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Abstract

Parameter estimation for high-dimensional complex nonlinear turbulent dynam-
ical systems with only partial observations is an important and practical issue.
However, most of the existing parameter estimation algorithms are computation-
ally expensive in the presence of a large number of state variables or parameters.
In this article, a new efficient algorithm is developed for estimating parameter-
s in high-dimensional nonlinear turbulent dynamical systems with conditional
Gaussian structures. This algorithm exploits the closed analytical form of the
conditional statistics to recover the unobserved trajectories in an optimal and
deterministic way, which facilitates the calculation of the likelihood function
and circumvents the computationally expensive data augmentation approach in
sampling the unobserved trajectories as widely used in the literature. Such an
efficient method of recovering the unobserved trajectories is then incorporated
into a simple Markov chain Monte Carlo (MCMC) algorithm to estimate param-

eters in complex dynamical system using only a short period of training data.
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Next, two effective strategies are developed and incorporated into the algorith-
m that facilitates an efficient estimation of the parameters in high-dimensional
systems. The first strategy involves a judicious block decomposition of the s-
tate variables such that the original problem is divided into several subproblems
coupled in a specific way that allows an extremely cheap parallel computation
for the parameter estimation. The second strategy exploits statistical symmetry
for a further reduction of the computational cost when the system is statisti-
cally homogeneous. The new parameter estimation algorithm is applied to a
two-layer Lorenz 96 model with 80 state variables and 162 parameters and the
model mimics the realistic features of atmosphere wave propagations and ex-
citable media. The efficient algorithm results in an accurate estimation of the
parameters, which further allows a skillful prediction by the model with esti-
mated parameters. Other simple nonlinear models are also used to illustrate
the features of the new algorithm.

Keywords: conditional Gaussian nonlinear models, closed analytical formulae,
MCMC, high-dimensional non-Gaussian systems, block decomposition
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1. Introduction

Complex nonlinear turbulent dynamical systems are ubiquitous in geophysic-
s, engineering, neuroscience and material science [, 2, [3, [, 5 [6, [7, §]. Key
features of these complex nonlinear systems are multiscale dynamics, high-
dimensional phase space, nonlinear energy transfers, highly non-Gaussian prob-
ability density functions (PDFs), intermittent instability, random internal and
external forcing as well as extreme events. The prerequisite of understand-
ing and predicting these complex nonlinear turbulent systems is an accurate
estimation of the model parameters given observations. In many practical situ-
ations, due to the lack of physical understanding and the inadequate resolution
in the measurement, these complex nonlinear systems typically involve unre-

solved variables or unknown hidden processes that have no direct observations
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[9, 10]. Nevertheless, these unobserved processes play important roles in trans-
ferring nonlinear energy and influencing the variables in the resolved scales. On
the other hand, even the observations for the large- or resolved-scale physical
variables can sometimes be very sparse and there is little available observations
in certain areas such as the deep ocean [I1], [12]. Therefore, developing efficient
parameter estimation algorithms using partial observations becomes important
for understanding and predicting these complex nonlinear turbulent systems,
especially in high dimensions.

Various linear or nonlinear optimization methods have been proposed for es-
timating parameters in turbulent systems [14} [I5]. Unfortunately, most of these
methods will either be trapped into a local optimal solution or are too time-
consuming to be applied to high dimensional systems. Regarding the model
parameters as augmented state variables, algorithms based on particle or en-
semble Kalman filters were designed for parameter estimation [16], 17, [18), [T9], 20].
These sequential methods are widely used in practice and provide some success-
ful results. However, these methods sometimes have extremely slow convergence
that requires a large amount of training data and the optimality of the solutions
is often not guaranteed due to the ignorance of the higher order moments in the
ensemble Kalman filters. Another practically useful approach for estimating pa-
rameters in complex turbulent systems is to apply random sampling techniques,
such as the Markov chain Monte Carlo (MCMC) algorithms [21, 22, 23, [24],
and find the optimal solutions based on Bayesian inference. In the presence of
partial observations, MCMC algorithms are often combined with data augmen-
tation [25] 26], which samples the trajectories associated with the unresolved
variables, to facilitate the calculation of the likelihood function. Such a combi-
nation of the MCMC algorithms with data augmentation can usually result in
the global optimal solutions due to the random search technique. Yet, sampling
the unobserved trajectories using data augmentation is computationally expen-
sive, which prevents such an approach from being applied to high-dimensional
complex turbulent dynamical systems.

In this article, a new efficient algorithm is developed for estimating param-
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eters in complex turbulent dynamical systems with conditional Gaussian struc-
tures [27]. Decomposing the state variables u into two groups u = (ur, usr)
with ur € R™ and upir € R, the conditional Gaussian systems are charac-
terized by the fact that once a single trajectory of up(s < t) is given, uri(t)
conditioned on ur(s < t) becomes a Gaussian process. Despite the conditional
Gaussianity, the coupled systems remain highly nonlinear and is able to cap-
ture strong non-Gaussian features such as skewed or fat-tailed distributions as
observed in nature [27]. Many complex turbulent dynamical systems belong
to this conditional Gaussian model family, such as the noisy versions of the
Lorenz models, the Boussinesq equations with noise and quite a few stochasti-
cally coupled reaction-diffusion models in neuroscience and ecology. A gallery
of examples of conditional Gaussian systems can be found in [28]. One of the
desirable features of such conditional Gaussian system is that it allows closed
analytical formulae for solving the conditional distribution p(ur(¢)|ui(s < t))
[29]. Applications of the conditional Gaussian systems to strongly nonlinear
systems include predicting the intermittent time-series of the Madden-Julian
oscillation (MJO) and monsoon intraseasonal variabilities [30, [3T], [32], filtering
the stochastic skeleton model for the MJO [33], and recovering the turbulent
ocean flows with noisy observations from Lagrangian tracers [34] [35] [36]. Oth-
er studies that also fit into the conditional Gaussian framework includes the
cheap exactly solvable forecast models in dynamic stochastic superresolution of
sparsely observed turbulent systems [37, B8], stochastic superparameterization
for geophysical turbulence [39], physics constrained nonlinear regression models
[40, 1] and blended particle filters for large-dimensional chaotic systems [42].
The conditional Gaussian framework provides an efficient way of estimat-
ing parameters in complex turbulent dynamical systems with only partial ob-
servations uy. In fact, the analytically solvable conditional statistics allows a
deterministic and computationally efficient approach to recover the trajectories
associated with the unobserved variables ury, which are also optimal based on
the Bayesian inference. This deterministic method circumvents the expensive

and time-consuming random sampling of the trajectories associated with the
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unobserved variables in the infinite dimensional space using data augmentation
and thus greatly enhances the computational efficiency. With these recovered
unobserved trajectories, the MCMC technique can then be applied to sample
the parameters. The well-established MCMC theory guarantees that the esti-
mated parameters are globally optimal. In addition, a short training period is
typically sufficient in this new parameter estimation algorithm and it is therefore
practically useful.

