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Biological Networks in the Brain

The human brain contains:
- 1010 neurons
- 1014 synapses/connections

A neuron is the most fundamental unit 
for neurocomputation in the brain.
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Neuronal Dynamics

Behaves similar to an electrical capacitor.
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How do neurons communicate?

DepolarizationExcitatory 
Neuron

Hyperpolarization

Inhibitory 
Neuron
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Multiple Firing Events (MFEs)

A class of significant firing patterns of neurons exhibiting transient synchrony 
produced by the recurrent interactions between neurons.
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Issues with Modeling Cortical Networks

However, large spiking networks are hard to analyze and computationally expensive to 
simulate due to:

1. High-Dimensionality
2. Nonlinearity

Research Question: Can we successfully utilize machine learning to explore multiple 
firing events (MFEs)?

Coupled spiking networks have proven to be successful in modeling the brain and serve 
as a central aspect of computational neuroscience.
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Simulating Spiking Data

Through varying degrees of connections, we can notice synchronicity between spiking 
patterns.
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Modeling Spiking Networks with LSTMs
Multiple Firing Events (MFEs) are a temporal dynamic. Therefore, since we are dealing 
with time series data, we will utilize Long-Short Term Memory Networks (LSTMs), which 
are adept at extracting intrinsic dimensionality of the dynamics of the system.
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Modeling Spiking Networks with LSTMs
Multiple Firing Events (MFEs) are a temporal dynamic. Therefore, since we are dealing 
with time series data, we will utilize Long-Short Term Memory Networks (LSTMs), which 
are adept at extracting intrinsic dimensionality of the dynamics of the system.
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Our goal is to minimize the
loss of our predicted function 
utilizing gradient descent.

However, with large time scales, 
a problem arises with the 
“vanishing gradient.”
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Predictions for Time-Series

Accuracy over a hundred 
predictions: 54.7%

Issues:
● Data is 600-dimensional over 1000 time 

steps

● Sample Data:
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Revised Model Parameters
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Sum of Excitatory Spikes 
over Time

Sum of Inhibitory Spikes 
over Time

Since our objective is to study MFEs, we can reduce the dimensionality of the model while 
still being able to observe the synchronicity of the outputs.
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Predictions for Time-Series
Error Metric: MSE
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Average MSE over a hundred 
predictions: 2.11
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Conclusions

● Factor in external signals inputted into our 
simulation model

● Create classification machine learning models 
with input as time series and output as ratio of 
excitatory and inhibitory connections

Future Work

● Shows promise in determining the intrinsic 
dynamics of a neural system based off of its 
excitatory and inhibitory connections

● However, accuracy can be further improved
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