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Abstract

Large-scale datasets generated by dynamical systems arise in many applications in science and
engineering. Two research topics of current interest in this area involve using data collected through
observational networks or output by numerical models to quantify the uncertainty in long-range forecasting,
and improve understanding of the operating dynamics. In this research expository we discuss applied
mathematics techniques to address these topics blending ideas from machine learning, delay-coordinate
embeddings of dynamical systems, and information theory. We illustrate these methods with applications
to climate atmosphere ocean science.

Contents

1 Introduction 2

2 Quantifying long-range predictability and model error through data clustering and in-
formation theory 2
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Information theory, predictability, and model error . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Coarse-graining phase space to reveal long-range predictability . . . . . . . . . . . . . . . . . 6
2.4 K-means clustering with persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Demonstration in a double-gyre ocean model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Nonlinear Laplacian spectral analysis (NLSA) algorithms for decomposition of spatiotem-
poral data 21
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mathematical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Analysis of infrared brightness temperature satellite data for tropical dynamics . . . . . . . . 29

4 Synthesis 32

∗Corresponding author. Email: dimitris@cims.nyu.edu.

1



1 Introduction

Large-scale datasets generated by dynamical systems arise in a diverse range of disciplines in science and
engineering, including fluid dynamics [1, 2], materials science [3, 4], molecular dynamics [5, 6], and geophysics
[7, 8]. A major challenge in these domains is to utilize the vast amount of data that is being collected
by observational networks or output by large-scale numerical models to advance scientific understanding
of the operating physical processes, and reveal their predictability. For instance, in climate atmosphere
ocean science (CAOS) the dynamics takes place in an infinite-dimensional phase space where the coupled
nonlinear partial differential equations for fluid flow and thermodynamics are defined, and the observed
data correspond to functions of that phase space, such as temperature or circulation measured over a set
of spatial points. There exists a strong need for data analysis algorithms to extract and create reduced
representations of the large-scale coherent patterns which are an outcome of these dynamics, including the
El Niño Southern Oscillation (ENSO) in the ocean [9] and the Madden-Julian Oscillation (MJO) in the
atmosphere [10]. Advances in the scientific understanding and forecasting capability of these phenomena
have potentially high socioeconomic impact.

In this paper, we review work of the authors and their collaborators on data-driven methods for dynamical
systems to address these objectives. In particular, in Sections 2 and 3, respectively, we present (i) methods
based on data clustering and information theory to reveal predictability in high-dimensional dynamical
systems, and quantify the fidelity of forecasts made with imperfect models [11–13]; and (ii) nonlinear Laplacian
spectral analysis (NLSA) algorithms [14–19] for decomposition of spatiotemporal data. The common theme in
these topics is that aspects of the coarse-grained geometry of the data in phase space play a role. Specifically,
in (i) we discuss how the affiliation of the system state to a discrete partition of phase space can be used as a
surrogate variable replacing a high-dimensional vector of initial data in relative entropy functionals measuring
predictability and model error. In (ii) the coarse-grained geometry of the data will enter through discrete
diffusion operators constructed using dynamics-adapted kernels to provide basis functions for temporal modes
of variability analogous to linear-projection coordinates in principal components analysis (PCA, e.g., [1]).

Throughout, we illustrate these techniques with applications to CAOS. In particular, in (i) we study
long-range predictability in a simple model [20] of ocean circulation in an idealized basin featuring a current
analogous to the Gulf Stream and the Kuroshio Current in the Atlantic and Pacific Oceans, respectively.
Such currents are known to undergo changes in configuration affecting continental-scale climate patterns
on timescales spanning several months to years. Revealing the predictability of these circulation regimes is
important for making skillful initial-value decadal forecasts [21]. In (ii) we present an application of NLSA
to a complex spatiotemporal signal of infrared brightness temperature (Tb) acquired through satellites (the
CLAUS archive [22]). Because Tb is a good proxy variable for atmospheric convection (deep-penetrating
clouds are cold, and therefore produce a strong Tb signal against the emission background from the Earth’s
surface), an objective decomposition of such data can provide important information about a plethora of
climatic processes, including ENSO, the MJO, as well as diurnal-scale processes. This application of NLSA
to two-dimensional CLAUS data has not been previously published.

We conclude in Section 4 with a synthesis discussion of open problems and possible connections between
the two topics.

2 Quantifying long-range predictability and model error through data clustering and infor-
mation theory

2.1 Background

Since the classical work of Lorenz [23] and Epstein [24], predictability within dynamical systems has been
the focus of extensive study. In the applications outlined in Section 1, the dynamics span multiple spatial
and temporal scales, take place in phase spaces of large dimension, and are strongly mixing. Yet, despite
the complex underlying dynamics, several phenomena of interest are organized around a relatively small
number of persistent states (so-called regimes), which are predictable over timescales significantly longer than
suggested by decorrelation times or Lyapunov exponents. Such phenomena often occur in these applications
in variables with nearly Gaussian equilibrium statistics [25, 26] and with dynamics that is very different [27]
from the more familiar gradient flows, (arising, e.g., in molecular dynamics), where long-range predictability
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also often occurs [5, 28]. In certain cases, such as CAOS [29, 30] and econometrics [31], seasonal effects play
an important role, resulting in time-periodic statistics. In either case, revealing predictability in these systems
is important from both a practical and a theoretical standpoint.

Another issue of key importance is to quantify the fidelity of predictions made with imperfect models
when (as is usually the case) the true dynamics of nature cannot be feasibly integrated, or are simply not
known [32, 33]. Prominent techniques for building imperfect predictive models of regime behavior include
finite-state methods, such as hidden hidden Markov models [26, 34] and cluster-weighted models [35], as
well as continuous models based on approximate equations of motion, e.g., linear inverse models [36, 37]
and stochastic mode elimination [38]. Other methods blend aspects of finite-state and continuous models,
employing clustering algorithms to derive a continuous local model for each regime, together with a finite-state
process describing the transitions between regimes [30, 39–41].

The fundamental perspective adopted here is that predictions in dynamical systems correspond to transfer
of information; specifically, transfer of information between the initial data (which in general do not suffice
to completely determine the state of the system) and a target variable to be forecast. This opens up the
possibility of using the mathematical framework of information theory to characterize both predictability and
model error [32, 33, 37, 42–49].

The prototypical problem we wish to address here is illustrated in Figure 2.1. There, our prior knowledge
about an observable at to be predicted at time t is represented by a distribution p(at), which in general
may be time-dependent. For instance, if at is the temperature measured over a geographical region, then
time-dependence of p(at) would be the due to the seasonality of the Earth’s climate, or an underlying slow
trend occurring in a climate change scenario. Contrasted with p(at) is the posterior distribution p(at | X0)
representing our knowledge about at given that we have observed initial data X0 at time t = 0. In the
temperature forecasting example, atmospheric variables such wind fields, pressure, and moisture, as well
oceanic circulation, would all be employed to make an initial-value forecast about at. At short times, one
would expect p(at | X0) to depend very strongly on the initial data, and have mass concentrated in a
significantly narrower range of at values than the prior distribution. This situation, where the availability of
highly-resolved initial data plays a crucial role, has been termed by Lorenz [50] as a predictability problem
of the first kind. On the other hand, due to mixing dynamics, the predictive information contributed by
X0 is expected to decay at late times, and eventually p(at | X0) will converge to p(at). In this second-kind
predictability problem, knowledge of the “boundary conditions” is important. In climate science, boundary
conditions would include anthropogenic and volcanic emissions, changes in solar insolation, etc. At the
interface between these two types of predictability problems lie long-range initial-value forecasts (e.g., [21]),
which will be the focus of the work presented here. Here, the forecast lead time is short-enough so that
p(at | X0) differs significantly from p(at), but long-enough so that fine-grained aspects of the initial data
contribute little predictive information beyond forecasts with coarse-grained initial data.

In all of the cases discussed above, a common challenge is that the initial data X0 are generally high-

lead time t

p(at | X0)

p(at)

Figure 2.1. Illustration of a statistical forecasting problem. Figure adopted from [51].
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dimensional even if the target observable at is a scalar. Indeed, in present-day numerical weather and climate
forecasting one has to assimilate a very comprehensive set of initial data if only to produce a point forecast
about a quantity of interest. Here, we advocate that the information-theoretic framework can be combined
with data clustering algorithms to produce lower bounds to intrinsic predictability and model error, which
are practically computable for high-dimensional initial data. These bounds are derived by replacing the high-
dimensional space of initial data by the integer-valued affiliation function to a coarse-grained partition of that
space, constructed by clustering a training dataset generated by a potentially imperfect model. The algorithm
for building the partition can be general and designed according to the problem at hand—below, we describe
a concrete scheme based on K-means clustering augmented with a notion of temporal persistence in cluster
affiliation through running averages of initial data. We apply this scheme to study long-range predictability
in an equivalent barotropic, double-gyre model of ocean circulation, and the fidelity of coarse-grained Markov
models for ocean circulation regime transitions.

2.2 Information theory, predictability, and model error

2.2.1 Predictability in a perfect-model environment

We consider the general setting of a stochastic dynamical system

dz = F (z, t) dt+G(z, t) dW with z ∈ Rm, (2.1)

which is observed through (typically, incomplete) measurements

x(t) = H(z(t)), x(t) ∈ Rn, n ≤ m. (2.2)

As reflected by the explicit dependence of the deterministic and stochastic coefficients in (2.1) on time and
the state vector, the dynamics of z(t) may be non-stationary and forced by non-additive noise. However, in
the application of Section 2.5, the dynamics will be deterministic with time-independent equilibrium statistics.
In particular, z(t) given by the streamfunction ψ of an equivalent-barotropic ocean model, and H will be a
projection operator from z to the leading 20 principal components (PCs) of ψ. We refer the reader to [13] for
applications involving non-stationary stochastic dynamics.

Let at = a(z(t)) be a target variable for prediction which can be expressed as as a function of the state
vector. Let also

Xt = (x(t), x(t− δt), . . . , x(t− (q − 1) δt)), Xt ∈ RN , N = qn, q ≥ 1, (2.3)

with x(ti) given from (2.2), be a history of observations collected over a time window ∆t = (q − 1) δt.
Hereafter, we refer to the observations X0 at time t = 0 as initial data. Broadly speaking, the question of
dynamical predictability in the setting of (2.1) and (2.2) may be posed as follows: Given the initial data, how
much information have we gained about at at time t > 0 in the future? Here, uncertainty in at arises because
of both the incomplete nature of the measurements in (2.2) and the stochastic component of the dynamical
system in (2.1). Thus, it is appropriate to describe at via some time-dependent probability distribution
p(at | X0) conditioned on the initial data. Predictability of at is understood in this context as the additional
information contained in p(at | X0) relative to the prior distribution [14, 45, 47], p(at) = EX0

p(at | X0),
which we now specify.

Throughout, we consider that our knowledge of the system before the observations become available is
described by a statistical equilibrium state peq(z(t)), which is may be time-dependent (e.g., time-periodic
[13]). An assumption made here when peq(z(t)) is time-independent is that z(t) is ergodic, with

Epeqat ≈
1

s

s−1∑
i=0

a(z(t− i δt)) (2.4)

for a large-enough number of samples s. In all of these cases, the prior distributions for at and Xt are the
distributions peq(at) and peq(Xt) induced on these variables by peq(z(t)), i.e.,

p(at) = peq(at), p(Xt) = peq(Xt). (2.5)
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As the forecast lead time grows, p(at | X0) converges to peq(at), at which point X0 contributes no additional
information about at beyond equilibrium.

The natural mathematical framework to quantify predictability in this setting is information theory [52],
and, in particular, the concept of relative entropy. The latter is defined as the functional

P(p′(at), p(at)) = Ep′ log(p′(at)/p(at)) (2.6)

between two probability measures, p′(at) and p(at), and has the attractive properties that (i) it vanishes if
and only if p = p′, and is positive if p 6= p′; (ii) is invariant under general invertible transformations of at.
For our purposes, of key importance is also the so-called Bayesian-update interpretation of relative entropy.
This states that if p′(at) = p(at | X0) is the posterior distribution of at conditioned on some variable X0 and
p is the corresponding prior distribution, then P(p′(at), p(at)) measures the additional information beyond p
about at gained by having observed X0. This interpretation stems from the fact that

P(p(at | X0), p(at)) = Eat|X0
log(p(at | X0)/p(at)) (2.7)

is a non-negative quantity (by Jensen’s inequality), measuring the expected reduction in ignorance about at
relative to the prior distribution p(at) when X0 has become available [32, 52]. It is therefore crucial that
p(at | X0) is inserted in the first argument of P(·, ·) for a correct assessment of predictability.

