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Abstract

Parameter estimation for high-dimensional complex nonlinear turbulent dynam-

ical systems with only partial observations is an important and practical issue.

However, most of the existing parameter estimation algorithms are computation-

ally expensive in the presence of a large number of state variables or parameters.

In this article, a new efficient algorithm is developed for estimating parameter-

s in high-dimensional nonlinear turbulent dynamical systems with conditional

Gaussian structures. This algorithm exploits the closed analytical form of the

conditional statistics to recover the unobserved trajectories in an optimal and

deterministic way, which facilitates the calculation of the likelihood function

and circumvents the computationally expensive data augmentation approach in

sampling the unobserved trajectories as widely used in the literature. Such an

efficient method of recovering the unobserved trajectories is then incorporated

into a simple Markov chain Monte Carlo (MCMC) algorithm to estimate param-

eters in complex dynamical system using only a short period of training data.
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Next, two effective strategies are developed and incorporated into the algorith-

m that facilitates an efficient estimation of the parameters in high-dimensional

systems. The first strategy involves a judicious block decomposition of the s-

tate variables such that the original problem is divided into several subproblems

coupled in a specific way that allows an extremely cheap parallel computation

for the parameter estimation. The second strategy exploits statistical symmetry

for a further reduction of the computational cost when the system is statisti-

cally homogeneous. The new parameter estimation algorithm is applied to a

two-layer Lorenz 96 model with 80 state variables and 162 parameters and the

model mimics the realistic features of atmosphere wave propagations and ex-

citable media. The efficient algorithm results in an accurate estimation of the

parameters, which further allows a skillful prediction by the model with esti-

mated parameters. Other simple nonlinear models are also used to illustrate

the features of the new algorithm.

Keywords: conditional Gaussian nonlinear models, closed analytical formulae,

MCMC, high-dimensional non-Gaussian systems, block decomposition
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1. Introduction

Complex nonlinear turbulent dynamical systems are ubiquitous in geophysic-

s, engineering, neuroscience and material science [1, 2, 3, 4, 5, 6, 7, 8]. Key

features of these complex nonlinear systems are multiscale dynamics, high-

dimensional phase space, nonlinear energy transfers, highly non-Gaussian prob-5

ability density functions (PDFs), intermittent instability, random internal and

external forcing as well as extreme events. The prerequisite of understand-

ing and predicting these complex nonlinear turbulent systems is an accurate

estimation of the model parameters given observations. In many practical situ-

ations, due to the lack of physical understanding and the inadequate resolution10

in the measurement, these complex nonlinear systems typically involve unre-

solved variables or unknown hidden processes that have no direct observations
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[9, 10]. Nevertheless, these unobserved processes play important roles in trans-

ferring nonlinear energy and influencing the variables in the resolved scales. On

the other hand, even the observations for the large- or resolved-scale physical15

variables can sometimes be very sparse and there is little available observations

in certain areas such as the deep ocean [11, 12]. Therefore, developing efficient

parameter estimation algorithms using partial observations becomes important

for understanding and predicting these complex nonlinear turbulent systems,

especially in high dimensions.20

Various linear or nonlinear optimization methods have been proposed for es-

timating parameters in turbulent systems [14, 15]. Unfortunately, most of these

methods will either be trapped into a local optimal solution or are too time-

consuming to be applied to high dimensional systems. Regarding the model

parameters as augmented state variables, algorithms based on particle or en-25

semble Kalman filters were designed for parameter estimation [16, 17, 18, 19, 20].

These sequential methods are widely used in practice and provide some success-

ful results. However, these methods sometimes have extremely slow convergence

that requires a large amount of training data and the optimality of the solutions

is often not guaranteed due to the ignorance of the higher order moments in the30

ensemble Kalman filters. Another practically useful approach for estimating pa-

rameters in complex turbulent systems is to apply random sampling techniques,

such as the Markov chain Monte Carlo (MCMC) algorithms [21, 22, 23, 24],

and find the optimal solutions based on Bayesian inference. In the presence of

partial observations, MCMC algorithms are often combined with data augmen-35

tation [25, 26], which samples the trajectories associated with the unresolved

variables, to facilitate the calculation of the likelihood function. Such a combi-

nation of the MCMC algorithms with data augmentation can usually result in

the global optimal solutions due to the random search technique. Yet, sampling

the unobserved trajectories using data augmentation is computationally expen-40

sive, which prevents such an approach from being applied to high-dimensional

complex turbulent dynamical systems.

In this article, a new efficient algorithm is developed for estimating param-

3



eters in complex turbulent dynamical systems with conditional Gaussian struc-

tures [27]. Decomposing the state variables u into two groups u = (uI,uII)45

with uI ∈ RNI and uII ∈ RNII , the conditional Gaussian systems are charac-

terized by the fact that once a single trajectory of uI(s ≤ t) is given, uII(t)

conditioned on uI(s ≤ t) becomes a Gaussian process. Despite the conditional

Gaussianity, the coupled systems remain highly nonlinear and is able to cap-

ture strong non-Gaussian features such as skewed or fat-tailed distributions as50

observed in nature [27]. Many complex turbulent dynamical systems belong

to this conditional Gaussian model family, such as the noisy versions of the

Lorenz models, the Boussinesq equations with noise and quite a few stochasti-

cally coupled reaction-diffusion models in neuroscience and ecology. A gallery

of examples of conditional Gaussian systems can be found in [28]. One of the55

desirable features of such conditional Gaussian system is that it allows closed

analytical formulae for solving the conditional distribution p(uII(t)|uI(s ≤ t))

[29]. Applications of the conditional Gaussian systems to strongly nonlinear

systems include predicting the intermittent time-series of the Madden-Julian

oscillation (MJO) and monsoon intraseasonal variabilities [30, 31, 32], filtering60

the stochastic skeleton model for the MJO [33], and recovering the turbulent

ocean flows with noisy observations from Lagrangian tracers [34, 35, 36]. Oth-

er studies that also fit into the conditional Gaussian framework includes the

cheap exactly solvable forecast models in dynamic stochastic superresolution of

sparsely observed turbulent systems [37, 38], stochastic superparameterization65

for geophysical turbulence [39], physics constrained nonlinear regression models

[40, 41] and blended particle filters for large-dimensional chaotic systems [42].

The conditional Gaussian framework provides an efficient way of estimat-

ing parameters in complex turbulent dynamical systems with only partial ob-

servations uI. In fact, the analytically solvable conditional statistics allows a70

deterministic and computationally efficient approach to recover the trajectories

associated with the unobserved variables uII, which are also optimal based on

the Bayesian inference. This deterministic method circumvents the expensive

and time-consuming random sampling of the trajectories associated with the
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unobserved variables in the infinite dimensional space using data augmentation75

and thus greatly enhances the computational efficiency. With these recovered

unobserved trajectories, the MCMC technique can then be applied to sample

the parameters. The well-established MCMC theory guarantees that the esti-

mated parameters are globally optimal. In addition, a short training period is

typically sufficient in this new parameter estimation algorithm and it is therefore80

practically useful.

