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Abstract 

Active suspension systems are large-scale collections of self-propelled interacting particles 

called swimmers, or active swimmers. They are common in nature where bacteria and other 

micro-organisms form large colonies. They also have technological, for example engineers 

develop artificial swimmers for various researched applications. These particles propel 

themselves through fluid inducing disturbance perturbations causing complex nonlinear patterns 

to form.  

In this writeup, we will build a kinetic model describing an active suspension system using a 

conservation of particles equation coupled with Navier-Stokes equation describing the fluid in 

the lower limit of Reynold’s number due to the micro size of the swimmers causing the time 

derivative expressions to approach zero. We will then perform a linear stability analysis to find 

ranges of the eigenvalue parameters where the instabilities occur. We will use MATLAB to build 

the model and allow it to simulate the behavior of the particles in these stability regions as time 

progress to observe the different patterns forming and measure the change in the system. 

 

1 Introduction 

Active suspension systems have been observed to produce turbulence patterns [1-3]. These 

systems consisting of large collections of rod-like articles called swimmers are present in nature, 



as well as engineered applications for various reasons as cited by Saintillan and Shelly, 2008[1]. 

In their paper, they develop a kinetic 3-dimentional model using governing equations of particle 

density conservation and momentum and mass conservation, perform a linear stability analysis 

using an eigenvalue problem and simulate the nonlinear model to observe pattern formation as 

time progresses. In this writeup, we will follow their methodology for our 2-dimentional model. 

We will consider a kinetic model of the dynamics arising from the large-scale collections of self-

propelled interacting particles called active swimmers immersed in a viscous fluid in systems 

known as active suspensions. Many studies have noted that the swimming particles induce 

disturbance flows as they propel themselves through the fluid, causing them to 

interact hydrodynamically and resulting in collective motions in large suspensions. Large, 

concentrated suspensions give rise to interesting patterns and ‘bacterial turbulences’ in certain 

parameter regimes from plane wave perturbations to the uniform isotropic steady state. The aim 

is to predict the critical parametric conditions over which the uniform isotropic steady state loses 

stability to plane wave perturbations, and the onset of pattern formation and turbulence. 

 

2 Model 

The kinetic model for the suspension system is based on some governing equations describing 

how the self-propelled rod-like particles interact with each other dynamically. Each particle is 

described by the configuration variables: its center of mass position 𝒙 and orientation vector 𝒑 

such that 𝒑 ∙ 𝒑 = 1 

2.1 Particles Density 

The time-dependent probability distribution function, 𝝍(𝒙, 𝒑, 𝑡) represents the number density 

with position  𝒙 ∈ Tௗ and orientation 𝒑 ∈ 𝑆ௗିଵ, where d is the dimension of the space the fluid 

occupies. This model will be considered in 2-dimensional space, i.e., d = 2. 𝝍 evolves by the 

conservation Smoluchowski equation: 

𝜕௧𝝍 = −𝛻௫ ∙ (𝒙̇𝝍) − 𝛻௣ ∙ (𝒑̇𝝍); 𝛻௣ ≔ (𝑰 − 𝒑𝒑்)𝜕௧   (1) 

The translational and rotational fluxes are given by: 



𝒙̇ = 𝑉଴𝒑 + 𝒖 + 𝐷்𝛻௫(log𝝍)      (2) 

𝒑̇ = (𝑰 − 𝒑𝒑்)(𝛻௫𝒖𝒑) − 𝐷ோ𝛻௣(log𝝍)    (3) 

The translational velocity is a linear combination of the swimming speed 𝑉଴ in the direction p, 

local fluid velocity u induced by other swimmers, and the translational diffusion where 𝐷்  is the 

coefficient of translational diffusion. The rotational velocity is a linear combination of Jeffery’s 

term for the rotation of a rod by a linear flow and the rotational diffusion where 𝐷ோ is the 

coefficient of rotational diffusion. 