The natural information-theoretic measure of predictability compatible with the prior distribution p(at)
in (2.5) is

D(at | X0) = P(p(at | X0), p(at)). (2.8)

As one may explicitly verify, the expectation value of D(at | X0) with respect to the prior distribution for X0,

D(at, X0) = EX0D(at | X0) = Eat,X0 log(p(at | X0)/p(at)) = P(p(at, X0), p(at)p(X0)) (2.9)

is also a relative entropy; here, between the joint distribution of the target variable and the initial data and
the product of their marginal distributions. This quantity is known as the mutual information between at
and X0, measuring the expected predictability of the target variable over the initial data [14, 43, 47].

One of the classical results in information theory is that the mutual information between the source and
output of a channel measures the rate of information flow across the channel [52]. The maximum mutual
information over the possible source distributions corresponds to the channel capacity. In this regard, an
interesting parallel between prediction in dynamical systems and communication across channels is that the
combination of dynamical system and observation apparatus [represented here by (2.1) and (2.2)] can be
thought of as an abstract communication channel with the initial data X0 as input and the target at as
output.

2.2.2 Quantifying the error of imperfect models

The analysis in Section 2.2.1 was performed in a perfect-model environment. Frequently, however, instead
of the true forecast distributions p(at | X0), one has access to distributions pM (at | X0) generated by an
imperfect model,

dz(t) = FM (z, t) dt+GM (z, t) dW. (2.10)

Such situations arise, for instance, when one cannot afford to feasibly integrate the full dynamical system
in (2.1) (e.g., simulations of biomolecules dissolved in a large number of water molecules), or the laws
governing z(t) are simply not known (e.g., condensation mechanisms in atmospheric clouds). In other cases,
the objective is to develop reliable reduced models for z(t) to be used as components of coupled models (e.g.,
parameterization schemes in climate models [53]). In this context, assessments of the error in the model
prediction distributions are of key importance, but frequently not carried out in an objective manner that
takes into account both the mean and variance [33].

Relative entropy again emerges as the natural information-theoretic functional for quantifying model
error. Now, the analog between dynamical systems and coding theory is with suboptimal coding schemes. In
coding theory, the expected penalty in the number of bits needed to encode a string assuming that it is drawn
from a probability distribution q, when in reality the source probability distribution is p′, is given by P(p′, q)
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(evaluated in this case with base-2 logarithms). Similarly, P(p′, q) with p′ and q equal to the distributions of
at conditioned on X0 in the perfect and imperfect model, respectively, leads to the error measure

E(at | X0) = P(p(at | X0), pM (at | X0)). (2.11)

By direct analogy with (2.7), E(at | X0) is a non-negative quantity measuring the expected increase in
ignorance about at incurred by using the imperfect model distribution pM (at | X0) when the true state of
the system is given by p(at | X0) [32, 33, 46]. As with (2.8), p(at | X0) must appear in the first argument of
P(·, ·) for a correct assessment of model error. Moreover, E(at | X0) may be aggregated into an expected
model error over the initial data,

E(at, X0) = EX0
E(at | X0) = Eat,X0

log(p(at | X0)/pM (at | X0)). (2.12)

However, unlike D(at, X0) in (2.9), E(at, X0) does not correspond to a mutual information between random
variables.

Note that by writing down (2.11) and (2.12) we have tacitly assumed that the target variable can be
simultaneously defined in the perfect and imperfect models, i.e., at can be expressed as a function of either
z(t) or zM (t). Even though z and zM may lie in completely different phase spaces, in practice one is typically
interested in large-scale coarse-grained target variables (e.g., the mean temperature over a geographical region
of interest), which are well-defined in both the perfect and imperfect model.

2.3 Coarse-graining phase space to reveal long-range predictability

Despite their theoretical appeal, the predictability and model error measures D(at | X0) and E(at | X0)
are frequently infeasible to evaluate in practice, the reason being that both of these measures require the
evaluation of an expectation value over the initial data X0. As stated in Section 2.1, the spaces of initial
data used for making predictions in complex systems are generally high-dimensional, even if the target
observable at is a scalar. Operationally, computing the expectation EX0 requires evaluation of an integral
over X0 that rapidly becomes intractable as the dimension of X0 grows. Here, we address this “curse of
dimension” issue by replacing X0 with an integer-valued surrogate variable S0 representing the affiliation
of X0 in a partition of the initial-data space. By the data-processing inequality in information theory [52],
the coarse-grained predictability and model error metrics D(at, S0) and E(at, S0), respectively, provide lower
bounds to D(at, X0) and E(at, X0) which are practically computable for high-dimensional initial data.

2.3.1 Perfect-model scenario

Our method of partitioning the space of initial data, described also in [13, 13, 14], proceeds in two stages: a
training stage and prediction stage. The training stage involves taking a dataset

X = {x(0), x(δt), . . . , x((s− 1) δt}, (2.13)

of s observation samples x(t) ∈ Rn and computing via data clustering a collection

Θ = {θ1, . . . , θK}, θk ∈ Rp. (2.14)

of parameter vectors θk characterizing the clusters. Used in conjunction with a rule [e.g., (2.42) ahead], for
determining the integer-valued affiliation S(X0) of a vector X0 from (2.3), the cluster parameters lead to a
mutually-disjoint partition of the set of initial data, viz.

Ξ = {ξ1, . . . , ξK}, ξk ⊂ RN , (2.15)

such that S(X0) = S0 indicates that the membership of X0 is with cluster ξS0
∈ Ξ. Thus, a dynamical regime

is understood here as an element ξk of Ξ, and coarse-graining as a projection X0 7→ S0 from the (generally,
high-dimensional) space of initial data to the integer-valued membership S0 in the partition. It is important
to note that X may consist of either observations x(t) of the perfect model from (2.2), or data generated by
an imperfect model [which does not have to be the same as the model in (2.10) used for prediction]. In the
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latter case, the error in the training data influences the amount of information loss by coarse graining, but
does not introduce biases that would lead one to overestimate predictability.

Because S0 = S(X0) is uniquely determined from X0, it follows that

p(at | X0, S0) = p(at | X0). (2.16)

The above expresses the fact no additional information about the target variable at is gained through
knowledge of S0 if X0 is known. Moreover, (2.16) leads to a Markov property between the random variables
at, X0, and S0, viz.

p(at, X0, S0) = p(at | X0, S0)p(X0 | S0)p(S0) = p(at | X0)p(X0 | S0)p(S0). (2.17)

The latter is a necessary condition for the predictability and model error bounds discussed below.
Equation (2.16) also implies that the forecasting scheme based on X0 is statistically sufficient [54, 55] for

the scheme based on S0. That is, the predictive distribution p(at | S0) conditioned on the coarse-grained
initial data can be expressed as an expectation value

p(at | S0) = EX0|S0
p(at | X0) (2.18)

of p(at | X0) with respect to the distribution p(X0 | S0) of the fine-grained initial data X0 given S0. We use
the shorthand notation

pkt = p(at | S0 = k), (2.19)

for the forecast distribution for at conditioned on the k-th cluster.
In the prediction stage, the pkt are estimated for each k ∈ {1, . . . ,K} by bin-counting joint realizations

of at and S0, using data which are independent from the dataset X employed in the training stage (details
about the bin-counting procedure are provided in Section 2.4). The predictive information content in the
partition is then measured via coarse-grained analogs of the relative-entropy metrics in (2.8) and (2.9), viz.,

D(at | S0) = P(p(at | S0), p(at)) and D(at, S0) = ES0
D(at | S0). (2.20)

By the same arguments used to derive (2.9), it follows that the expected predictability measure D(at, S0) is
equal to the mutual information between the target variable at at time t ≥ 0 and the membership S0 of the
initial data in the partition at time t = 0. Note the formula

D(at, S) =

K∑
k=1

πkDkt , with Dkt = P(pkt , peq), πk = p(S = k). (2.21)

Two key properties of D(at, S) are:

(i) It provides a lower bound to the predictability measure D(at, X0) in (2.9) determined from the fine-
grained initial data X0, i.e.,

D(at, X0) ≥ D(at, S0); (2.22)

(ii) Unlike D(at, X0), which requires evaluation of an integral over X0 that rapidly becomes intractable as
the dimension of X0 grows (even if the target variable is scalar), D(at, S0) only requires evaluation of a
discrete sum over S0.

Equation (2.22), which is known in information theory as data-processing inequality [14, 48], expresses
the fact that coarse-graining, X0 7→ S(X0), can only lead to conservation or loss of information. In particular,
it can be shown [13] that the Markov property in (2.17) leads to the relation

D(at, X0) = D(at, S0) + I, (2.23)

where
I = Eat,X0,S0 log(p(X0 | at, S0)/p(X0 | S0)) (2.24)

is a non-negative term measuring the loss of predictive information due to coarse-graining of the initial
data. Because the non-negativity of I relies only on the existence of a coarse-graining function meeting the
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condition (2.16), and not on the properties of the training data X used to construct that function, there is
no danger of over-estimating predictability through D(at, S0), even if an imperfect model is employed to
generate X . Thus, D(at, S0) can be used practically as a sufficient condition for predictability, irrespective of
model error in X and/or suboptimality of the clustering algorithm.

In general, the information loss I will be large at short lead times, but in many applications involving
strongly-mixing dynamical systems, the predictive information in the fine-grained aspects of the initial data
will rapidly decay as t grows. In such scenarios, D(at, S0) provides a tight bound to D(at, X0), with the
crucial advantage of being feasibly computable with high-dimensional initial data. Of course, failure to
establish predictability on the basis of D(at, S0) does not imply absence of intrinsic predictability, for it could
be that D(at, S0) is small because I is comparable to D(at, X0).

Since relative entropy is unbounded from above, it is useful to convert D(at, S0) into a predictability score
lying in the unit interval,

δt = 1− exp(−2D(at, S0)). (2.25)

Joe [56] shows that the above definition for δt is equivalent to a squared correlation measure, at least in
problems involving Gaussian random variables.

2.3.2 Quantifying the model error in long-range forecasts

Consider now an imperfect model that, as described in Section 2.2.2, produces prediction distributions

pMk
t = pM (at | S0 = k) (2.26)

which may be systematically biased away from pkt in (2.19). Similarly to Section 2.3.1, we consider that the
random variables at, X0, and S0 in the imperfect model have a Markov property,

pM (at, X0, S) = pM (at | X0, S0)p(X0 | S0)p(S0) = pM (at | X0)p(X0 | S0)p(S0), (2.27)

where we have also assumed that the same initial data and cluster affiliation function are employed to compare
the perfect and imperfect models [i.e., pM (X0 | S0) = p(X0 | S0) and pM (S0) = p(S0)]. As a result, the
coarse-grained forecast distributions in (2.26) can be determined via [cf. (2.18)]

pM (at | S0) = EX0|S0
pM (at | X0). (2.28)

In this setup, an obvious candidate measure for predictability follows by writing down (2.20) with pkt
replaced by pMk

t , i.e.,

DM (at, S0) = ES0
DM (at | S0) =

K∑
k=1

πkDMk
t , with DMk

t = P(pMk
t , pMeq). (2.29)

By direct analogy with (2.22), DM (at, S0) is a non-negative lower-bound of DM (at, X0). Clearly, an important
deficiency of this measure is that by being based solely on forecast distributions internal to the model it
fails to take into account model error, or “ignorance” of the imperfect model in (2.10) relative to the perfect
model in (2.1) [15, 32, 33]. Nevertheless, DM (at, S0) provides an additional metric to discriminate between
imperfect models with similar E(at, X0) scores from (2.12), and estimate how far a given imperfect forecast is
from the model’s equilibrium distribution. For the latter reasons, we include DM (at, S0) as part of our model
assessment framework. Following (2.25), we introduce for convenience a unit-interval normalized score,

δMt = 1− exp(−2DM (at, S0)). (2.30)

Next, note the distinguished role that the imperfect-model equilibrium distribution plays in (2.29): If
pMeq(at) differs systematically from the equilibrium distribution peq(at) in the perfect model, then DM (at, S0)

conveys false predictability at all times (including t = 0), irrespective of the fidelity of pM (at | S0) at finite
times. This observation leads naturally to the requirement that long-range forecasting models must reproduce
the equilibrium statistics of the perfect model with high fidelity. In the information-theoretic framework of
Section 2.2.2, this is expressed as

εeq � 1, with εeq = 1− exp(−2Eeq(at)) (2.31)
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and
Eeq(at) = P(peq(at), p

M
eq(at)). (2.32)

Here, we refer to the criterion in (2.31) as equilibrium consistency; an equivalent condition is called fidelity
[57], or climate consistency [15] in CAOS work.