Next, many complex turbulent dynamical systems in nature have a large
dimension and contain quite a few parameters. In such a scenario, the direct
application of both the MCMC algorithms for sampling parameters and the con-
ditional Gaussian framework for recovering the unobserved trajectories can be
computationally expensive. To overcome this difficulty, two effective strategies
are developed and incorporated into the above parameter estimation algorithm
(and the new version is named as the improved algorithm). These strategies
are developed according to the salient features of many complex systems with
multiscale structures [39], multilevel dynamics [43] or state-dependent parame-
terizations [37]. Here, the first strategy involves a judicious block decomposition
of the state variables such that the original problem is divided into several sub-
problems [44]. These subproblems are coupled in a specific way that allows
an extremely efficient parallel computation for the parameter estimation due
to the small size of each individual subproblem. The second strategy exploits
statistical symmetry for a further reduction of the computational cost when the
system is statistically homogeneous. A two-layer Lorenz 96 model [45] [43] [44]
that mimics the realistic features of atmosphere wave propagations and excitable
media is used to test the parameter estimation skill with the improved algorith-
m. This model contains 80 state variables and 162 parameters. The estimated
parameters of the improved algorithm are accurate even with a short training
period and the algorithm is computationally efficient.

The rest of the article is organized as follows. Section [2] introduces the con-
ditional Gaussian nonlinear turbulent dynamical systems. A quick review of the

MCMC algorithms and data augmentation is included in Section [3] The new
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efficient parameter estimation algorithm involving using the conditional Gaus-
sian statistics for recovering the unobserved trajectories and using the MCMC
technique for sampling parameters is shown in Section [d] which is followed by
Section [5] that includes the application of the new parameter estimation algo-
rithm to three test examples with strong nonlinear and non-Gaussian features.
The improved algorithm by incorporating the judicious block decomposition and
statistical symmetry into the basic version is described in Section[6] The param-
eter estimation of a two-layer Lorenz 96 model using the improved algorithm is

shown in Section [l The article is concluded in Section

2. Conditional Gaussian nonlinear turbulent dynamical systems

2.1. Conditional Gaussian system

The conditional Gaussian systems have the following abstract form [27],

dug = [Ao(t7 uI) + A, (t, uI)uH]dt + Zl(t, uI)dWI(t)a (1&)

dup = [ao(t, uI) + a; (t, uI)uH]dt + EII(t, uI)dWH (t), (1b)

where uy usually represents the observed variables and uyy represents the unob-
served ones. Both uy and upr are multidimensional. In 7 Ay, Aq,ap,a1, 21
and Xy are vectors and matrices that depend only on time ¢ and the state
variables ur, and Wi(t) and Wiy (t) are independent Wiener processes. In the
coupled system ()), once u(s) for s < t is given, uy(t) conditioned on uy(s)

becomes a Gaussian process,
p(urr(t)|ur(s <)) ~ N(an(t), R (t)). (2)

Despite the conditional Gaussianity, the coupled system remains highly non-
linear and is able to capture the non-Gaussian features as in nature. Many
complex turbulent dynamical systems belong to this conditional Gaussian model
family, such as the noisy versions of the Lorenz models, the Boussinesq equations
with noise and quite a few stochastically coupled reaction-diffusion models in
neuroscience and ecology. A gallery of examples of conditional Gaussian systems

can be found in [2§].
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2.2. Closed analytic form of the conditional Gaussian statistics
One of the important features of the conditional Gaussian system is
that the conditional Gaussian distribution p(un(t)|u1(s < t)) in has closed

analytic form [29],

dﬁ[[(t) :[ao (t, 111) —+ ap (t, uI)ﬁH]dt + (RHAT(t, uI))(EIE;)il(t, uI) X
[dur — (Ao(t,ur) + Ay (t,ur)u)dt], (3a)
dRii(t) :{al(t, ur)Rir + Rpaj (¢, ur) + (ZuXyy) (¢, ur)

— (R A (t,un))(ZiE) ' (¢, un) (Run A (¢, ul))*}dtv (3b)

which can be solved in an exact and efficient way. The recovery of the conditional
statistics in (3)) is in an optimal way based on the Bayesian inference [29]. In fact,
the formulae in correspond to the optimal filters of the conditional Gaussian
system that combines the observational information in the processes of uy
and the dynamical information in the processes of urr. The closed analytical
formulae in have been widely applied for state estimation, filtering, data
assimilation and prediction [28]. Note that the classical Kalman-Bucy filter
[46, 47, [48], [49] is the simplest and special filtering (or data assimilation) example

within the conditional Gaussian framework.

3. A quick review of the MCMUC algorithm with data augmentation

The Markov Chain Monte Carlo (MCMC) method [21], 22] 23] 24] has been
applied for sampling from a probability distribution. It is also widely used for
parameter estimation in stochastic systems given observations. The basic idea
of the MCMC algorithm in parameter estimation is via the random sampling
and the Bayesian approach. Assume 6 contains all the model parameters and
u includes all the observational variables. The goal of the MCMC method is to
explore the conditional distribution (or the so-called posterior distribution) of
0 given u by constructing a Markov chain. Using the Bayesian approach, the

parameter estimation has the following form,

p(6lu) o< p(8)p(ul6), (4)



135

140

145

150

where p(0) is the prior distribution while p(u|@) is the likelihood function. Clear-
ly, if the likelihood function is known, then constructing the Markov chain be-
comes straightforward. The basic procedure of using the MCMC for parameter

estimation is as follows.

1. Generate an initial guess of the parameters 0.

2. At each iteration step k, generate a candidate 0% for the next sample
by picking up from the distribution (known as the proposal function)
QeMe*Y).

3. Then calculate the acceptance ratio

o= QO 18M)p(0")p(u]6™)
QOM16"D)p(*=1)p(ule™ )

4. Accept the new candidate 0" if o > 1. Otherwise, accept the new
candidate with a certain probability. If the new candidate is rejected,

then set %) = gk—1)

In Step 2, one simple and practical algorithm is the Metropolis algorithm [50],
where @ is a symmetric function, namely Q8% 0%~y = Qo1 |9*)).
Therefore, a Gaussian proposal is a natural choice. In addition, in Step 4,
a classical way is to generate a uniform random number p on [0,1]. If u < «,
then the candidate is accepted.

