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1. Introduction. General circulation models (GCMs) are mathematical models based
on a careful discretization of the Navier–Stokes equations which are used to simulate the
coupled circulation of the planetary oceans and atmosphere. Because of the finite resolution
of numerical models, there are always physical processes and scales of motion that cannot
be represented directly on the underlying grid. Inclusion of processes such as boundary
layer fluxes, vertical mixing due to convection, turbulent mixing, formation of clouds and
precipitation, and the interaction of clouds and radiation fluxes requires that the relevant
subgrid scale processes be represented in terms of grid-level variables. The approximation
of unresolved processes in terms of resolved variables is referred to as the parameterization
problem. For atmospheric dynamics, the most important physical process that must be
parameterized is moist convection in the tropics. In a typical GCM with grid spacing of
10 to 100 km, the cumulus updrafts and downdrafts are not resolved by the model grid.
Cloud processes affect the climate system by regulating the radiation budget at the top of
the atmosphere, by producing precipitation, and by transporting and redistributing water
vapour in the atmosphere [3, 2].
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However, state-of-the-art GCMs used for climate and mid-range weather predictions
represent poorly the dominant features of atmospheric variability at intra-seasonal (40 to 60
days) and planetary and synoptic scales in the tropics, namely the Madden-Julian oscillation
(MJO) and convectively coupled Kelvin waves (CCKWs) [24]. Both the MJO and CCKWs
are believed to play a fundamental role in regulating the weather and climate in the tropics
and extratropics [25].

There is a general consensus in the climate community that this deficiency is due mainly
to the inadequate treatment of cumulus convection and the associated interactions across
multiple temporal and spatial scales [25, 42, 24]. The search for new strategies for pa-
rameterizing the unresolved effects of tropical convection has been ongoing for the last few
decades, starting with the moist convective adjustment idea of Manabe et al. in 1965 [31].
Later in 1974, Kuo introduced a closure based on the large-scale moisture convergence [27].
The same year, Arakawa and Schubert [3] formulated a parameterization based on the quasi-
equilibrium assumption, which assumes a large separation between the subgrid- and grid-
scales processes. While these models constitute the benchmark of parameterizations used in
GCMs today (see for instance [46]), their purely deterministic closures do not capture the
highly intermittent and organized tropical convection [36]. Since then, many improvements
in GCMs came with the development of stochastic parameterizations [28, 29], which encode
model uncertainties as probability distributions and derive convection statistics to represent
the dynamics.

The stochastic multicloud model (SMCM) for tropical convection introduced by Khouider
et al. [19] has shown to improve the intermittency in coherent structures that contribute
to higher variability; when combined with a simple two-layer atmospheric climate model,
the SMCM was shown to reasonably simulate tropical convection and improve the associ-
ated wave-like features [19, 10, 11]. However, the choice of key parameters in the SMCM
is so far based solely on physical intuition and rough estimates obtained from idealized nu-
merical simulations and/or ad hoc processing of observational data. Our main goal here is
to develop a rigorous statistical method to infer some of these parameters systematically
from observational and/or detailed cloud resolving model [17] time series using a Bayesian
framework.

The SMCM is essentially a multi-dimensional Markov birth-death process [34] with im-
migration. Provided that reliable observational or numerical data exist, the main challenges
of the Bayesian methodology for the SMCM include the efficient computation of the model
likelihood function. The likelihood function involves solving a large system of Kolmogorov
equations as many times as there are observed data, which is computationally prohibitive
in a statistical inference setting. Several numerical techniques exist for computing transient
solutions of large Markov chains, as detailed in Sidge [44], but none is satisfactory in all
contexts. The Uniformization and Krylov-based Methods, which are based on the evaluation
of matrix exponentials, are the front runners of such techniques. The Krylov-based Method,
evidenced in the case studies [8, 5] due to its performance and robustness, has no reliable
stopping criteria which makes it impractical to use in our case. By contrast, the convergence
of the Uniformization Method is determined with a priori error bounds, and works really
well in practice. Nonetheless, the method seems to suffer from numerical instability and
performance degradation in some cases [8, 44]. Therefore, it remains interesting to see how
it will perform for our inference problem where the likelihood function it approximates is
computed so many times. On top of these problems, for large matrices (the size of our typical
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problem is on the order 109×109), a careful implementation is needed to limit storage space
and improve efficiency. To overcome these issues, we develop a parallel version of the Uni-
formization Method using sparse matrix–vector operations only, which is facilitated using
the PETSc suite [4]. We use the standard Markov Chain Monte Carlo (MCMC) technique to
sample the associated high dimensional Bayesian posterior distribution. The SMCM infer-
ence problem is an ideal benchmark test of the Uniformization Method’s performance and
reliability on a parallel platform.

As a proof of the inference methodology, we use synthetic data produced by the SMCM
coupled to a toy GCM single column model [19]. We thus aim mainly at reproducing the
assumed values of some key parameters of the SMCM from time series produced by the
coupled toy GCM-SMCM model.

Will the inferred parameters be statistically close to the assumed values? How long and
how sparse the time series should be in order to reasonably retrieve these parameters? If the
toy GCM-SMCM is re-integrated using the inferred parameters instead, will the resulting
time series have the same statistics as the original one? These are the key scientific questions
we aim to answer here before we can use the Bayesian framework with real and/or cloud
resolving model data.

The rest of the paper is organized as follows. In Section 2, we recall the main features of
the SMCM and in Section 3, we present the Bayesian inference model highlighting both the
numerical approximation of the likelihood function and the MCMC sampling strategy. The
key validation results using synthetic data are presented in Section 4, where we attempt to
answer the above questions. A concluding discussion is given in Section 5.

2. The Stochastic Multicloud Model. In this section we briefly review the dynam-
ical and physical features of the SMCM parameterization that are relevant to the Bayesian
set-up. A more complete discussion of the stochastic multicloud framework is found in the
original papers [19, 22, 23, 20, 21, 10].

Radar and satellite data combined with local soundings and aircraft measurements etc.
[16, 32] have provided strong evidence that large-scale tropical convective systems involve
three main cloud populations: shallow/congestus, deep penetrative cumulus clouds, and
stratiform clouds. Congestus cloud decks, with a vertical extent that does not exceed the
freezing level (5 or 6 km), are followed by deep convective towers that extend to the top of
the troposphere, which in turn are lagged by stratiform anvils in their dissipation phase (see
Figure 2.1). Congestus clouds heat the lower troposphere due to condensational heating and
induce upper troposphere cooling because of detrainment at their tops and by blocking long
wave radiation from the surface. Deep convective towers dominate the core of the storm
and are believed to be responsible for most of the tropical rainfall and provide the bulk
heating for the whole tropospheric column. Stratiform anvil clouds finally heat the upper
troposphere and cool the lower troposphere due to the evaporation of stratiform rain [23].