Next, many complex turbulent dynamical systems in nature have a large

dimension and contain quite a few parameters. In such a scenario, the direct

application of both the MCMC algorithms for sampling parameters and the con-

ditional Gaussian framework for recovering the unobserved trajectories can be85

computationally expensive. To overcome this difficulty, two effective strategies

are developed and incorporated into the above parameter estimation algorithm

(and the new version is named as the improved algorithm). These strategies

are developed according to the salient features of many complex systems with

multiscale structures [39], multilevel dynamics [43] or state-dependent parame-90

terizations [37]. Here, the first strategy involves a judicious block decomposition

of the state variables such that the original problem is divided into several sub-

problems [44]. These subproblems are coupled in a specific way that allows

an extremely efficient parallel computation for the parameter estimation due

to the small size of each individual subproblem. The second strategy exploits95

statistical symmetry for a further reduction of the computational cost when the

system is statistically homogeneous. A two-layer Lorenz 96 model [45, 43, 44]

that mimics the realistic features of atmosphere wave propagations and excitable

media is used to test the parameter estimation skill with the improved algorith-

m. This model contains 80 state variables and 162 parameters. The estimated100

parameters of the improved algorithm are accurate even with a short training

period and the algorithm is computationally efficient.

The rest of the article is organized as follows. Section 2 introduces the con-

ditional Gaussian nonlinear turbulent dynamical systems. A quick review of the

MCMC algorithms and data augmentation is included in Section 3. The new105
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efficient parameter estimation algorithm involving using the conditional Gaus-

sian statistics for recovering the unobserved trajectories and using the MCMC

technique for sampling parameters is shown in Section 4, which is followed by

Section 5 that includes the application of the new parameter estimation algo-

rithm to three test examples with strong nonlinear and non-Gaussian features.110

The improved algorithm by incorporating the judicious block decomposition and

statistical symmetry into the basic version is described in Section 6. The param-

eter estimation of a two-layer Lorenz 96 model using the improved algorithm is

shown in Section 7. The article is concluded in Section 8.

2. Conditional Gaussian nonlinear turbulent dynamical systems115

2.1. Conditional Gaussian system

The conditional Gaussian systems have the following abstract form [27],

duI = [A0(t,uI) + A1(t,uI)uII]dt+ ΣI(t,uI)dWI(t), (1a)

duII = [a0(t,uI) + a1(t,uI)uII]dt+ ΣII(t,uI)dWII(t), (1b)

where uI usually represents the observed variables and uII represents the unob-

served ones. Both uI and uII are multidimensional. In (1), A0,A1,a0,a1,ΣI

and ΣII are vectors and matrices that depend only on time t and the state

variables uI, and WI(t) and WII(t) are independent Wiener processes. In the

coupled system (1), once uI(s) for s ≤ t is given, uII(t) conditioned on uI(s)

becomes a Gaussian process,

p
(
uII(t)|uI(s ≤ t)

)
∼ N (ūII(t),RII(t)). (2)

Despite the conditional Gaussianity, the coupled system (1) remains highly non-

linear and is able to capture the non-Gaussian features as in nature. Many

complex turbulent dynamical systems belong to this conditional Gaussian model

family, such as the noisy versions of the Lorenz models, the Boussinesq equations120

with noise and quite a few stochastically coupled reaction-diffusion models in

neuroscience and ecology. A gallery of examples of conditional Gaussian systems

can be found in [28].
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2.2. Closed analytic form of the conditional Gaussian statistics

One of the important features of the conditional Gaussian system (1) is

that the conditional Gaussian distribution p
(
uII(t)|uI(s ≤ t)

)
in (2) has closed

analytic form [29],

duII(t) =[a0(t,uI) + a1(t,uI)uII]dt+ (RIIA
∗
1(t,uI))(ΣIΣ

∗
I )−1(t,uI)×

[duI − (A0(t,uI) + A1(t,uI)uII)dt] , (3a)

dRII(t) =
{

a1(t,uI)RII + RIIa
∗
1(t,uI) + (ΣIIΣ

∗
II)(t,uI)

− (RIIA
∗
1(t,uI))(ΣIΣ

∗
I )−1(t,uI)(RIIA

∗
1(t,uI))

∗
}
dt, (3b)

which can be solved in an exact and efficient way. The recovery of the conditional125

statistics in (3) is in an optimal way based on the Bayesian inference [29]. In fact,

the formulae in (3) correspond to the optimal filters of the conditional Gaussian

system (1) that combines the observational information in the processes of uI

and the dynamical information in the processes of uII. The closed analytical

formulae in (3) have been widely applied for state estimation, filtering, data130

assimilation and prediction [28]. Note that the classical Kalman-Bucy filter

[46, 47, 48, 49] is the simplest and special filtering (or data assimilation) example

within the conditional Gaussian framework.

3. A quick review of the MCMC algorithm with data augmentation

The Markov Chain Monte Carlo (MCMC) method [21, 22, 23, 24] has been

applied for sampling from a probability distribution. It is also widely used for

parameter estimation in stochastic systems given observations. The basic idea

of the MCMC algorithm in parameter estimation is via the random sampling

and the Bayesian approach. Assume θ contains all the model parameters and

u includes all the observational variables. The goal of the MCMC method is to

explore the conditional distribution (or the so-called posterior distribution) of

θ given u by constructing a Markov chain. Using the Bayesian approach, the

parameter estimation has the following form,

p(θ|u) ∝ p(θ)p(u|θ), (4)

7



where p(θ) is the prior distribution while p(u|θ) is the likelihood function. Clear-135

ly, if the likelihood function is known, then constructing the Markov chain be-

comes straightforward. The basic procedure of using the MCMC for parameter

estimation is as follows.

1. Generate an initial guess of the parameters θ(0).

2. At each iteration step k, generate a candidate θ(k) for the next sample140

by picking up from the distribution (known as the proposal function)

Q(θ(k)|θ(k−1)).

3. Then calculate the acceptance ratio

α =
Q(θ(k−1)|θ(k))p(θ(k))p(u|θ(k))

Q(θ(k)|θ(k−1))p(θ(k−1))p(u|θ(k−1))

4. Accept the new candidate θ(k) if α > 1. Otherwise, accept the new

candidate with a certain probability. If the new candidate is rejected,

then set θ(k) = θ(k−1).145

In Step 2, one simple and practical algorithm is the Metropolis algorithm [50],

where Q is a symmetric function, namely Q(θ(k)|θ(k−1)) = Q(θ(k−1)|θ(k)).