However, in most of the realistic situations, only partial observations are
available. In other words, only the signals of uy in are observed while the
trajectories of uyy are completely unavailable. In such a scenario, the likeli-
hood function typically has no closed form due to the lack of information of
the trajectories of uyy. Data augmentation [25] 26] is a common approach to
sample the missing trajectories (or paths) of urr, which are then incorporated
in computing the likelihood function. The Bayesian framework is modified

accordingly,

p(0, ufi"*[ur) o p(6)p(ur, uyy**|0)

o p(8)p(ufi’®|0)p(ur|ugi’, 6),
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where uy again represents the observed variables while u}* contains the missing
path of the unobserved variables. However, sampling the missing paths of uyg
itself is a difficult and time-consuming task since the dimension of the missing
path is infinity (or at least quite large using discrete approximations). A typical
strategy in sampling the missing path is to divide the entire missing paths into
a large number of blocks, each containing a short interval, and then sample the
missing paths in different small intervals alternatively [51], 52, 53]. Meanwhile,
Gaussian approximations in these small intervals are often used for simplicity
[54]. Another approach is to apply particle filter to estimate the parameters and
states, which aims at estimating and improving the parameters dynamically once
new observations are available [55] (56, [57]. These methods work quite well for
low-dimensional cases but the high computational cost in the particle methods
impedes them to work efficiently for large-dimensional systems. In addition,

Gaussian approximation may also be inaccurate for strongly nonlinear systems.

4. A new efficient algorithm for parameter estimation of conditional

Gaussian systems

As discussed in Section [3] sampling the infinite dimensional trajectories of
the unobserved variables upr (or large dimensional ones in the discrete form)
itself is computationally expensive. Below, a new parameter estimation algo-
rithm is developed. This new algorithm makes use of the closed form of the
conditional Gaussian statistics to recover the unobserved trajectories of uyg
in a deterministic and optimal way, which is then combined with the MCMC

algorithm to efficiently sample and estimate the model parameters.

4.1. An efficient, deterministic and optimal approach to recover the unobserved

trajectories

Recall that the conditional Gaussian systems allow closed analytic for-
mulae for the conditional distribution . This property can be incorporated
into the MCMC algorithm in Section [3| to circumvent the most expensive part
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of the parameter estimation algorithm, namely sampling the unobserved tra-
jectories using data augmentation. Specifically, in each iteration step, we make
use of the observed trajectories uy and the current updated parameters 0" to

; i is, (k
recover the unobserved trajectories of uyr, namely u;rlm,( )

, which are given by
the paths of the conditional Gaussian mean . In fact, since the mode of a
Gaussian distribution equals its mean, the trajectories of the conditional mean
are the optimal recovery of uyy given the observations uy based on the Bayesian
inference. While the traditional data augmentation approaches aim at sampling
the unobserved trajectories, in the conditional Gaussian framework once uy and
0% are given, the unobserved trajectories uﬁis’(k) are computed via the cheap
and explicit formulae (3a]) in a deterministic and optimal way. Note that the
conditional mean depends on the conditional covariance and therefore the in-
formation of the latter is implicitly included. Finally, uﬁis’(k), ur and 0% are

used together to compute the likelihood function in
p(ur|8™) = p(ur|6™; uEiS,(k)).

4.2. The algorithm

Now, we summarize the new MCMC algorithm involving using the condi-
tional Gaussian statistics for recovering the unobserved trajectories. Again,
assume uy and uyy are the observed and unobserved variables, respectively. We
denote p the conditional mean of uyr given the trajectories of ur. We use 0"

to represent the parameters in the k-th step. The algorithm is as follows:

1. Generate an initial guess of the parameters 0. Apply the closed ana-
lytical formulae for the conditional Gaussian statistics to recover the
corresponding unobserved trajectories u(°). Compute the likelihood func-
tion p(ul0'”) = p(u|6®; u(©).

2. For k=1,2,...

(a) At each iteration step k, generate a candidate 0™ for the next sample
by picking from a given proposal distribution Q(G(k)|0(k_l)), which

is Gaussian here. Under the new parameter candidate, apply the

10
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closed analytical formulae for the conditional Gaussian statistics

and obtain the corresponding unobserved trajectories pu(*).

(b) Calculate the acceptance ratio v = p(8%))p(u|0®)) /p(0*—1)p(u|e*—D),

where p(ul6®) = p(ulg®; ).

(¢) Accept the new candidate 0" and p) if o > 1. Otherwise, ac-
cept the new candidate with probability 1/(1 — Slog «). If the new
candidate is rejected, then set 0% = H(k_l), pF) = p=1),

3. Ignoring the burn-in period for k& < kgtqrt, average over the sampled pa-
rameters from k = kgpqrt 10 k = kepg to obtain the estimated values of the

parameters.

4.83. Technique details

(a). Prior distributions.

The prior distributions of the parameters € need to be prescribed in order to ap-
ply the Bayesian method in . Here we always assume we have almost no prior
knowledge about the parameters. Thus, we set the prior distribution of most of
the parameters to be a uniform distribution in a large interval [—106,10°]. For
diffusion coefficients, we adopt a uniform distribution in [1076,10°] for each of

them since by definition they are positive.

(b). Computing the likelihood function.

Although the observations are continuous, we compute and store the data of ug
in a discrete way in the numerical simulations with a small time step At. Here
Euler-Maruyama scheme is used in the numerical simulation. The likelihood at
each time step is computed as follows. Starting from the observational value
of ur at the time instant ¢, say ug®*(¢), and computing the distribution of ux
one time step forward using Euler-Maruyama scheme, the result at ¢t + At is a
Gaussian distribution ppreq(ur(t + At)), where the evolutions of the mean and
covariance are solved through analytical formulae. Then plugging the observa-
tional data at time t + At, i.e., uf®*(t + At), into pprea(ur(t + At)) leads to
the likelihood at time t + At. The full likelihood function is the product of the

likelihood components at different time instants.

11
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(¢). The setup of MCMC' in sampling parameters.

In the algorithm presented above, only a simple and basic MCMC sampling
technique is adopted for updating the parameters. Here, instead of adopting
an adaptive selection, the proposal functions are prescribed at the beginning.
We slightly tune the parameter 8 in Step 2(c¢) such that the acceptance ratio
is around 40% to 50%. To avoid numerical issue, we also take a logarithm
likelihood instead of likelihood itself in Step 2(c). Note that other choices can
be used in accepting new candidate. Yet, the emphasis here is to use efficient
conditional Gaussian solver to replace the expensive data augmentation and
therefore only this basic MCMC algorithm is used. Incorporating more advanced

MCMC algorithms is left as a future work.

(d). Estimating the diffusion coefficients in the dynamics of ur.

While the standard MCMC algorithm is able to easily estimate the diffusion
coefficients in the dynamics of uy, these diffusion coefficients can be estimated
in a more efficient way here due to the fact that continuous observations are
available. In fact, with continuous observations, the quadratic variation of the
observed signal can be obtained (see Appendix), which can be used to estimate
the diffusion coefficients in the observed process uy. For more complex systems,
the diffusion coefficients can also be easily estimated by applying a crude MCMC
algorithm using a simplified drift term and run the MCMC algorithm for a small

number of iterations before estimating other parameters.

5. Test examples of nonlinear turbulent dynamical systems

In this section, the parameter estimation algorithm developed in Section
is tested on three nonlinear turbulent dynamical models. All the tests are
conducted on a desktop with Ubuntu 18.04.1 LTS system using MATLAB 2018a
(academic version). The computational time of all the test examples in this

section is just a few seconds.