2.2 Navier-Stokes Equations for Fluid Velocity and Pressure 

The local velocity of the fluid induced by other swimmers u(x, t) and the fluid pressure q, are 

related through the Navier-Stokes equations at the low limit of Reynold’s Number: 

−𝜇𝛻௫
ଶ𝒖 + 𝛻௫𝑞 = 𝛻௫ ∙ ∑௔, 𝛻௫ ∙ 𝒖 = 0;    (4) 

∑௔ = 𝜎଴ ∫ 𝝍(𝒙, 𝒑, 𝑡) ቀ𝒑𝒑் −
ଵ

ௗ
𝑰ቁ 𝑑𝒑

 

ௌ೏షభ     (5) 

Where 𝜇 is the fluid viscosity. ∑௔ (x, t) is the active stress exerted by the particles on the fluid, 

and it’s the orientational average of the force dipoles exerted by the particles on the fluid, where 

the sign of the coefficient 𝜎଴ is the sign of the dipoles: 𝜎଴ > 0 for pullers and 𝜎଴ < 0 for pushers. 

Note that Reynold’s number, the dimensionless parameter 𝑅𝑒 =  
௏బ௟

ఊ
 where γ is the kinematic 

viscosity of the fluid at the appropriate temperature, and l is the characteristic length of each of 

the rod-like particles. Since l is infinitesimally small, then 𝑅𝑒 goes to the lower limit and gets rid 

of the time-derivative term of the Navier-Stokes equation for our model. 

2.3 Linear Stability Analysis 

The stability of the system is studied under small perturbations from uniform isotropy. A method 

of normal modes is employed to study the oscillations and instabilities of the dynamical system.  

 2.3.1 Nondimensionalization  

The common variables used in the previous set of governing equations are 

nondimensionalized to produce a reduced number of dimensionless parameters crucial to the 



following analysis. Letting N denote the number of particles in the system and L the 

characteristic length of the periodic box in which the particles are suspended. The 

nondimensionalized variables are: 

𝝍ᇱ =
௅೏

ே
𝝍, 𝒙ᇱ =  

ଶగ

௅
𝒙, 𝑡ᇱ =

|ఙబ|ே

௅೏ఓ
𝑡, 𝒖ᇱ =

ଶగఓ௅೏షభ

|ఙబ|ே
𝒖 

Using the chain rule, to find all the new expressions, the set of governing equations becomes:  

𝜕௧ᇱ𝝍
ᇱ = −𝛻௫ᇲ(𝜕௧ᇲ𝒙ᇱ𝝍ᇱ) − 𝛻௣(𝜕௧ᇲ𝒑𝝍ᇱ)    (6) 

𝜕௧ᇱ𝒙
ᇱ =  𝛽𝒑 + 𝒖ᇱ − 𝐷்′𝛻௫ᇱ(log𝝍)     (7) 

𝜕௧ᇱ𝒑 =  (𝑰 − 𝒑𝒑்)(𝛻௫ᇱ𝒖′𝒑) − 𝐷ோ′𝛻௣(log𝝍)    (8) 

−𝛻௫ᇲ
ଶ 𝒖′ + 𝛻௫ᇲ𝑞′ = ± ∫ 𝛻௫ᇲ𝝍′(𝒙, 𝒑, 𝑡) ቀ𝒑𝒑் −

ଵ

ௗ
𝑰ቁ 𝑑𝒑

 

ௌ೏షభ , 𝛻௫ᇱ ∙ 𝒖′ = 0;  (9) 

The parameters of interest have been reduced to three dimensionless parameters: Translational 

diffusion, rotational diffusion and the swimming speed, respectively: 

𝐷்
ᇱ =

ସగమఓ௅೏షమ

|ఙబ|ே
𝐷் , 𝐷ோ

ᇱ =
ఓ௅೏

|ఙబ|ே
𝐷ோ,  𝛽 =

ଶగఓ௅೏షభ

|ఙబ|ே
𝑉଴ 

This nondimensionalization varies slightly from that which is commonly used in literature, but it 

is more desirable since it allows us to examine the swimming speed in the case for which (𝑉଴ =

0) while maintaining continuity. The parameter β also contains information regarding the ratio of 

swimming speed to the active stress magnitude and particle concentration. Also, note that in (9) 

the active stress coefficient has been dropped and replaced with a unit magnitude that retains the 

sign of the force dipole exerted by the particles on the fluid: +1 for puller particles and −1 for the 

pusher particles 

Dropping the prime notation, our system (6)-(9) can be expressed more concisely by the 

equations: 

𝜕௧𝝍 = −𝛽𝒑 ∙ 𝛻௫𝝍 − 𝒖 ∙ 𝛻௫𝝍 − 𝛻௣[(𝑰 − 𝒑𝒑்)(𝛻௫𝒖𝒑)𝝍] + 𝐷்𝛻௫
ଶ𝝍 + 𝐷ோ𝛻௣

ଶ𝝍 (10) 

