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Abstract

Predicting extreme events in complex nonlinear systems is an extremely challenging and important area in climate
science. Important examples include extreme events near coastal continental shelves for shallow water waves and deep
internal waves. Recent laboratory experiments reveal a remarkable transition from near Gaussian to highly skewed
anomalous statistics with extreme events by measuring the surface water wave displacements in shallow water across
an abrupt depth change (ADC). A statistical dynamical model has been proposed and used to accurately predict
the representative statistical transition using Gibbs invariant measures for the truncated KdV equation at low and
high inverse temperatures representing flows before and after the ADC. In this paper, we use much lower-dimensional
truncated paradigm models to understand the statistical phase transition and the creation of extreme events. Especially,
a two-mode interacting model with exact integrable dynamics is adopted to characterize the core transition mechanism
as the model parameter varies. The choice of the radically truncated two-mode model is motivated by the self-similar
solution structures with reducing numbers of truncated modes. A clear separation of distinct dynamics in the phase
space is discovered for the Gibbs ensembles sampled from different inverse temperatures. Direct numerical tests with
various model truncation sizes are presented to illustrate the statistical transition in parameter regimes. The analysis
here can also provide a theoretical guideline for a wider variety of models concerning the generation of extreme events
and anomalous statistics.

1 Introduction
Extreme events and their anomalous statistics are universally observed in various complex nonlinear systems such as
in the climate, material and neuroscience, as well as engineering design [13, 3, 6, 19, 21]. Understanding and accurate
prediction of such phenomena is a grand challenge, and has become an active contemporary topic in applied mathematics.
Qualitative and quantitative models [10, 15, 16, 13, 11] have been proposed with novel numerical algorithms to overcome
the curse of dimension for extreme event prediction in large complex systems [5, 4, 15, 17]. One typical example with
practical importance is the occurrence of Rogue waves with extreme events in different physical settings of shallow and
deep water waves [18, 20, 21].

Recently, a statistical model [12] is proposed for predicting extreme events and anomalous statistical features in
shallow water waves. This work is motivated by the controlled laboratory experiments in weakly turbulent shallow
water waves going through an abrupt depth change (ADC). The water waves exhibit a remarkable transition from nearly
Gaussian statistics in incoming wave trains with deeper water depth to outgoing waves trains after the ADC with extreme
anomalous statistics and a large positive skewness of the surface height [3]. It is shown under various experimental
control parameters that the anomalous statistical behaviors can be explained and quantitatively predicted using a simple
statistical model developed in [12]. In particular, the typical statistical phase transition from a near-Gaussian distribution
in the incoming state to a highly skewed non-Gaussian distribution in the outgoing state is effectively captured from the
statistical formulation with a proper statistical matching condition.

The basic idea in the modeling procedure is illustrated by the diagram in Figure 1.1. The one-dimensional truncated
Korteweg-de Vries (tKdV) equation is proposed as the governing equation modeling the incoming and outgoing flow
states matched at the ADC location. The tKdV equation enjoys many desirable features with trackable dynamics in
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a Hamiltonian structure. Then the conserved energy and Hamiltonian induce incoming and outgoing Gibbs invariant
measures from the equilibrium statistical mechanics [9]. The statistical matching of the known near-Gaussian incoming
Gibbs state at the ADC completely determines the anomalous outgoing Gibbs state to be predicted, with an analytic
formula for the anomalous skewness to be described in this paper and verified by direct numerical simulations in [12]. The
prediction model successfully captures key features of the experiment. The strategy described here should be useful for
predicting extreme anomalous statistical behaviors in other dispersive media in different settings [19, 6]. One important
example is the extreme events prediction in internal waves near continental shelves.

Experiments with Abrupt Depth Change (ADC)

1. Upstream waves have near-Gaussian statistics in water depth disturbance
2. Downstream waves reach highly skewed non-Gaussian statistics after the ADC
3. Large skewness and kurtosis generated in the outgoing waves
4. Different slopes in the power spectra at upstream and downstream positions

One Dimensional Dynamical Model
1. Truncated KdV equations with changing depths for
wave displacement
2. Formulation of the tKdV equation as a discrete
Hamiltonian system
3. Conserved quantites: energy and Hamiltonian
4. Matching incoming & outgoing states before &
after the ADC

Equilibrium Statistical Model
1. Mixed micro-canonical/canonical ensemble for incoming &
outgoing statistical states
2. Incoming Gibbs invariant measure with negative inverse
temperature fitted from data
3. Statistical equilibrium matching before & after the ADC
4. Explicit formula for the outgoing flow skewness & anoma-
lous statistics with extreme events
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Figure 1.1: Diagram illustrating the strategies for modeling the anomalous statistical transition observed in water wave
experiments going through an abrupt depth change. Dynamical model and equilibrium statistical theory are combined to
offer theoretical explanation for the experimental observations.

In this paper, we revisit the mathematical formulation in the statistical phase transition and the generation of high
skewness connected by both the dynamical and statistical models shown in Figure 1.1. The main goal is to link the
complex multiscale interactions in the tKdV equation with low-order truncated models which can provide a simple but
effective characterization of the typical phase transition for the Gibbs ensemble predictions before and after the ADC from
low to high negative inverse temperature. Starting from the natural moderate truncation size provided in [12], the tKdV
model solutions with decreasing numbers of truncated modes are compared down to only two interacting modes. The
motivation of adopting a skeleton two-mode truncated model is from the observation of self-similar solution structures
displayed by the models with reducing truncation sizes. Particularly, we seek the concise low-dimensional origin of this
statistical phase transition mechanism, which plays the central role in the prediction of extreme events in the shallow
water wave disturbances. In the two-mode interacting model, integrable dynamics provides an explicit phase portrait of
the solution trajectory starting from different values of the Hamiltonian. The ensemble solutions are naturally separated
in two parameter regimes based on the amplitude of the inverse temperature in the Gibbs measure. A direct connection
between the low and high negative inverse temperature regimes with distinct statistics can be found from the simple
trackable model. The structure found in the extreme two-mode model then can be generalized to models with higher
wavenumber truncations, and is confirmed with direct numerical simulations.

In the structure of this paper, a review about the dynamical model and statistical equilibrium mechanics used for
modeling the surface water waves before and after the ADC is shown in Section 2. The model statistics and mixing
property with different truncation sizes are compared in Section 3. Then the two-mode tKdV model is proposed in
Section 4 to offer a precise description for the phase transition mechanism. First an integrable dynamics is derived, and
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then the two statistical phases get connected with different parameter regimes. The results are summarized in Section 5
as a conclusion.

2 Statistical Models for Surface Wave Turbulence and the Matching Con-
ditions

In this section, we review the statistical model and matching condition developed in [12] with a natural moderate model
truncation size to capture the experimental observations. The statistical scattering between the near-Gaussian incoming
state and the highly skewed non-Gaussian outgoing state of the Gibbs measures sets up the phase transition from the low
negative inverse temperature regime to the high negative inverse temperature regime.