Therefore, a Gaussian proposal is a natural choice. In addition, in Step 4,

a classical way is to generate a uniform random number µ on [0, 1]. If µ < α,

then the candidate is accepted.150

However, in most of the realistic situations, only partial observations are

available. In other words, only the signals of uI in (1) are observed while the

trajectories of uII are completely unavailable. In such a scenario, the likeli-

hood function typically has no closed form due to the lack of information of

the trajectories of uII. Data augmentation [25, 26] is a common approach to

sample the missing trajectories (or paths) of uII, which are then incorporated

in computing the likelihood function. The Bayesian framework (4) is modified

accordingly,

p(θ,umisII |uI) ∝ p(θ)p(uI,u
mis
II |θ)

∝ p(θ)p(umisII |θ)p(uI|umisII ,θ),
(5)
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where uI again represents the observed variables while umisII contains the missing

path of the unobserved variables. However, sampling the missing paths of uII

itself is a difficult and time-consuming task since the dimension of the missing

path is infinity (or at least quite large using discrete approximations). A typical

strategy in sampling the missing path is to divide the entire missing paths into155

a large number of blocks, each containing a short interval, and then sample the

missing paths in different small intervals alternatively [51, 52, 53]. Meanwhile,

Gaussian approximations in these small intervals are often used for simplicity

[54]. Another approach is to apply particle filter to estimate the parameters and

states, which aims at estimating and improving the parameters dynamically once160

new observations are available [55, 56, 57]. These methods work quite well for

low-dimensional cases but the high computational cost in the particle methods

impedes them to work efficiently for large-dimensional systems. In addition,

Gaussian approximation may also be inaccurate for strongly nonlinear systems.

4. A new efficient algorithm for parameter estimation of conditional165

Gaussian systems

As discussed in Section 3, sampling the infinite dimensional trajectories of

the unobserved variables uII (or large dimensional ones in the discrete form)

itself is computationally expensive. Below, a new parameter estimation algo-

rithm is developed. This new algorithm makes use of the closed form of the170

conditional Gaussian statistics (3) to recover the unobserved trajectories of uII

in a deterministic and optimal way, which is then combined with the MCMC

algorithm to efficiently sample and estimate the model parameters.

4.1. An efficient, deterministic and optimal approach to recover the unobserved

trajectories175

Recall that the conditional Gaussian systems (1) allow closed analytic for-

mulae for the conditional distribution (3). This property can be incorporated

into the MCMC algorithm in Section 3 to circumvent the most expensive part
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of the parameter estimation algorithm, namely sampling the unobserved tra-

jectories using data augmentation. Specifically, in each iteration step, we make

use of the observed trajectories uI and the current updated parameters θ(k) to

recover the unobserved trajectories of uII, namely u
mis,(k)
II , which are given by

the paths of the conditional Gaussian mean (3a). In fact, since the mode of a

Gaussian distribution equals its mean, the trajectories of the conditional mean

are the optimal recovery of uII given the observations uI based on the Bayesian

inference. While the traditional data augmentation approaches aim at sampling

the unobserved trajectories, in the conditional Gaussian framework once uI and

θ(k) are given, the unobserved trajectories u
mis,(k)
II are computed via the cheap

and explicit formulae (3a) in a deterministic and optimal way. Note that the

conditional mean depends on the conditional covariance and therefore the in-

formation of the latter is implicitly included. Finally, u
mis,(k)
II , uI and θ(k) are

used together to compute the likelihood function in (4)

p(uI|θ(k)) = p(uI|θ(k); u
mis,(k)
II ).

4.2. The algorithm

Now, we summarize the new MCMC algorithm involving using the condi-

tional Gaussian statistics for recovering the unobserved trajectories. Again,

assume uI and uII are the observed and unobserved variables, respectively. We

denote µ the conditional mean of uII given the trajectories of uI. We use θ(k)
180

to represent the parameters in the k-th step. The algorithm is as follows:

1. Generate an initial guess of the parameters θ(0). Apply the closed ana-

lytical formulae for the conditional Gaussian statistics (3) to recover the

corresponding unobserved trajectories µ(0). Compute the likelihood func-

tion p(u|θ(0)) = p(u|θ(0);µ(0)).185

2. For k = 1, 2, . . .

(a) At each iteration step k, generate a candidate θ(k) for the next sample

by picking from a given proposal distribution Q(θ(k)|θ(k−1)), which

is Gaussian here. Under the new parameter candidate, apply the
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closed analytical formulae for the conditional Gaussian statistics (3)190

and obtain the corresponding unobserved trajectories µ(k).

(b) Calculate the acceptance ratio α = p(θ(k))p(u|θ(k))/p(θ(k−1))p(u|θ(k−1)),

where p(u|θ(k)) = p(u|θ(k);µ(k)).

(c) Accept the new candidate θ(k) and µ(k) if α > 1. Otherwise, ac-

cept the new candidate with probability 1/(1 − β logα). If the new195

candidate is rejected, then set θ(k) = θ(k−1),µ(k) = µ(k−1).

3. Ignoring the burn-in period for k < kstart, average over the sampled pa-

rameters from k = kstart to k = kend to obtain the estimated values of the

parameters.

4.3. Technique details200

(a). Prior distributions.

The prior distributions of the parameters θ need to be prescribed in order to ap-

ply the Bayesian method in (4). Here we always assume we have almost no prior

knowledge about the parameters. Thus, we set the prior distribution of most of

the parameters to be a uniform distribution in a large interval [−106, 106]. For205

diffusion coefficients, we adopt a uniform distribution in [10−6, 106] for each of

them since by definition they are positive.

(b). Computing the likelihood function.

Although the observations are continuous, we compute and store the data of uI

in a discrete way in the numerical simulations with a small time step ∆t. Here210

Euler-Maruyama scheme is used in the numerical simulation. The likelihood at

each time step is computed as follows. Starting from the observational value

of uI at the time instant t, say uobsI (t), and computing the distribution of uI

one time step forward using Euler-Maruyama scheme, the result at t + ∆t is a

Gaussian distribution ppred(uI(t+ ∆t)), where the evolutions of the mean and215

covariance are solved through analytical formulae. Then plugging the observa-

tional data at time t + ∆t, i.e., uobsI (t + ∆t), into ppred(uI(t + ∆t)) leads to

the likelihood at time t+ ∆t. The full likelihood function is the product of the

likelihood components at different time instants.
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(c). The setup of MCMC in sampling parameters.220

In the algorithm presented above, only a simple and basic MCMC sampling

technique is adopted for updating the parameters. Here, instead of adopting

an adaptive selection, the proposal functions are prescribed at the beginning.

We slightly tune the parameter β in Step 2(c) such that the acceptance ratio

is around 40% to 50%. To avoid numerical issue, we also take a logarithm225

likelihood instead of likelihood itself in Step 2(c). Note that other choices can

be used in accepting new candidate. Yet, the emphasis here is to use efficient

conditional Gaussian solver (3) to replace the expensive data augmentation and

therefore only this basic MCMC algorithm is used. Incorporating more advanced

MCMC algorithms is left as a future work.230

(d). Estimating the diffusion coefficients in the dynamics of uI.

While the standard MCMC algorithm is able to easily estimate the diffusion

coefficients in the dynamics of uI, these diffusion coefficients can be estimated

in a more efficient way here due to the fact that continuous observations are

available. In fact, with continuous observations, the quadratic variation of the235

observed signal can be obtained (see Appendix), which can be used to estimate

the diffusion coefficients in the observed process uI. For more complex systems,

the diffusion coefficients can also be easily estimated by applying a crude MCMC

algorithm using a simplified drift term and run the MCMC algorithm for a small

number of iterations before estimating other parameters.240

5. Test examples of nonlinear turbulent dynamical systems

In this section, the parameter estimation algorithm developed in Section

4 is tested on three nonlinear turbulent dynamical models. All the tests are

conducted on a desktop with Ubuntu 18.04.1 LTS system using MATLAB 2018a

(academic version). The computational time of all the test examples in this245

section is just a few seconds.
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5.1. A noisy version of the Lorenz 63 model

The first test model is a noisy version of the Lorenz 63 (L-63) model [58],

dx = σ(y − x)dt+ σxdWx, (6a)

dy =
(
x(ρ− z)− y

)
dt+ σydWy, (6b)

dz = (xy − βz)dt+ σzdWz, (6c)

The deterministic L-63 model (σx = σy = σz = 0 in (6)) was proposed by Lorenz

in 1963 [58]. It is a simplified mathematical model for atmospheric convection.