Even though equilibrium consistency is a necessary condition for skillful long-range forecasts, it is not
a sufficient condition. In particular, the model error E(at, X0) at finite lead time t may be large, despite
eventually decaying to a small value at asymptotic times. The expected error in the coarse-grained forecast
distributions is expressed in direct analogy with (2.12) as

E(at, S0) = ES0
E(at | S0) =

K∑
k=1

πkEkt , with Ekt = P(pkt , p
Mk
t ), (2.33)

and corresponding error score
εt = 1− exp(−2EKt ), εt ∈ [0, 1). (2.34)

Similar arguments to those used to derive (2.23) lead to a decomposition [13]

E(at, X0) = E(at, S0) + I − J (2.35)

of the model error E(at, X0) into the coarse-grained measure E(at, S0), the information loss term I due to
coarse graining in (2.24), and a term

J = Eat,X0,S0
log(pM (at | X0)/pM (at | S0)) (2.36)

reflecting the relative ignorance of the fine-grained and coarse-grained forecast distributions in the imperfect
model. The important point about J is that it obeys the bound [13]

J ≤ I. (2.37)

As a result, E(at, S0) is a lower bound of the fine-grained error measure E(at, X0) in (2.12), i.e.,

E(at, X0) ≥ E(at, S0). (2.38)

Because of (2.38), a detection of a significant E(at, S0) is sufficient to reject a forecasting scheme based
on the fined-grained distributions pM (at | X0). The reverse statement, however, is generally not true. In
particular, the error measure E(at, X0) may be significantly larger than E(at, S0), even if the information loss
I due to coarse-graining is small. Indeed, unlike I, the J term in (2.35) is not bounded from below, and can
take arbitrarily large negative values. This is because the coarse-grained forecast distributions pM (at | S0) are
determined through (2.28) by averaging the fine-grained distributions pM (at | X0), and averaging can lead to
cancellation of model error. Such a situation with negative J cannot arise with the forecast distributions of
the perfect model, where, as manifested by the non-negativity of I, coarse-graining can at most preserve
information.

In summary, our framework for assessing long-range coarse-grained forecasts with imperfect models takes
into consideration all of εeq, εt, and δMt as follows:

• εeq must be small, i.e., the imperfect model should be able to reproduce with high fidelity the
distribution of the target variable at at asymptotic times (the prior distribution, relative to which
long-range predictability is measured).

• The imperfect model must have correct statistical behavior at finite times, i.e., εt must be small at the
forecast lead time of interest.

• At the forecast lead time of interest, the additional information beyond equilibrium δMt must be
large, otherwise the model has no utility compared with a trivial forecast drawn for the equilibrium
distribution.
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In order to evaluate these metrics in practice, the following two ingredients are needed. (i) The training
dataset X in (2.13), to compute the cluster parameters Θ from (2.14). (ii) Simultaneous realizations of at (in
both the perfect and imperfect models) and x(t) [which must be statistically independent from the data in (i)],
to evaluate the cluster-conditional distributions pkt and pMk

t . Note that neither access to the full state vectors
z(t) and zM (t) of the perfect and imperfect models, nor knowledge of the equations of motions is required to
evaluate the predictability and model error scores proposed here. Moreover, the training dataset X can be
generated by an imperfect model. The resulting partition in that case will generally be less informative in
the sense of the D(at, S0) and E(at, S0) metrics, but, so long as (ii) can be carried out with small sampling
error, D(at, S0) and E(at, S0) will still be lower bounds of D(at, X0) and E(at, X0), respectively. See [13] for
an example where D(at, S0) and E(at, S0) reveal long-range predictability and model error despite substantial
model error in the training data.

2.4 K-means clustering with persistence

We now describe a method based on K-means clustering and running-average smoothing of training and
initial data that is able to reveal predictability beyond decorrelation time in the ocean model in Section 2.5,
as well as in stochastic models with nonlinearities [14]. Besides the number of clusters (regimes) K, our
algorithm has two additional free parameters. These are temporal windows, ∆t′ and ∆t, used to take running
averages of x(t) in the training and prediction stages, respectively. This procedure, which is reminiscent of
kernel density estimation methods [58], leads to a two-parameter family of partitions as follows.

First, set an integer q′ ≥ 1, and replace x(t) in (2.13) with the averages over a time window ∆t′ = (q′−1) δt,
i.e.,

x∆t
′
(t) =

q′∑
i=1

x(t− (i− 1) δt)/q′. (2.39)

Next, apply K-means clustering [59] to the above coarse-grained training data. This leads to a set of
parameters Θ from (2.14) that minimize the sum-of-squares error functional,

L(Θ) =

K∑
k=1

s−1∑
i=q′−1

γk(i δt)‖x∆t
′
(i δt)− θ∆t

′

k ‖22, (2.40)

where

γk(t) =

{
1, k = Γ (t),

0, otherwise,
Γ (t) = argmin

j
‖x∆t

′
(t)− θ∆t

′

j ‖2, (2.41)

is the weight of the k-th cluster at time t = i δt, and ‖v‖2 = (
∑n
i=1 v

2
i )1/2 denotes the Euclidean norm. Note

that temporal persistence of Γ (t) is an outcome of running-average smoothing of the training data.
In the second (prediction) stage of the procedure, data X0 = (x(0), x(−δt), . . . , x(−(q − 1) δt)) of the

form (2.3) are collected over an interval [−∆t, 0] with ∆t = (q − 1) δt, and their average x∆t(0) is computed
via an analogous formula to (2.39). It is important to note that the initial data X0 used in the prediction
stage are independent of the training dataset. The affiliation function S is then given by

S(X0) = argmin
k

(‖x∆t(0)− θ∆t
′

k ‖2); (2.42)

i.e., S(X0) depends on both ∆t and ∆t′. Because x∆t can be uniquely determined from the initial-data
vector X0, (2.42) provides a mapping from X0 to {1, . . . ,K}, defining the elements of the partition in (2.15)
through

ξk = {Xt : S(Xt) = k}. (2.43)

Physically, the width of ∆t controls the influence of the past history of the system relative to its current
state in assigning cluster affiliation. If the target variable exhibits significant memory effects, taking the
running average over a window comparable to the memory time scale should lead to gains of predictive
information D(at, S0), at least for lead times of order ∆t or less. We provide an example of this behavior in
Section 2.5.
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For ergodic dynamical systems satisfying (2.4), the cluster-conditional densities pkt in (2.19) may be
estimated as follows. First, obtain a sequence of observations x(t′) [independent of the training dataset X
in (2.13)] and the corresponding time series at′ of the target variable. Second, using (2.42), compute the
membership sequence St′ = S(Xt′) for every time t′. For given lead time t, and for each k ∈ {1, . . . ,K},
collect the values

Akt = {at+t′ : St′ = k}. (2.44)

Then, set distribution bin boundaries A0 < A1 < . . ., and compute the occurrence frequencies

p̂kt (i) = Ni/N, (2.45)

where Ni is the number of elements of Akt lying in [ai−1, ai], and N =
∑
iNi. Note that the Ai are vector-

valued if at is multi-variate. By ergodicity, in the limit of an infinite number of bins and samples, the
estimators p̂kt (i) converge to the continuous densities pkt in (2.19). The equilibrium distribution peq(at) and
the cluster affiliation probabilities πk in (2.21) may be evaluated in a similar manner. Together, the estimates
for pkt , peq, and πk are sufficient to determine the predictability metrics Dkt from (2.20). In particular, if at
is a scalar variable (as will be the case below), the relative-entropy integrals in (2.20) can be carried out
by standard one-dimensional quadrature, e.g., the trapezoidal rule. This simple procedure is sufficient to
estimate the cluster-conditional densities with little sampling error for the univariate target variables in
Section 2.5. For non-ergodic systems and/or lack of availability of long realizations, more elaborate methods
(e.g., [60]) may be required to produce reliable estimates of D(at, S0).

We close this section with an important point about the forecast distributions from (2.19): Because pkt
are evaluated independently for each pair ∆T = (∆t,∆t′) of running-average intervals, there is no reason
why one should use the same pkt |∆T for all lead times. In particular, given a collection {∆T1, ∆T2, . . .} of
coarse-graining parameters, the natural forecast distribution to use are the ones that maximize the expected
predictability (2.21), viz.

p∗kt = pkt |∆Ti , i = argmax
j
D(at, S0)|∆Tj , (2.46)

with corresponding predictability score

D∗(at, S0) = D(at, S0)|∆Ti , δ∗t = 1− exp(−2D∗(at, S0)). (2.47)

We will see in Section 2.5 that the p∗kt can contain significantly more information than the individual forecast
distributions pkt .

2.5 Demonstration in a double-gyre ocean model

The so-called 1.5-layer model [20] describes the dynamics of wind-driven ocean circulation as the motion of
two immiscible, vertically-averaged layers of fluid of different density under the influence of wind-induced
shear, Coriolis force (in the β-plane approximation), and subgrid-scale diffusion. The lower layer is assumed
to be infinitely deep and at rest, whereas the upper layer is governed by a quasigeostrophic equation for the
streamfunction ψ(r, t) (which, in this case is equal to the interface displacement) at position r = (x, y) and
time t, giving the velocity vector v = (∂yψ,−∂xψ). The kinetic and potential energies, respectively given by
Ekin = Ckin

∫
dr ‖v(r, t)‖2 and Epot = Cpot

∫
drψ2(r, t) with Ckin, Cpot constants, make up the total energy,

E = Ekin + Epot. The latter will be one of our main prediction observables.
We adopt throughout the model parameter values in Section 2 of McCalpin and Haidvogel [20], as well

as their canonical asymmetric double-gyre wind forcing. With this forcing, the 1.5-layer model develops an
eastward-flowing separating jet configuration analogous to the Gulf Stream in the North Atlantic. Moreover,
the model features the essential dynamical mechanisms of equivalent barotropic Rossby waves, lateral shear
instability, and damping. The model was integrated by R. Abramov using a pseudospectral code on a 180×140
uniform grid of size ∆r = 20 km, and 4th-order Runge-Kutta timestepping of size t+ = 3 hours. The resulting
time-averaged streamfunction and its standard deviation, Ψ(r) = 〈ψ(r, t)〉 and σ(r) = 〈ψ2(r, t)− Ψ2(r)〉1/2,

where 〈f(t)〉 =
∫ T
0
dt f(t)/T denotes empirical temporal averaging, are shown in Figure 2.2. In that figure,

the eastward jet is seen to separate from the western boundary x = 0 approximately at meridional coordinate
y = 0, and to follow a characteristic sinusoid path as it penetrates into the basin. The meridional asymmetry
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Figure 2.2. The time-averaged state, Ψ(r), its standard deviation, σ(r), and the leading four
streamfunction-metric EOFs, evaluated using an equilibrated realization of the 1.5-layer model of length
T = 10,000 years sampled every δt = 20 days. The contour levels in the panels for Ψ(r) and σ(r) are spaced
by 12.5 m, spanning the interval [−150, 150] m. Contours are drawn every 12.5 arbitrary units in the panels
for EOFi(r), which also indicate the corresponding eigenvalues and correlation times, respectively λi and τi.
Solid and dotted lines correspond to positive and negative contour levels, respectively. The separation point
of the eastward jet is located near the coordinate origin, r = (x, y) = (0, 0). The eigenvalues and EOFs are
the solutions of the eigenproblem

∫
dr′ C(r, r′)EOFi(r

′) = λiEOFi(r) associated with the covariance matrix

C(r, r′) =
∫ T
0
dt ψ′(r, t)ψ′(r′, t)/T , where ψ′(r, t) is the streamfunction anomaly. With this definition, the

physical dimension of the λi is (length)2. The correlation times are given by τi =
∫ T
0
dt |ρi(t)|, where ρi is

the autocorrelation function of the corresponding PC (see Figure 2.3).

of the wind forcing is manifested in the somewhat stronger anti-cyclonic gyre in the southern portion of the
domain.

The phenomenological study of McCalpin and Haidvogel [20] has determined that in this parameter regime
the time of viscous decay of westward-propagating eddies can be either small, comparable, or large relative to
the drift time taken for the eddies to reach the western boundary current (the drift time increases with the
eastward position in the domain where an eddy forms). The eddies that survive long-enough to reach the
western meridional boundary perturb the eastward current, resulting in a meander-like pattern. Otherwise, in
the absence of eddy interaction, the current penetrates deeply into the basin. As shown in Figure 2.2, most
of the variance of the time-averaged state is concentrated in the portion of the domain occupied by the jet.

Because of the intermittent nature of the current-eddy interaction, the model exhibits interesting low-
frequency variability, characterized by infrequent transitions between a small number of metastable states.
These metastable states may be differentiated by their distinct ranges of energy content (e.g., Figure 2.7).
Empirically, three metastable states have been identified, consisting of high, middle, and low-energy configura-
tions [20, 61]. As illustrated in Figure 2.6, the high-energy state is dominated by a strong elongated jet, which
penetrates deep into the basin. On the other hand, the jet is significantly weakened in the low-energy state,
where the most prominent features are meandering flow structures. The middle-energy state is characterized
by a moderately-penetrating jet that correlates strongly with the spatial configuration of the mean state.
Yet, in spite of the prominent regime behavior, the equilibrium distributions of the leading PCs and the
energy are unimodal (Figure 2.3). Note that regime behavior accompanied by unimodality in the equilibrium
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statistics arises more generally in geophysical flows [26].
In what follows, we view the solution of the 1.5-layer model as the true signal (2.1) from nature, i.e., we set

z(t) = ψ(r, t). Moreover, we consider that z(t) is observed through the leading 20 PCs of the streamfunction,
PCi(t) =

∫
drEOFi(r)ψ′(r, t), where EOFi(r) is the i-th empirical orthogonal function in the streamfunction

metric (see the caption to Figure 2.3 for a definition), and ψ′(r, t) = ψ(r, t) − Ψ(r) is the streamfunction
anomaly. Thus, the observation vector from (2.2), x(t) = H(z(t)) = (PC1(t), . . . ,PC20(t)), is 20-dimensional.