All three clouds are important components of the tropical convective cloud spectrum
and are associated with trimodal distributions of heating profiles, divergence, cloud detrain-
ment, and fractional cloudiness. Congestus clouds prevail in front of the wave where the
atmosphere is dry and serve to moisten and precondition the environment for deep con-
vection due to both detrainment of cloud water and lower-level large scale convergence of
moisture induced by congestus precipitation [16].

Accordingly, the multicloud parameterization framework assumes three heating profiles
associated with the main cloud types that characterize organized tropical convective systems.
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The SMCM mimics the convection activity over a single GCM grid box using a square
n × n lattice, in which individual lattice sites correspond to convective cells. Each lattice
cell i is associated with a four-state Markov process (Y it )t>0 taking value 0, 1, 2, or 3,
depending on whether it is clear sky, or occupied by a congestus, deep, or stratiform cloud,
respectively. In the simple case where local interactions are ignored, all N = n×n stochastic
processes (Y it )t>0 are independent and identically distributed [19]. This allows the derivation
in a straightforward fashion of a coarse-grained birth-death Markov process that evolves
efficiently the array of area fractions of the three cloud types, in each GCM grid box, without
the detailed knowledge of the microscopic lattice configuration. A more general coarse-
graining strategy that allows nearest neighbour interactions in the SMCM is presented in
[18]. For the sake of simplicity, here we consider only the case without local interactions.

Stratiform
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Fig. 2.1. A cartoon of the three cloud types showing congestus, deep convective, and a decaying deep
convective tower with a lagging large stratiform anvil, with stratiform rain falling into a dry region below
it where it eventually evaporates and cools the environment (hatched area). The probability transition rates
between the different clouds and clear sky state are given as functions rkl of the large-scale variables C, Cl,
and D.

Fig. 2.2. n× n Lattice Cloud Model
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GCM grid box: O(100km)
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Table 2.1
Large-scale variables

C convective available potential energy (CAPE)
Cl low-level CAPE
D middle troposphere dryness (or moisture)

In the case without local interactions, each process (Y it )t>0 evolves by allowing tran-
sitions between states, based on some intuitive interaction rules that depend only on the
large-scale resolved variables, in accordance with observations of cloud dynamics in the
tropics. These large-scale variables are the convective available potential energy (CAPE)
integrated over the whole troposphere (C), the convective available potential energy inte-
grated over the lower troposphere (Cl), and the dryness of the midtroposphere (D). The
interaction rules between the different cloud types and the environment are summarized as
follows [19]:

1. A clear site turns into a congestus site with high probability if low level CAPE is
positive and the middle troposphere is dry;

2. A congestus or clear sky turns into a deep convective site with high probability if
CAPE is positive and the middle troposphere is moist;

3. A deep convective site turns into a stratiform site with high probability;
4. All three cloud types decay naturally to clear sky at some fixed rate;
5. All other transitions are assumed to have negligible probability.

These rules are formalized by the probability transition rates rkl and the associated time
scales τkl listed in Table 2.2, in terms of the activation function

Γ(x) =
{

1− e−x if x > 0, 0 otherwise
}
.

Table 2.2
Transition rates and timescales in the stochastic parameterization.

Cloud Transition Probability Transition Cloud Transition
Rate Timescale (hours)

Formation of congestus r01 = 1
τ01

Γ(Cl)Γ(D) τ01 = 1

Decay of congestus r10 = 1
τ10

Γ(D) τ10 = 1

Conversion of congestus to deep r12 = 1
τ12

Γ(C)
(
1− Γ(D)

)
τ12 = 0.25

Formation of deep r02 = 1
τ02

Γ(C)
(
1− Γ(D)

)
τ02 = 3

Conversion of deep to stratiform r23 = 1
τ23

τ23 = 3

Decay of deep r20 = 1
τ20

(
1− Γ(C)

)
τ20 = 2

Decay of stratiform r30 = 1
τ30

τ30 = 5

Activation Function Γ(x) = 1− e−x, x ≥ 0

Note from Assumption 5, that we have r03 = r13 = r21 = r31 = r32 = 0. Each one of
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the N Markov chains can be simulated with an accept-reject Monte Carlo algorithm, using
the fact that the sojourn time in any state of a Markov process is an exponential random
variable. However this is very costly. As already stated, a much cheaper, coarse-grained
version of the model is constructed out of the cloud populations

N t
c =

N∑
i=1

1{Y it =1}, N t
d =

N∑
i=1

1{Y it =2}, N t
s =

N∑
i=1

1{Y it =3},

where N t
c , N

t
d, and N t

s are the lattice total number of congestus, deep, and stratiform at
time t, and 1 is the indicator function. By conservation of the total number of sites, the
population of clear sky sites at time t is given by N t

cs = N −N t
c −N t

d −N t
s , where N is the

size of the lattice. The evolution of the cloud populations Nc, Nd, Ns effectively constitutes
a birth-death process with immigration. Note that the actual area fractions (cloud cover on
a GCM grid box) are given by σc = Nc/N , σd = Nd/N , σs = Ns/N .

We now briefly describe the three-dimensional birth-death process (Xt)t>0, Xt =
(N t

c , N
t
d, N

t
s), and give its associated probability distributions in Section 3. Let i = (i1, i2, i3)

and j = (j1, j2, j3) be triplets of non-negative integers in the range space S of (Xt)t>0. Then
the conditional probability that at time t the congestus, deep and stratiform populations are
respectively j1, j2, and j3, given that at time t = 0 there were i1 congestus, i2 stratiform,
and i3 deep clouds is denoted by

Pij(t) = P{Xt = j|X0 = i}.

The transition probabilities Pij(t) satisfy the initial condition

Pij(0) = δi1j1 · δi2j2 · δi3j3 ,

where δαβ is the Kronecker delta, and we assume that Pij(t) are differentiable functions of
t for t > 0.