The equations relate the properties of a two-dimensional fluid layer uniformly250

warmed from below and cooled from above. In particular, the equations describe

the rate of change of three quantities with respect to time: x is proportional

to the rate of convection, y to the horizontal temperature variation, and z

to the vertical temperature variation. The constants σ, ρ, and β are system

parameters proportional to the Prandtl number, Rayleigh number, and certain255

physical dimensions of the layer itself [59]. The L-63 model is also widely used as

simplified models for lasers, dynamos, thermosyphons, electric circuits, chemical

reactions and forward osmosis [60, 61, 62, 63, 64, 65, 66]. the noisy version of

the L-63 includes more turbulent and small-scale features and their interactions

with the three large scale variables while it retains the characteristics in the260

original L-63. The noisy L-63 model is a conditional Gaussian system (1) with

uI = x and uII = (y, z)T .

In order to test the parameter estimation skill, the following parameters are

used to generate the true signal,

σx = σy = σz = 5, σ = 10, ρ = 28, β = 8/3. (7)

The three parameters σ, ρ and β are the classical choices that result in a butterfly

profile of the L-63 model. The three noise coefficients provide moderate noise

such that the dynamics has some small scale features with nonlinearity and265

multiplicative noise while retaining the rough butterfly profile. A simulation of

the L-63 model (6) with these true parameters in (7) is shown in Figure 1.
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Now assume the trajectory of x in (1) is the only available observation. In

other words, there is no direct observation for y and z. Our goal here is to

estimate the parameters in the noisy L-63 model with such partial observations.

As described in the Section 4.3, the noise coefficient σx is estimated by the

quadratic variation formula. Due to the continuous observations, the diffusion

coefficient σu can be estimated perfectly. To estimate the other parameters, we

first assign some initial guesses for these parameters in the MCMC algorithm,

σ(0)
y = σ(0)

z = 10, σ(0) = 15, ρ(0) = 42, β(0) = 14/3. (8)

Note that these initial guesses are far from the truth (7), where the errors in the

initial guesses for all the parameters are more than 50%. The proposal functions

of the updates are given as follows,

σ(k)
y = σ(k−1)

y + 0.1X1, σ(k)
z = σ(k−1)

z + 0.1X2,

σ(k) = σ(k−1) + 0.2X3, ρ(k) = ρ(k−1) + 0.3X4, β(k) = β(k−1) + 0.05X5,

where Xi, i = 1, . . . , 5 are random numbers generated from independent stan-

dard Gaussian distributions. Note that the proposal density has a larger vari-

ance for those variables which themselves are larger.270

The parameter estimation results are shown in Figure 2, where the marginal

posterior distribution for each parameter is formed by collecting the points in

the corresponding trace plot from k = 1000 to k = 10000. It is clear from

the trace plots that the large biases in the initial guesses of the parameters are

eliminated quickly. The estimation of the parameters are overall quite accurate275

in the sense that the averaged value of the trace plot for most of the parameters

is almost the same as the truth and the uncertainty in the marginal posterior

distribution is typically small. Among all the estimated parameters, the one

that has the largest error is ρ. Nevertheless, the averaged estimation value

30.4 is only 8% larger than the truth ρ = 28. Note that it is hard to make a280

conclusion by simply looking at the relative error that whether the parameter

estimation algorithm is skillful. In fact, the deviation in the estimated param-

eters is probably due to the use of a short training period, which has only 100
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units here. A more reasonable approach of measuring the parameter estimation

skill is to compare the dynamical and the statistical behavior of the noisy L-96285

model using the estimated parameters and using the true ones. To this end, we

plug these estimated parameters into the noisy L-63 model and run the model

simulation, the results of which are shown in Figure 3 and they are named as

model predictions (with estimated parameters). It is clear that the x, y and z

trajectories in Figure 3 are all similar to those in Figure 1. Note that these290

predictions are all free runs of the model. Due to the stochasticity and chaotic

nature, we do not expect a point-to-point correspondence in the trajectories in

these two figures. Nevertheless, both the dynamical and the statistical features

represented by the temporal autocorrelation functions (ACFs) and the probabil-

ity density functions (PDFs) for the truth and the prediction are very similar to295

each other. Thus, we reach the conclusion that these parameters are estimated

with high accuracy.
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Figure 1: Simulations of the L-63 model (6) with true parameters in (7). Panel (a): Trajec-

tories of x, y and z. Panel (b): The associated probability density functions (PDFs).
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Figure 2: The parameter estimation skill of the noisy L-63 model. Panel (a): Trace plots.

Here k is the iteration step. Panel (b): Marginal posterior distributions formed by collecting

the points in the corresponding trace plot from k = 1000 to k = 10000. The black dashed line

in each subplot shows the true parameter values in (7).
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Figure 3: Predictions of the L-63 model (6) with estimated parameters in Figure 2 (averaged

from k = 1000 to k = 10000). Panel (a): Trajectories of x, y and z. Panel (b): The associated

PDFs. Panels (c)–(e): Comparison of the autocorrelation functions (ACFs) in the prediction

(green) with those of the truth (blue) from the signal in Figure 1.
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5.2. The SPEKF model with multiplicative noise

The parameter estimation is often the prerequisite of data assimilation and

prediction. Therefore, the second test model of the parameter estimation algo-

rithm developed in Section 4 is the so-called stochastic parameterized extended

Kalman filter (SPEKF) model [67, 68, 69], which has been used for filtering and

predicting complex turbulent dynamical systems [70, 9, 1]. Here we focus on

a simplified version, namely the SPEKF-M model (’M’ stands for ’multiplica-

tive’), which nevertheless contains a multiplicative noise and is able to generate

strongly non-Gaussian features,

du = (−γu+ F )dt+ σudWu,

dγ = −dγ(γ − γ̂)dt+ σγdWγ .
(9)

The SPEKF-M model (9) belongs to the conditional Gaussian framework with

uI = u and uII = γ, where u is the observed variable while the trajectory of γ300

is hidden from observations. The variable γ interacts with u in a multiplicative

way and it plays the role of a stochastic damping for the process of u. Note that

the full SPEKF model [67, 68, 69] includes a stochastic phase and a stochastic

forcing in addition to this stochastic damping. In addition to filtering and

predicting intermittent signals from nature in the presence of model error [71,305

72, 73, 74], other important applications of the SPEKF for complex spatial-

extended systems include stochastic dynamical superresolution [37] and effective

filters for Navier-Stokes equation [75].