2.5.1 Predictability bounds for coarse-grained observables

For our clustering and forecast distribution calculations we took a time series x(t) consisting of a total
of s = 1.6 × 105 samples taken uniformly every δt = 20 days. That is, the total observation time span is
s δt = 3.2 × 106 days ≈ 8767 years. Our training dataset X (2.13) is the first half of that time series, i.e.,
t ∈ [0, T ], with T = 1.6× 106 days.

The prediction observables at considered in this study are the energy E and the leading-two streamfunction
PCs. In light of the conventional low-, middle-, and high-energy phenomenology of the 1.5-layer model
[20, 61], energy is a natural observable to consider for long-range forecasting. Moreover, the time-averaged
spatial features of the circulation regimes are well captured by the leading PCs. We used the portion of the
time series with t > T to compute the cluster-conditional time-dependent distributions pkt (2.19) for these
observables via the procedure described in Section 2.4. Thus, the data used to estimate pkt are independent
of the input data to the algorithm for evaluating the cluster coordinates θk in (2.14).

All forecast densities were estimated by binning the s/2 prediction samples in nB = 100 bins of uniform
width. The entropy integrals in the predictability metric D(at, S0) in (2.21) were evaluated via the standard
trapezoidal rule. We verified the robustness of our results against sampling errors by halving the length of
the prediction time series, and repeating the calculation of pkt for each half. Quadrature errors were assessed
by halving the number nB of distribution bins, and re-evaluating D(at, S0). In all cases, the predictability
scores in Figure 2.4 did not change significantly. Moreover, we tested for robustness of the computed
cluster-coordinates θk in (2.14) by using either of the two halves of our training data. This did not impart
significant changes in the spatial structure of the regimes in Figure 2.6.

Following the strategy laid out in Section 2.4, we vary the running-average time intervals ∆t′ and ∆t,
used respectively to coarse-grain X and the time series (2.3) of initial data, seeking to maximize (for the
given choice of observable and forecast lead time t) the information content D(at, S0) from (2.21) beyond
equilibrium [or, equivalently, the predictability score δt in (2.25)] in the resulting partition from (2.15). In
Figure 2.4 we display a sample of the δt results for fixed ∆t′ = 1000 days (i.e., a value comparable to the
decorrelation time, t1 = 1165 days, of PC1), and representative values of short and long initial-data windows,
respectively ∆t = 0 and ∆t = ∆t′ = 1000 days. For the time being, we consider models with either K = 3 or
K = 7 clusters, and subsequently (in Section 2.5.2) study in more detail the relevance of these choices from a
physical standpoint.

There are a number of important points to be made about Figure 2.4. First, for the chosen observables,
the predictability score δ∗t (2.47) of the optimal partitions is significant for prediction horizons that exceed
the longest decorrelation time in the Xt components used for clustering by a large margin. The fact that
decorrelation times are poor indicators of intrinsic long-range predictability has been noted in other CAOS
applications [37]. Here, the decay in the δ∗t score for energy over one e-folding time corresponding to t1 is
δ∗t1/δ

∗
0 ' 0.7, or a factor of five weaker decay than e−2 ' 0.14 expected for a purely exponential decay (the

comparison is with e−2 rather than e−1 because δ∗t is associated with squared correlations). Predictability of
energy remains significant up to t ' 3000 days (δ∗3000/δ

∗
0 ' 0.07), or three times the decorrelation time of

PC1. This means that predictions approaching the decadal scale are possible for E, given knowledge at time
t = 0 of the system’s affiliation to the regimes associated with partition Ξ in (2.15). Note that no fine-grained
information about the initial conditions is needed to make these forecasts. Uncertainty in initial conditions is
a well-known obstacle in long-range forecasts [21, 62–64].

Second, as illustrated by the discrepancy between the δt scores evaluated for ∆t = 0 and 1000 days,
the time window ∆t that maximizes the information beyond equilibrium in the partition depends on both
the observable and the forecast lead time. More specifically, in the calculations used to produce the δ∗t
versus t lines in Figure 2.4, the optimal ∆t for mid-term prediction (t . 500 days) of the energy is around
500–1000 days, but that value rapidly decreases to essentially no coarse-graining (∆t = 0) when t extends
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Figure 2.3. Empirical autocorrelation functions, ρi(t) =
∫ T
0
dt′ PCi(t

′)PCi(t
′ + t)/T , and equilibrium

densities, peq(PCi), of the leading four streamfunction PCs. Among these PCs, only PC3 has significantly
negative values in ρi(t). All the autocorrelation functions of PCi with i ∈ [5, 20] (not shown here) take
negative values. Note that peq(PCi) are all unimodal, yet the system exhibits long-lived affiliations to
regimes (see Figure 2.7).

beyond the two-year horizon. On the other hand, ∆t = 0 is optimal for all values of the prediction lead time
t in the case of the PCs. The fact that the optimal ∆t for long-range forecasting is small is beneficial from a
practical standpoint, since it alleviates the need of collecting initial data over long periods.

Third, as alluded to in the beginning of this section, the K = 7 partitions carry significantly higher
predictive information than the K = 3 ones for mid-range forecasts (up to three years), but that additional
information is lost in the large lead-time regime. In particular, the δ∗t scores of the K = 3 and K = 7 models
meet at approximately t = 2000 days for E, 500 days for PC1, and 1000 days for PC2.

A final point about Figure 2.4 pertains to the non-monotonicity of δt [equivalently, D(at, S0)] for E. It is
a general result, sometimes referred to as the generalized second law of thermodynamics, that if the dynamics
of an observable are Markovian, then the corresponding relative entropy D(at, S0) decreases monotonically
with t [45, 49, 52]. Thus, the increasing portion of the δt(E) versus t curve for ∆t = 0 and t . 500 days
is a direct evidence of non-Markovianity of the energy observable. As discussed in Section 2.5.3, this has
important implications for model error when the corresponding cluster affiliation sequence is approximated
by a Markov process.

Non-Markovianity of energy is consistent with the fact that longer running-average windows are favored
for optimal predictions of this observable for moderate lead times. Physically, as follows from (2.42), the
width of ∆t controls the influence of the past history of the system relative to its current state in assigning
cluster affiliation. If a prediction observable exhibits significant memory effects, taking the running average
over a window comparable to the memory time scale should lead to gains of predictive information, at least
for lead times of order ∆t or less. This is reflected in the δt results for energy in Figure 2.4, where forecasts
made using a 1000-day averaging window are more skillful than the corresponding forecasts with ∆t = 0,
provided that the lead time does not exceed 500 days or so.
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Figure 2.4. The information content (predictability score) δt (2.25) in K = 3 and K = 7 partitions (2.15) as
a function of prediction horizon t for the energy E and the leading two PCs of the streamfunction. Two values
for the running-average interval for initial cluster affiliation are displayed (∆t = 0 and 1000 days), as well as
the optimal score δ∗t for various values of ∆t in the interval [0, 1000] days. In all cases, the running-average
interval for coarse-graining the training dataset is ∆t′ = 1000 days. The δt lines for energy with ∆t = 0
illustrate that the decay of relative entropy to equilibrium may be non-monotonic; a behavior that cannot be
replicated by Markov models (see Figure 2.8). The K = 7 partitions have higher information content than
the K = 3 ones in the leading PCs (i.e., the large-scale structures in the flow) for t . 600 days, or about
half the decorrelation time of the leading PC (see Figure 2.3). However, K = 7 contributes essentially no
additional predictive information beyond K = 3 for decadal forecasts.

2.5.2 The physical properties of the regimes

We now study the spatial and temporal properties of the regimes associated with the coarse-grained partitions
of Section 2.5.1. For concreteness, we focus on a K = 3 partition with running-average windows (∆t,∆t′) =
(1000, 1000) days; see [14] for results with K = 7 partitions and other running-average windows. The K = 3
partition was motivated by the analyses in [20, 61], which associate the meandering, mean-flow resembling,
and extensional circulation regimes of the 1.5-layer model with bands of low, moderate, and high values of
the energy observable. More specifically, the chosen ∆t value is a reasonable compromise for simultaneously
maximizing the predictability metrics in Figure 2.5 for energy and the leading two PCs.

The key objects facilitating our study of the physical properties of the regimes are the cluster-conditional
mean and standard deviation of the streamfunction anomaly, ψ′k(r) = 〈ψ′(r, t)〉k and σk(r) = 〈(ψ′(r, t) −
ψ′k(r))2〉1/2k , which are shown in Figure 2.6. Here, 〈·〉k denotes expectation value with respect to pkt from (2.19)
at t = 0, which, by ergodicity (2.4), can be evaluated by taking temporal averages conditioned on S(Xt) = k.
First, it is clear from Figure 2.6 that the circulation regimes identified by the K-means clustering algorithm
with K = 3 and running averaging are in good agreement with the semi-empirical phenomenology established
for 1.5-layer double-gyre ocean models [20, 61]. Specifically, state 1, which has a low expected value of energy,
E1 = 〈E(t)〉1 = 3.5 × 1017 J, features a meandering jet pattern; state 2, with E2 = 3.9 × 1017 J resembles
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Figure 2.5. The dependence of the number of transitions and the relative-entropy predictability score
δt (2.25) on the running-average interval ∆t (initial data for prediction), evaluated at time t = 0 for the
energy E and leading four PCs for partitions with K ∈ {3, 6, 7, 8} clusters. The running-average interval for
coarse-graining the training data is ∆t′ = 1000 days and 200 days, respectively in the top and bottom set of
panels.
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the time-averaged state Ψ(r); and state 3 is dominated by a strong, deeply-penetrating jet, and has large
mean energy E3 = 4.2× 1017 J. As one might expect from the corresponding relative increase in information
content (see Figure 2.5), the basic spatial features of the K = 3 regimes are captured with significantly higher
fidelity by K = 7 partitions (see [11]).

Turning to the temporal aspects of the switching process between the regimes, Figure 2.7 illustrates that
the cluster affiliation sequence St = S(Xt) from (2.42) of the K = 3 partition of observation space with
∆t = 1000 days leads to a natural splitting of the energy time series into persistent regimes (with decadal
mean lifetimes), as expected from the high information content of that partition about energy. As remarked in
Section 2.4, imposing temporal regularity in St is frequently a challenge in CAOS applications (e.g., standard
K-means analysis of this dataset results in unphysical, high-frequency transitions between the regimes), but
it emerges here automatically by virtue of coarse-graining the training dataset and the interval ∆t for initial
cluster affiliation. It is important to emphasize, however, that persistence is not synonymous with skill. For
instance, the δ0 score for PC1 in Figure 2.5 is a decreasing function of ∆t, even though the persistence of the
regimes exhibits a corresponding increase (as indicated by the drop in the number of transitions with ∆t).
Information theory allows one to tell when a persistent cluster affiliation sequence actually carries information
for prediction (or classification, as is the case for the t = 0 examples considered here), or is too crude of a
description of the intrinsic low-frequency dynamics.

2.5.3 Markov models of regime behavior in the 1.5-layer ocean model

We now apply the tools developed in Section 2.2.2 to assess the model error in Markov models of regime
behavior in the 1.5-layer model. Throughout, we treat the output the 1.5-layer model as the perfect model,
and Markov models of the switching process between the regimes identified in Section 2.5.1 and 2.5.2 as
imperfect reduced models with dynamical model error. In particular, we introduce model error by evaluating
the forecast distributions pMk

t in (2.26) under the assumption that the affiliation sequence Γ (t) in (2.41) is a
Markov process. The Markov assumption for Γ (t) is made frequently in cluster analyses of time series in
atmosphere-ocean science [26, 30, 34, 39, 40, 65, 66], but as we demonstrate in Section 2.5.4, can lead to false
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Figure 2.6. Mean streamfunction anomaly, ψ′k(r), and its standard deviation, σk(r), conditioned on the
clusters of a K = 3 partition. The contour-level spacing for ψ′k(r) and σk(r) is 25 m and 10 m, respec-
tively. Solid and dotted lines respectively represent positive and negative contour levels. This partition of
observation space has been evaluated using running-average windows of duration ∆t = ∆t′ = 1000 days,
and is optimized for maximal information content beyond equilibrium about energy (see Figure 2.5). The
spatial features of the circulation regimes identified here via running-average K-means clustering are in good
agreement with the meandering (ψ′1), mean-flow resembling (ψ′2), and extensional (ψ′3) phases of the jet in
the McCalpin and Haidvogel [20] phenomenology, with correspondingly low, moderate, and high values of
mean energy (see Figure 2.7).
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predictability, as measured by the DM (at, S0) metric in (2.29). The benefit of the scheme presented here is
that false predictability can be detected directly through the measures of model error Eeq and E(at, S0).