Transitions i → j can occur as single births (with the clear sky population Ncs losing
one site), deaths (with the clear sky population Ncs gaining one site), or immigrations
(when a congestus becomes a deep cloud, or a deep cloud becomes a stratiform), via rates
related to those described in Table 2.2. We introduce furthermore the standard unit vectors
ε1 = (1, 0, 0), ε2 = (0, 1, 0), and ε3 = (0, 0, 1). Then the admissible transitions from state i
are given as the following model postulates (transition in parentheses) [19]:

P{Xt+h = i− ε1 + ε2|Xt = i} = R12h+ o(h) (congestus to deep),
P{Xt+h = i− ε2 + ε3|Xt = i} = R23h+ o(h) (deep to stratiform),

P{Xt+h = i− ε1|Xt = i} = R10h+ o(h) (congestus to clear sky),
P{Xt+h = i− ε2|Xt = i} = R20h+ o(h) (deep to clear sky),
P{Xt+h = i− ε3|Xt = i} = R30h+ o(h) (stratiform to clear sky),
P{Xt+h = i+ ε1|Xt = i} = R01h+ o(h) (clear sky to congestus),
P{Xt+h = i+ ε2|Xt = i} = R02h+ o(h) (clear sky to deep),

(2.1)

where h is a small increment, and Rkl = ikrkl (k, l = 0, 1, 2, 3), with the rates rkl depending
upon the exogenous factors C, Cl, D as listed in Table 2.2. Moreover, the probability of
a transition other than those listed in (2.1) in a time interval (t, t + h) is o(h), and the
probability of no transition in (t, t+ h) is

(2.2) P{Xt+h = i|Xt = i} = 1− h
(
R10 +R01 +R02 +R12 +R20 +R23 +R30

)
+ o(h).
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3. The Bayesian Inference Model. The SMCM calculates the evolution of the
cloud populations x = (Nc, Nd, Ns)

1 constrained by the large-scale atmospheric state u =
(C,Cl, D). We label the corresponding sequence of observations x1, x2, x3, . . . and u1, u2, u3, . . .
by xt and ut, respectively. The parameterization includes seven numerical inputs (or pa-
rameters), namely the cloud convective timescales (see Table 2.2), which we stack in the
vector

θ = (τ01, τ10, τ12, τ02, τ23, τ20, τ30).

The relationship between the parameters, large-scale variables, and model output can be
represented by the mapping xt = g(θ,ut), where g is a function that represents the SMCM
coupled to a climate model. The parameters, or inputs θ, can be ‘tuned’ to find θ∗, the
‘best’ input configuration, so that the model reproduces some observed data well. The
role of data is to help us learn which parameter values best simulate the climate we know.
Learning which choice of parameter values lead the given model to best reproduce the
climate is the process of calibration. The SMCM calibration problem should be viewed as
an inverse problem: given the SMCM/climate model (represented by the function g), the
climate (cloud) data xt, and the large-scale external factors ut, find the best parameter
input values θ∗ so that x∗t = g(θ∗,ut) is statistically close to xt.

In the inversion process, uncertainties arise from imperfect and finite data, and from
the assumption that the model is a true representation of the climate dynamics. Data
uncertainty propagates through the reductive model to give us uncertainty on the parameters
θ. Additionally, inverse problem are often ill-posed in the sense that various parameters θ
can relate to the same input data set, or that the parameters θ may not depend continuously
on the data.

The Bayesian statistical approach provides a solution by formulating a complete prob-
abilistic description of the unknowns and uncertainties given the data. It incorporates the
initial information and residual uncertainty about the model parameters θ into a prior dis-
tribution π(θ), which is then updated by a model likelihood function f(xt|θ) to formulate
a posterior distribution π(θ|xt) of the model parameters given the data [38]. Hence it does
not find a single best-fit parameter values configuration θ∗ but a distribution of solutions
π(θ|xt), informed by the data xt.

The inversion of probabilities is given by Bayes’ Theorem and finds the posterior dis-
tribution π(θ|xt) as a consequence of the two antecedents π(θ) and f(xt|θ) [38]:

π(θ|xt) =
f(xt|θ)π(θ)∫
f(xt|θ)π(θ)dθ

.

Note that π(θ|xt) is actually proportional to the distribution of xt conditional upon θ, i.e.
the likelihood, multiplied by the prior distribution on θ:

π(θ|xt) ∝ f(xt|θ)π(θ).

Conditioning further on ut we obtain:

(3.1) π(θ|xt,ut) ∝ f(xt|ut,θ)π(θ).

1Here observations of the random variable X are written in lower case.
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In this Bayesian context, the large-scale variables ut are seen as covariates to the model and
we may think of them as having Dirac delta distributions.

We now consider series of observations x1:T = (x1, . . . ,xT ) and u1:T = (u1, . . . ,uT )
of length T . By conditioning on past events, the likelihood is effectively factorized into a
product of T one-step transition likelihoods:

(3.2) f(x1:T |u1:T ,θ) =

T∏
t=1

ft−1(xt|xt−1,ut−1,θ).

Here we resorted to the Markov property of the probabilistic multicloud model to exclude
old events from the representation.

3.1. Numerical Approximation of the Likelihood Function. The transition prob-
ability matrix of the continuous time birth-death process (Xt)t>0 defined by the probabilities
(2.1)-(2.2) solves the so-called system of Kolmogorov backward differential equations [9]:

dPij(t)

dt
= R12Pi−ε1+ε2,j(t) +R23Pi−ε2+ε3,j(t) +R10Pi−ε1,j(t)

+R20Pi−ε2,j(t) +R30Pi−ε3,j(t) +R01Pi+ε1,j(t) +R02Pi+ε2,j(t)

−
(
R12 +R23 +R10 +R20 +R30 +R01 +R02

)
Pij(t),

with the initial conditions Pij(0) = δij . Let P = {Pij(t)} ∈ R|S|×|S| be the matrix of
transition probability functions. We may cast the Kolmogorov system in its matrix form:

P ′(t) = R(ut,θ)P (t),

P (0) = Id,
(3.3)

where Id is the identity matrix of order |S|, and R ∈ R|S|×|S| is the matrix of transition
rates Rkl (the infinitesimal generator of the birth-death process). On the time interval
[t, t+ ∆t], during which the large-scale variables ut may be assumed constant, the solution
to the system (3.3) is approximately given by

(3.4) P (s) = exp
[
R(ūt,θ)s

]
, s ∈ [t, t+ ∆t]

for some fixed model parameter values θ and constant values ūt of the large-scale variables.
The one-step transition likelihoods in (3.2) are merely the density functions associated with
the probability matrix entries (3.4), as functions of θ. The computation of the likelihood
function (3.2) in full requires repeated solves of the forward problem, more precisely T − 1
large matrix exponentials for an observed sample of length T .

Large Matrix Exponential. How large the matrix R is depends on the size of the cloud
lattice. Given a lattice of size N , the stochastic process (Xt)t>0 evolves in a finite space
S ⊂ N3, where S is the set of all ordered triplets of nonnegative integers (a, b, c) satisfying
the relation a+b+c ≤ N . The geometrical domain associated with S is illustrated in Figure
3.1(a).