Below, we test the parameter estimation algorithm in the SPEKF-M model

(9) in two different dynamical regimes: a strong intermittent regime and a

moderate intermittent regime. The true parameters are given as follows:

Strong intermittent regime :

σu = 0.5, F = 1, σγ = 1.2, dγ = 1, γ̂ = 1,

Moderate intermittent regime :

σu = 0.5, F = 1, σγ = 1.2, dγ = 1, γ̂ = 2.

(10)

The only difference in the true parameters is the mean damping γ̂. In fact, with
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the increase of γ̂, the system becomes more stable and thus the intermittency

becomes weaker. The simulations of the system using these true parameters are

given in Figure 4, where intermittency and extreme events can both be seen in

the trajectories of u and the associated PDFs are non-Gaussian fat-tailed. Note

that in the parameter estimation tests here, only the trajectory of u in each

regime is observed and there is no observation of γ. The trajectories of u in

Figure 4 are used as the input of the algorithm. Again, the estimation of the

diffusion coefficient σu in the observed process u is perfectly estimated via the

quadratic variation formula. The initial guesses of the other parameters in the

algorithm are given as follows:

Strong intermittent regime :

Initial values : F (0) = 0, σ(0)
γ = 2, d(0)γ = 0.2, γ̂(0) = 2,

Moderate intermittent regime :

Initial values : F (0) = 0, σ(0)
γ = 2, d(0)γ = 0.2, γ̂(0) = 1.

(11)

These initial guesses imply that the system at the initial state is unforced and

the process of γ has a large uncertainty. In the parameter estimation algorithm,

the proposal of the updates are given as follows,

σ(k)
γ = σ(k−1)

γ + 0.05X1, d(k)γ = d(k−1)γ + 0.05X2,

γ̂(k) = γ̂(k−1) + 0.05X3, F (k) = F (k−1) + 0.05X4,

where X1, . . . , X4 are random numbers sampled from independent standard

Gaussian distributions.310

The parameter estimation results in these two regimes are shown in Figure

5. Clearly, in both regimes, the initial errors decays quite fast and the algorithm

provides good estimations of the parameters.
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Figure 4: Simulation of the SPEKF-M model with true parameters in (10). Panels (a)–(b):

model trajectories and the associated PDFs in strong intermittent regime. Panels (a)–(b):

model trajectories and the associated PDFs in strong intermittent regime.
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Figure 5: Parameter estimation skill of the SPEKF-M model. Panels (a) and (c): Trace plots.

Here k is the iteration step. Panels (b) and (d): Marginal posterior distributions formed by

collecting the points in the corresponding trace plot from k = 1000 to k = 5000. Panels

(a)–(b) show the results in the strong intermittent regime while Panels (c)–(d) show those in

the moderate intermittent regime. Here k is the iteration step. The black dashed line in each

subplot shows the true parameter values in (10).
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5.3. A physics-constrained dyad model

The last test example in this section is a physics-constrained dyad model

[27],

du =
(
− (cv + duu)u+ F

)
dt+ σudWu,

dv =
(
− dvvv + cu2

)
dt+ σvdWv.

(12)

The dyad model in (12) has energy-conserving nonlinear interaction [40, 41],315

which is an important feature of many turbulent dynamical system. The energy-

conserving nonlinearity can be easily seen by multiplying u to the first equation

and v to the second equation. Summing up the resulting equations gives the can-

cellation of the nonlinear terms. The difference between this physics-constrained

dyad model (12) and the SPEKF-M model (9) is that the latter only contains a320

one-way feedback from γ to u while the former has a two-way nonlinear inter-

action between u and v. Connecting the dyad model (12) with the conditional

Gaussian framework (1), it is clear that the observational variable is uI = u and

the unobserved one is uII = v.

The following parameters are used as the true parameters in the dyad model:

duu = 0.8, dvv = 0.8, c = 1.2, σv = 2, σu = 0.2, F = 0.5.

(13)

The model simulations with these true parameters are shown in Figure 6. Inter-325

mittent instability is again observed in u. Compared with the SPEKF model,

the strong intermittency here is more frequent. As in the tests of the SPEKF

model, here only the signal of u is observed. The trajectory of u shown in

Figure 6 is used as the input of the parameter algorithm. As in the previous

examples, the estimation of the diffusion coefficient σu in the observed process330

u is estimated via the quadratic variation formula.

Again, the initial guesses of the parameters are completely different from the

truth,

d(0)uu = 3, d(0)vv = 3, c(0) = 2.5, σ(0)
v = 0.5, F (0) = 2. (14)
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The proposal functions of the updates are given as follows,

d(k)uu = d(k−1)uu + 0.05X1, d(k)vv = d(k−1)vv + 0.05X2,

c(k) = c(k−1) + 0.05X3, σ(k)
v = σ(k−1)

v + 0.05X4, F (k) = F (k−1) + 0.05X5,

where X1, . . . , X5 are random numbers sampled from independent standard

Gaussian distributions.

The parameter estimation results are shown in Figure 7. All the param-

eters are estimated with high skill. In addition, using the averaged value in335

the trace plots from k = 1000 to k = 10000 as the estimated parameters and

plugging them into the physics-constrained dyad model (12), the model simu-

lations provide essentially the same prediction skill in terms of the PDFs and

the autocorrelation functions as in the noisy L-63 model. We omit these results

here.340
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Figure 6: Simulations of the physics-constrained dyad model (12) with true parameters in

(13). Panel (a): Trajectories of u and v. Panel (b): The associated PDFs.
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Figure 7: The parameter estimation skill of the physics-constrained dyad model (12). Panel

(a): Trace plots. Here k is the iteration step. Panel (b): Marginal posterior distributions

formed by collecting the points in the corresponding trace plot from k = 1000 to k = 10000.

The black dashed line in each subplot shows the true parameter values in (13).
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6. Improved algorithm for systems with large dimensions

It has been shown in the previous sections that the new algorithm explores

the conditional Gaussian property to recover the trajectories of the unobserved

variables in an efficient way, which facilitates the calculation of the likelihood

function and allows the MCMC algorithm to efficiently sample the parameters.345

However, many complex turbulent dynamical systems in nature often have a

large dimension and contain quite a few parameters. In such a scenario, direc-

t application of both the MCMC algorithms for sampling parameters and the

conditional Gaussian framework for recovering the unobserved trajectories can

be computationally expensive. Therefore, a straightforward extension of the350

algorithm developed in Section 4 to high-dimensional turbulent dynamical sys-

tems may not be practical. Nevertheless, we can explore the dynamical features

of many complex turbulent dynamical systems to improve the algorithm.