The fundamental assumption in the Markov models studied here is that there exists a K ×K generator
matrix L, such that

P(t)ij = p(Γ (t) = j | Γ (0) = i) = exp(tL)ij , (2.48)

where Γ (t) is defined in (2.41), and t is an integer multiple of the sampling interval δt. In general, the
existence of L is not guaranteed, even if Γ (t) is indeed Markovian. Nevertheless, one may always try to
estimate a Markov generator that is consistent with the given realization Γ (t) using one of the available
algorithms in the literature [67, 68], and verify a posteriori its consistency by computing E(at, S0) from (2.33)
for prediction observables at of interest. Here, the cluster-conditional probabilities (2.26) in the Markov
model are given (via Bayes’ theorem) by

pMk
t =

K∑
j=1

exp(tL)kjφ
j , (2.49)

where
φk = p(at|Γ (t) = k) (2.50)

are the distributions for at conditioned on the value of Γ (t) for the training data. These distributions can be
estimated by cluster-conditional bin counting of simultaneous realizations of at and Γ (t), as described in
Section 2.4. As with Section 2.5.1, our primary observables of interest are the total energy in the flow, E,
and the leading two PCs of the streamfunction.

Since for sufficiently long training time series the φk are equivalent to the pkt distributions in (2.19)
evaluated at t = 0 with equal running-average windows in the training and prediction stages (i.e., ∆t = ∆t′),
the model probabilities in (2.49) have no error at time t = 0; i.e., Ek0 in (2.33) is zero by construction.
Moreover, Ekt will vanish as t→∞ for models that meet the equilibrium consistency condition in (2.31) for

pMeq =

K∑
k=1

πMk φ
k, (2.51)

where πM = (πM1 , . . . , πMK ) is the equilibrium distribution of the Markov model, defined by the requirement
for all t,

K∑
i=1

πMi P(t)ij = πMj . (2.52)

However, due to dynamical model error, E(at, S0) will generally be nonzero for finite and nonzero t.

2.5.4 The model error in long-range predictions with coarse-grained Markov models

To construct our Markov models, we took the same training data used in Section 2.5.1 consisting of the
leading 20 PCs of the streamfunction in the 1.5-layer model, x(t) = (PC1(t), . . . ,PC20(t)), and computed
affiliation sequences Γ (t) from (2.41), applying the procedure described in Section 2.4 for various choices of K
and running-average windows ∆t′. In each case, we determined P by fitting the generator matrix L in (2.48)
to Γ (t) using the Bayesian algorithm of Metzner et al. [68]. We checked for robustness against sampling
errors by repeating our calculations using either of the two halves of the training time series. This resulted to
relative changes of order 10−3 in L, as measured by the ratio of Frobenius norms ‖δL‖/‖L‖. Likewise, the
changes in the results in Figure 2.8 were not significant.

The two main dangers with the assumption that Γ (t) has the Markov property are that (i) the Markov
model fails to meet the equilibrium consistency condition in (2.31), i.e., the Markov equilibrium distribution
deviates systematically from the truth; and (ii) the discrepancy DM (at, S0) in (2.29) from equilibrium of the
Markov model measures false predictability, e.g., for a Markov model that relaxes to equilibrium unjustifiably
slowly. The latter two pitfalls may arise independently of one another, since the discrepancy E(at, S0) in (2.12)
of a model from the truth as it relaxes to equilibrium can be large for some forecast lead time t, even if the
model error Eeq in equilibrium is small. Nevertheless, the E(at, S0) and Eeq(at) metrics [and the corresponding
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normalized error scores εt and εeq in (2.34) and (2.31), respectively] allow one to detect these types of error a
posteriori, given the Markov matrix P fitted to the data.

In Figure 2.8 we illustrate these issues through a comparison between a K = 7 and a K = 3 Markov
model. The seven-state model was constructed using the Γ (t) affiliation sequence of the K = 7 partitions
of Section 2.5.1; i.e., the training time series x(t) was coarse-grained using a running-average window of
∆t′ = 1000 days. The same training time series was used to evaluate the generator of the K = 3 Markov
model, but in this case ∆t′ was increased to 2000 days. First, it is clear from the graphs for εt that the
seven-state Markov model asymptotes to an incorrect equilibrium distribution. For this reason, the relative-
entropy score δMt measures false predictability for all forecast horizons, including t = 0. On the other hand,
the K = 3 model of Figure 2.8 does meet climate equilibrium consistency (with εeq ∼ 10−5), which means
that for this model δM0 is a true measure of classification skill beyond equilibrium. That model, however,
experiences a gradual ramp-up of εt, peaking at around t = 2000 days, and as a result, its predictions cannot
be deemed accurate beyond, say, a horizon t & 1000 days.

Note now how the second pitfall might lead one to believe that the seven-state Markov model is more
skillful than the three-state one: The smallest non-trivial eigenvalue, µ1 = (log λ1)/δt ' −1/(4000 days),
of the generator matrix of the K = 7 model has smaller absolute value than the corresponding eigenvalue,
µ1 ' −1/(3000 days), of the K = 3 model. That is, for long-enough prediction horizons, the seven-state
model relaxes more slowly to equilibrium than the three-state model, i.e., it is more persistent. By monitoring
εeq and εt it is possible to identify models with false persistence as illustrated above.
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Figure 2.8. Internal predictability score, δMt , and model error, εt, of K = 3 and K = 7 Markov models as
a function of the forecast lead time t. The observables under consideration are the energy E and the leading
two PCs. The coarse-graining interval ∆t′ for creating the partition in the training stage is ∆t′ = 2000 and
1000 days, respectively for K = 3 and K = 7, with corresponding model error in the energy equilibrium
εeq ∼ 10−5 and 0.068; i.e., the three-state Markov model meets equilibrium consistency (2.31), but the
seven-state model does not. At finite t, small values of εt mean that the relative-entropy distance δMt is an
appropriate surrogate for the true predictive skill of the Markov models. On the other hand, if εt and δMt
are both large, then δMt is biased, and measures false predictive skill. The equilibration time of the Markov
models (given by −1/µ1, where µ1 is the first non-trivial eigenvalue of the generator of the Markov process)
is 3000 days and 4260 days, respectively for K = 3 and K = 7. Thus, in this example the most erroneous
Markov model has the largest false skill and is also the most persistent.
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3 Nonlinear Laplacian spectral analysis (NLSA) algorithms for decomposition of spatiotem-
poral data

3.1 Background

In a wide range of disciplines in science and engineering, including those outlined in Section 1, there exists a
strong interest in extracting physically-meaningful information about the spatial and temporal variability
of data from models, experiments, or observations with the goal of enhancing the understanding of the
underlying dynamics. Frequently, observations of the system under study are incomplete; i.e., only a subset
of the full phase space is accessible.

A classical way of attacking this problem is through singular spectrum analysis (SSA), or one of its
variants [69–74]. Here, a low-rank approximation of a dynamic process is constructed by first embedding a
time series of a scalar or multivariate observable in a high-dimensional vector space RN (here referred to as
lagged-embedding space) using the method of delays [75–78], and then performing a truncated singular value
decomposition (SVD) of the matrix X containing the embedded data. In this manner, information about the
dynamical process is extracted from the left and right singular vectors of X with the l largest singular values.
The left (spatiotemporal) singular vectors form a set of so-called extended empirical orthogonal functions
(EEOFs) in RN , which, at each instance of time, are weighted by the corresponding principal components
(PCs) determined from the right (temporal) singular vectors to yield a rank-l approximation of X.

A potential drawback of this approach is that it is based on minimizing an operator norm which may
be unsuitable for signals generated by nonlinear dynamical systems. Specifically, the PCs are computed by
projecting onto the principal axes of the l-dimensional ellipsoid that best fits the covariance of the data in
lagged-embedding space in the least-squares sense. This construction is optimal when the data lies on a linear
subspace of RN , but nonlinear processes and/or observation functions will in general produce data lying on a
nonlinear submanifold M⊂ RN with non-Gaussian distributions departing significantly from the ellipsoid
defined by the covariance operator of the data. Physically, a prominent manifestation of this phenomenon is
failure to capture via SSA the intermittent patterns arising in turbulent dynamical systems; i.e., temporal
processes that carry low variance, but play an important dynamical role [79, 80].

Despite their inherently nonlinear character, such datasets possess natural linear structures, namely
Hilbert spaces Λ0M of square-integrable functions on M with inner product inherited from the volume form
of a Riemannian metric induced on the data by lagged embedding. Moreover, intrinsically discrete analogs
Λ0M of Λ0M can be constructed empirically for the set M ⊂ M of observed data using techniques from
discrete exterior calculus (DEC, e.g., [81–83]). These spaces may be thought of as the collection of all possible
weights that can be assigned to the data samples when making a low-rank reconstruction, i.e., they are
analogous to the temporal spaces of SSA. Based on these observations, it is reasonable to develop algorithms
for data decomposition which are based on suitably-defined maps from Λ0M to lagged-embedding space RN .
Such maps, denoted here by A, have the advantage of being simultaneously linear and compatible with the
nonlinear geometry of the data.

Here, we advocate that this approach, implemented via algorithms developed in machine learning [84, 85],
can reveal important aspects of complex, high-dimensional signals, which are not accessible to classical
SSA. In this framework, which we refer to as nonlinear Laplacian spectral analysis (NLSA), an orthonormal
basis for Λ0M is constructed through eigenfunctions of a diffusion operator associated with a kernel in
lagged-embedding space with explicit dependence on the dynamical vector field on M generating the data.
Projecting the data from embedding space onto these eigenfunctions then gives a matrix representation of A
leading, via SVD, to a decomposition of the dataset into a biorthonormal set of spatiotemporal patterns.

3.2 Mathematical framework

We consider a scenario where the dynamics is described by a flow Ft : F 7→ F operating in a phase space F ,
and evolving on an attractor M⊆ F . Moreover, observations are taken uniformly in time with a timestep
δt > 0 on the attractor via a smooth vector-valued function G : F 7→ Rn, forming a dataset x = (x1, . . . , xs)
with

xi = G(zi), zi = Ftiz0, ti = i δt, z0 ∈M. (3.1)

In general, we are interested in cases where the observation function is incomplete, i.e., the xi alone are
not sufficient to uniquely determine the state of the system in M. Geometrically, this means that the image
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manifold G(M) ⊂ Rn is not diffeomorphic to M. Our objective is to produce a decomposition of xi into a
set of l spatiotemporal patterns x̂ki ,

xi ≈ x̃i =

l∑
k=1

x̂ki , (3.2)

taking into account the the underlying dynamical system operating on M. That is, compared to generic
point clouds of data, an additional structure that we have at our disposal here is the time ordering of the
observations, which carries meaningful information about Ft. Therefore, we seek that the decomposition (3.2)
depends on that time ordering.

The methodology employed here to address this objective consists of four basic steps: (i) Embed the
observed data in a vector space RN of dimension greater than n via the method of delays; (ii) construct
a linear map Al taking a Hilbert space of scalar functions on M representing temporal patterns to the
spatiotemporal patterns in RN ; (iii) perform a singular value decomposition (SVD) in a basis of orthonormal
diffusion eigenfunctions to extract the spatial and temporal modes associated with Al; (iv) project the modes
from RN to data space Rn to obtain the spatiotemporal patterns x̂kt in (3.2). Below, we provide a description
of each step, as well as an outline of SSA algorithms to draw connections between the two approaches. Further
details of the NLSA framework, as well as pseudocode, are presented in [14, 16]. A Matlab implementation is
available upon request from the corresponding author.

Hereafter, we shall consider that M has integer dimension m and is compact and smooth, so that a
well-defined continuous spectral theory exists [86]. Moreover, we assume that the dynamical vector field Ḟ
induced on M, given by

Ḟ (f) = lim
t→0

(f(Ftz)− f(z))/t, with z ∈M, f ∈ C∞M, (3.3)

is also smooth. We emphasize, however, that the smoothness assumptions for M and Ḟ are to be viewed as
“Platonic ideals” serving as a guidelines for algorithm design and analysis, but seldom encountered in practice
(e.g., due to finite number of samples and/or non-smoothness of the attractor). Operationally, one works in
the intrinsically discrete framework of spectral graph theory [87] and DEC [81, 83], which exist independently
of the continuous theory, even if the latter was used as a means of gaining insight.

3.2.1 Time-lagged embedding

This step is familiar from the qualitative theory of dynamical systems [75–78]. Under generic conditions, the
image of zi ∈M in embedding space, RN , under the delay-coordinate mapping,

H(zi) = Xi = (G(xi), G(xi−1), . . . G(xi−(q−1))), Xi ∈ RN , N = qn, (3.4)

lies on a manifold H(M) which is diffeomorphic to M, provided that the dimension N is sufficiently large.
Thus, given a sufficiently-long embedding window ∆t = (q − 1) δt, we obtain a representation of the attractor
underlying our incomplete observations.