−𝛻௫
ଶ𝒖 + 𝛻௫𝑞 = ± ∫ 𝛻௫𝝍(𝒙, 𝒑, 𝑡) ቀ𝒑𝒑் −

ଵ

ௗ
𝑰ቁ 𝑑𝒑

 

ௌ೏షభ , 𝛻௫ ∙ 𝒖 = 0;  (11) 

 2.3.2 Linearization 



In order to linearize the last system of equation to measure deviations about the swimmer density 

𝝍 from the uniform steady state, first we consider the normalization of the distribution function 

as follows: 

∫ 𝑑𝒙
 

୘೏ ∫ 𝑑𝒑
 

ௌ೏షభ 𝝍(𝒙, 𝒑, 𝑡) = 1    (12) 

The system’s isotropic steady state, 𝝍𝟎 =  
ଵ

ଶ೏షభగ
 and 𝒖𝟎 = 0 will serve as uniform equilibrium 

for linearization. Applying a similar analysis of the relative entropy of the system to that of 

Saintillan and Shelly, 2008[1] to our model, we can see that for the puller particles (𝜎଴ > 0) the 

entropy is driven down by both diffusive processes and the negative of the active stress exerted 

by particles. We expect puller suspensions to always decay to isotropy. Pusher suspensions have 

been simulated [1]-[3] to show that complex nonlinear patterns and fluctuations in particle 

alignment and concentration arise in certain parameter regimes. Hence, we focus our analysis on 

pusher suspensions (𝜎଴ < 0).  

We further simplify (10) by considering 𝛻௫ ∙ 𝒖 = 0, |𝒑|ଶ = 1 and vector calculus methods to 

simplify the expression: 

𝛻௣[(𝑰 − 𝒑𝒑்)(𝛻௫𝒖𝒑)𝝍]= −𝑑𝝍𝒑்𝛻௫𝒖𝒑 + (𝛻௫𝒖𝒑) ∙ (𝛻௣𝝍)   (13) 

We then consider solutions (𝝍, 𝒖) very close to the isotropic steady state; for very small є, we 

substitute 𝝍 = 𝝍𝟎 + є𝝍 and  𝒖 = 𝒖𝟎 + є𝒖 into our system of equations (10)-(11) after the 

simplification (13), take the first derivative of all expressions of the PDEs with respect to є, and 

take є = 0. This results in getting rid of nonlinear terms, linearizing our system about the 

isotropic steady state (recall 𝑑 = 2):  

𝜕௧𝝍 = −𝛽𝒑 ∙ 𝛻௫𝝍 + 2𝒑்𝛻௫𝒖𝒑 + 𝐷்𝛻௫
ଶ𝝍 + 𝐷ோ𝛻௣

ଶ𝝍   (14) 

−𝛻௫
ଶ𝒖 + 𝛻௫𝑞 = −

ଵ

ଶగ
∫ 𝛻௫𝝍(𝒙, 𝒑, 𝑡) ቀ𝒑𝒑் −

ଵ

ଶ
𝑰ቁ 𝑑𝒑

 

ௌభ ; 𝛻௫ ∙ 𝒖 = 0  (15) 

2.3.3 Eigenproblem 

We set up the eigenproblem by using the Fourier transform of our dependent variables in the 

conservation equation (14). The general solution to arrive at should be a linear combination of 

exponential eigenfunctions, and through examining the eigenvalues of the solution we can find 



parameter ranges through a dispersion relation that guarantee the exponentials won’t decay, thus 

causing instabilities. If the solution takes the general form ∑ 𝐶௞𝝍௞𝑒ఒೖ௧
ௗ . Considering the 

stability in 𝑒ఒೖ௧, if Re (𝜆௞) > 0 the perturbations in the system grow, while the imaginary 

component stays bounded by the unit circle causing instabilities in the system and formation of 

patterns. If Re (𝜆௞) < 0 the perturbations decays and the system enters the isotropic steady state 

where the change in the system with respect to time, or in the case of our system the fluid 

velocity norm, stabilizes to zero and the particles exhibit no directional preference. Denoting the 