The state space S is countable, so we may find an ordering formula φ : S → N for the
triples in S (in practice, φ is needed to construct the large matrix R incrementally). One
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Fig. 3.1. (left) The state space S of the immigration-birth-death process (Xt)t>0 is the subset of N3

of all ordered triples of nonnegative integers (a, b, c) that lie below and on the plane a+ b+ c = N . (right)
Sequence of triples given by the counting function φ (in red) for N = 2. The stride b = 0 for the plane
d = 2 is colored in blue.

such injection is given by the mapping

φ(d, b, c) =

d−1∑
s=0

s∑
b=0

(s− b+ 1)︸ ︷︷ ︸
rank given plane d

+

b−1∑
s=0

(d− s+ 1)︸ ︷︷ ︸
rank given stride b

+ c,

=
d3

6
+
d2

2
+
d

3
+ db− b2

2
+

3b

2
+ c,(3.5)

for which we set a + b + c = d for 0 ≤ d ≤ N , 0 ≤ b ≤ d, and 0 ≤ c ≤ d− b. The counting
increment is determined first by planes, then by strides within those planes. The function φ
maps each triple in S to a counting order (address). An illustration of the mapping is given
in Figure 3.1(b). We may now write the likelihood (3.2) as

f(x1:T |u1:T ,θ) =

T∏
t=1

ft−1(xt|xt−1,ut−1,θ)

=

T∏
t=1

1{φ(dt−1,N
t−1
d ,N

t−1
s )}

∗ exp[R(ut−1,θ)h]1{φ(dt,Nt
d,N

t
s)},(3.6)

where xt = (N t
c , N

t
d, N

t
s), d

t = N t
c +N t

d +N t
s , h is the sampling time interval, and 1{φ(·)}

is a vector in R|S| that has 1 at the index corresponding to φ(·), and 0’s everywhere else.
Here 1{φ(·)}

∗ is the transpose of 1{φ(·)}, and φ is given by (3.5).
From the counting formula (3.5), we can get the dimension of the infinitesimal generator

R, i.e. the cardinality of S, as the last element in the counting sequence:

|S| = φ(N,N, 0) + 1 =
N3

6
+N2 +

11

6
N + 1 = dim(R).

We find that dim(R) = O(N3), so the size and memory requirements of R become pro-
hibitively large with the dimensions of the cloud lattice. For instance, for a 10× 10 lattice
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(N = 100) the size of R is 176,851, which requires about 70 Mb of storage in the com-
pressed standard PETSc AIJ format. The memory requirement escalates to about 50 Gb for
a 30 × 30 lattice (N = 900) and correspondingly, dim(R) = 122, 311, 651. But although R
is large, its density (fraction of non-zero elements) is quite low: 4.52× 10−3% for N = 100
and 6.54 × 10−6% for N = 900. Sparse matrix compression alone is however not sufficient
as indicated by the memory storage numbers above, so further scalability is gained using
distributed memory. We achieved considerable performances (in matrix assembly and oper-
ations) using distributed sparse PETSc [4] matrices and related routines.

Uniformization Method. We are led to consider the problem of computing the exponential
of a large sparse matrix. Since the matrix exponential is dense even when the matrix R
is sparse, the computation of exp(Rt) in full (based on matrix-matrix operations) remains
possible only when R is relatively small. These include Padé-type or matrix decompositions
[35]. For large-scale problems, the family of series methods, based on matrix-vector products,
are preferable [44]. In Markov chain modelling the use of Jensen’s Uniformization Method
[14, 44] is widespread, but an alternative technique based on Krylov subspaces [44, 43]
seems to rival in performance. We implemented both methods in parallel and compared
their applicability and performance in extensive numerical tests that will be reported in the
future. The Krylov-based Method is an iterative technique which comes with an important
caveat: there exists no practical and satisfactory stopping criterion for the method. While
the performance results in [44] are obtained by fixing the size of the Krylov basis beforehand,
Saad’s [41] residual-based stopping criterion used in [5, 8] fails the convergence test in our
case. So we resorted to the Uniformization Method for which there exists an established
stopping criterion, and which revealed to be both reliable and accurate in our series of
numerical tests.

The Uniformization Method is based on the partial Taylor series expansion of the matrix
exponential:

(3.7) w(t) := exp(Rt)ej ≈
p∑
k=0

tk

k!
Rkej ,

where ej is the standard canonical vector in R|S|. However, because R is essentially nonnega-
tive (the diagonal elements of R are negative and the off-diagonal elements are nonnegative),
a direct use of (3.7) leads to severe roundoff errors in finite floating point arithmetic due
to catastrophic cancellation. For numerical stability, the series expansion (3.7) is combined
with the preconditioner Q = 1

αR+Id, where α = maxi |Rii|. It follows that Q is a stochastic
matrix, that is its entries satisfy

∑
j Qij = 1, and Qij ≥ 0. Then the truncated approxima-

tion

(3.8) wp(t) := e−αt
p∑
k=0

(αt)k

k!
Qkej ,

involves nonnegative terms only and is numerically stable. Using the fact that ‖Q‖∞ = 1,
it is easy to show that the error of the approximation (3.8) is such that [14, 44]

(3.9) ‖w(t)−wp(t)‖∞ ≤ 1− e−αt
p∑
k=0

(αt)k

k!
.
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The a priori bound (3.9) on the series truncation error is used as a stopping criterion for
the Uniformization Method: If εtol is a prescribed error tolerance, then truncate the series
at order pε, where pε is the smallest integer that satisfies

1− e−αt
pε∑
k=0

(αt)k

k!
≤ εtol ⇔

pε∑
k=0

(αt)k

k!
≥ eαt(1− εtol).

As such, the Uniformization Method is easy to implement numerically. We used the PETSc [4]
parallel suite for distributed sparse matrix–vector products. A tolerance error εtol = 10−10

was set for all numerical results reported herein.

3.2. Posterior Sampling Using Monte Carlo Markov Chain Algorithm. In the
Bayesian paradigm, all inferences about the model parameters θ are carried out based on
the posterior distribution (equations (3.1) and (3.6))

π(θ|x1:T ,u1:T ) ∝ π(θ)

T∏
t=1

1{φ(dt−1,N
t−1
d ,N

t−1
s )}

∗ exp[R(ut−1,θ)h]1{φ(dt,Nt
d,N

t
s)},

for a suitable choice of the prior π(θ). Bayesian point-estimators of interest, like the posterior
mean Eπ[θ] =

∫
Θ
θ π(θ|x1:T ,u1:T )dθ, require to evaluate an integral on a parameter space Θ

of dimension 7. A classical approximation method for complex multidimensional integrals is
the Monte Carlo Markov Chain (MCMC) technique [40]. The underlying idea of MCMC is to
construct a Markov chain in θ with ergodic (stationary) distribution π(θ|x1:T ,u1:T ), which
is guaranteed under the conditions of irreducibility and aperiodicity of the chain. Starting
with some initial state θ(0), we simulate M transitions under this Markov chain and record
the observed values θ(j), j = 0, . . . ,M . If Eπ|θ| < ∞, then the ergodic sample average

θ̂ = 1
M+1

∑M
j=0 θ

(j) converges almost surely to Eπ[θ] by the Markov chain strong law of
large numbers (SLLN, see [6]). We implemented a standard Metropolis within Gibbs sampler
(also known as component-wise Metropolis Hastings) which breaks down the 7-dimensional
target π(θ|x1:T ,u1:T ) into simpler, one dimensional, targets. For all MCMC computations,
we used a truncated normal distribution T N (0, σ2, 0,+∞) proposal, with scaling parameter
σ calibrated so as to obtain an optimal acceptance rate of 1/4, as recommended by Roberts et
al. (2004) in the case of high dimensional models. For technical details on the algorithm, see
[39, 6]. The code for our MCMC posterior simulator is written in the MPI C programming
language, and runs on the WestGrid Nestor Cluster.