12
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5.1. A noisy version of the Lorenz 63 model

The first test model is a noisy version of the Lorenz 63 (L-63) model [5§],

dx = o(y — z)dt + 0,dW,, (6a)
dy = (z(p — 2) — y)dt + oy dW,,, (6b)
dz = (zy — Bz)dt + o,dW,, (6¢)

The deterministic L-63 model (¢, = 0y, = 0, =01in @) was proposed by Lorenz
in 1963 [58]. It is a simplified mathematical model for atmospheric convection.
The equations relate the properties of a two-dimensional fluid layer uniformly
warmed from below and cooled from above. In particular, the equations describe
the rate of change of three quantities with respect to time: x is proportional
to the rate of convection, y to the horizontal temperature variation, and z
to the vertical temperature variation. The constants o, p, and  are system
parameters proportional to the Prandtl number, Rayleigh number, and certain
physical dimensions of the layer itself [59]. The L-63 model is also widely used as
simplified models for lasers, dynamos, thermosyphons, electric circuits, chemical
reactions and forward osmosis [60}, [61] 62, 63], [64] [65, [66]. the noisy version of
the L-63 includes more turbulent and small-scale features and their interactions
with the three large scale variables while it retains the characteristics in the
original 1-63. The noisy L-63 model is a conditional Gaussian system with
ur = r and uyr = (y,2)7.

In order to test the parameter estimation skill, the following parameters are

used to generate the true signal,
Oy =0y =0, =05, o =10, p =28, B =8/3. (7)

The three parameters o, p and 3 are the classical choices that result in a butterfly
profile of the L-63 model. The three noise coefficients provide moderate noise
such that the dynamics has some small scale features with nonlinearity and
multiplicative noise while retaining the rough butterfly profile. A simulation of

the L-63 model @ with these true parameters in is shown in Figure

13
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Now assume the trajectory of z in is the only available observation. In
other words, there is no direct observation for y and z. Our goal here is to
estimate the parameters in the noisy L-63 model with such partial observations.
As described in the Section the noise coefficient o, is estimated by the
quadratic variation formula. Due to the continuous observations, the diffusion
coefficient o, can be estimated perfectly. To estimate the other parameters, we

first assign some initial guesses for these parameters in the MCMC algorithm,
oW =0 =10, o@=15  pOV=42  pO=14/3  (8)

Note that these initial guesses are far from the truth , where the errors in the
initial guesses for all the parameters are more than 50%. The proposal functions

of the updates are given as follows,

o) =olf 101X, o =olV 401X,
o® == L 02x5,  p® =p*=Y L 03X, AR =p¢D 1 0.05X;5,

where X;,7 = 1,...,5 are random numbers generated from independent stan-
dard Gaussian distributions. Note that the proposal density has a larger vari-
ance for those variables which themselves are larger.

The parameter estimation results are shown in Figure 2] where the marginal
posterior distribution for each parameter is formed by collecting the points in
the corresponding trace plot from k = 1000 to k& = 10000. It is clear from
the trace plots that the large biases in the initial guesses of the parameters are
eliminated quickly. The estimation of the parameters are overall quite accurate
in the sense that the averaged value of the trace plot for most of the parameters
is almost the same as the truth and the uncertainty in the marginal posterior
distribution is typically small. Among all the estimated parameters, the one
that has the largest error is p. Nevertheless, the averaged estimation value
30.4 is only 8% larger than the truth p = 28. Note that it is hard to make a
conclusion by simply looking at the relative error that whether the parameter
estimation algorithm is skillful. In fact, the deviation in the estimated param-

eters is probably due to the use of a short training period, which has only 100

14
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units here. A more reasonable approach of measuring the parameter estimation
skill is to compare the dynamical and the statistical behavior of the noisy 1.-96
model using the estimated parameters and using the true ones. To this end, we
plug these estimated parameters into the noisy L-63 model and run the model
simulation, the results of which are shown in Figure [3| and they are named as
model predictions (with estimated parameters). It is clear that the x,y and z
trajectories in Figure [3| are all similar to those in Figure Note that these
predictions are all free runs of the model. Due to the stochasticity and chaotic
nature, we do not expect a point-to-point correspondence in the trajectories in
these two figures. Nevertheless, both the dynamical and the statistical features
represented by the temporal autocorrelation functions (ACFs) and the probabil-
ity density functions (PDFs) for the truth and the prediction are very similar to
each other. Thus, we reach the conclusion that these parameters are estimated

with high accuracy.

15
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Figure 2: The parameter estimation skill of the noisy L-63 model. Panel (a): Trace plots.

Here k is the iteration step. Panel (b): Marginal posterior distributions formed by collecting

the points in the corresponding trace plot from k£ = 1000 to k = 10000. The black dashed line

in each subplot shows the true parameter values in .
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Figure 3: Predictions of the L-63 model @ with estimated parameters in Figure (averaged
from k = 1000 to k = 10000). Panel (a): Trajectories of x, y and z. Panel (b): The associated
PDFs. Panels (c)—(e): Comparison of the autocorrelation functions (ACFs) in the prediction

(green) with those of the truth (blue) from the signal in Figure
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5.2. The SPEKF model with multiplicative noise

The parameter estimation is often the prerequisite of data assimilation and
prediction. Therefore, the second test model of the parameter estimation algo-
rithm developed in Section [ is the so-called stochastic parameterized extended
Kalman filter (SPEKF) model [67, 68 [69], which has been used for filtering and
predicting complex turbulent dynamical systems [70} [9] [I]. Here we focus on
a simplified version, namely the SPEKF-M model ("M’ stands for 'multiplica-
tive’), which nevertheless contains a multiplicative noise and is able to generate

strongly non-Gaussian features,

du = (—yu + F)dt + 0,dW,, o)
9
dy = —d,(y — A)dt + o, dW,.

The SPEKF-M model @ belongs to the conditional Gaussian framework with
uy = u and uyy = 7y, where u is the observed variable while the trajectory of
is hidden from observations. The variable ~ interacts with u in a multiplicative
way and it plays the role of a stochastic damping for the process of u. Note that
the full SPEKF model [67, [68] [69] includes a stochastic phase and a stochastic
forcing in addition to this stochastic damping. In addition to filtering and
predicting intermittent signals from nature in the presence of model error [71]
72, [73), [74], other important applications of the SPEKF for complex spatial-
extended systems include stochastic dynamical superresolution [37] and effective
filters for Navier-Stokes equation [75].