6.1. Block decomposition and divide and conquer

Many complex systems with multiscale structures [39], multilevel dynam-

ics [43] or state-dependent parameterizations [37] have the following block de-

composition features. The state variables can be divided into different groups

uk = (uI,k,uII,k) ∈ (RNI,k ,RNII,k), k = 1, . . . ,K. In the dynamics of each uI,k

and uII,k in (1), the terms A0,k and a0,k depend on all the components of uI

while the terms A1,k and a1,k are only functions of uI,k, namely,

A0,k := A0,k(t,uI), a0,k := a0,k(t,uI),

A1,k := A1,k(t,uI,k), a1,k := a1,k(t,uI,k).
(15)

In addition, only uII,k interacts with A1,k and a1,k on the right hand side of

the dynamics of uI,k and uII,k, respectively. Therefore, the equation of each

uk = (uI,k,uII,k) becomes

duI,k = [A0(t,uI) + A1(t,uI,k)uII,k]dt+ ΣI(t,uI,k)dWI(t), (16a)

duII,k = [a0(t,uI) + a1(t,uI,k)uII,k]dt+ ΣII(t,uI,k)dWII(t). (16b)
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In addition, the initial values of (uI,k,uII,k) and (uI,k′ ,uII,k′) with k 6= k′ are355

independent with each other.

Notably, the models with block decomposition structures as described above

have also been widely used in designing forecast models in filtering and pre-

dicting complex dynamical systems using dynamic stochastic superresolution of

sparsely observed turbulent systems [37, 38] and stochastic superparameteriza-360

tion [39],

For the systems with such block decomposition features, divide and conquer

can be applied to both the the MCMC algorithm for sampling parameters and

the conditional Gaussian framework for recovering the unobserved trajectories.

6.1.1. Applying the block decomposition to solving the conditional Gaussian s-365

tatistics

Under the condition (16), the conditional covariance matrix becomes block

diagonal, which can be easily verified according to (3b). In fact, the evolution

of the conditional covariance of uII,k conditioned on uI is given by,

dRII,k(t) =
{
a1,kRII,k + RII,ka

∗
1,k + (ΣII,kΣ

∗
II,k)

−(RII,kA
∗
1,k)(ΣI,kΣ

∗
I,k)−1(RII,kA

∗
1,k)∗

}
dt,

which has no interaction with that of RII,k′ for all k′ 6= k since A0 and a0 do not

enter into the evolution of the conditional covariance. Notably, the evolutions

of different RII,k with k = 1, . . . ,K can be solved in a parallel way and the

computation is extremely efficient due to the small size of each individual block.370

This facilitates the algorithm to efficiently solve the covariance matrix in large

dimensions.

Next, the structures of A0,k and a0,k in (15) allow the coupling among all the

K groups of variables in the conditional mean according to (3a). The evolution

of ūII,k, namely the conditional mean of uII,k conditioned on uI, is given by

dūII,k(t) = [a0,k + a1,kūII,k]dt

+ RII,kA
∗
1,k(ΣI,kΣ

∗
I,k)−1[duI,k − (A0,k + A1,kūII,k)dt].

(17)
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Notably, each component of ūII,k in (17) can be solved individually. In fact, the

trajectories of uI from the observations can simply be regarded as the external

input or forcing of solving the time evolution of ūII,k in (17) via functions a0,k375

and A0,k. Therefore, despite the fact that the full observation uI appears in

the equation of each ūII,k, the equations of ūII,k and ūII,k′ for k 6= k′ can

still be solved independently since the right hand side of each ūII,k does not

depend on ūII,k′ and RII,k′ for any k′ 6= k. This implies that the unobserved

trajectories can be recovered in an independent and parallel way with the block380

decomposition.

6.1.2. Computing the likelihood function associated with each block – divide and

conquer

According to (16a), it is clear that the likelihood function of uI,k depends

only on 1) the k-th component of uII, namely uII,k, and 2) all the observed385

variables uI. Note that although uI,k interacts with other observed variables

uI,k′ for all k′ 6= k through the full coupled model, the trajectories of all the

uI,k′ in the equation of uI,k are actually given from the observations and are

not affected by the update of the parameters in the MCMC algorithm. In fact,

the trajectories of all uI,k′ with k′ 6= k can be just regarded as the known390

input forcing in the equations of uI,k and uII,k. This crucial property allows

us to estimate different groups of the parameters, namely the parameters θk

in the equations (uI,k,uII,k) and θ′k in (uI,k′ ,uII,k′), independently since the

corresponding likelihood functions are independent with each other.

A schematic illustration of the idea discussed above is shown in Figure 8.395
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6.2. Statistical symmetry

In many applications, the underlying dynamical system represents a discrete

approximation of some translation invariant PDEs in a periodic domain with

nonlinear advection, diffusion and homogeneous external forcing [9, 2]. In such

a scenario, the model usually have statistical symmetry property, namely

p
(
uI,k(t),uII,k(t)

)
= p
(
uI,k′(t),uII,k′(t)

)
, for all k and k′. (18)

namely, the statistical features for variables with different k are the same. The

computational cost in the algorithms developed above can be further reduced if

the coupled system (1) has statistical symmetry [44].

In our parameter estimation algorithm, if the statistical symmetry is satis-400

fied, then all the parameters are constants. Therefore, we only need to deal with

one block described in Section 6.1 to obtain the parameter values. Alternative-

ly, we can estimate parameters using the information from a small number of

blocks and then taking the average values to eliminate the sampling bias in the

presence of extremely short training data.405
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7. Test examples of nonlinear turbulent dynamical systems in large

dimensions

Here, we apply the improved algorithm to a two-layer Lorenz 96 (L-96) mod-

el. The two-layer L96 model is a conceptual model in geophysical turbulence

that is widely used as a testbed for data assimilation and parameterization in

numerical weather forecasting [45, 43, 44]. The model can be regarded as a

coarse discretization of atmospheric flow on a latitude circle with complicat-

ed wave-like and chaotic behavior. It schematically describes the interaction

between small-scale fluctuations with larger-scale motions. In the model pre-

sented here, large-scale motions are denoted by variables ui, which are coupled

to small-scale variables vi,j [44]:

dui =
(
ui−1(ui+1 − ui−2) + γiuivi − d̄iui + F

)
dt+ σudWui ,

dvi =
(
− dvivi − γiu2i

)
dt+ σv,idWvi ,

(19)

with i = 1, . . . , I and periodic boundary conditions in ui. One important feature

of (19) is that the nonlinear interaction between ui and vi conserves energy, as

observed in nature. The two-layer L-96 model (19) belongs to the conditional410

Gaussian framework with uI = {ui} and uII = {vi}. In (19), the parameter-

s F and σu are usually assumed to be constants while the other parameters

γi, dvi , σvi and d̄i can vary as a function of i. If these four parameters take

different values at different grid points, then the system is inhomogeneous. If

γi ≡ γ, dvi ≡ dv, σvi ≡ σv and d̄i ≡ d̄, then the system is homogeneous provided415

that the initial values of the system is also homogeneous.

Applying the block decomposition described in Section 6.1 to the two-layer

L-96 model (19) results in I blocks. Each block i contains two equations, namely

uI,i = ui and uII,i = vi with i = 1, . . . , I. Note that although a constant F

appears in the two-layer L-96 model (19) even in the inhomogeneous case, F420

is regarded as a function of i in the parameter estimation algorithm. In other

words, Fi is used in the equation of ui corresponding to the i-th block. The

estimated values of Fi in different blocks are expected to be the same.
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Below, we take I = 40 in (19) and the improved algorithm is applied to

both homogeneous and inhomogeneous cases. With I = 40, the total number425

of state variables are 80. The total number of parameters in the homogeneous

and inhomogeneous cases is 6 and 4I + 2 = 162, respectively.