Broadly speaking, preprocessing the data by time lagged-embedding produces both topological and
geometrical changes. In particular, the topology of the embedded dataset H(M) will be different from that
of the original G(M) data if the observation map is incomplete, recovering the manifold structure of the
attractor lost through partial observations. An implication of this is that the time series Xi in (3.4) becomes
Markovian, or, equivalently, the dynamical vector field Ḟ on M from (3.3), is carried along by means of the
derivative map DH to a smooth vector field Ḟ∗ = DH Ḟ on H(M).

Besides topological properties, time-lagged embedding also influences the geometry of the data, in the
sense that the Riemannian metric h induced onM by pulling back the canonical inner product of RN depends
explicitly on the dynamical flow generating the data. To see this, let (u1, . . . , um) be a coordinate system in
a neighborhood of zi ∈M. In this coordinate system, the induced metric h at zi has components

hµν |i =

N∑
α=1

∂Xα
i

∂uµ
∂Xα

i

∂uν
=

n∑
α=1

q−1∑
j=0

∂xαi−j
∂uµ

∂xαi−j
∂uν

=

q−1∑
j=0

gµν |i−j , (3.5)

where g is the induced metric on the original dataset G(M), and Xα
i (xαi ) the components of Xi (xi) in an

orthonormal basis of RN (Rn). It therefore follows that the induced metric on M is a “running-averaged”
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version of the induced metric on G(M) along orbits of the dynamical system in (3.1) of temporal extent ∆t.
In other words, the results of a data analysis algorithm operating in RN that processes the data based on
distance-based affinity metrics will depend on the dynamical flow Ft.

Note that this effect takes place even if the observation map is complete [i.e., G(M) is a diffeomorphic
copy ofM], which suggests that time-lagged embedding may be used as a tool to control the dataset geometry
even in fully observed dynamical systems. This question has been studied in detail in recent work by Berry
and collaborators [88], who have established a correspondence between the Lyapunov metric of a dynamical
system acting along the most stable Osedelets subspace and the induced metric in a suitable lagged-embedding
space.

3.2.2 Overview of singular spectrum analysis

The classical linear framework for creating low-rank approximations of a dataset in lagged-embedding space
is essentially identical to principal components analysis (PCA) or proper orthogonal decomposition (POD)
algorithms [1, 72], apart from the fact that one obtains a biorthonormal basis of temporal–spatiotemporal
patterns rather than the usual temporal–spatial basis. Algorithms of this type are interchangeably called
SSA [71, 74]), singular system analysis [70], and EEOFs [69]. We use the term SSA to refer to this family of
algorithms.

Let X = (X1, . . . , XS) with S = s− q + 1 be the data matrix in lagged embedding space, dimensioned
N × S. In SSA, the biorthonormal basis that optimally fits the data is constructed through the SVD of X,

X = UΣVT ,

U = (U1, . . . , UN ), Σ = diag(σ1, . . . , σmin{N,S}), V = (V1, . . . , VS),

Ui ∈ RN , σi ≥ 0, Vi ∈ RS ,
UTi Uj = V Ti Vj = δij .

(3.6)

Here, U and V are orthogonal matrices of dimension N ×N and S × S, respectively, and Σ a diagonal matrix
with nonnegative diagonal entries ordered in decreasing order. In (3.6), the j-th column of V gives rise to a
function of time (a PC)

ṽj(ti) = Vij . (3.7)

Moreover, the corresponding column Uj of U represents a spatiotemporal process uj(τi) in of time duration
∆t, viz.

uj(τi) = (Un(i−1)+1,j , . . . , Uni,j) ∈ Rn, τi = (i− 1) δt. (3.8)

A rank-l approximation Xl of the dataset in lagged embedding space is then constructed through the leading
l singular vectors from (3.6),

Xl = UlΣlVl = XVTl Vl, Ul = (U1, . . . , Ul), Σl = diag(σ1, . . . , σl), Vl = (V1, . . . , Vl). (3.9)

It is a standard result from linear algebra that Xl is the optimal rank-l approximation of X with respect to
the Frobenius norm of linear operators.

More abstractly, implicit to (3.6) is the notion that the dataset induces a linear map X : RS 7→ RN taking
the so-called “chronos” space of temporal patterns, RS , to the “topos” space of spatiotemporal patterns, RN ,
via matrix multiplication [72], i.e., f 7→ Xf with f ∈ RS . This picture will be useful in the development of
NLSA algorithms ahead.

3.2.3 Spaces of temporal patterns

Another useful way of interpreting the chronos modes is to view them as scalar functions on the data manifold.
In particular, we think of the components of each (f1, . . . , fS) ∈ RS , as the values of a function f :M 7→ R
sampled at the states zi in (3.1), i.e., f(zi) = fi. In particular, to each Vj from (3.6) we associate a scalar
function vj(zi) = Vij . The main tenet in NLSA algorithms is that the extracted temporal modes should
belong in low-dimensional families of “well-behaved” functions on M. The function space in question is
spanned by the leading eigenfunctions of diffusion operators on M, as we now discuss.
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Let ΛpM denote the vector space of smooth p-form fields on M. For our purposes, a diffusion operator L
will be an elliptic, second-order differential operator acting on scalar functions in Λ0M, which annihilates
constant functions, i.e.,

f = const. =⇒ Lf = 0. (3.10)

An important theoretical result (e.g., [89, 90]) is that every diffusion operator L induces a Riemannian
geometry onM, in the sense that one can associate to L a unique metric tensor k. More specifically, to every
L there corresponds a unique codifferential operator δ : Λ1M 7→ Λ0M which produces the factorization

L = δd, (3.11)

and gives the metric implicitly through the relation

〈δω, f〉k =

∫
M
δω f dµ = 〈ω, df〉k =

∫
M

m∑
α,β=1

kαβwα dβf dµ. (3.12)

Here, f and ω are arbitrary smooth scalar functions and one-forms, 〈·, ·〉k the Hodge inner product between
p-forms, d : ΛpM 7→ Λp+1M the exterior derivative, dµ =

√
det k du1 ∧ · · · ∧ dum the volume form of k, and

kαβ the components of the “inverse metric” associated with k in the uµ coordinates. A local expression for
the codifferential in terms of the metric is

δ(ω) = − 1√
det k

m∑
α,β=1

∂

∂uα

(
kαβ
√

det kωβ

)
. (3.13)

It follows from (3.13) that the Riemannian metric k associated with L has the property that the
corresponding codifferential δ is the adjoint of d with respect to the Hodge inner product. This construction
leads naturally to a normalized Dirichlet form

Ek(f) =
〈f,Lf〉k
‖f‖2k

=
〈df, df〉k
‖f‖2k

≥ 0, ‖f‖k = 〈f, f〉1/2k , (3.14)

which characterizes how strongly oscillatory a scalar function f is. Note that Ek(f) depends significantly on
k.

Let φ0, φ1, . . . be normalized eigenfunctions of L with corresponding eigenvalues λ0, λ1, . . .,

Lφi = λiφi, 〈φi, φj〉k = δij , 0 = λ0 < λ1 ≤ λ2 · · · . (3.15)

The basic requirement in NLSA is that the recovered patterns vj(zi) of temporal variability should have
bounded Dirichlet form with respect to a Riemannian metric [see (3.29) ahead] constructed in lagged
embedding space with an explicit dependence on the dynamical vector field Ḟ . Specifically, for a function
f =

∑
i ciφi we require that ci = 0 for i > l, or, equivalently, Ek(f) ≤ λl. Operationally, this criterion is

enforced by introducing the l-dimensional space of functions spanned by the leading l eigenfunctions of L,

Φl = span{φ0, . . . , φl−1}, dimΦl = l, (3.16)

and replacing the linear map X in (3.6) by a linear map Al whose domain is Φl. We will return to this point
in Section 3.2.6.

We remark that this viewpoint is fundamentally different from SSA and related variance-optimizing
algorithms. In those algorithms, the unimportant features of the data are spanned by vectors in embedding
space onto which the dataset projects weakly. On the other hand, in NLSA, the unimportant features are
those which require large-λi basis functions on the data manifold to be described. In particular, there may be
temporal modes of variability that carry a small portion of the variance of the total signal, but are “large-scale”
on M in the sense of small Ek. Such modes will generally not be accessible to SSA algorithms.
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3.2.4 Discrete formulation

In practical applications, one has seldom access to a densely sampled smooth manifold M. However, using
the machinery of DEC [81, 83] and spectral graph theory [84, 85], it is possible to design an algorithm which
has the same fundamental properties as the continuous formulation in Section (3.2.3), but is intrinsically
discrete (i.e., not a discretization of a continuous theory). In this regard, the main role of the continuous
picture is to provide a guideline for building a discrete algorithm.

Let M = {zq, zq+1, . . . , zS+q−1} ⊂ M be the discrete set of states on the attractor which are available for
data analysis after time-lagged embedding [the initial q− 1 states, z1, . . . , zq−1, must be discarded in order to
apply (3.4)]. The first step of the classical procedure for building a discrete diffusion operator L analogous to
L in (3.11) is to identify the spaces Λ0M and Λ1M of scalar-valued functions and 1-forms on the discrete
dataset M . These spaces consist of functions defined on the vertices M and edges M ×M , respectively, of
an undirected graph, whose nodes 1, . . . , S correspond to the states zq, . . . , zS+q−1 of the dynamical system
at which observations are taken. That graph is further equipped with an ergodic, reversible1 Markov chain
(typically constructed through a kernel, as described in Section 3.2.5) whose state space is M . That is, we
have

S∑
i=1

πipij = πj , πipij = πjpji, (3.17)

where p and π are the transition probability matrix and invariant distribution of the Markov chain, respectively.
The latter are used to construct the inner products 〈·, ·〉p of Λ0M and Λ1M via the formulas

〈f, f ′〉p =

S∑
i=1

πif(i)f ′(i), 〈ω, ω′〉p =

S∑
i,j=1

πipijω([ij])ω′([ij]), (3.18)

where f, f ′ ∈ Λ0M , ω, ω′ ∈ Λ1M , and [ij] is the edge connecting vertices i and j. Introducing the discrete
exterior derivative d : Λ0M 7→ Λ1M with df([ij]) = f(j)− f(i), the codifferential δ : Λ1M 7→ Λ0M is defined
as the adjoint of d with respect to the 〈·, ·〉p inner product. That is, for any f ∈ Λ0M and ω ∈ Λ1M we have

〈ω, df〉p = 〈δω, f〉p. (3.19)

An explicit formula for δ (which must be modified if p is not reversible) is

δω(i) =

S∑
j=1

pij(ω([ji])− ω([ij])). (3.20)

Equations (3.18) and (3.20) are the discrete counterparts of (3.12) and (3.13), respectively.
With these definitions, the discrete diffusion operator is constructed in direct analogy to (3.11), viz.

L = δd, Lf(i) = 2

S∑
i,j=1

pij(f(i)− f(j)), f ∈ Λ0M. (3.21)

This operator provides a tool for computing orthonormal basis functions of Λ0M through its associated
eigenfunctions,

Lφi = λiφi, 〈φi, φj〉p = δij , 0 = λ0 < λ1 ≤ λ2 ≤ · · · . (3.22)

Moreover, it provides a measure for the oscillatory character of a function f ∈ Λ0M through the associated
Dirichlet form [cf. (3.14)], Ep(f) = 〈f, Lf〉p/‖f‖2p. The spaces of admissible temporal patterns in NLSA,

Φl = span{φ0, . . . , φl−1}, (3.23)

are modeled after (3.16), and have the property

Ep(f) ≤ λl for every f ∈ Φl. (3.24)

1Reversibility of the Markov chain is not strictly necessary, but it simplifies the expression for the codifferential in (3.20).
Moreover, Markov chains derived from kernels are reversible by construction. See [82] for more general expressions applicable to
non-reversible Markov chains, as well as higher-order forms.
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3.2.5 Dynamics-adapted kernels

In order to turn the framework of Section 3.2.4 into a complete algorithm, we must specify the Markov
transition probability matrix p associated with the discrete diffusion operator L in (3.21). Here, we follow
the widely-adopted approach in the literature [e.g., 84, 85, 88, 91–94], whereby p is constructed through a
suitable local kernel whose asymptotic properties provide a connection between L and a diffusion operator L
in the continuum limit. In other words, the design of the Markov matrix employed in the discrete algorithm
is informed by the asymptotic properties of the kernel and the Riemannian geometry associated with L
via (3.12). Because kernels can be computed using only observed quantities in data space without having to
know a priori the structure of the underlying phase space F and flow Ft, this approach opens the possibility
of model-free analysis of dynamical system data [93].