Below, we test the parameter estimation algorithm in the SPEKF-M model
@ in two different dynamical regimes: a strong intermittent regime and a

moderate intermittent regime. The true parameters are given as follows:

Strong intermittent regime :
oy = 0.5, F=1, oy =12, dy =1, =1, 10)
Moderate intermittent regime :

Uu:O5, le, 07:1.2’ d"{ = 1, ’/5/:2

The only difference in the true parameters is the mean damping 4. In fact, with
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the increase of 4, the system becomes more stable and thus the intermittency
becomes weaker. The simulations of the system using these true parameters are
given in Figure ] where intermittency and extreme events can both be seen in
the trajectories of u and the associated PDF's are non-Gaussian fat-tailed. Note
that in the parameter estimation tests here, only the trajectory of u in each
regime is observed and there is no observation of «. The trajectories of u in
Figure (] are used as the input of the algorithm. Again, the estimation of the
diffusion coefficient o, in the observed process u is perfectly estimated via the
quadratic variation formula. The initial guesses of the other parameters in the

algorithm are given as follows:

Strong intermittent regime :
Initial values : FO =9, UE/O) =2, dgo) =0.2, 50 = 2,
Moderate intermittent regime :
Initial values : FO =0, o0 =2 d" =02 49=1
(11)
These initial guesses imply that the system at the initial state is unforced and

the process of v has a large uncertainty. In the parameter estimation algorithm,

the proposal of the updates are given as follows,

o =oD 4 005X,  dP =dFD +0.05Xs,

®) = 4*-1) 4 0.05X5,  F® = FF=D 4 0.05X,,

2

where Xi,...,X, are random numbers sampled from independent standard
Gaussian distributions.

The parameter estimation results in these two regimes are shown in Figure
Clearly, in both regimes, the initial errors decays quite fast and the algorithm

provides good estimations of the parameters.
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(a) True trajectories of SPEKF-M model in the strong intermittent regime (b) PDF
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N O N b

1 1 1 1 1
250 300 350 400 450 500 0 0.5
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(c) True trajectories of SPEKF-M model in the moderate intermittent regime (d) PDF
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t

Figure 4: Simulation of the SPEKF-M model with true parameters in (I0). Panels (a)—(b):

model trajectories and the associated PDFs in strong intermittent regime. Panels (a)—(b):

model trajectories and the associated PDF's in strong intermittent regime.
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(b) Marginal posterior distribution
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Figure 5: Parameter estimation skill of the SPEKF-M model. Panels (a) and (c): Trace plots.

Here k is the iteration step. Panels (b) and (d): Marginal posterior distributions formed by

collecting the points in the corresponding trace plot from k = 1000 to k& = 5000. Panels

(a)—(b) show the results in the strong intermittent regime while Panels (c)—(d) show those in

the moderate intermittent regime. Here k is the iteration step. The black dashed line in each

subplot shows the true parameter values in ([10J).
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5.8. A physics-constrained dyad model

The last test example in this section is a physics-constrained dyad model

27,

du = ( — (cv + due)u + F) dt + oy dW,,
(12)

dv = ( — dypv + ch)dt + o, dW,,.
The dyad model in has energy-conserving nonlinear interaction [40] [4T],
which is an important feature of many turbulent dynamical system. The energy-
conserving nonlinearity can be easily seen by multiplying u to the first equation
and v to the second equation. Summing up the resulting equations gives the can-
cellation of the nonlinear terms. The difference between this physics-constrained
dyad model and the SPEKF-M model (9) is that the latter only contains a
one-way feedback from ~ to u while the former has a two-way nonlinear inter-
action between u and v. Connecting the dyad model with the conditional
Gaussian framework , it is clear that the observational variable is uy = u and
the unobserved one is urr = v.

The following parameters are used as the true parameters in the dyad model:

dyy = 0.8, dyy = 0.8, c=1.2, oy = 2, oy = 0.2, F=0.5.
(13)
The model simulations with these true parameters are shown in Figure[6] Inter-
mittent instability is again observed in u. Compared with the SPEKF model,
the strong intermittency here is more frequent. As in the tests of the SPEKF
model, here only the signal of u is observed. The trajectory of u shown in
Figure [6] is used as the input of the parameter algorithm. As in the previous
examples, the estimation of the diffusion coefficient ¢, in the observed process
u is estimated via the quadratic variation formula.
Again, the initial guesses of the parameters are completely different from the

truth,

d9 =3 d9=3  O=25 O=05 < FO=2 @ (14)
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The proposal functions of the updates are given as follows,

d) = dk Y +0.05x,,  dl) =dlY 4+ 0.05X,,
®) = =1 1 0.05X3, o®) = o= 1 0.05X,, F® = ptt=1) 4 0.05X5,

where X1,..., X5 are random numbers sampled from independent standard
Gaussian distributions.
The parameter estimation results are shown in Figure [} All the param-
15 eters are estimated with high skill. In addition, using the averaged value in
the trace plots from k& = 1000 to k& = 10000 as the estimated parameters and
plugging them into the physics-constrained dyad model , the model simu-
lations provide essentially the same prediction skill in terms of the PDFs and
the autocorrelation functions as in the noisy L-63 model. We omit these results

a0 here.
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Figure 6: Simulations of the physics-constrained dyad model with true parameters in
(T3). Panel (a): Trajectories of u and v. Panel (b): The associated PDFs.
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Figure 7: The parameter estimation skill of the physics-constrained dyad model . Panel

(a): Trace plots. Here k is the iteration step. Panel (b):

Marginal posterior distributions

formed by collecting the points in the corresponding trace plot from k = 1000 to & = 10000.

The black dashed line in each subplot shows the true parameter values in .
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6. Improved algorithm for systems with large dimensions

It has been shown in the previous sections that the new algorithm explores
the conditional Gaussian property to recover the trajectories of the unobserved
variables in an efficient way, which facilitates the calculation of the likelihood
function and allows the MCMC algorithm to efficiently sample the parameters.
However, many complex turbulent dynamical systems in nature often have a
large dimension and contain quite a few parameters. In such a scenario, direc-
t application of both the MCMC algorithms for sampling parameters and the
conditional Gaussian framework for recovering the unobserved trajectories can
be computationally expensive. Therefore, a straightforward extension of the
algorithm developed in Section [4] to high-dimensional turbulent dynamical sys-
tems may not be practical. Nevertheless, we can explore the dynamical features

of many complex turbulent dynamical systems to improve the algorithm.

6.1. Block decomposition and divide and conquer

Many complex systems with multiscale structures [39], multilevel dynam-
ics [43] or state-dependent parameterizations [37] have the following block de-
composition features. The state variables can be divided into different groups
uy, = (urg,um) € (RNVur RNMur) k=1, ... K. In the dynamics of each ug j
and ugy,x in , the terms Ag; and ag depend on all the components of ug
while the terms A ; and a; ; are only functions of uj j, namely,

Ag k= Api(t,ur), ag,k, = agk(t, ur),
(15)

Ap = A i(t,urg), ay = ay k(¢ urk).
In addition, only uyrj interacts with A, , and a; ; on the right hand side of
the dynamics of uyj; and uyry, respectively. Therefore, the equation of each
uy, = (ur g, ur,k) becomes
dury = [Ao (t, uI) + Al(t, ul,k)un,k]dt + (¢, uI’k)dWI(t), (16&)

duII,k; = [ao (t, 111) +a; (t, llLk)llII’k}dt + EH(t, uLk)dWH(t). (16b)
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In addition, the initial values of (urk, urrx) and (ug g, ur k) with k # k' are
independent with each other.