4. Validation Using Synthetic Data. We ran validation tests for our Bayesian pro-
cedure (and MCMC posterior simulator) using synthetic data. These ‘fake-data check’
consist of 5 steps.

1. Fix the input cloud timescale parameters values at the values reported in Table 2.2.
2. Run the coupled toy GCM-SMCM model with those input parameters for a given

size of the cloud lattice. The model outputs the cloud population (i.e. cloud cover)
time series, and large-scale variable time series.

3. Isolate the stationary cloud population and large-scale variable time series to be
used as “synthetic” observed time series for the Bayesian procedure.

4. Run the Bayesian procedure using the synthetic time series obtained in Step 3 and
selected priors on the cloud timescale parameters. The Bayesian procedure outputs
distributions on the parameters, from which point estimates are calculated.
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5. Compare the inferred parameter values with the “true” input values selected in Step
1.

Arguably the choice of priors has a significant impact on the Bayesian inference. We work
under the assumption that we have little to no prior information on the timescale parameters,
which motivates our choice of a diffuse normal and uniform priors, respectively.

We ran the consistency check described above for synthetic time series of increasing
lengths, in the goal of testing the sensitivity of our inference method to observing more
data. The results of these tests are reported in Section 4.2 for the normal and uniform
priors, while the synthetic data are first presented in Section 4.1.

A second consistency check consists of carrying the inference in a sequential manner,
using small successive batches of data, as opposed to a large contiguous one. This technique,
commonly called sequential learning, becomes quite handy in the cases when only multiple
short samples of real data are available. We discuss our results on sequential learning in
Section 4.3 in the case of a normal prior.

8 16 24 32 40 48 56 64 72 80 88 96
Days

0
2
0

4
0

(a)

8 16 24 32 40 48 56 64 72 80 88 96
Days

(b)

0
10

20
30

Fig. 4.1. (a) (Main) Synthetic SMCM time series of the cloud populations of congestus Nc (black
solid), deep Nd (green dashed) and stratiform Ns (red dotted) using the “true” parameter values of Table
2.2. (Inset) Interval from day 52 to day 61 in the equilibrium regime used for the validation. (b) Same as
in (a) but for the large-scale variables C (black solid), Cl (green dashed), and D (red dotted).

4.1. Synthetic Data. The synthetic data used for the validation were generated using
the SMCM described in Section 2 coupled with a simple atmospheric climate model (toy
GCM) [19], using the cloud timescale parameter values listed in Table 2.2, and a 10 × 10
cloud lattice (N = 100).
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The simple one–column toy GCM, as described in details in [19], consists of a set of
ordinary differential equation that are systematically coupled to the area fractions σc, σd,
σs of congestus, deep, and stratiform clouds, predicted by the SMCM. More precisely, the
ODE system describes the evolution of four key thermodynamic variables: the potential
temperature components associated with the first and second baroclinic modes, θ1 and
θ2, the midtroposphere specific humidity, q, and the boundary layer equivalent potential
temperature, θeb. In turn, the large–scale factors that affect directly the dynamics of the
SMCM, namely C, Cl, and D, are functions of θ1, θ2, q, and θeb. The interested reader is
referred to [19] for more details on the toy GCM and its coupling to the SMCM.

The data consist of the cloud populations and large-scale variables time series shown
in Figure 4.1, each totalling 28,800 sample points with a 5 minute sampling time interval,
which corresponds to 100 days in real time. For the validation purposes, we use a shorter
9-day interval (between days 52 and 61, approximately 2500 sample points) taken from the
radiative–convective equilibrium regime, as shown in the insets of Figure 4.1.

4.2. Sensitivity to the Length of the Time Series and Prior Specification. We
first run the validation tests using a 7-dimensional truncated normal T N 7(10, 10 Id7, 0,+∞)
prior with mean 10 and covariance matrix 10 · Id7, where Id7 is the 7-dimensional identity
matrix. The normal is restricted to the positive real half space to reflect the fact that
the timescales are nonnegative values. The choice of this distribution is motivated by the
need of having a weakly informative prior in the sense that (1) the prior mean of 10 is
chosen sufficiently far from the true values in an attempt to demonstrate Bayesian learning
towards the true values, but not too far to mitigate the limited amount of data information
(increasing the amount of data T is cost prohibitive) and (2), the variance is large enough
to have a significant amount of prior uncertainty, but not too large to reflect some degree of
prior belief.

We used T = 100, 500, 1000, 1500, 2000, and 2500 contiguous observations of the
synthetic time series, and ran our MCMC posterior simulator. In physical time, these
numbers of observations approximately correspond to 8.3 hrs, 41.7 hrs, 3 days 11 hrs, 5 days
5 hrs, 6 days 23 hrs, and 8 days 16 hrs, respectively.

The Bayes estimates (mean, standard deviation, percentiles) and Monte Carlo standard
error (MCSE) [33] for T = 100, 500, and 2500 are shown in Table 4.1 for all 7 parameter
marginal posterior distributions. The MCSE and Bayes estimates are calculated using the
MCMCpack R package [33], after the burn-in portions of the chains have been removed. Several
convergence diagnostics were used to ensure that the chains have reached equilibrium. First
we used an ensemble of well-dispersed chains in parallel and compared their performances,
a paramount tool recommended by Robert and Casella (2010) when assessing convergence
to stationarity. This was facilitated by parallel processing on the WestGrid Nestor cluster.
We also monitored convergence to stationarity and convergence of averages using graphical
and statistical tests provided by the coda package in R.

Also reported in Table 4.1 are the MCMC sample sizes, approximate runtimes, and
number of processors used. As discussed in Section 3.1, the forward problem is compu-
tationally expensive, and increasing the number T of observations results in much longer
computing time, even on a greater number of processors and for a smaller MCMC sample
size.