Recall that a kernel is a function which maps pairs of states in M to a positive number, and decays
exponentially fast away from the basepoint at which it is evaluated. A standard choice in this context is the
isotropic Gaussian kernel [84, 85, 91, 92],

K̄ε(zi, zj) = exp(−‖H(zi)−H(zj)‖2/ε), (3.25)

where ε is a positive parameter and ‖·‖ the canonical Euclidean norm. In writing down (3.25) using the delay-
coordinate map H from (3.4) we have made explicit the fact that our focus is kernels defined lagged-embedding
space. In NLSA, we work with a “locally scaled” kernel

Kδt(zi, zj) = exp(−‖H(zj)−H(zi)‖2/(‖ξi‖‖ξj‖), ξi = Xi −Xi−1, (3.26)

where ξi is the displacement vector between temporal nearest neighbors. One may explicitly verify that
the quantities ξi and ξj are finite-difference approximations to the dynamical vector field carried along to
lagged-embedding space [94], i.e.,

Ḟ∗|zi = ξi/δt+O(δt). (3.27)

Thus, the NLSA kernel depends on the dynamics implicitly through time-lagged embedding, and explicitly
through ξ.

Given a choice of kernel such as the examples above, it is possible to construct a Markov transition
probability p by performing suitable normalizations to convert Kij = K(zi, zj) to a row-stochastic matrix.
Here, we adopt the normalization procedure developed by Coifman and Lafon [85] in the diffusion map (DM)
family of algorithms. In DM, the Markov matrix p is constructed from K by introducing a scalar parameter
α and performing the sequence of operations

Q(zi) =
∑
zj∈M

K(zi, zj), K̃(zi, zj) = K(zi, zj)/(QiQj)
α,

Q̃(zi) =
∑
zj∈M

K̃(zi, zj), pij = K̃(zi, zj)/Q̃(zi).
(3.28)

In [85] it was shown that with this definition of p and α = 1 the discrete diffusion operator L associated with
an isotropic, exponentially decaying kernel converges as ε→ 0 (and the sample number S grows at least as
fast as ε−m/2−1 [95]) to L = ∆, where ∆ is the Laplace-Beltrami operator associated with the Riemannian
metric induced on M through the embedding M 7→ H(M). Importantly, the L→ ∆ convergence holds even
if the sampling density on M is non-uniform relative to the Riemannian volume form. The metric associated
with the kernel in (3.25) is the induced metric h in (3.5) determined by the delay-coordinate mapping.

This result was extended to the case of anisotropic kernels by Berry [93], who showed that under relatively
weak assumptions [which are met by both of the kernels in (3.25) and (3.26)] the asymptotic diffusion operator
and the induced metric k is determined by the Hessian of K evaluated at zj = zi. In particular, in the limit
δt→ 0 the locally-scaled kernel (3.26) leads to the induced metric [94]

k = h/‖Ḟ‖2h, ‖Ḟ‖2h = h(Ḟ , Ḟ ). (3.29)

Motivated by this asymptotic result, we work throughout with the α = 1 DM normalization in conjunction
with the locally scaled kernel of (3.26).
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It follows from (3.29) that the outcome of the ‖ξi‖ scaling factors in (3.26) is a conformal transformation
of the metric h in lagged-embedding space with a conformal factor ‖Ḟ‖2h given by the squared magnitude of

the “phase-space velocity” Ḟ . In [14] this feature was found to be crucial for successful dimensional reduction
of a dynamical system with chaotic metastability. Additional properties of ξi, in particular, its angle relative
to the relative displacement vector H(zi) − H(zj), can be incorporated in so-called “cone” kernels with
stronger invariance properties [94].

A further desirable outcome of the local scaling by the ‖ξi‖ factors is that the diffusion operator L and the
associated Φl spaces of temporal patterns from (3.16) become conformally invariant. In particular, equivalence
classes of datasets related by conformal transformations of the metric in lagged embedding space,

h̃|z = r(z)h|z, r(z) > 0, (3.30)

lead asymptotically to the same L operator as δt→ 0.
Scale invariance is also beneficial in situations where H is a composite map H :M 7→ RN1 ⊕ RN2 such

that H(z) = (H1(z), H2(z)) where both H1 and H2 are embeddings of M. This scenario arises in practice
when one has access to multivariate observations with distinct physical units, but there is no natural way

of choosing a norm for the product space RN1 ⊕ RN2 . Because the ratios ‖Hβ(zi)−Hβ(zj)‖2/‖ξ(β)i ‖‖ξ
(β)
j ‖,

β ∈ {1, 2}, are invariant under scaling of the data by a constant (including change of units), the kernels (3.26)
computed individually for H1 and H2 can be combined into a single product kernel without having to
introduce additional scaling parameters, namely

Kδt(zi, zj) = exp

(
−‖H1(zi)−H1(zj)‖2

‖ξ(1)i ‖‖ξ
(1)
j ‖

− ‖H2(zi)−H2(zj)‖2

‖ξ(2)i ‖‖ξ
(2)
j ‖

)
. (3.31)

A climate science application of this technique can be found in [18].

3.2.6 Singular value decomposition

Having established the procedure to obtain the temporal spaces Φl in (3.23), the next step in NLSA is to
form a family of linear maps Al : Φl 7→ RN , which are represented by N × l matrices with elements

Aαj = 〈Xα, φj〉p =

S∑
i=1

πiX
α(i)φj(i), Xα(i) = 〈eα, Xi〉RN . (3.32)

Here, Xα is the scalar-valued function in Λ0M giving the α-th component of the observed data in an
orthonormal basis e1, . . . , eN of RN . That is, a function f =

∑l
k=1 ckφk−1 in Φl , is mapped to y = Al(f)

with y = (y1, . . . , yN ) and yα =
∑l
j=1A

α
jcj . These linear maps replace the corresponding map for SSA

in (2.1), enforcing the condition (3.24) on the discrete Dirichlet form. The spatial and temporal patterns
associated with Al follow in analogy with (3.6) by performing the SVD

Al = UlΣlV
T
l , (3.33)

where Ul = (U1, . . . , UN ) and Vl are N ×N and l × l orthogonal matrices, and Σ = diag(σ
(l)
1 , . . . , σ

(l)
min{N,l})

a diagonal matrix of nonnegative singular values. Here, the matrix elements of Vl are expansion coefficients
in the φi basis of Φl. In particular, the j-th column of Vl corresponds to a function vj ∈ Λ0M and a function
of time ṽj given by

vj(i) = ṽj(ti) =

l∑
k=1

vkjφk−1(i), (3.34)

The above are the NLSA analogs of the chronos modes (3.7) in classical SSA. By the orthogonality properties
of the φi basis functions, the vj are orthogonal with respect to the inner product in (3.18). Note that unlike
the rank-l truncated Ul matrix from SSA in (3.9), the first l columns of Ul from NLSA are not equal to the
first l columns of Ul+1 (the same is true for Σl and Vl). Moreover, the temporal patterns in (3.34) are not
linear projections of the data onto the corresponding spatiotemporal patterns Ui.
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Consider now the rank-l approximation Xl of the signal X in lagged-embedding space obtained by using
the SVD of Al,

Xl = UlΣlV
T
l ΦT

l = XΠΦlΦ
T
l . (3.35)

Here Π = diag(π1, . . . , πS) is a diagonal matrix containing the invariant distribution (Riemannian measure)
in (3.17), and Φl = (φ0, . . . , φl−1) an S × l matrix of eigenfunction values. It follows by comparing (3.35)
with (3.9) that the rank-l approximations of the signal in NLSA and SSA differ in their filtering kernel. NLSA
filters the data by the diffusion kernel, ΠΦlΦl, whereas SSA by the covariance kernel, VlV

T
l . Note that besides

differences in Xl, the spatiotemporal patterns corresponding to individual singular-vector pairs [i.e., the X̂j
terms in (3.37)] may differ substantially between the two methods.

As discussed in Sections 3.2.3 and 3.2.4, the parameter l controls the “wavenumber” on the data manifold
resolved by the diffusion eigenfunctions spanning Φl. On the one hand, working at a tight truncation level
(small l) is desirable in order to produce a parsimonious description of the data with minimal risk of overfitting
(the variance of the discrete eigenfunction φl increases with l for a fixed number of samples S [95]). At the
same time, a too drastic truncation will inevitably lead to important features of the data being unexplained.
A useful heuristic criterion for selecting l is to monitor a relative spectral entropy Dl, measuring changes in
the energy distribution among the modes of Al as l grows [15]. This measure is given by the formula

Dl =

l∑
i=1

p
(l+1)
i log(p

(l+1)
i /p̂

(l+1)
i ), (3.36)

with p
(l)
i = (σ

(l)
i )2/(

∑l
i(σ

(l)
i )2), p̂

(l)
i = (σ̂

(l)
i )2/(

∑l
i(σ̂

(l)
i )2), and (σ̂

(l)
1 , . . . , σ̂

(l)
l−1, σ̂

l
(l)) = (σ

(l−1)
1 , . . . , σ

(l−1)
l−1 , σ

(l−1)
l−1 ).

The appearance of qualitatively new features in the spectrum of Al is accompanied by spikes in Dl (e.g.,
Figure 3.2a), suggesting that a reasonable truncation level is the minimum l beyond which Dl settles to small
values. Note that the compressed representation of the data in the N× l-sized Al results in substantial gains in
computational efficiency compared to the SVD of the full data matrix X in large-scale applications where the
ambient space dimension N and the sample number S are both large (e.g., Section 3.3). Of course, in NLSA
one has to perform the pairwise kernel evaluations to form the diffusion operator L, but this computation can
be straightforwardly parallelized. Moreover, by virtue of the exponential decay of the kernel, the eigenvalue
problem (3.23) can be carried out efficiently using sparse iterative solvers.

Our experience from applications ranging from low-dimensional models [14], to comprehensive numerical
models [14, 15, 18], and real-world observations [17, 19], has been that the locally-scaled kernel in (3.26)
in conjunction with the α = 1 DM normalization in (3.28) and the Φl-restricted SVD in (3.33), leads to
superior timescale separation and ability to detect physically-meaningful low-variance patterns which are not
accessible to classical linear-projection techniques such as PCA and SSA. However, a complete theoretical
understanding of the SVD procedure, as well as its potential limitations, is still lacking.

3.2.7 Projection to data space

The final step in the NLSA pipeline is to construct the spatiotemporal patterns x̂ji in n-dimensional data

space associated with the corresponding singular vectors and values, {Uj , Vj , σ(l)
j }, of the Al map in (3.32).

Because Al is a linear map, this procedure is significantly more straightforward and unambiguous than in
methods based on nonlinear mapping functions (e.g., [96, 97]), and consists of two steps: (i) Compute the

N × S matrix X̂j containing the j-th spatiotemporal pattern in lagged embedding space, X̂j = Ujσ
l
jV

T
j ΦT

l ;

(ii) decompose each column of X̂j into q blocks x̂ij of size n,

X̂j =

 ↑ ↑
X̂j

1 · · · Xj
S

↓ ↓

 =

x̂11 · · · x̂1s′
...

. . .
...

x̂q1 · · · x̂qs′

 , (3.37)

and take the average over the lagged embedding window,

xj = (x̂j1, . . . , x̂
j
s), x̂ji =

min{q,i}∑
k=1

x̂j,i−k+1/min{q, i}. (3.38)

This leads to s samples in n-dimensional data space, completing the decomposition in (3.2).
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3.3 Analysis of infrared brightness temperature satellite data for tropical dynamics

Satellite imagery has been used to study convection-coupled tropical disturbances since the 1970s. Substantial
advances in the understanding of tropical waves have been made through linear theories and diagnostics
guided by these theories (e.g., [98]). However, convection-coupled tropical motions are highly nonlinear
and multiscale. Among the most notable examples is the Madden-Julian oscillation (MJO, e.g., [10]); an
eastward-propagating, planetary-scale envelope of organized tropical convection. Originating in the Indian
Ocean and propagating eastward over the Indonesian Maritime Continent until its decay in the Western
Pacific, the MJO has gross scales in the 30–90-day intraseasonal time range and zonal wavenumber of order
1–4. It dominates the tropical predictability in subseasonal time scales, exerting global influences through
tropical–extratropical interactions, affecting weather and climate variability, and fundamentally interfacing
the short-term weather prediction and long-term climate projections [99].

Conventional methods for extracting MJO signals from observations and models are linear, including
linear bandpass filtering, regression, and EOFs [100]. On the other hand, theory development has suggested
that the MJO is a nonlinear oscillator [101, 102]. With a nonlinear temporal filter, the observed MJO appears
to be a stochastically driven chaotic oscillator [103].

In this section, we apply NLSA to extract the spatiotemporal patterns of the MJO and other convective
processes from satellite infrared brightness temperature over the tropical belt. This analysis is an extension
of the work in [17, 19], which considered one-dimensional (1D) latitudinally-averaged data instead of the
two-dimensional (2D) infrared brightness temperature field studied here.