Notably, the models with block decomposition structures as described above
have also been widely used in designing forecast models in filtering and pre-
dicting complex dynamical systems using dynamic stochastic superresolution of
sparsely observed turbulent systems [37], B8] and stochastic superparameteriza-
tion [39],

For the systems with such block decomposition features, divide and conquer
can be applied to both the the MCMC algorithm for sampling parameters and

the conditional Gaussian framework for recovering the unobserved trajectories.

6.1.1. Applying the block decomposition to solving the conditional Gaussian s-
tatistics

Under the condition , the conditional covariance matrix becomes block

diagonal, which can be easily verified according to . In fact, the evolution

of the conditional covariance of uyr,j conditioned on uy is given by,

dRp i (t) = {a xRk + Rirkal j, + (Z1rsS1rs)

—(RirA] 1) (ZrrZie) " (RieAl )" ) dt,

which has no interaction with that of Ryr  for all ¥’ # k since A and ag do not
enter into the evolution of the conditional covariance. Notably, the evolutions
of different Ryr s with £ = 1,..., K can be solved in a parallel way and the
computation is extremely efficient due to the small size of each individual block.
This facilitates the algorithm to efficiently solve the covariance matrix in large
dimensions.

Next, the structures of Ay, and ag 1, in allow the coupling among all the
K groups of variables in the conditional mean according to . The evolution
of iyt ;, namely the conditional mean of uyy ; conditioned on uy, is given by

du k(t) = [ao,k + a1 g,k dt

(17)
+ RII,kAik(EI,kEik)_l[dlll,k — (Ao, + Aq g,k )dt].
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Notably, each component of @ity in can be solved individually. In fact, the
trajectories of uy from the observations can simply be regarded as the external
input or forcing of solving the time evolution of Gy, in via functions ag
and A ;. Therefore, despite the fact that the full observation ur appears in
the equation of each iy, the equations of firr, and @y for £ # k' can
still be solved independently since the right hand side of each iyt does not
depend on Grry and Riypy for any &' # k. This implies that the unobserved
trajectories can be recovered in an independent and parallel way with the block

decomposition.

6.1.2. Computing the likelithood function associated with each block — divide and
conquer

According to , it is clear that the likelihood function of uy; depends
only on 1) the k-th component of uyr, namely uryx, and 2) all the observed
variables ur. Note that although uy interacts with other observed variables
up e for all k' # k through the full coupled model, the trajectories of all the
uy s in the equation of uyy are actually given from the observations and are
not affected by the update of the parameters in the MCMC algorithm. In fact,
the trajectories of all urys with k&’ # k can be just regarded as the known
input forcing in the equations of urx and urr k. This crucial property allows
us to estimate different groups of the parameters, namely the parameters 6y
in the equations (uy,urrx) and 6}, in (ur,x, um g ), independently since the
corresponding likelihood functions are independent with each other.

A schematic illustration of the idea discussed above is shown in Figure
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1. Original system:
fully coupled

@ all uka ...... @ all uka
& &

3. For different k, estimating the parametersin

the equations of u and U« areindependent

O observed variables
O unobserved variables

I:I known input forcing

2. Block decomposition of u,
u, are still fully coupled.

Figure 8: A schematic illustration of block decomposition in computing the conditional statis-

tics and in computing the likelihood functions described in Section [6.1

28



400

405

6.2. Statistical symmetry

In many applications, the underlying dynamical system represents a discrete
approximation of some translation invariant PDEs in a periodic domain with
nonlinear advection, diffusion and homogeneous external forcing [9] [2]. In such

a scenario, the model usually have statistical symmetry property, namely
p(uLk(t), un,k(t)) = p(uLk/(t), un,k/ (t)), for all k£ and k". (18)

namely, the statistical features for variables with different k& are the same. The
computational cost in the algorithms developed above can be further reduced if
the coupled system has statistical symmetry [44].

In our parameter estimation algorithm, if the statistical symmetry is satis-
fied, then all the parameters are constants. Therefore, we only need to deal with
one block described in Section [6.1] to obtain the parameter values. Alternative-
ly, we can estimate parameters using the information from a small number of
blocks and then taking the average values to eliminate the sampling bias in the

presence of extremely short training data.
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7. Test examples of nonlinear turbulent dynamical systems in large

dimensions

Here, we apply the improved algorithm to a two-layer Lorenz 96 (L-96) mod-
el. The two-layer 196 model is a conceptual model in geophysical turbulence
that is widely used as a testbed for data assimilation and parameterization in
numerical weather forecasting [45, 43| [44]. The model can be regarded as a
coarse discretization of atmospheric flow on a latitude circle with complicat-
ed wave-like and chaotic behavior. It schematically describes the interaction
between small-scale fluctuations with larger-scale motions. In the model pre-
sented here, large-scale motions are denoted by variables u;, which are coupled
to small-scale variables v; ; [44]:

du; = (ui_l(qu — wi_o) + Yiuv; — diu; + F) dt 4+ o,dW,,,
(19)

dv; = (= du v =50 ) dt + 0, iAW,
with ¢ =1,..., I and periodic boundary conditions in u;. One important feature
of is that the nonlinear interaction between u; and v; conserves energy, as
observed in nature. The two-layer L-96 model belongs to the conditional
Gaussian framework with uy = {u;} and ugy = {v;}. In , the parameter-
s F' and o, are usually assumed to be constants while the other parameters
Yi,dy,, 0, and d; can vary as a function of 4. If these four parameters take
different values at different grid points, then the system is inhomogeneous. If
Yi =7, dy, = d, 04, = 0, and d; = d, then the system is homogeneous provided
that the initial values of the system is also homogeneous.

Applying the block decomposition described in Section to the two-layer
L-96 model results in I blocks. Each block i contains two equations, namely
ur; = u; and urr; = v; with ¢ = 1,...,1. Note that although a constant F'
appears in the two-layer L-96 model even in the inhomogeneous case, F
is regarded as a function of ¢ in the parameter estimation algorithm. In other
words, F; is used in the equation of u; corresponding to the i-th block. The

estimated values of F; in different blocks are expected to be the same.
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Below, we take I = 40 in and the improved algorithm is applied to
both homogeneous and inhomogeneous cases. With I = 40, the total number
of state variables are 80. The total number of parameters in the homogeneous
and inhomogeneous cases is 6 and 41 4+ 2 = 162, respectively.

Again, all the tests are conducted on a desktop with Ubuntu 18.04.1 LTS
system using MATLAB 2018a (academic version). The computational time of
each block {ur;,um;} is just a few seconds. All the I = 40 blocks (in the

inhomogeneous case) can be run in a parallel way.