We highlight a few results. First we note that we expect the prior to dominate the
posterior when the number T of observations used is too small, and the likelihood to domi-
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nate the posterior when a sufficiently large number of observations is used. When only 100
observations are used, the parameters τ01 and τ10 are recovered with good enough accuracy
(0.934 and 0.894, respectively; their true value is 1.0 for both), while the estimated mean
and standard deviation of the remaining parameters are essentially those of the prior. This
seems to correlate well with data, as much of the activity happens mainly between congestus
and clear skies during that lapse of time; the 100 observations used for that validation cor-
respond to the first 1/25 of the time series shown in the inset of Figure 4.1, and covers only
a small section of the first onsets of deeps and stratiforms. When 500 observations are used,
all parameters except τ20 roughly recover their true value within one standard deviation
not exceeding 21%. When 2500 observations are used, τ20’s true value is almost recovered
within a standard deviation of 19%, while the remaining parameters’ relative error do not
exceed 7%.

Table 4.1
Validation results for a normal prior, based on T = 100, 500, and 2500 observations. MCMC sample

size (excluding burn in), approximate total runtime, and number of processors used in parentheses. Mean,
SD, and MCSE are posterior mean, standard deviation, and Monte Carlo standard error, respectively. 2.5%
and 97.5% are posterior percentiles.

True Value Mean SD (MCSE) 2.5% 97.5%

T = 100 (100,000, 24 days, 16 cores)
τ01 1 0.934 0.1727 (0.003028) 0.6547 1.328
τ10 1 0.894 0.1534 (0.001701) 0.6450 1.243
τ12 .25 9.779 2.9458 (0.395798) 3.9921 15.590
τ02 3 6.370 2.8332 (0.137016) 1.9763 12.572
τ23 3 7.584 3.2871 (0.222591) 1.7847 14.201
τ20 2 10.088 3.0369 (0.067716) 4.1766 16.048
τ30 5 10.004 3.0264 (0.108871) 4.1161 15.884
T = 500 (25,293, 42 days, 16 cores)
τ01 1 1.0116 0.09669 (0.001547) 0.8422 1.2204
τ10 1 0.9111 0.11283 (0.002064) 0.7178 1.1558
τ12 .25 0.3206 0.06582 (0.001334) 0.2198 0.4776
τ02 3 3.4709 0.39302 (0.007823) 2.8028 4.3413
τ23 3 2.9576 0.27455 (0.005086) 2.4747 3.5561
τ20 2 7.4629 2.91743 (0.121603) 2.8282 13.7671
τ30 5 4.9184 0.46225 (0.007028) 4.0957 5.8955
T = 2500 (12,695, 42 days, 72 cores)
τ01 1 1.0019 0.04285 (0.0009227) 0.9198 1.0882
τ10 1 0.9821 0.05310 (0.0009740) 0.8869 1.0968
τ12 .25 0.2411 0.02347 (0.0004343) 0.2005 0.2915
τ02 3 3.0110 0.18012 (0.0032739) 2.6712 3.3749
τ23 3 2.9295 0.14277 (0.0026691) 2.6643 3.2199
τ20 2 2.5256 0.48401 (0.0096552) 1.7842 3.6602
τ30 5 5.3193 0.26249 (0.0052716) 4.8276 5.8481

In Figure 4.2, we compare the marginal posterior densities for all seven parameters
using from T = 500 to 2500 observations, by increments of 500. It is interesting to see the
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convergence to a limiting posterior distribution, as we increase the number of observations.
More precisely, as T increases, the marginal posterior distributions concentrate close to the
parameter true values, and we see a progressive reduction and then a sudden stagnation of
the variance; for all parameters, the distribution curves for T = 2000 and 2500 match closely.
This suggests that although all parameters were reproduced accurately, some uncertainty
remains, independently of the length of the data time series.

To test the effect of this ‘sample uncertainty’ on the climate model dynamics, we now
verify whether the inferred values of the cloud timescale parameters do reproduce the climate
features we started with. For this, we run the SMCM coupled with a toy GCM as described
in Section 4.1, with the inferred values reported in Table 4.1 for T = 2500. We then compare
the resulting new time series, shown in Figure 4.3, with the original ones (see Figure 4.1). In
Table 4.2, we report some statistics (mean and standard deviation) for the cloud populations
and main climate thermodynamic variables of interest (time series not shown), both for the
original and the new (inferred) time series. From these statistics, and by inspection of the
two time series, we can ascertain that we recover the climate mean and variability with
high fidelity. The fact that the climate dynamics are reproduced accurately, in spite of the
uncertainty in some inferred parameters such as τ20, suggests that the stochastic climate
model itself is not very sensitive to those parameters. This is in fact, the more meaningful
test that the Bayesian methodology has to pass and it passed it successfully.

Table 4.2
Mean and standard deviation (SD) for the time series of the cloud populations (shown in Figures 4.1

and 4.3) and climate thermodynamic variables (time series not shown), which were obtained (1) using the
parameter values reported in Table 2.2 (original), and (2) using the Bayes posterior mean values reported in
Table 4.1, for T = 2500 (inferred). The climate thermodynamic variables shown are: θ1 and θ2 the potential
temperatures associated with the first and second baroclinic modes, θeb the equilibrium temperature, and q
the moisture.

(1) Original (2) Inferred
Mean (SD) Mean (SD)

Cloud Populations
Congestus 3.583 (3.625) 3.267 (3.484)
Deep 3.088 (6.371) 3.456 (6.640)
Stratiform 5.214 (8.744) 6.334 (9.598)

Climate Thermodynamic Variables
θ1 9.759e-02 (8.538e-02) 9.368e-02 (7.910e-02)
θ2 -5.641e-02 (6.306e-02) -5.310e-02 (5.742e-02)
θeb -5.604e-02 (1.256e-01) -5.196e-02 (1.158e-01)
q 4.326e-02 (4.608e-02) 4.354e-02 (4.299e-02)

In order to investigate the sensitivity of the Bayesian model to prior belief specifica-
tion, we selected a second prior, the 7-dimensional uniform distribution with large support
U7(0, 30). This choice of prior can represent an inference context in which there is no a pri-
ori information about the parameters. The validation results using the uniform prior were
comparable to those obtained using the normal prior except, as might be expected, when
only 100 data were used. In the case T = 100 and for a MCMC sample of size 92,000, we
obtained posterior means (standard deviations) of 0.9026 (0.1641), 0.8654 (0.1418), 22.2945
(3.3827), 4.0160 (2.65), 3.7721 (3.3077), 16.327 (8.0798) and 15.381 (8.1068) for the param-
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Fig. 4.2. Comparison of marginal posterior densities using from T = 500 to 2500 observations, by
increments of 500, for a normal prior. Also shown (in red) is the marginal posterior density for the uniform
prior using T = 2500.

16



8 16 24 32 40 48 56 64 72 80 88 96
Days

0
1
0

3
0

(a)

(a) Cloud population time series.

8 16 24 32 40 48 56 64 72 80 88 96
Days

0
1
0

2
0

3
0

(b)

(b) Covariates time series.