2.1 Dynamical model by tKdV equation with water depth dependence
The surface wave turbulence can be modeled by a one-dimensional deterministic dynamical model, that is, the standard
Korteweg-de Vries (KdV) equation [7]

ut + uux + uxxx = 0, x ∈ [−πL, πL] . (1)

Above the state variable u (x, t) is the leading-order surface wave disturbance. The KdV equation (1) can be also formulated
as a Hamiltonian system as

u̇ = J δH
δu

, J = −∂x, H (u) =

∫ πL

−πL

(
1

6
u3 − 1

2
u2
x

)
dx. (2)

The evolution of any functional F (u) obeys the dynamical equation

Ft = {F ,H} =

∫ πL

−πL

δF
δu
J δH
δu

dx,

through the Poisson bracket defined by the symplectic operator J . Immediately, we have the conservation of the Hamil-
tonian in (2), Ht = {H,H} = 0. Besides the Hamiltonian H, the KdV equation also conserves the momentum M and
energy E defined as

M (u) =

∫ πL

−πL
udx, E (u) =

1

2

∫ πL

−πL
u2dx.

Truncated equation with normalized momentum and energy

In modeling water waves using the KdV equation, it is convenient to use a normalized version of the equation. The state
variable u is normalized with zero mean and unit energy with the change of variables

t = t̃, x = Lx̃+Mt̃, u = E1/2L−1/2ũ+M,

whereM is the conserved total momentum and E is the conserved total energy from the original system (1), and L defines
the characteristic length scale of the system. In this way, the total momentum is normalized to zeroM (u) = 0 without
loss of generality due to the Galilean invariance and the total energy is rescaled to unity, E (u) = 1, conserved during
the evolution, while E characterizes the total energy injected in the system. The additional shift in time Mt in the new
coordinate creates the Doppler shift from the non-zero mean momentum M . From now on in this paper, we use the
normalized state variables and neglect the ‘tildes’ for simplicity in representation.

Finally, the KdV equation is further truncated in the first Λ spectral modes to generate turbulent dynamics. A Galerkin
projection PΛ is applied to the original equation (1) with a high wavenumber truncation up to Λ

uΛ (x, t) ≡ PΛu =
∑
|k|≤Λ

ûk (t) eikx, (3)

with in total J = 2Λ + 1 grid points. The wavenumber truncation Λ is fixed in a moderate value for generating weakly
turbulent dynamics. The Galerkin truncated state variable uΛ is normalized with zero mean û0 = 0 and unit energy
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2π
∑Λ
k=1 |ûk|

2
= 1. Therefore, the water wave motion is described by the truncated KdV equation (tKdV) by projecting

the continuous equation (1) to the truncated subspace with water depth D dependence [7, 12]

∂uΛ

∂t
+
D−3/2

2
E1/2L−3/2 ∂

∂x
PΛ (uΛ)

2
+D1/2L−3 ∂

3uΛ

∂x3
= 0, x ∈ [−π, π] . (4)

The model (4) is non-dimensionalized in the periodic domain [−π, π] with the three model parameters (E,L,D). The
additional projection in front of the quadratic term u2

Λ is used to remove the aliasing modes that go beyond the range
|k| > Λ. which are conserved quantities. The conserved Hamiltonian is discretized accordingly in the finite dimensional
subspace decomposed into the difference of two components containing cubic and quadratic terms

HΛ = D−3/2E1/2L−3/2H3 (uΛ)−D1/2L−3H2 (uΛ) , H3 (u) =
1

6

∫ π

−π
u3dx, H2 (u) =

1

2

∫ π

−π
u2
xdx. (5)

Above, the cubic term H3 describes the skewness of the state, while the quadratic term H2 characterizes the slopes of
the surface waves, ux. The amplitudes of the characterizing model parameters (E,L,D) can be discovered from a scale
analysis from the experimental data. See [12] for the reference values of several representative regimes from a detailed
scale analysis.

Deterministic matching condition

In modeling the water waves going through an abrupt depth change, the water depth is normalized to the unit D− = 1
before the ADC and becomes smaller D+ < 1 after the ADC. Accordingly, the surface disturbance state is modeled by the
state u−Λ for the incoming wave with water depth D− and u+

Λ for the outgoing waves with water depth D+. The abrupt
depth change from D− to D+ is assumed to take place at t = TADC. A deterministic matching condition is given for the
surface displacement u±Λ agreeing at the locations before and after the abrupt depth change TADC

u−Λ (x, t) |t=TADC−= u+
Λ (x, t) |t=TADC+, (6)

assuming the abrupt depth change is met at t = TADC.
The intuition for the distinct model dynamics comes from the balance between the cubic and quadratic terms in the

Hamiltonian H±Λ . After the depth change, D+ < 1, more weight is added in the cubic term, H3, for stronger nonlinearity
and weaker dispersion for the third-order derivative term reflected by the smaller coefficient for H2 in the Hamiltonian.
Since ∂u

∂x is the slope of the wave height, H2 (u) measures the wave slope energy.

2.2 Equilibrium statistical mechanics for the stationary invariant measure
For a better characterization of the turbulent waves in incoming and outgoing flows, we introduce the statistical description
of the tKdV model captured by ensemble simulations. First, the equilibrium probability distribution can be quantified
by an invariant statistical measure. The equilibrium invariant measure is dictated by the conservation laws in the tKdV
equation. There exist two important conserved functionals, the total energy EΛ and the Hamiltonian HΛ, in the tKdV
equation (4). The choice is to pick a mixed Gibbs measure with microcanonical ensemble in the quadratic energy EΛ
and canonical ensemble in the Hamiltonian HΛ [9, 2, 1]. The invariant Gibbs measure is then defined based on canonical
Hamiltonian fixed on the isosurface with constant energy (normalized to unit)

Gθ (uΛ;E) = Cθ exp (−θHΛ) δ (EΛ − 1) ,

with θ the inverse temperature. Summarizing the expressions for the truncated variables, the invariant Gibbs measure for
the tKdV model (4) about the normalized state variable uΛ with unit energy can be written explicitly as

Gθ± (uΛ) = Cθ± exp

(
−θ±

{
h±3

∫ π

−π
u3

Λdx− h±2
∫ π

−π
(∂xuΛ)

2
dx

})
δ

(
1

2

∫ π

−π
u2

Λdx− 1

)
, (7)

with the coefficients h±3 = 1
6E

1/2L−3/2D
−3/2
± and h±2 = 1

2L
−3D

1/2
± depending on the model parameters. A constant mean

state will not alter the final invariant measure with a Doppler shift in the solution (see Section 3.1).
The distinct statistics in the upstream and downstream waves can be controlled by the the inverse temperature

parameter θ. It is found [12, 2] that the negative temperature regime, θ < 0, gives the correct energy spectra and PDFs
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to predict the experiments. The Gibbs invariant measure (7) transfers from near-Gaussian to highly skewed distribution
as the amplitude of the inverse temperature θ increases. The expectation of any functional F (u) can be computed based
on the above invariant measures (7) using proper sampling strategies

〈F 〉Gθ ≡
∫
F (u)Gθ (u) du.