7.1. Inhomogeneous case

First, we consider the inhomogeneous Lorenz 96 model. The following pa-

rameters are used as the true parameters:

d; = —3 — cos(2mi/I), vi = —0.8 — 0.2 cos(2mi/ 1), dy,; = 0.8 —0.4cos(2mi/I),

ovi =14 0.5cos(2mi/I), F =3, oy = 0.2.
(20)

Note that F' = 8 in the L-96 model corresponds to a strongly chaotic regime
if the second layer is not considered, which distinguish itself from the weakly
chaotic regime (F' = 5) and fully turbulent regime (F' = 16).

The spatiotemporal patterns are shown in Figure [J] together with the time
series at three different locations ¢ = 1,11 and 21. It is clear that the spatial
patterns have distinct structures in different locations. At the grid points where
i is close to 1 or 40, the signal is almost quiescent. At the grid points where
i is close to 20, the signal is quite active. Significant wave trains are observed
between grids ¢ = 10 and ¢ = 30, which propagate westwards and mimic the
atmosphere Rossby waves. Note that the spatiotemporal patterns from ¢t = 5 to
t = 100 in Figure [0] are used as the training data in the parameter estimation
algorithm. This mimics most of the realistic situation that the training data is
limited and the training period is short.

We first estimate the diffusion coefficient ¢,, by running a crude model using

a small number of iterations. Due to the continuous observations, the diffusion
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coefficient o, can be estimated perfectly. Then in applying the improved al-
gorithm discussed in Section to estimate other parameters, we first assign

initial guesses of the parameters,
d%=—2 %o @Y =2 U9  FOY_5 (2

for all ¢ = 1,...,I. These initial guesses actually represent a homogeneous
flow, a decoupled system with %{0} =0, and a weakly chaotic flow (F{0} = 5).
Therefore, large biases exist in the initial guesses. The proposal functions are

given as follows

d® =%V 1 0.025x;, 4P =%V 4 0.025X,,

dl) =dS7Y 4 0.025X5, o) =0l +0.025X,, (22)
F® = D 4 0.25X;,

where Xi,...,X5 are random numbers sampled from independent standard
Gaussian distributions. Note that as discussed at the beginning of this sec-
tion, F' is regarded as a function of ¢ in the parameter estimation algorithm,
even though the truth of F is independent of i. Figure [I0] compares the true
parameters , the initial guesses of the parameters and the estimated
parameters, where the estimated parameters are computed by averaging over
the trace plot from k = 10000 to k& = 30000. Figure [[1]shows the trace plots and
marginal posterior distributions at i = 20 (active phase) and ¢ = 35 (quiescent
phase). From Figure it is clear that the parameter estimation algorithm
is overall skillful. The parameters are estimated quite accurate in the active
phases while some errors are observed in the quiescent phases. In addition, the
parameter d; seems to be the most difficult parameter to estimate. In fact, in
the quiescent phase, the signal is weak, which implies the signal to noise ratio
becomes small. Therefore, the parameters are hardly identified from the rela-
tively noisy signals due to the lose of observability [9] [76] [77]. Among all the
parameters, d; suffers from this issue the most. In fact, the total damping of
u; is given by v;v; — d;. In the quiescent phase, such as s = 1 shown in Figure

EI, v;v; provides a strong damping, which then overwhelms the effect from d;.
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This means the parameter d; in the quiescent phase plays a very weak role in
changing the dynamical behavior. In other words, the signal is quite robust
with respect to the variation of d; near its optimal values and the identification
of the original d; has a large uncertainty.

The above discussions indicate that even if some of the estimated parameters
seem to be quite different from the true values, the model equipped with these
estimated parameters are nevertheless able to recover both the dynamical and
statistical features of the original model (with the true parameters). In Figure
we show the model prediction with the estimated parameters. Comparing
with the true signal in Figure [} it is clear that the predicted spatiotemporal
patterns are essentially the same as the truth in terms of the overall structures,
amplitudes and intermittent features. Figure further compares the model
statistics generated from the model simulation using the true parameters and
the estimated parameters based on the data shown in Figures [J] and It
is clear that the first four moments of u; and the autocorrelation functions at
different grid points of u; associated with the two simulations are quite similar
to each other. These facts confirm that the model with estimated parameters
are able to generate the same dynamics as that with the perfect parameters.
The errors in some parameters have little effect on capturing the dynamical and
statistical features of the truth. In other words, the model is robust with respect
to these parameters and there is no need to estimate these parameters precisely.
Note that the errors in the estimated parameters very likely come from the
sampling error in the finite (and short) training data as shown in Figures EI,
which has only 95 time units. In many practical issues, the data in the training
period is limited. Thus, it is unreasonable to expect a perfect estimation of all
the parameters in the presence of such a sampling error, especially for those
with respect to which the model is robust. Validating the model dynamical
and statistical features is a reasonable strategy for quantifying the parameter

estimation skill.
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(a) Spatiotemporal simulation of u (b) Trajectories ati =1, 11 and 21
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Figure 9: Spatiotemporal patterns (Panel (a)) and time series (Panel (b)) of the inhomoge-
neous two-layer Lorenz 96 model with parameters in .
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Figure 10: Comparison of the truth, the initial guess and the estimated parameters of the
inhomogeneous two-layer Lorenz 96 model. The horizonal axis denotes the spatial locations.
The estimated parameters are computed by averaging the trace plots from k = 10000 to

k = 30000.
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Figure 11: The trace plots and marginal posterior distributions at ¢ = 20 (active phase; Panels
(a)-(b)) and i = 35 (quiescent phase; Panels (c)—(d)) of the inhomogeneous two-layer Lorenz
96 model. The marginal posterior distributions are formed by collecting the points in the

corresponding trace plot from k = 10000 to k£ = 30000.
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Figure 12: The predicted spatiotemporal patterns (Panel (a)) and time series (Panel (b)) of

the inhomogeneous two-layer Lorenz 96 model with the estimated parameters from Figure

36

21



(a) Mean (b) Variance (c) Skewness (d) Kurtosis

4 10
3 W 3
5 0
2 Truth 2
Prediction
1 0 -1 ! 1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
12 6 1 4
10 4 3
oV AN s PAposag Y
8 2 2
6
0 -1 1
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
i i i i
(e) ACFofuati=1 (f) ACFofuati=11
1 T T T T 1 T T
or or
-1 . . . . -1 . . . .
0 1 2 3 4 5 0 1 2 3 4 5
(9) ACFofuati=21 (h) ACFofuati=31
1 . . . . 1 . ! . ;
or ol
-1 L L L L -1 L L L L
0 1 2 3 4 5 0 1 2 3 4 5

Figure 13: Comparison of the first four moments (Panels (a)—(d)) and the autocorrelation
functions (Panels (e)—(h)) of the inhomogeneous L-96 model with the true parameters and

the estimated parameters.
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7.2. Homogeneous case

Finally, we apply the parameter estimation algorithm involving both the
statistical symmetry and the block decomposition to the homogeneous two-
layer L-96 model . The following parameters are used to generate the true

signal,

d=—-3.5, v =—0.8, d, = 0.8, 0y = 1.5, F =38, 0w =0.2.
(23)

These parameters result in a unique spatiotemporal structure as shown in Figure

495 In fact, as in the inhomogeneous case (Figure EI, wave trains propagate

500

505

510

westwards are clearly seen in Figure In addition to these individual wave
trains, their envelopes actually propagate eastwards. This behavior in a different
model mimics the realistic features of the Madden-Julian Oscillation which is
the dominant intraseasonal variability in the equatorial domain [78] [79]. It is
also clear that the statistical features at different grid points are the same and
therefore the model is homogeneous and satisfies the statistical symmetry.