Fig. 4.3. (a) (Main) SMCM time series of the cloud populations of congestus Nc (black solid), deep Nd

(green dashed) and stratiform Ns (red dotted) using the inferred values of the cloud timescale parameters
in Table 4.1 for T = 2500, for a normal prior. (Inset) Smaller interval covering day 52 through day 61.
(b) but for the large-scale variables C (black solid), Cl (green dashed), and D (red dotted).

eters in the same order as that given in Table 4.1. We note in passing that the true value
of 1 of the parameters τ10 and τ01 is recovered within one standard deviation of roughly
17%, which is consistent with the values obtained under the normal prior, and supports the
evidence that the first 100 cloud observations provide information mainly about the tran-
sitions between clear sky and congestus. The posterior means for τ20 and τ30 (16.327 and
15.381, respectively) are far from their true values (2 and 5, respectively), and closer to the
midpoint (15) of the large support of the uniform prior. The posterior mean of 22.2945 for
τ12 is somewhat off, but the behaviour of the MCMC simulator may be counterintuitive on a
high dimensional space in the sense that one should not expect a posterior mean somewhat
between the midpoint of the uniform prior and the true value for each parameter. Also, as
noted above, the first 100 observations constitute the preconditioning phase dominated by
congestus activity and only very few –under sampled– intermittent deep convection events
are produced. The validation results for larger T values are not reported here because they
are not statistically different from those obtained under the normal prior (see Table 4.1),
but the posterior marginal distributions for T = 2500 are shown in Figure 4.2 (red solid
lines) together with the ensemble of posterior marginals obtained under the normal prior.
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These results indicate that the outcome of the inference is statistically the same ir-
respective of the choice of the prior, provided there is sufficient data. This constitutes a
formal verification of the correctness of our MCMC sampler. In particular, it verifies that
our posterior simulator is robust to the choice of prior, and that it responds normally to the
input data, i.e. it outputs a posterior that is dominated by the prior when the data do not
provide enough information about the parameters.

4.3. Sequential Bayesian Inference. We end this validation study by looking at
how the posterior π(θ|x1:T ,u1:T ) evolves as we sequentially update the posterior by new
data points xt, ut. Such an incremental procedure is justified by the fact that the data
are assumed to be Markovian. For instance, for x1:3 = (x1,x2,x3), and if we drop u1:3 for
simplicity:

π(θ|x1,x2,x3) ∝ f(x1,x2,x3|θ)π(θ)

= f2(x3|x2,θ)× f1(x2|x1,θ)π(θ)

= Likelihood of {x3} × posterior having observed {x2,x1}

More generally, the posterior having observed (x1, . . . ,xK) can be used as a ‘prior’ for the
remaining data (xK+1, . . . ,xN ). In the Bayesian framework, this is equivalent to observing
the sequence of data (x1, . . . ,xN ) all at once. This is particularly useful if the inference is
done online while data is gradually available, or in cases where only short, discontinuous data
series are available. This is the case for example when data is gathered from various sources,
e.g. various observation sites. We perform the sequential Bayesian inference following the
main steps below.

1. Run the Bayesian model with the first 100 observations (Sequence 1 ), using a
T N 7(10, 10 Id7, 0,+∞) prior. Obtain a posterior distribution over the model pa-
rameters. (This was done in Section 4.2. See validation results of Table 4.1 for
T = 100.)

2. Use the method of moments approach to fit a multivariate normal distribution to
the posterior samples.

3. Use the fitted distribution obtained in 2. as the prior for computing the posterior
distribution from the next successive 100 observations (Sequence 2 ).

4. Iterate Steps 2 and 3 three more times until 5 sequences of 100 observations have
been used for the sequential inference.

5. Compare the resulting posterior distribution with the posterior obtained by observ-
ing the 500 contiguous observations all at once.

The sequential learning strategy described here should not be confused with sequential
Monte Carlo samplers, a collection of algorithms that build on importance sampling methods
[40]. Here, the fitting of the Bayesian posterior sample to a parameterized distribution (Step
2) introduces some degree of uncertainty. In fact, the sequential inference strategy failed in
the case of an initial U7(0, 30) prior, due to the large misfit to a normal introduced after
observing the first 100 data (see Section 4.2 for the validation results under the uniform
prior in the case of T = 100).

The method was however successful in the case of an initial T N 7(10, 10 Id7, 0,+∞)
prior, as it can be seen from the sequences of updated marginalized posteriors shown in
Figure 4.4. As more and more sequences of data are observed, the posteriors shift towards
and concentrate on the parameter true values. In some cases, the initial high variance reduces
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significantly after one or two observed sequences only. The statistics of the marginalized
posteriors for Sequence 5 are summarized in Table 4.3.

As shown in Figure 4.4, all posterior marginals obtained after observing Sequence 5
(dashed green) match closely those obtained when all 500 data are observed at once (solid
black), except in the case of the parameter τ12. For that specific parameter, the posterior
mean after having observed Sequence 5 (dashed green) is equal to 0.2688, which is closer
to the true value of 0.25 than the posterior mean of 0.3206 obtained when all 500 data are
observed at once (see Table 4.1). There is also less uncertainty about the posterior mode
in the sequential case (posterior standard deviation of 0.03152 compared to 0.06582). It is
interesting to see how the batch-wise technique captures the true value τ12 better than when
the data are used all at once, which might suggest that Step 2 of the sequential learning
strategy enhances the inference results in some way.

Table 4.3
Sequential Bayesian inference validation results for Sequence 5, for an initial T N 7(10, 10 Id7, 0,+∞)

prior. MCMC sample size (excluding burn in) is 150,424. Mean, SD, and MCSE are posterior mean,
standard deviation, and Monte Carlo standard error, respectively. 2.5% and 97.5% are posterior percentiles.