Besides, the invariant measure has the advantage to predict an equilibrium energy spectrum without the requirement to
run the tKdV equation directly. On the other hand, the time autocorrelation and transient statistics about the state
variable uΛ can only be recovered from the direct model simulations.

Statistical matching condition in invariant measures before and after the abrupt depth change

In the incoming flow field, the inverse temperature θ− is chosen so that G−θ has Gaussian statistics consistent with the
incoming flow which is assumed to be accurately measured. The downstream statistics need to be recovered from the
matching condition at the ADC point. The idea for the statistical matching condition is to connect the invariant measures
in incoming and outgoing flow statistics using different inverse temperatures θ± [12]. The Gibbs measures G±θ before and
after the abrupt depth change are defined based on the different inverse temperatures θ± on the two sides of the solutions

µ−t
(
u−Λ ;D−

)
, uΛ |t=TADC−= u0, t < TADC;

µ+
t

(
u+

Λ ;D+

)
, uΛ |t=TADC+

= u0, t > TADC,

where u0 represents the deterministic matching condition (6) between the incoming and outgoing waves. µ±t are the PDFs
for the statesu±Λ before and after the depth change. The invariant measures µ±∞ (u;D±) as t→∞ is used to represent the
equilibrium distributions at the steady state. The two distributions, µ−t , µ

+
t should also be matched at the depth change

location TADC, so that
µ−∞ (uΛ) = µ−t=TADC

(uΛ) = µ+
t=TADC

(uΛ) .

In matching the flow statistics before and after the abrupt depth change, first we use the conservation of the deterministic
Hamiltonian valueH+

Λ after the depth change. Then assuming ergodicity [1], the statistical expectation for the Hamiltonian〈
H+

Λ

〉
is conserved in time before and after the depth change at t = TADC and should stay in the same value as the system

approaches equilibrium as t→∞. The final statistical matching condition for the outgoing flow statistics with the inverse
temperature θ+ can be found by 〈

H+
Λ

〉
G+
θ

=
〈
H+

Λ

〉
G−
θ

, (8)

with the outgoing flow Hamiltonian H+
Λ and the Gibbs measures G±θ before and after the abrupt depth change. This

statistical relation connects the near-Gaussian regime in the incoming flow statistics with the highly skewed regime in the
outgoing flow field. Explicit formulas for the Gibbs measures Gθ± before and after the abrupt depth change can be used
in (7). Notice that in the statistical matching condition (8), the statistical information for the incoming Hamiltonian H−Λ
is not required. The Hamiltonian before the depth change is only used to construct the invariant measure, Gθ− .

Analytic formula for the upstream skewness after the ADC

Furthermore, a statistical link between the upstream and downstream energy spectra is derived [12] for an analytical
prediction of the skewness in the flow state u after the ADC. The skewness of the state variable uj at one spatial grid
point is defined as the ratio between the third and second moments

κ3 =
〈
u3
j

〉
µ
/
〈
u2
j

〉 3
2

µ
.

With mild assumptions on the distribution functions of small inflow skewness and homogeneous outflow statistics [12],
the skewness of the downstream state variable u+

Λ after the ADC is given by the from the energy spectra in inflow and
outflow statistics and the wave slope energy spectra

κ3 = C
∑

1≤|k|≤Λ

k2
(
r+
k − r

−
k

)
=

C

2π

∫ π

−π

[〈
(ux)

2
〉
µ+
−
〈

(ux)
2
〉
µ−

]
dx, C = 3π

3
2L−

3
2E−

1
2D2

+, (9)
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with r−k =
〈
|ûk|2

〉
µ−

the variance in upstream statistics and r+
k =

〈
|ûk|2

〉
µ+

the statistics from downstream statistics,

and the coefficient C only depending on the model setup. The upstream equilibrium measure is assumed Gaussian with
zero skewness, 〈H3〉µ−

= 1
6

∫ π
−π
〈
u3
〉
µ−
dx = 0 (see the supporting information in [12] for the detailed derivation).

The spectral difference between the incoming and outgoing flows calibrates the statistics in the ‘waves slopes’, ux,
before and after the depth change. In particular, the downstream skewness is positive if and only if the difference of the
two wave slope energy spectra is positive. This means that there is more small scale wave slope energy in the outgoing
state. We can see that a positive skewness can be generated from r+

k > r−k in small scale modes and r+
k < r−k in large

scales, with the total energy of the system always normalized to unit, π
∑
r+
k = π

∑
r−k = 1. It implies that the outflow

energy spectrum always has a slower decay rate than the inflow energy spectrum which possesses stronger energy in larger
scales and weaker energy in the smaller scales.

3 Effective Truncation Sizes in Direct Numerical Simulations
One interesting issue in the tKdV equation (4) is the model performance as the truncation size Λ for the state variable
uΛ changes. The model mixing property and the statistical energy spectra as well as the equilibrium statistical measures
vary with changing numbers of truncated modes, while the typical phase transition from low to high inverse temperature
is maintained even with extremely low-dimensional truncation. This section investigates the trend of changes in the tKdV
model statistics through direct numerical simulations according to flow states starting with different inverse temperatures.

3.1 Spectral formulation of the tKdV equation and its autocorrelation functions
One advantage of adopting a smaller truncation size Λ is to achieve a clearer look at the linear and nonlinear coupling
between different scale modes while still keep similar statistical invariant features. In the tKdV equation (4), the continuous
state variable in fluctuation u (x, t) is projected to the spectral space uΛ with a wavenumber truncation Λ. The projected
modes (3) can be further separated with the linear wave frequency ωk of each wavenumber

uΛ (x, t) = U +
∑

1≤|k|≤Λ

ak (t) ei(kx−ωkt), (10)

The frequency ωk will be defined next from the dispersion relation of the system. A constant background mean state,
U , is also added to illustrate its effect on the wave speed. The energy spectrum of the system is not altered by this new
decomposition, that is, Ek = E |ûk|2 = E |ak|2. The dispersion relation can be found from the linearized component of the
tKdV equation (4)

ωk = Uk − L−3D1/2k3 = kck, (11)

with ck = ωk/k the wave velocity for each mode and ω−k = −ωk. The mean state U creates right-moving linear waves on
top of the nonlinear dispersion from the third-order derivative. Without the mean state U ≡ 0, all the waves are left-going
with ck < 0; while with a non-zero mean U 6= 0, right-going waves are generated in large scales and left-going waves exist
in the smaller scales after the critical wavenumber kcr = L3/2D−1/4U1/2.