The same proposal functions as in is used in this homogeneous situation.

The initial guess of the parameters are

A% = —35-05cos(2mi/I), 4" =—0.8—0.2cos(2mi/I),

d'% =08 —04cos(2mi/I), ol =15-05cos(2mi/I),  FO =35,

(24)

where the forcing F' is chosen such that the initial state is in a weakly chaotic

regime while the initial guesses of all the other parameters represent an inho-
mogeneous flow, which is far from the truth.

Figure shows the trace plots and the marginal posterior distribution-

s of the estimated parameters, where the estimation is based on solving the

likelihood function only on the first grid point. These parameters are overall

estimated quite accurately. The only exception is the damping d, which takes

quite a few iteration steps to converge around the truth. Nevertheless, as in

the inhomogeneous case, the model is robust with respect to this damping pa-

rameter around its optimal value. In fact, we have tested the model even with
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d = —2, and the model simulation is still able to capture the key dynamical
and statistical features in the truth. Therefore, the estimated parameters can
be used in the original system for understanding and predicting the complex

sis signal from nature.
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Figure 14: Spatiotemporal patterns (Panel (a)) and time series (Panels (b)) of the homoge-
neous two-layer Lorenz 96 model (19) with parameters in (23).
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Figure 15: Trace plots (Panel (a)) and marginal posterior distributions (Panel (b)) of the
parameter estimation of the two-layer Lorenz 96 model with parameters in (23)). The marginal
posterior distributions are formed by collecting the points in the corresponding trace plot from

k = 5000 to k = 20000.
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8. Conclusion

In this article, a new efficient parameter estimation algorithm is developed,
which applies to the conditional Gaussian nonlinear systems in large dimensions
with only partial observations of uy. Note that despite the conditional Gaussian-
ity, the coupled systems remain highly nonlinear and is able to capture strong
non-Gaussian features such as skewed or fat-tailed distributions as observed in
nature.

The algorithm exploits the analytically solvable conditional statistics in the
conditional Gaussian framework to recover the trajectories associated with the
unobserved variables uyy (Section . This deterministic and optimal method
in recovering the unobserved trajectories circumvents the expensive and time-
consuming random sampling of the trajectories associated with the unobserved
variables in the infinite dimensional space using the traditional data augmenta-
tion approaches and thus greatly enhances the computational efficiency. With
these recovered unobserved trajectories, the MCMC technique can then be ap-
plied to sample the parameters. Notably, only a short training period is sufficient
in this new parameter estimation algorithm and it is therefore practically useful.
The computational cost also increases only linearly as a function of the length
of the training period. Test examples based on nonlinear and non-Gaussian low-
order models with intermittency and extreme events show both the parameter
estimation skill and the computational efficiency of the new algorithm (Section
5).

In order to estimate the parameters in high-dimensional systems with a
large number of parameters, two effective strategies are further developed and
incorporated into the above parameter estimation algorithm (Section @ The
first strategy involves a judicious block decomposition of the state variables
such that the original problem is divided into several subproblems, which al-
low an extremely efficient parallel computation for the parameter estimation.
The second strategy exploits statistical symmetry for a further reduction of the

computational cost when the system is statistically homogeneous. A two-layer
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Lorenz 96 model (with 80 state variables and 162 parameters) that mimics the
realistic features of atmosphere wave propagations is adopted to illustrate the
skillful behavior of such an improved parameter estimation algorithm using only
a short training period (Section E[)

Since this article aims at emphasizing the new approach of exploiting the
conditional statistics to recover the unobserved trajectories, only the basic M-
CMC method is adopted in the current version of the algorithm. Incorporating
adaptive MCMC techniques or non-symmetric proposal functions are natural
extensions to further improve the current parameter estimation framework. Se-
quential methods in recovering the unobserved trajectories and computing the
likelihood function can also be included into the framework. In addition, the
closed analytical formulae of the conditional Gaussian statistics and the well-
established theories of various MCMC techniques also allow using rigorous math-
ematical analysis to study the accuracy and the convergence of this parameter
estimation framework.

Note that all the numerical tests shown in this article are perfect model
twin experiments. Yet, most parameter estimation problems in practice contain
model errors. In addition, due to the measurement and representation errors
[13], the observations may also be imperfect and noisy. Thus, estimating pa-
rameters in various imperfect models is of practical importance. This parameter
estimation framework allows using imperfect models for parameter estimation
since the only information needed from the truth is the observational signals.
Therefore, a future work is to understand the effect of model error and represen-
tation error in affecting the parameter estimation skill, which also has potentials
in providing guidelines for developing reasonable imperfect models in practice.

The parameter estimation framework developed here has a wide application.
In fact, many practical approaches for filtering and predicting complex turbu-
lent systems involve hybrid strategies in developing the forecast models, where
the conditional Gaussian processes are used in modeling small-scale features
via stochastic parameterizations, superparameterization and dynamical super-

resolution etc. Examples in real-world applications include filtering sparsely
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observed geophysical flows [73], improving the filtering and prediction skill of
atmosphere and ocean flows using stochastic superparameterizations [0} 8]
and multiscale data assimilation using hybrid models [82] [83]. The parameter
estimation framework developed here can be applied to these problems for mod-
el calibration and improve the understanding and prediction of these complex

dynamical systems.
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Appendix A. Calculating the diffusion coefficient in the observed pro-

cess via its quadratic variation.

Here, we summarize the results on calculating of the diffusion coefficient in
the observed process via its quadratic variation [84]. The quadratic variation of
a stochastic integral process [H - Y] with (H -Y); = fg H,Y; is defined as

vl = [, (A1)

Proposition Appendix A.1. Consider a general stochastic differential equa-
tion (SDE)
du = p(t,u)dt + o(t, u)dW;. (A.2)

Its quadratic variation is given by
t
[u]s = / o2 (s, us)ds. (A.3)
0

Proof. The equivalent integral form of the general SDE in (A.2) is given by,

u=ug+ /t w(s,u)ds + /t o(s,u)dWs. (A.4)

0 0
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Using the definition in (A.1]), we have

[u]t:[u.t]t—i—[a-W}t:/o uid[s]er/o agd[W]s—/os o?(s,us)ds. (A.5)

where [t]; = 0 since all continuous processes of finite variation have zero quadrat-

ic variation, and [W]; = t. O

When o(s,u) = o0, is a constant, Proposition (A.l) provides a simple way

to compute the diffusion coefficient o, which is

[’U/]t = t0'2, (AG)
or equivalently
o= [u—t]t (A.7)
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