True Value Mean SD (MCSE) 2.5% 97.5%

τ01 1 1.0155 0.09064 (0.0005093) 0.8388 1.194
τ10 1 0.9094 0.09471 (0.0006049) 0.6286 1.183
τ12 .25 0.2688 0.03152 (0.0002034) 0.2077 0.331
τ02 3 3.5928 0.40934 (0.0035545) 2.7982 4.398
τ23 3 2.9869 0.29188 (0.0019786) 2.4218 3.562
τ20 2 7.4548 2.68044 (0.0389249) 2.6357 12.935
τ30 5 4.7373 0.42297 (0.0026518) 3.9285 5.585

5. Discussion. A Bayesian method for learning some parameters for the stochastic
multicloud model (SMCM) for organized tropical convection of Khouider et al. [19] is pre-
sented and validated here using synthetic data. The SMCM is in essence a three dimensional
birth-death process with immigration whose population species track the time evolution of
the area fractions of three cloud types, congestus, deep, and stratiform, that are observed
to characterize tropical convective systems [16, 32]. The SMCM is based on gas model
lattice overlaid over each GCM grid box. Each lattice site is either occupied by one of
the three cloud types or is a clear sky site. Lattice sites switch between the four possible
states according to intuitive probability rules motivated by observations. This results in
probability transition rates which depend exclusively on the large-scale variables through
some prescribed functions of exogenous factors represented by the potential for convection
(CAPE) and middle tropospheric humidity, modulated by timescales. While the functionals
are educated guesses that take the form of Arrhenius activation functions, the timescales
are essentially free parameters whose values are very uncertain. In the past, intuitive values
have been used satisfactorily in the case of idealized simulations of convectively coupled
gravity waves [10, 11, 30] and rough estimates were obtained by a simple matching of the
equilibrium distribution of the Markov process to observed mean area fractions [37]. Yet,
the accurate estimation of the parameters from observation and/or detailed cloud resolv-
ing data remains an important step forward in order to effectively use the SMCM for the
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Fig. 4.4. Marginal posterior densities obtained using 5 contiguous sequences of 100 observations each
(Sequences 1-5), when the posterior of the previous sequence is used as the prior for the next, and for a
initial T N 7(10, 10 Id7, 0,+∞) prior. Also shown are the marginal posterior densities when 500 observations
are used all at once (T = 500). The Sequence 1 distribution is missing for the parameter τ12 as it lies far
from the true value.
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parameterization of organized convection in operational climate models.

The main challenge in using the Bayesian approach to infer parameters for the SMCM
from data resides in the computation of the likelihood function which involves the computa-
tion of the transition probability matrix for each time step of the data time series, containing
both the actual cloud area fractions and the associated exogenous factors. According to the
Kolmogorov backward equations, the transition probability matrix is given by the expo-
nential of the infinitesimal generator of the Markov chain, which is, in this case, of very
high dimension but also very sparse. In this work, we took advantage of the Uniformiza-
tion preconditioning methodology and a highly parallel software (PETSc) to approximate
the exponential matrix with an acceptable accuracy and a meaningful efficiency. Moreover,
we use the Markov Chain Monte Carlo technique to sample the high dimensional posterior
distribution which adds another layer of computational complexity. However, overall, the
Bayesian approach remains very competitive compared to the pure sampling of the condi-
tional transition probabilities as done in [7] or to a method based on clustering analysis
[13]. While such methods can be advantageous when there is a complete lack of physical
intuition about the functional dependance of the transition probabilities on the exogenous
factors for the former and about the actual cloud types and their structural properties or
both for the latter, they both necessitate highly dense and very large time series. The lack
of good quality observations and numerical simulations with such properties compounded
with the associated sheer computational cost inhibit us from using effectively such methods.

Here the Bayesian approach is successfully tested with synthetic data generated by an
idealized single column toy GCM coupled to the SMCM. At first the coupled toy GCM-
SMCM model was run with prescribed parameters. The output time series of cloud area
fractions and exogenous factors are then fed to the Bayesian algorithm to infer back some
of the SMCM parameters, namely, the (seven) transition timescales. The Bayesian method
is tested with two different choices of prior, a weakly informative normal prior centred
far away from the true values and an uninformative uniform prior, and is shown to be
robust to prior specification when enough observations are provided (about 500). With a
moderately sized time series, around T = 500 observations (corresponding to 1.7 days in
physical time), most of the timescales were reproduced with some accuracy–to within one
standard deviation of about 21%, except for the transition of deep to clear sky parameter
τ20 which remains highly inaccurate at this level. With the relatively higher number of
observations T = 2500 the parameter τ20 is recovered within a standard deviation of 19%,
while all other 6 parameters are closely recovered within one standard deviation of about 7%
(see Table 4.1). Interestingly, the convergence tests reported in Figure 4.2 for the marginal
distributions with T = 500, 1000, 1500, 2000, 2500 show a systematic convergence in the
beginning and then a sudden stagnation towards a limiting posterior distribution which
seems to suggest the existence of an upper bound or a maximum knowledge which can be
gained from data in terms of the parameter values. As a consistency check we rerun the
coupled toy GCM-SMCM model with the newly inferred parameters (i.e. the inferred means)
and compared the statistics of the resulting climate variables to their original counterparts.
The results reported in Table 4.2 and Figure 4.3 demonstrate that despite the systematic
errors committed by the inferred parameters, the coupled model reproduces the original
climate statistics quite accurately, in terms of both the stochastic area fractions and the
large-scale dynamical variables. This in essence indicates the level to which the coupled
toy GCM-SMCM model is actually sensitive to these parameters. It is clearly less sensitive
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to some parameters such as τ20 than it is to others. This is in fact very good news, and
explains in some sense why the SMCM is so successful in previous studies, when only rough
or intuitive estimates of these parameters were used [10, 11, 37, 30].

Moreover, the Bayesian methodology is tested for sequential learning, which consists of
cutting the available time series into a sequence of small non-overlapping segments of 100
observations. The Bayesian algorithm is then sequentially applied on each segment and at
each step the prior is taken to be a Gaussian distribution with mean and variance given
by those learned from the previous step. It is found that the sequential learning performed
reasonably well, compared to using all the available data at once (here 500 observations),
when the initial step prior is also a Gaussian but not when the initial prior is uniform. Such
sequential learning will be useful in more practical applications if for instance discontinuous
time series are used, such as in the case of multiple observation sites or the case of on and off
observation periods, making the intervals between some consecutive observations too large
to satisfy the stationarity assumption.

Although, the Bayesian algorithm is developed here for the transition timescales, it
remains very flexible. It can be easily extended to estimate other parameters of the SMCM
such as the adimensionalization prefactors CAPE0 and T0 used in the definition of the
exogenous factors C,Cl and D, respectively, to rescale the actual measurement of CAPE,
low-level CAPE, and mid-tropospheric dryness (see [19, 10, 11, 37]). More importantly it can
be extended in a straightforward fashion to learn from data the actual interaction potential
for the SMCM with local interactions presented recently in [18]. Such local interactions
are important for the self-organization of convection due to local processes such as gravity
currents, cold pools, sea breezes, and the diurnal cycle. The main causes of the initiation of
the Madden-Julian oscillation (MJO), over the Indian, remain a matter of a heated debate
in the tropical meteorology community. While the initiation of successive MJOs are more or
less elucidated as being due to dry Kelvin waves that are excited by previous MJO events [1],
the case of primary MJOs remain largely an unsolved problem. The Bayesian method for the
SMCM presented here can help illustrate the degree of self-organization of convection during
the initiation of primary MJOs using data from the Dynamics of the MJO field campaign in
order to understand the dilemma of the deepening of convection due to congestus moistening
[45, 12, 15, 26].
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