The final equation for each the coefficient ak can be simplified in the form concerning only the nonlinear coupling
between different scales

dak
dt

= −D−3/2E1/2L−3/2 ik

2

∑
|m|≤Λ

ama
∗
m−k exp [i (ωk + ωm−k − ωm) t] , (12)

which defines the triad interactions between the modes ak, am, and am−k. The mean flow U in the dispersion relation
makes no contribution in the triad wave interaction since its linear dependence on wavenumbers

ωk + ωm−k − ωm = −L−3D1/2
[
k3 + (m− k)

3 −m3
]

= 3L−3D1/2mk (m+ k) .

The resonant triad interactions happen at the modes with opposite wavenumbers m = −k.
Next, the autocorrelation functions characterizes the mixing properties of the turbulent system. It is usually useful to

consider the autocorrelations in the spectral modes rather than at the physical grid points. The larger scales often get
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longer correlation time than the smaller scale modes. Also from the dispersion relation (11), the high wavenumber mode
gets a faster wave speed. The autocorrelation functions between two spectral modes can be computed as

R̂kl (τ) = 〈ak (t+ τ) a∗l (t)〉 e−iωkτe−i(ωk−ωl)t = Ĉkl (τ) e−iωkτe−i(ωk−ωl)t. (13)

Above Ĉkl (τ) = 〈ak (t+ τ) a∗l (t)〉 is the autocorrelation matrix removing the dispersive waves from the original solution
R̂ (τ) = 〈ûk (t+ τ) û∗l (t)〉 in the original spectral coefficients (3). The power spectrum of a stationary, ergodic process can
be recovered by Fourier transform of the autocorrelation function [16]

R (τ) =
1

2π

∫ ∞
−∞

S (λ) eiλτdλ, S (λ) =

∫ ∞
−∞
R (τ) e−iλτdτ.

Especially for each spectral mode, the variance is the integration of the entire power spectrum by letting τ = 0

R̂kl (0) =
〈
|ûk|2

〉
δkl =

1

2π

∫ ∞
−∞

Ŝkl (λ) dλ.

Usually, we assume the power spectra between different modes Ŝkl, k 6= l to be relatively small compared with the diagonal
terms Ŝkk based on the homogeneous statistics.

3.2 Single trajectory simulations with different truncation sizes
The spectral equation (12) shows the interactions between modes in different scales. Obviously, a larger truncation size
Λ will give a wider spectrum for the energy transfers between modes. Here, we first display the self-similarity in single
trajectory solutions using different truncation sizes. We focus on the changes in the autocorrelation functions for the
mixing scale of the system.

In the non-dissipative tKdV model (4), one important feature is the distinct solution structures from different initial
states, representing different dynamical regimes in the phase space. We illustrate this issue by picking the initial states
u0 (x) = u (x, 0) generated from the invariant Gibbs measures (7) with different inverse temperatures θ. For the single
trajectory simulation, only one sample is taken from the above Gibbs measure as the initial starting state. We compare
the results starting from the initial states using large negative inverse temperature (θ = −0.5) and low negative inverse
temperature (θ = −0.1) states from (7). More detailed statistical evolutions from ensemble simulations are shown next in
Section 3.3.

To guarantee the conservation of the energy and Hamiltonian, a symplectic integrator [14, 12] is adopted for integrating
the tKdV equation (4) in time. Different discrete model sizes J = 32, 16, 8 (corresponding to wavenumber truncation
Λ = 16, 8, 4) are compared (J = 32 is the standard case in the experiments in [12]). The detailed construction of the
symplectic scheme for the tKdV model can be found in the supporting information in [12]. The other model parameters
in the numerical simulations are fixed at E = 100, L = 6, consistent with the experimental data from the scale analysis in
[12].

Time trajectories of the tKdV solutions with different truncation sizes

First, we compare the solution trajectories of the tKdV equation using different model truncation sizes. Figure 3.1 and
3.2 show typical realizations of the flow trajectories using initial states from both the Gibbs measures (7) with large
θ = −0.5 and small θ = −0.1 inverse temperatures. The initial state determines the value of the conserved Hamiltonian in
each solution. Comparing the two different initial cases, distinct performance in solutions can already be observed. The
large negative inverse temperature case gives highly skewed solutions representing the frequent occurrence of the extreme
events. With a small negative inverse temperature from the initial state, the solutions are not skewed and the dominant
transporting peak along the waves can not be observed. The typical model phase transition can be discovered just from
the deterministic single trajectory solution.

Then, by comparing different truncation sizes Λ = 16, 32, 4, the flow solutions gain more high frequency structures
with a larger number of spectral modes. More smaller scale structures are observed in the larger truncation size case.
By reducing the model truncation size, large scale spatial and temporal structures are maintained. The representative
phase transition for the two initial state cases is unchanged in the process of reducing the model resolution. Even in the
extreme truncation case with only Λ = 4 interacting modes, the flow still shows relatively chaotic dynamics, and the phase
transition from high skewed distribution to the near-Gaussian statistics is recovered.
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Figure 3.1: Trajectories from direct simulations of the tKdV equation with different truncation sizes Λ = 16, 8, 4. The
initial state is taken from the Gibbs measure with a large negative inverse temperature.
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Figure 3.2: Trajectories from direct simulations of the tKdV equation with different truncation sizes Λ = 16, 8, 4. The
initial state is taken from the Gibbs measure with a small negative inverse temperature.
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Autocorrelation functions and mixing rates

Next, we compare the autocorrelation functions and mixing properties in the models with different truncation sizes. In
Figure 3.3, we compare the autocorrelation functions in the first three Fourier modes ûk, k = 1, 2, 3 using both large
and small negative inverse temperatures for initial data. In general, the states are correlated for longer time with smaller
number of J . The small negative inverse temperature case generates much faster mixing rate. In comparison, the solutions
with the skewed statistical state are correlated for a much longer time. This is related with the highly skewed transporting
peak persistent in the solutions shown in Figure 3.1. The distinct performances in the autocorrelation functions with
different inverse temperature offer a further illustration of the phase transition in two states. Especially for the J = 8
case, we can observe that the solution is almost non-mixing with periodic trajectory in the small inverse temperature case,
and becomes rapidly decaying in time when starts from a larger inverse temperature. In addition, it can be shown that
the negative inverse temperature regime mixes in a faster rate than that of the positive inverse temperature [12].

For further illustration of the flow time series, we plot in the last row of Figure 3.3 the power spectra
∣∣∣Ŝ (ω)

∣∣∣ by taking
the Fourier transform of the time-series of the solutions uΛ. Clearly with larger number of grid points J in the model,
more high frequency modes are excited showing a wider spectra of small scale variability, while the low frequency stays
relatively the same with different truncation sizes. Also in the intermediate frequency range, the decay slopes with different
truncation sizes keep relatively the same, showing the invariant small scale fluctuation amplitude in all the models.

3.3 Model statistics from ensemble simulations and Gibbs invariant measures
Previously, single trajectory simulations of the tKdV equation are compared with different truncation sizes. For each
single trajectory solution, the Hamiltonian stays in one conserved value. More precisely, the model statistics should be
characterized by an ensemble simulation starting from different initial values of the Hamiltonian. The uncertainty of the
model then comes from the initial distribution of the state variable.