Again, all the tests are conducted on a desktop with Ubuntu 18.04.1 LTS

system using MATLAB 2018a (academic version). The computational time of

each block {uI,i,uII,i} is just a few seconds. All the I = 40 blocks (in the430

inhomogeneous case) can be run in a parallel way.

7.1. Inhomogeneous case

First, we consider the inhomogeneous Lorenz 96 model. The following pa-

rameters are used as the true parameters:

d̄i = −3− cos(2πi/I), γi = −0.8− 0.2 cos(2πi/I), dv,i = 0.8− 0.4 cos(2πi/I),

σv,i = 1 + 0.5 cos(2πi/I), F = 8, σu = 0.2.

(20)

Note that F = 8 in the L-96 model corresponds to a strongly chaotic regime

if the second layer is not considered, which distinguish itself from the weakly

chaotic regime (F = 5) and fully turbulent regime (F = 16).435

The spatiotemporal patterns are shown in Figure 9, together with the time

series at three different locations i = 1, 11 and 21. It is clear that the spatial

patterns have distinct structures in different locations. At the grid points where

i is close to 1 or 40, the signal is almost quiescent. At the grid points where

i is close to 20, the signal is quite active. Significant wave trains are observed440

between grids i = 10 and i = 30, which propagate westwards and mimic the

atmosphere Rossby waves. Note that the spatiotemporal patterns from t = 5 to

t = 100 in Figure 9 are used as the training data in the parameter estimation

algorithm. This mimics most of the realistic situation that the training data is

limited and the training period is short.445

We first estimate the diffusion coefficient σu by running a crude model using

a small number of iterations. Due to the continuous observations, the diffusion
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coefficient σu can be estimated perfectly. Then in applying the improved al-

gorithm discussed in Section 6.1 to estimate other parameters, we first assign

initial guesses of the parameters,

d̄
{0}
i = −2, γ

{0}
i = 0, d

{0}
v,i = 2, σ

{0}
v,i = 2, F {0} = 5, (21)

for all i = 1, . . . , I. These initial guesses actually represent a homogeneous

flow, a decoupled system with γ
{0}
i = 0, and a weakly chaotic flow (F {0} = 5).

Therefore, large biases exist in the initial guesses. The proposal functions are

given as follows

d̄
(k)
i = d̄

(k−1)
i + 0.025X1, γ

(k)
i = γ

(k−1)
i + 0.025X2,

d
(k)
v,i = d

(k−1)
v,i + 0.025X3, σ

(k)
v,i = σ

(k−1)
v,i + 0.025X4,

F
(k)
i = F

(k−1)
i + 0.25X5,

(22)

where X1, . . . , X5 are random numbers sampled from independent standard

Gaussian distributions. Note that as discussed at the beginning of this sec-

tion, F is regarded as a function of i in the parameter estimation algorithm,

even though the truth of F is independent of i. Figure 10 compares the true

parameters (20), the initial guesses of the parameters (21) and the estimated450

parameters, where the estimated parameters are computed by averaging over

the trace plot from k = 10000 to k = 30000. Figure 11 shows the trace plots and

marginal posterior distributions at i = 20 (active phase) and i = 35 (quiescent

phase). From Figure 10, it is clear that the parameter estimation algorithm

is overall skillful. The parameters are estimated quite accurate in the active455

phases while some errors are observed in the quiescent phases. In addition, the

parameter d̄i seems to be the most difficult parameter to estimate. In fact, in

the quiescent phase, the signal is weak, which implies the signal to noise ratio

becomes small. Therefore, the parameters are hardly identified from the rela-

tively noisy signals due to the lose of observability [9, 76, 77]. Among all the460

parameters, d̄i suffers from this issue the most. In fact, the total damping of

ui is given by γivi − d̄i. In the quiescent phase, such as i = 1 shown in Figure

9, γivi provides a strong damping, which then overwhelms the effect from d̄i.
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This means the parameter d̄i in the quiescent phase plays a very weak role in

changing the dynamical behavior. In other words, the signal is quite robust465

with respect to the variation of d̄i near its optimal values and the identification

of the original d̄i has a large uncertainty.

The above discussions indicate that even if some of the estimated parameters

seem to be quite different from the true values, the model equipped with these

estimated parameters are nevertheless able to recover both the dynamical and470

statistical features of the original model (with the true parameters). In Figure

12, we show the model prediction with the estimated parameters. Comparing

with the true signal in Figure 9, it is clear that the predicted spatiotemporal

patterns are essentially the same as the truth in terms of the overall structures,

amplitudes and intermittent features. Figure 13 further compares the model475

statistics generated from the model simulation using the true parameters and

the estimated parameters based on the data shown in Figures 9 and 12. It

is clear that the first four moments of ui and the autocorrelation functions at

different grid points of ui associated with the two simulations are quite similar

to each other. These facts confirm that the model with estimated parameters480

are able to generate the same dynamics as that with the perfect parameters.

The errors in some parameters have little effect on capturing the dynamical and

statistical features of the truth. In other words, the model is robust with respect

to these parameters and there is no need to estimate these parameters precisely.

Note that the errors in the estimated parameters very likely come from the485

sampling error in the finite (and short) training data as shown in Figures 9,

which has only 95 time units. In many practical issues, the data in the training

period is limited. Thus, it is unreasonable to expect a perfect estimation of all

the parameters in the presence of such a sampling error, especially for those

with respect to which the model is robust. Validating the model dynamical490

and statistical features is a reasonable strategy for quantifying the parameter

estimation skill.
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Figure 9: Spatiotemporal patterns (Panel (a)) and time series (Panel (b)) of the inhomoge-

neous two-layer Lorenz 96 model with parameters in (20).
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Figure 10: Comparison of the truth, the initial guess and the estimated parameters of the

inhomogeneous two-layer Lorenz 96 model. The horizonal axis denotes the spatial locations.

The estimated parameters are computed by averaging the trace plots from k = 10000 to

k = 30000.
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Figure 11: The trace plots and marginal posterior distributions at i = 20 (active phase; Panels

(a)–(b)) and i = 35 (quiescent phase; Panels (c)–(d)) of the inhomogeneous two-layer Lorenz

96 model. The marginal posterior distributions are formed by collecting the points in the

corresponding trace plot from k = 10000 to k = 30000.
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Figure 12: The predicted spatiotemporal patterns (Panel (a)) and time series (Panel (b)) of

the inhomogeneous two-layer Lorenz 96 model with the estimated parameters from Figure 10.
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Figure 13: Comparison of the first four moments (Panels (a)–(d)) and the autocorrelation

functions (Panels (e)–(h)) of the inhomogeneous L-96 model with the true parameters and

the estimated parameters.
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7.2. Homogeneous case

Finally, we apply the parameter estimation algorithm involving both the

statistical symmetry and the block decomposition to the homogeneous two-

layer L-96 model (19). The following parameters are used to generate the true

signal,

d̄ = −3.5, γ = −0.8, dv = 0.8, σv = 1.5, F = 8, σu = 0.2.