3.3.1 Dataset description

The Cloud Archive User Service (CLAUS) Version 4.7 multi-satellite infrared brightness temperature (denoted
Tb) [22] is used for this study. Brightness temperature is a measure of the Earth’s infrared emission in terms of
the temperature of a hypothesized blackbody emitting the same amount of radiation at the same wavelength
[∼ 10–11 µm in the CLAUS data]. It is a highly correlated variable with the total longwave emission of the
Earth. In the tropics, positive (negative) Tb anomalies are associated with reduced (increased) cloudiness.
The global CLAUS Tb data are on a 0.5◦ longitude by 0.5◦ latitude fixed grid, with three-hour time resolution
from 00 UTC to 21 UTC, spanning July 1, 1983 to June 30, 2006. Tb values range from 170 K to 340 K with
approximately 0.67 K resolution.

The subset of the data in the global tropical belt between 15◦S and 15◦N was taken to create a
spatiotemporal dataset sampled at a uniform longitude-latitude grid of nx × ny = 720 × 60 gridpoints
(with data space dimension n = nxny = 43,200) and s = 67,208 temporal snapshots. Prior to analysis,
the missing gridpoint values (less than 1% of ns) were filled via linear interpolation in time. A portion of
the data for the period of the observational campaign Tropical Ocean Global Atmosphere Coupled Ocean
Atmosphere Response Experiment (TOGA COARE, November 1992 to February 1993) [104], which is studied
in Section 3.3.3, is shown in Figure 3.1 in a time-longitude plot of Tb averaged about the equator.

3.3.2 Modes recovered by NLSA

We have applied the NLSA algorithm described in Section 3.2 using an embedding window spanning ∆t = 64
days (d). This amounts to an embedding space dimension N = qn ≈ 2.2× 107 for the δt = 3 hour sampling
interval (q = ∆t/δt = 512) and 0.5◦ resolution of our dataset. This choice of embedding window was
motivated from our objective to resolve propagating structures such as the MJO with intraseasonal (30–90-d)
characteristic timescales. In comparison, Kikuchi et al. [105] used a 10 d window with 5 d increments in their
analysis of outgoing longwave radiation (OLR) data using EEOFs. Unlike conventional approaches [105–107],
neither bandpass filtering nor seasonal detrending was applied prior to processing the data via NLSA.

For the calculation of the diffusion eigenfunctions in (3.22), we computed the pairwise kernel values
from (3.26) in embedding space using brute force, and evaluated the Markov matrix retaining nonzero
entries for 5000 nearest neighbors per datapoint.The resulting spectral entropy Dl, computed via (3.36) and
normalized to the unit interval by applying the transformation [56]

δl = (1− exp(−2Dl))
1/2, (3.39)
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Figure 3.1. Time-longitude section of (a) symmetric and (b) antisymmetric brightness temperature Tb
data (in K) from CLAUS for the period 1992–1993. In (a) only thresholded values < 280 K are shown to
emphasize convective activity. The bottom map in (a) indicates that the symmetric component was obtained
via averaging over 15◦S to 15◦N. The antisymmetric component in (b) was obtained by subtracting the values
at the northern latitudes from the corresponding southern latitudes. The boxed interval corresponds to the
TOGA-CORE period. Ovals mark significant MJO events.

is shown in Figure 3.2a. As described in Section 3.2.6, Dl exhibits a series of spikes as l increases from small
to moderate values (l ∼ 20), which correspond to qualitatively new spatiotemporal patterns entering in the
spectrum of Al. Eventually, Dl settles to small values for l & 25. On the basis of the results in Figure 3.2a,

hereafter we set the temporal space dimension in (3.23) to l = 27. The singular values σ
(l)
i of the associated

Al linear map from (3.32) are displayed in Figure 3.2b.
With these NLSA parameter values, the recovered spatiotemporal modes describe several convective

processes of interest operating in a wide range of spatial and temporal scales. Representative temporal
patterns ṽj(ti) from (3.34) are shown in Figure 3.3. Snapshots of the corresponding spatiotemporal patterns

x̂ji from (3.38) are displayed in Figures 3.4 and 3.5. The properties of these modes are as follows.

• Modes (1, 2) and (6,7). As manifested by the prominent lines at the once- and twice-per year frequencies
in their temporal Fourier spectra, these modes respectively describe annual (Figures 3.3a and 3.3b) and
semiannual (Figures 3.3f and 3.3g) periodic processes, which are expected to be prominent in tropical
Tb signals. In the spatial domain, Modes (1, 2) are characterized by Tb anomalies of opposite sign in the
North and South Hemispheres. The December 25 snapshot of Figure 3.4a corresponds to the dry season
in the tropical North Hemisphere and wet season in the tropical South Hemisphere. The semiannual
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Figure 3.2. (a) Spectral entropy δl from (3.39) and (b) singular values σ
(l)
i of the Al linear map (3.32)

with l = 27. The highlighted modes in (b) are the (♦) annual; (�) interannual; (4) symmetric diurnal; (©)
MJO; (×) semiannual; (5) antisymmetric diurnal modes. See Figure 3.3 for the corresponding temporal
patterns.

pair captures the march of intensified deep convection in the intratropical convergence zone (ITCZ),
South Pacific convergence zone (SPCZ), Indo-Pacific warm pool, monsoons, and tropical storm tracks
across the Southern and Northern Hemispheres. This pair of modes explains the apparent migration
and amplitude modulation of convection signals due to the north-south asymmetry in land mass and
bathymetry within the tropical belt.

• Mode 3. Due to the characteristic dipole pattern over the equatorial Pacific (Figure 3.4c) and presence of
spectral power on interannual timescales (Figure 3.3c) this mode is interpreted as the El Niño Southern
Oscillation (ENSO) [9] mode. The ENSO can enhance or inhibit MJO propagation by preconditioning
the environment of the Western Pacific. For instance, the snapshot of Figure 3.4c coincides with an
amplifying El Niño phase with warm sea surface temperature and enhanced convection (i.e., negative
Tb anomaly), which is conducive to MJO propagation in the Western Pacific. On the other hand, MJO
propagation is inhibited during La Niña years (not shown here).

• Modes (8, 9). This two-mode family corresponds the manifestation of the MJO in Tb data. Characterized
by broad intraseasonal peaks (20–90 days) in their frequency spectra and phase-locked in quadrature
(Figures 3.3h and 3.3i), these modes describe a 5000 km-scale eastward-propagating envelope of
organized convection (Figures 3.4f and 3.5). This structure originates over the Indian Ocean, and
propagates eastward until it decays upon reaching the cold waters of the Central Pacific. The presence
of semiannual lines in the frequency spectra of Modes (8, 9) is consistent with the fact that MJO events
occur preferentially in boreal winter (November–March).

• Modes (4, 5) and (16, 17). Characterized by dominant peaks over the once-per-day frequency in their
Fourier spectra (Figures 3.3d, 3.3e, 3.3j, and 3.3k), these modes describe diurnal convective variability.
The corresponding spatiotemporal patterns (Figures 3.4b and 3.4g) are most prominent over land, where
the diurnal cycle of convection is most active. The major difference between these modes is that (4, 5)
are predominantly symmetric about the equator, whereas (16, 17) are predominantly antisymmetric.
The symmetric pair is active year-round, but the antisymmetric pair is strongly modulated by the
seasonal cycle.

The availability of this family of modes, determined by an objective algorithm requiring no preprocessing
of the data, enables one to study interdependencies between modes of convection across multiple temporal
and spatial scales. For instance, the interdependencies between ENSO, MJO, and the diurnal cycle are topics
of significant current interest [19, and references therein]. Such analyses are outside the scope of this paper,
but we refer the reader to [19] for a study involving NLSA modes from 1D CLAUS Tb data averaged about
the equator, where a comparison between the NLSA and SSA modes is also made.
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Figure 3.3. Representative NLSA temporal patterns of CLAUS Tb data for the period of January 1992–
December 1993 and their frequency power spectra. (a, b) Annual modes; (c) interannual (ENSO) mode;
(d, e) symmetric diurnal pair; (f, g) semiannual modes; (h, i) MJO pair; (j, k) antisymmetric diurnal pair.

3.3.3 Reconstruction of the TOGA COARE MJOs

Two complete MJO events were observed during the TOGA COARE period (e.g., [108]). Figure 3.5 shows
reconstructions of these events based on the NLSA modes. This reconstruction captures the salient features
of the propagating envelope of deep convection associated with the MJO, including the initiation of enhanced
deep convection (hence cold anomalies) over the Indian Ocean, the passage over the Maritime Continent, and
the arrival and demise near the date line. The first event started near 75◦ E in late November, subsequently
crossed the Maritime Continent around 100◦–150◦E, then disappeared near 170◦W around January 10. The
second event, being slightly faster than the first, started around January 5, and reached the central Pacific in
early February. A third event started in March, after the end of the TOGA COARE period.

The TOGA COARE period was coincident with the amplifying phase of an El Niño event; therefore, the
convective MJO superclusters propagated further east beyond the date line, where during normal years the
cold sea surface temperature is not conducive to deep convection. The eastward-propagation speed of the
reconstructed MJO events is consistent with the observed ∼ 4–5 m s−1 value.

4 Synthesis

In this paper, we have reviewed two examples of applied mathematics techniques for data analysis in
dynamical systems: (i) Methods for quantifying predictability and model error based on data clustering and
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Figure 3.4. A snapshot of reconstructed CLAUS Tb (in K) data for December 25, 1992, 12UTC using
the NLSA modes highlighted in Figures 3.2 and 3.3. Negative Tb anomalies (blue colors) indicate enhanced
convection. Positive Tb anomalies (red colors) indicate decreased cloudiness. (a) Raw data; (b) annual
modes, x1 + x2; (c) interannual (ENSO) mode, x3; (d) latitudinally symmetric diurnal pair, x4 + x5; (e)
semiannual modes, x6 + x7; (f) MJO pair, x8 + x9; (g) latitudinally antisymmetric diurnal pair, x16 + x17.
The prominent MJO event in (f) occurring over the Western Pacific was observed by the TOGA COARE
field campaign [108].

information theory (Section 2.2); (ii) nonlinear Laplacian spectral analysis (NLSA) algorithms for extracting
spatiotemporal patterns from high-dimensional data (Section 3). We have highlighted these techniques
with applications to climate atmosphere ocean science; in particular, predictability assessment and Markov
modeling of circulation regimes in a simple ocean model (Section 2.5), and extraction of modes of organized
convection in the tropics from infrared brightness temperature (Tb) satellite data (Section 3.3).

A common theme in these methods has been the coarse-grained geometry of the data. In Section 2 we
saw how a discrete partition of the space of initial data (constructed empirically through data clustering)
can be used in conjunction with information theory to place practically computable lower bounds to the
predictability of observables in dynamical systems and the error of forecasting these observables with
imperfect models. In Section 3, the machinery of discrete exterior calculus and spectral graph theory was
combined with delay-coordinate mappings of dynamical systems to extract spatiotemporal modes of variability
which are describable in terms of low-dimensional sets of diffusion eigenfunctions, selected according to a
“low-wavenumber” criterion on the data manifold formulated in an intrinsically discrete setting.
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Figure 3.5. Reconstruction of the MJO waivetrain observed during the TOGA COARE intensive observing
period (IOP) November 1992–March 1993. The color maps show temperature Tb anomalies (in K) obtained
from the NLSA MJO modes of Figures 3.3h and 3.3i projected to data space via (3.38); i.e., x8+x9. Blue (red)
colors correspond to increased convection (decreased cloudiness). (a) No MJO activity is present; (b, c, d)
the first MJO initiates over the Indian Ocean, propagates eastward over the Indonesian Maritime Continent,
and decays after reaching the 180◦ dateline; (e, f, g) a second, stronger, MJO event with an initiation signal
over East Africa; (h) a weak third event starting at the end of the TOGA COARE IOP. See Figure 3.1 for
the manifestation of these events in time-longitude section of the raw data.

The techniques in (i) and (ii) can be naturally combined. In particular, recall that in Section 2.5 data
space was spanned by the leading 20 principal components (PCs) of the oceanic streamfunction. One can
consider replacing the PCs with the temporal patterns recovered by NLSA, and seek predictable patterns in
that space. A natural, but challenging application is to use the predictability framework of Section 2 to study
MJO predictability (a problem of wide practical impact [99]) in the space of NLSA modes recovered from
brightness temperature data and other relevant fields. In this case, it is likely that the complexity of the data
in modal space compared to the 1.5-layer ocean model will require a modification of the K-means algorithm
used in Section 2.5 in order to identify states with high MJO predictability. Likewise, we believe that it would
be fruitful to explore alternative formulations to the locally-scaled NLSA kernel in (3.26) (which has been
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designed having a deterministic dynamical system in mind) to deal with stochastic dynamics. The recent
work in [109] should be relevant in this context. Finally, as mentioned in Section 3.2.6, an open theoretical
problem is the justification (and potential improvement) of the truncated SVD step in NLSA. We plan to
pursue these topics in future work.
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