In the ensemble simulations, we still compare the three truncation sizes J = 32, 16, 8. The ensemble size is picked as
N = 10000. The same model parameters are used the same as Section 3.2. The initial ensemble is sampled from the
Gibbs measure (7) using different inverse temperatures.

Equilibrium energy spectra from different model truncation sizes

First, we compare the equilibrium energy spectra for the energy in each mode in the truncated model with different model
truncation sizes. The total energy of the system is always normalized to the constant value E = 1. Since the total energy
in each case is fixed, the energy in each mode increases with a smaller number of total modes. Figure 3.4 plots the
equilibrium variance in each mode. Similar trends in the spectra are created in the three different truncation cases. With
the large negative inverse temperature, a decaying spectrum is shown; while with the near-Gaussian small negative inverse
temperature state, the energy spectra become almost flat with more energetic modes among the smallest scales. The
low inverse temperature case with more active smaller scales confirm the time-series in Figure 3.2 for more fluctuations
without a dominant large scale structure.

Probability density functions in the two cases

Next, we show the final equilibrium PDFs of the truncated state variable uΛ from the direct ensemble simulations of the
model. The final distribution from direct model simulation is also compared with the invariant Gibbs measure prediction
directly sampled from the distribution (7). A proper Markov chain Monte Carlo strategy [12] is adopted for accurate
sampling of the target distributions. Figure 3.5 gives the results with the different truncation sizes. It shows that the
Gibbs measure as the initial state gets maintained by the tKdV model dynamics, and gives good approximation for the
final state distributions.

Starting from a smaller negative inverse temperature, the final equilibrium PDF becomes near Gaussian. This case can
be compared with the time trajectories in Figure 3.2, where the solution is symmetric in positive and negative directions.
On the other hand, a larger negative inverse temperature generates a highly skewed PDF of uΛ. Stronger skewness can
be induced with a smaller truncation size. A bimodal distribution is observed in the severe truncation case J = 8. This
shows the typical statistical phase transition from the previous faster mixing near-Gaussian state according to the changing
values in the inverse temperature. The three different truncation cases display similar trend in the statistical transition
from near-Gaussian distribution to a highly skewed distribution to the positive side. This implies that a severe truncation
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(a) autocorrelations from solutions with large negative inverse temperature

(b) autocorrelations from solutions with small negative inverse temperature
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Figure 3.3: Autocorrelation functions of the first three Fourier modes û1, û2, û3 with different truncation sizes Λ = 16, 8, 4.
Results from large negative inverse temperature (upper row) and small negative inverse temperature (middle row) are also
compared. The power spectra from the time series with different truncation sizes are compared in the bottom row.
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Figure 3.5: The PDFs of the state variable uΛ from direct model ensemble simulations. The results using initial flow
statistics from different negative inverse temperatures are compared in solid lines. The dashed lines show the corresponding
PDFs predicted directly from the Gibbs invariant measures in the two cases.

model still serves as a desirable model for investigating the phase transition by maintaining the representative properties,
while enjoys more trackable model dynamics.

4 Phase Transition in a Paradigm Two-Mode Interacting tKdV Model
The numerical results with different model truncation sizes in Section 3 illustrate the invariant trend of the phase transition
as we alter the inverse temperature in the Gibbs measure. Especially even with a severe truncation with Λ = 4 interacting
modes, the typical statistical phase transition from near-Gaussian distribution to the highly skewed extreme event regime
is still maintained. This implies the possibility of pushing the tKdV model to even further extreme with Λ = 2 modes.
Although the system with the radical truncation is no longer mixing, the integrable dynamics of this paradigm two-mode
framework enables us to achieve a clear characterization about the phase transition process and gain a better understanding
for the mechanism in the generation of extreme events.

4.1 A Two-Mode Interacting tKdV Model with Exact Integrable Dynamics
In the extreme case, the dynamics of the tKdV model (4) is constrained on a two-dimensional invariant subspace, that is,
to consider the following two modes of wavenumber l and 2l

uΛ = û1e
ilx + û2e

i2lx + c.c., with 2l ≤ Λ < 3l,

where |k| ≤ Λ is the largest wavenumber truncation in the original tKdV model, and c.c. for the complex conjugate. All
the other modes k 6= l, 2l, |k| ≤ Λ stay zero during the evolution of the two-mode model since the nonlinear coupling
constrains the energy inside the subspace. The two modes (û1, û2) with wavenumbers l, 2l form a closed system. The
corresponding explicit equations for the two modes (û1, û2) can be found as the two-mode case of the spectral equation
(12) as

dû1

dt
+ ilC1û

∗
1û2 − il3C2û1 = 0,

dû2

dt
+ ilC1û

2
1 − i8l3C2û2 = 0,

(14)

with the coefficients C1 = E1/2L−3/2D−3/2 and C2 = L−3D1/2 for simplicity in the representation. The conserved total
energy of the system (14) is still normalized to 1, that is, E = 2π

(
|û1|2 + |û2|2

)
= 1. The conserved Hamiltonian (5) can

be also computed explicitly as

H = C1H3 − C2H2 = 2π
[
C1Re

(
û2

1û
∗
2

)
− C2l

2
(
|û1|2 + 4 |û2|2

)]
.

Finally, the invariant Gibbs measure (7) for this two-mode system can be written in the following explicit form

Gθ (û1, û2) = C−1
θ exp

[
−2πθ

(
C1Re

(
û2

1û
∗
2

)
− C2l

2
(
|û1|2 + 4 |û2|2

))]
δ
(

2π
(
|û1|2 + |û2|2

)
− 1
)
,

given the inverse temperature θ. Typical solutions of the two-mode model can be found next in Section 4.2.
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Special exact solution and its instability to perturbations

The two-mode tKdV model (14) can be organized into the conditional Gaussian framework [11]. For the second equation
for û2, it can be determined directly from the realization of the first state û1, that is,

û2 (t) = −ilC1

∫ t

0

ei8l
3C2(t−s)û2

1 (s) ds, (15)

with the initial value û2 (0) = 0.
Another single plane wave solution can be found starting from the initial state û1 (0) = 0, û2 (0) = û2,0

û1 (t) = 0, û2 (t) = û2,0

[
cos
(
8l3C2t

)
+ i sin

(
8l3C2t

)]
, |û2,0| = 1. (16)

Still, the general solution of the above equation (14) is not easy to solve directly. For the evolution of a small perturbation
û1 according to the steady state û2 = |û2| eiθ2 , it can be decomposed into the real and imaginary components û1 (t) =
a1 (t) + ib1 (t)

d

dt

[
a1

b1

]
= C1l |û2|

[
− sin θ2 cos θ2

cos θ2 sin θ2

] [
a1

b1

]
+ C2l

3

[
−1

1

] [
a1

b1

]
.