(23)

These parameters result in a unique spatiotemporal structure as shown in Figure

14. In fact, as in the inhomogeneous case (Figure 9, wave trains propagate495

westwards are clearly seen in Figure 14. In addition to these individual wave

trains, their envelopes actually propagate eastwards. This behavior in a different

model mimics the realistic features of the Madden-Julian Oscillation which is

the dominant intraseasonal variability in the equatorial domain [78, 79]. It is

also clear that the statistical features at different grid points are the same and500

therefore the model is homogeneous and satisfies the statistical symmetry.

The same proposal functions as in (22) is used in this homogeneous situation.

The initial guess of the parameters are

d̄
{0}
i = −3.5− 0.5 cos(2πi/I), γ

{0}
i = −0.8− 0.2 cos(2πi/I),

d
{0}
v,i = 0.8− 0.4 cos(2πi/I), σ

{0}
v,i = 1.5− 0.5 cos(2πi/I), F {0} = 5,

(24)

where the forcing F is chosen such that the initial state is in a weakly chaotic

regime while the initial guesses of all the other parameters represent an inho-

mogeneous flow, which is far from the truth.

Figure 15 shows the trace plots and the marginal posterior distribution-505

s of the estimated parameters, where the estimation is based on solving the

likelihood function only on the first grid point. These parameters are overall

estimated quite accurately. The only exception is the damping d̄, which takes

quite a few iteration steps to converge around the truth. Nevertheless, as in

the inhomogeneous case, the model is robust with respect to this damping pa-510

rameter around its optimal value. In fact, we have tested the model even with
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d̄ = −2, and the model simulation is still able to capture the key dynamical

and statistical features in the truth. Therefore, the estimated parameters can

be used in the original system for understanding and predicting the complex

signal from nature.515
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Figure 14: Spatiotemporal patterns (Panel (a)) and time series (Panels (b)) of the homoge-

neous two-layer Lorenz 96 model (19) with parameters in (23).
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parameter estimation of the two-layer Lorenz 96 model with parameters in (23). The marginal
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8. Conclusion

In this article, a new efficient parameter estimation algorithm is developed,

which applies to the conditional Gaussian nonlinear systems in large dimensions

with only partial observations of uI. Note that despite the conditional Gaussian-

ity, the coupled systems remain highly nonlinear and is able to capture strong520

non-Gaussian features such as skewed or fat-tailed distributions as observed in

nature.

The algorithm exploits the analytically solvable conditional statistics in the

conditional Gaussian framework to recover the trajectories associated with the

unobserved variables uII (Section 4). This deterministic and optimal method525

in recovering the unobserved trajectories circumvents the expensive and time-

consuming random sampling of the trajectories associated with the unobserved

variables in the infinite dimensional space using the traditional data augmenta-

tion approaches and thus greatly enhances the computational efficiency. With

these recovered unobserved trajectories, the MCMC technique can then be ap-530

plied to sample the parameters. Notably, only a short training period is sufficient

in this new parameter estimation algorithm and it is therefore practically useful.

The computational cost also increases only linearly as a function of the length

of the training period. Test examples based on nonlinear and non-Gaussian low-

order models with intermittency and extreme events show both the parameter535

estimation skill and the computational efficiency of the new algorithm (Section

5).

In order to estimate the parameters in high-dimensional systems with a

large number of parameters, two effective strategies are further developed and

incorporated into the above parameter estimation algorithm (Section 6). The540

first strategy involves a judicious block decomposition of the state variables

such that the original problem is divided into several subproblems, which al-

low an extremely efficient parallel computation for the parameter estimation.

The second strategy exploits statistical symmetry for a further reduction of the

computational cost when the system is statistically homogeneous. A two-layer545
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Lorenz 96 model (with 80 state variables and 162 parameters) that mimics the

realistic features of atmosphere wave propagations is adopted to illustrate the

skillful behavior of such an improved parameter estimation algorithm using only

a short training period (Section 7).

Since this article aims at emphasizing the new approach of exploiting the550

conditional statistics to recover the unobserved trajectories, only the basic M-

CMC method is adopted in the current version of the algorithm. Incorporating

adaptive MCMC techniques or non-symmetric proposal functions are natural

extensions to further improve the current parameter estimation framework. Se-

quential methods in recovering the unobserved trajectories and computing the555

likelihood function can also be included into the framework. In addition, the

closed analytical formulae of the conditional Gaussian statistics and the well-

established theories of various MCMC techniques also allow using rigorous math-

ematical analysis to study the accuracy and the convergence of this parameter

estimation framework.560

Note that all the numerical tests shown in this article are perfect model

twin experiments. Yet, most parameter estimation problems in practice contain

model errors. In addition, due to the measurement and representation errors

[13], the observations may also be imperfect and noisy. Thus, estimating pa-

rameters in various imperfect models is of practical importance. This parameter565

estimation framework allows using imperfect models for parameter estimation

since the only information needed from the truth is the observational signals.

Therefore, a future work is to understand the effect of model error and represen-

tation error in affecting the parameter estimation skill, which also has potentials

in providing guidelines for developing reasonable imperfect models in practice.570

The parameter estimation framework developed here has a wide application.

In fact, many practical approaches for filtering and predicting complex turbu-

lent systems involve hybrid strategies in developing the forecast models, where

the conditional Gaussian processes are used in modeling small-scale features

via stochastic parameterizations, superparameterization and dynamical super-575

resolution etc. Examples in real-world applications include filtering sparsely

42



observed geophysical flows [73], improving the filtering and prediction skill of

atmosphere and ocean flows using stochastic superparameterizations [80, 81]

and multiscale data assimilation using hybrid models [82, 83]. The parameter

estimation framework developed here can be applied to these problems for mod-580

el calibration and improve the understanding and prediction of these complex

dynamical systems.
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Appendix A. Calculating the diffusion coefficient in the observed pro-

cess via its quadratic variation.590

Here, we summarize the results on calculating of the diffusion coefficient in

the observed process via its quadratic variation [84]. The quadratic variation of

a stochastic integral process [H · Y ] with (H · Y )t =
∫ t
0
HsYs is defined as

[H · Y ]t =

∫ t

0

H2
sd[Y ]s. (A.1)

Proposition Appendix A.1. Consider a general stochastic differential equa-

tion (SDE)

du = µ(t, u)dt+ σ(t, u)dWt. (A.2)

Its quadratic variation is given by

[u]t =

∫ t

0

σ2(s, us)ds. (A.3)

Proof. The equivalent integral form of the general SDE in (A.2) is given by,

u = u0 +

∫ t

0

µ(s, u)ds+

∫ t

0

σ(s, u)dWs. (A.4)
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Using the definition in (A.1), we have

[u]t = [µ · t]t + [σ ·W ]t =

∫ t

0

µ2
sd[s]s +

∫ t

0

σ2
sd[W ]s =

∫ s

0

σ2(s, us)ds. (A.5)

where [t]t = 0 since all continuous processes of finite variation have zero quadrat-

ic variation, and [W ]t = t.

When σ(s, u) ≡ σu is a constant, Proposition (A.1) provides a simple way

to compute the diffusion coefficient σ, which is

[u]t = tσ2, (A.6)

or equivalently

σ =

√
[u]t
t
. (A.7)
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