The nonlinear coefficient can be always decomposed into an unstable direction with growth C1l |û2| and a stable direction
with damping −C1l |û2| . Then the periodic solution above for û2 is always unstable to perturbations in the first mode
û1 depending on the amplitude of the second mode |û2|. Considering the conservation of total energy, the instability due
to the nonlinear coupling transfers energy from the higher wavenumber mode û2 to larger scale û1.

Exact integrable structure of the two-mode tKdV system

For a better illustration about the two-mode model structures, we can rescale the original system (14) to find a cleaner
formulation. To focus on the nonlinear coupling effect, we can further introduce the mode decomposition (v̂1, v̂2) with
phase shifts to the original state variables as shown in (10)

uΛ (x, τ) = û1e
ilx + û2e

i2lx + c.c. = v̂1e
i(lx+ωlτ) + v̂2e

i(2lx+8ωlτ) + c.c.

with û1 = v̂1e
iωlτ and û2 = v̂2e

i8ωlτ . We further rescale the time τ and the dispersion effect ωl for the new system
according to the model parameters

τ = C1lt, ωl =
C2

C1
l2 = L

− 3
2

0 D2
0E
− 1

2
0 l2. (17)

Then the two-mode dynamics (14) is then modified to the form focusing on the nonlinear coupling term

dv̂1

dτ
+ iei6ωlτ v̂∗1 v̂2 = 0,

dv̂2

dτ
+ ie−i6ωlτ v̂1v̂1 = 0.

With no dispersive effect ωl ≡ 0, the above system reduces to the exact truncated Burgers-Hopf (TBH) equation discussed
extensively in [8].

To further simplify the model dynamics, we introduce a change of variables for the amplitude and phase

v̂1 (τ) =
r1 (τ)√

2π
eiϑ1(τ), v̂2 (τ) =

r2 (τ)√
2π

eiϑ2(τ), r2
1 + r2

2 = 1.

The scaling factor is introduced according to the conserved energy 2π
(
|v̂1|2 + |v̂2|2

)
= 1. Expressing the equations under

the new variables and separating the real and imaginary parts, we have the new set of equations

dr1

dτ
+
r1r2√

2π
sin (2ϑ1 − ϑ2 − 6ωl) = 0,

dϑ1

dτ
+

r2√
2π

cos (2ϑ1 − ϑ2 − 6ωl) = 0,

dr2

dτ
− r2

1√
2π

sin (2ϑ1 − ϑ2 − 6ωl) = 0,
dϑ2

dτ
+
r2
1r
−1
2√
2π

cos (2ϑ1 − ϑ2 − 6ωl) = 0,

The corresponding conserved Hamiltonian can be rewritten as

H = C1

[(
1− r2

2

)
r2√

2π
cos (2ϑ1 − ϑ2 − 6ωlτ)− ωl

(
3r2

2 + 1
)]
.
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Above the conservation of energy relation r2
1 + r2

2 = 1 is used. Observing the above dynamical equations and the
Hamiltonian, clearly the solution is determined by the amplitude of the second mode r2 and the phase difference 2ϑ1−ϑ2.

According to the observations in the structure of the two-mode model, we introduce the two new variables r ≡ r2 and
φ = 2ϑ1 − ϑ2 − 6ωlτ . The two-mode tKdV model can be finally formulated in the clean form about the amplitude r and
the phase difference φ

dr

dτ
− 1− r2

√
2π

sinφ = 0,

dφ

dτ
+
r−1

(
3r2 − 1

)
√

2π
cosφ = −6ωl,

(18)

with the frequency ωl = C2l
2/C1 and scaled time τ = C1lt. The amplitude of the first mode v̂1 can be computed from

r = r2 using the energy conservation r1 =
√

1− r2, and the separated phases for ϑ1, ϑ2 can be discovered from φ by
integrating the separate equations. Therefore, the two-mode model can be determined by the integrable formulation (18)
about the two variables (r, φ).

The conserved Hamiltonian functional then can be simplified based on the final model variables as

H̃ = C−1
1 H+ ωl =

(
1− r2

)
r

√
2π

cosφ− 3ωlr
2. (19)

The new Hamiltonian is normalized as H̃ = C−1
1 H+ωl by the two constants C1 and ωl. The conservation of the quantity H̃

can be checked by directly putting (19) back to the dynamical equation (18). The corresponding Gibbs measure becomes

G̃θ (r, φ) = C−1
θ exp

[
θ

(
r3 − r√

2π
cosφ+ 3ωlr

2

)]
, (20)

with 0 < r < 1. Thus the distribution of the system can be entirely determined by the two variables (r, φ).

Fixed point solutions of the integrable system The periodic structure in the solutions of the two-mode model can
be seen more clearly from the above formulation represented by the new states (r, φ). Observing from the structures of
the dynamical equations (18), there exist two fixed point solutions:

i) Fixed point solution with phase shift φ = 2ϑ1 − ϑ2 − 6ωlτ = 0: the amplitude of the second mode stays in a constant

as r+
∗ = r2 =

√
2πω2

l + 1
3 −
√

2πωl. The Hamiltonian reaches its maximum value H̃+ =
r+∗ −(r+∗ )

3

√
2π

− 3ωl (r
+
∗ )

2;

ii) Fixed point solution with phase shift φ = 2ϑ1−ϑ2−6ωlτ = ±π: the amplitude of the second mode stays in a constant

as r−∗ = r2 =
√

2πω2
l + 1

3 +
√

2πωl. This fixed point is only possible with the permitted value r−∗ < 1. This is possible

only when ωl = C2

C1
l2 < 1

3
√

2π
. In this case, the Hamiltonian shrinks to its minimum value H̃− =

r−∗ −(r−∗ )
3

√
2π

−3ωl (r
−
∗ )

2.

Since the above two fixed points are extrema of the Hamiltonian, they are both stable if exist. The solutions are consistent
with previous exact solutions in (15). In addition, we can find another set of solutions acting as a limit cycle

iii) Limiting ring solution with r = r2 = 1: then r1 = 0 and φ follows the equation, φ̇ = −
√

2
π cosφ − 6ωl. In the case

ωl <
1

3
√

2π
, the solution r ≡ 1 is unstable to perturbations. On the other hand with ωl > 1

3
√

2π
, the solution r ≡ 1

becomes stable (see Figure 4.2 and 4.4 for the phase plots).

The above limiting ring solution is from the exact solution example in (16). With the cleaner formulation here, it is more
direct to see the unstable dynamics in the solutions.

Integrable structure with the conserved system Finally, combining the dynamics for r and the conserved Hamil-
tonian with the value H̃, we have the equality for the velocity ṙ

1

2

(
dr

dτ

)2

=

(
1− r2

)2
4π

sin2 φ =

(
1− r2

)2
4π

[
1− 2π

(1− r2)
2
r2

(
H̃ + 3ωlr

2
)2
]

=

(
1− r2

)2
4π

− 1

2

(
H̃r−1 + 3ωlr

)2

.
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θ -1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 1

skewness 0.2345 0.1177 0.0466 0.0216 0.0005 -0.0232 -0.0519 -0.1181 -0.2276

kurtosis 2.0151 2.0051 1.9992 2.0007 1.9984 2.0006 2.0006 2.0033 2.0127

Table 1: Skewness and kurtosis of the two-mode state uΛ from the sampled Gibbs measures with different inverse tem-
peratures.

By rearranging the above relation, we find the analog particle energy in kinetic and potential energy parts for r ∈ [0, 1]

I (ṙ, r) =
1

2
ṙ2 + V (r) =

1

4π
− 3ωlH̃, V (r) = − r

4

4π
+

(
1

2π
+ 3ω2

l

)
r2 +

H̃2

2r2
, (21)

with the constant H̃ = C−1
1 H+ωl. The two-mode system is then determined by the initial states of ṙ (0) and r (0). Again

in the non-dispersive case C2 = 0 then ωl ≡ 0, the above first integral (21) reduces to the TBH equation case derived in
[8].

Especially, we see that the energy 1
2 ṙ

2 must stay in positive values. This sets a constraint for the range of values of
the normalized Hamiltonian H̃, that is, minr V (r) ≤ 1

4π − 3ωlH̃. Let r∗ = arg minr V (r). The values of the Hamiltonian
must change under the following range

H̃2

2r2
∗
− 3ωlH̃ ≤

r4
∗

4π
−
(

1

2π
+ 3ω2

l

)
r2
∗ +

1

4π
.

The above inequality gives the range of permitted values for the Hamiltonian H̃ ∈ [H−, H+]. As the equality in the above

relation is reached, the only permitted value is ṙ ≡ 0. Then r2 =
√

2πω2
l + 1

3 −
√

2πωl and r1 =
√

1− r2
2. This is the fixed

point solution with the maximum Hamiltonian. The two modes are just moving in time with the constant amplitude.
This forms the bimodal distribution in the physical state uΛ.

4.2 Statistical phase transition in the Gibbs measure with different inverse temperatures
With the integrable structures of the two-state model, we are able to investigate the mechanism in the phase transition
observed universally in Section 3 for various truncation sizes. For simplicity we pick l = 1. The initial state is constrained
on the normalized energy surface 2π

(
|û1|2 + |û2|2

)
= 1. We can control the value of the Hamiltonian H by changing the

inverse temperature θ in the Gibbs measure, Gθ ∼ exp
(
−θH̃

)
. Usually, a negative inverse temperature θ < 0 emphasizes

the positive value of the Hamiltonian, implying a positive skewness; while the positive inverse temperature adds more
weight on the negative value of the Hamiltonian, generating a negative skewness. For convenience, we focus on the negative
values of θ < 0 which represents the realistic case from the experiments [3, 12].

By sampling from the invariant Gibbs measure (20), the PDFs of the two-mode state uΛ display the clear statistical
transition from a symmetric distribution (near small θ ∼ 0) to a bimodal structure (large |θ|). Figure 4.1 shows the
distribution functions and two-mode spectra sampled from the Gibbs measure using the two-mode model with different
values of the inverse temperature θ. The distributions are symmetric in both the PDFs of the Hamiltonian and the state
variable with θ = 0. Highly skewed statistics are generated using large amplitudes of the inverse temperature. The
slope of the energy spectrum (in this case, the difference between the two Fourier modes) also becomes steeper with a
high skewness in larger values of θ. The skewness and kurtosis in the tested cases are shown in Table 1. This offers a
clear presentation of the statistical phase transition process to created highly skewed statistics by controlling the inverse
temperature θ from this simple two-mode system.

Phase transition based on the conserved quantities

This phase transition from the symmetric distribution to the bimodal distribution can be explained from checking the
contours of the normalized Hamiltonian. From the original definition (5), larger values of H shows stronger skewness in
third moments, while smaller value of H shows less skewed near-Gaussian statistics. To display the different dynamical
performance with different conserved Hamiltonian, Figure 4.2 plots the contours of the normalized Hamiltonian H̃ in (19)
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Figure 4.1: Model statistics and PDFs sampled from the Gibbs invariant measures. Different values of the inverse
temperature θ are compared.

as a function of r and φ and the contours of the particle energy I in (21), for both the incoming flow (D = 1) and outgoing
flow (D = 0.24) cases.

With small amplitudes of the inverse temperature |θ| ∼ 0 in the Gibbs measure, the samples starting with small
Hamiltonian H̃ have higher chance to be sampled. Among small values of the Hamiltonian

∣∣∣H̃∣∣∣ ∼ 0, the particle trajectory
experiences abrupt change from r = 0 to r = 1. As in the dashed lines in Figure 4.2a, the particle trajectory changes
through the entire range from 0 to 1. Thus the two modes û1, û2 exchange energy rapidly between each other, leading to
a balanced symmetric structure in the physical state uΛ. Accordingly, the potential energy V (r) and the kinetic energy
1
2 ṙ

2 in the particle energy I can also vary among a wide range. This corresponds to the changes of amplitudes in the time
evolution of û2 shown next in the time trajectory of Figure 4.3c.

With large amplitude of the negative inverse temperature θ < 0, the Gibbs measure gets strong emphasize on the
smallest value of the Hamiltonian. In this case, among the deep blue contours for H in Figure 4.2a (corresponding to the
center localized small contours of I in Figure 4.2b), the value r (the amplitude of û2) is constrained inside a narrow range.
In the extreme case, The second mode û2 reaches the fixed point r ≡ r∗ (that is, the fixed point solution discussed in
Section 4.1). This assigns one dominant scale with unchanged fixed amplitude r∗ in one mode û2, and the other mode û1

is fixed at another amplitude
√

1− r2
∗. It leads to the bimodal structure in the distribution function in Figure 4.1. The

corresponding time-series is shown in the first row of Figure 4.3b. Note that the center circles (and finally a single point
at value r = r∗ with zero velocity v = ṙ = 0) in the contours for I (v, r) shown in Figure 4.2b correspond to the stable
fixed trajectories with large amplitudes of the Hamiltonian H̃. This creates the highly skewed bimodal structure in the
distribution functions.

In addition, the incoming flow with larger water depth D = 1 shows a wider transition regime (the dashed lines in
Figure 4.2a) compared with the sharp transition regime in the outgoing flow with shallower water depth D = 0.24. This
also guarantees the faster transition to the highly skewed statistics after the flow goes through the ADC to the downstream.

The typical realizations of the solution structures from direct numerical simulation of the two-mode model are shown
in Figure 4.3. The typical structures from different inverse temperature θ are realized in the three trajectories according
to different values of the Hamiltonian consistent with our previous discussions based on the phase contours:

• In a large negative value of the Hamiltonian H (in Figure 4.3a corresponding to a large positive value of θ > 0), the
mode amplitude r varies inside a narrow range near a constant, and the phase difference φ jumps between ±π. This
leads to a skewed physical solution uΛ toward the negative value. This corresponds to the blue contours in Figure
4.2;

• In a large positive value of the Hamiltonian H (in Figure 4.3b corresponding to a large negative value of θ < 0),
there are again two different scales in û1, û2 changing inside a narrow range according to the center localized circle
in Figure 4.2b for I. The amplitude r stays in a nearly constant value, and the phase difference φ between the two
scales stays near 0. The physical solution uΛ shows clear separation of two scales and a bimodal distribution skewed
on the positive side. This corresponds to the red contours in Figure 4.2;

• In a small value of the Hamiltonian H (in Figure 4.3c corresponding to a small value of θ ∼ 0), the amplitudes in
r1, r2 and phase φ change rapidly between the entire range. This corresponds to the black dashed line in phase plot
in Figure 4.2. In this way, the two different scales are rapidly mixing in time. The physical solution distribution
transits to the symmetric single peak structure.
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(a) Hamiltonian H̃ (r, φ)

(b) energy function I (ṙ, r)

Figure 4.2: Contours of the normalized Hamiltonian H̃ and the total particle energy I (ṙ, r) from the two-mode model.
The in coming flow (D0 = 1, left) and outgoing flow (D0 = 0.24, right) cases are compared with the base mode as l = 1.
In the contour lines for the Hamiltonian, dashed lines are for small values H̃ ∈ [−0.2, 0.2], the solid lines are for

∣∣∣H̃∣∣∣ > 0.2.

The black dashed line is for the contour of H̃ = 0.
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Figure 4.3: Time trajectories of the two-mode model solutions with three typical values of the Hamiltonian H̃. The
solutions in the physical domain uΛ, as well as the amplitude r and phase difference φ of the two modes û1, û2 in (18) are
compared.
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Figure 4.4: Contours of the normalized Hamiltonian H̃ with the base mode wavenumber l = 3 and l = 5. The black
dashed line marks the location of the contour where H̃ = 0.

Two-mode coupling with higher wavenumber

The previous discussions are all based on the first two modes l = 1 for the state (14) in the subspace. As a generalization,
we can change the base mode to larger wavenumber l to check the coupling between the two-mode subspace (l, 2l). Figure
4.4 plots the contours of the normalized Hamiltonian with larger wavenumber in the base mode l = 3 and l = 5. The
change is introduced to a larger value of the frequency ωl = C2

C1
l2. Consistent with the analytic results in Section 4.1,

the fixed point for the maximum value of the Hamiltonian H̃+ persists, while the position of the minimum value of H̃−
is gradually shifted upward and finally vanishes to a stable limiting ring periodic solution. A final comment is that this
change in shift space is typical for the incoming flow with D0 = 1. With the outgoing flow D0 = 0.24, the ratio C2/C1

always stays in small value. Thus this phase space transition is less easier to observe.

4.3 Instabilities of the two-mode model solutions in higher dimensional phase space
In this last part, we check the instability of the two-mode state inside the invariant subspace. To show this, we consider
the solution evolution starting from the non-zero initial state in the two-dimensional subspace inside a larger space of
dimensionality Λ

ûk (0) =

{√
E/2, k = l and 2l,

0, k 6= l, 2l,
2l ≤ Λ < 3l.

With perturbations introduced from the numerical scheme, energy gradually leaks to the other dimensions of the system,
and instability will drive the system away from the initial two-state integrable dynamics. This leads to the more complicated
multiscale structure of the turbulent system.

Solutions in a 4-dimensional space

In the simplest test case, we consider the full model space with four interacting modes Λ = 4. The invariant subspace
constitutes of the two modes from l = 2 and 2l = 4. Figure 4.5 shows the simulation results in this typical regimes.
Especially, the ratio of energy inside the invariant two-mode subspace is plotted together with the time-series of the two
modes ûl and û2l. The system starts with non-mixing integrable two-state dynamics (14) for a period of time. All the
energy is contained in the two-state subspace and the solution is exactly the same as the previous two-state model cases
in Figure 4.3. As time goes on, the effect of instability takes place and the perturbations among the other mode begin
to grow. Then chaotic structures gradually get developed with obvious mixing features. The energy inside the invariant
subspace begins to fluctuate in time, representing the rapid transfer of energy between the subspaces.

Solutions in the 32-state model

In this second test case, we consider the standard model setup with the truncation size Λ = 16 using initial state in the
two-mode invariant subspace. The permitted invariant subspace is consist of the two modes û6, û12 with l = 6. Figure
4.6 shows the results from direct simulations. Consistent with the previous case, we achieve the similar observation in the
model evolution in time. The solution starts with the regular periodic solution as observed in the two-mode model case for
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Figure 4.5: Solutions of tKdV model with truncation size Λ = 4 starting from the two non-zero initial modes û2, û4 in the
highly skewed regime. The second part shows the percentage of energy in the invariant subspace from the initial state,
together with the time-series of the two modes.

some period of time. Then instability takes over and turbulent dynamics are developed in time. The energy slowly leaks
to the other modes to create mixing and turbulent features. The portion energy inside the two-mode invariant subspace
becomes much smaller in this case due to the much higher dimensionality and nonlinear coupling between different scales.

5 Summarizing Discussion
This paper studies the mathematical formulation for extreme events and anomalous statistical features observed in water
surface waves going across an abrupt depth change from laboratory experiments [3]. The phenomena are modeled using
a statistical truncated KdV equation as a Hamiltonian system to match the incoming and outgoing state Gibbs measures
before and after the abrupt depth change [12]. The invariant Gibbs measures for the statistical equilibrium solutions
of the truncated model are characterized by the change of key statistics from a near-Gaussian PDF in the low inverse
temperature regime to a highly skewed PDF in the high inverse temperature case. We investigate this representative
statistical phase transition under the framework of low-order truncation models. A series of different model truncation
sizes for the tKdV equation are compared in both single trajectory solutions and the final equilibrium distributions. The
core features in the phase transition between two distinct statistical regimes stay invariant among the various experiments
with reducing number of resolved modes. We finally reach the simplest model setup with only two interacting spectral
modes.

Even though the model is no longer mixing with a severe two spectral mode truncation, the two-mode model enjoys
many benefits from a clean integrable dynamics. The two-mode model is first analyzed in the phase space based on
the explicit formulas for the conserved quantities corresponding to different values of the inverse temperature in the
Gibbs measure. The large positive and negative inverse temperature regimes are separated from each other with localized
amplitudes in the two modes. This leads to the highly skewed bimodal distributions in the invariant measure. The two
positive and negative inverse temperature regimes are connected with another regime with a small value of the inverse
temperature, where the amplitude of the two modes can vary among a wide range. This intermediate regime creates
near-Gaussian statistics in contrast to the other two extreme regimes with high skewness of different directions. The
results are confirmed with detailed direct numerical simulations of the truncated models. The analysis here also set a
theoretical foundation for a wider variety of models in different settings showing transition to extreme events.
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