Fourier transform in x by 𝑔ො(𝒌, 𝒑, 𝑡) ≔ ∫ 𝑔(𝒌, 𝒑, 𝑡)𝑒ି௜𝒌∙𝒙 

୘మ  and defining 𝒌ഥ ≔
𝒌

|𝒌|
 where k is the 

spatial mode (or wave number) for each of the components for x (i.e., 𝒌 = 𝑘𝑒௫ for the x 

component and 𝒌 = 𝑘𝑒௬ for the y component). Choosing coordinates 𝒌 = 𝑘𝑒௫ and 𝒑 =

𝑐𝑜𝑠θ𝑒௫ + 𝑠𝑖𝑛θ𝑒௬ and substituting 𝝍෡  in (14) we get: 

𝜕௧𝝍෡ = −𝑖𝑘𝛽𝑐𝑜𝑠𝜃𝝍෡ +
ଵ

గ
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃 ∫ 𝝍෡ 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑑𝜃

ଶగ

଴
+ 𝐷்𝑘ଶ𝝍෡ + 𝐷ோ𝜕ఏమ𝝍෡  (16) 

Consider the ansatz 𝝍෡ = 𝜓(𝑘, 𝒑)𝑒ఙ௧, where 𝜎 𝜖 ℂ and is called the growth rate. Defining 𝜆௞ ≔

σ + 𝐷்𝑘ଶ, equation (16) becomes an eigenvalue problem in the general form of 𝜆௞𝜓௞ = 𝐴𝜓௞. 

We assume that 𝐷ோ = 0 for this analysis, and through manipulating the eigenproblem arrive at 

the dispersion relation for Re (𝜆௞) ≠ 0: 

ఒೖ ఉమ ௞మାଶఒೖ
య ିଶఒೖ

మ  ට ఉమ ௞మା ఒೖ
మ

 ఉర ௞ర
 = 1     (17) 

Solving for the numerical relation between parameters σ and β is demonstrated in Figure 1. A 

similar calculation for 𝒌 = 𝑘𝑒௬ shows that the y-direction eigenmodes are a 
గ

ଶ
 in θ of the x-

direction eigenmodes. In particular, the eigenfunctions are given by: 

𝝍(𝒙, 𝜃, t) = 𝑐௫𝜓௫(𝑘, 𝜃)𝑒௜௞௫ାఙ௧ + 𝑐௬𝜓௬(𝑘, 𝜃)𝑒௜௞௬ାఙ௧;  ඥ𝑐௫
ଶ + 𝑐௬

ଶ = 1  (18) 

Where 𝜓௫ =
௖௢௦ఏ௦௜௡ఏ

ఙା஽೅௞మା௜௞ఉ௖௢௦ఏ
 and 𝜓௬ =

௖௢௦ఏ௦௜௡ఏ

ఙା஽೅௞మା௜௞ఉ௦௜௡ఏ
 

 



 

Figure 1: Dispersion relation in (17) between parameters Re(σ) + 𝐷்𝑘ଶ vs βk showing areas of 

the parameter regions where the instabilities occur, and wave perturbations grow over time. In 

the next section we will discuss results of the simulated nonlinear model within certain parameter 

regions of this plot and how particles density behaves over time. 

 

3 Results 

3.1 Simulation Method 

In this section, we perform numerical simulations of the nonlinear kinetic model on MATLAB. 

The scalar order parameter (SOP) is the highest eigenvalue of the particle orientation tensor of 

the particles with position in the characteristic box of length L where the particles are suspended 

in a 2-dimensional area; the concentration of the SOP correlates to how much of the particles’ 

orientation at said position agree with the mean orientation plotted. We evaluate the SOP in 

different regions in the parameter space provided by the dispersion relation in Figure 1.  

For this section, we will focus on points around the bifurcation C in Figure 1. In particular, this 

simulation will focus on sufficiently small |𝑘| and rotational diffusion 𝐷ோ; their values were set 

to |𝑘| = 1 and 𝐷ோ = 0.001. The bifurcation at C occurs on the intersection of two curves at the 

values of 𝛽 =
√ଷ

ଽ
≈ 0.19 and 𝐷் =

ଵ

ଽ
≈ 0.11. The simulation will be estimating these points 

since rotational diffusion, 𝐷ோ is present in this model. For each phase while running the 



simulation, one of these two parameters will be fixed while the other varies to observe how the 

patterns change given sufficient time to estimate the state of the system as 𝑡 → ∞. 

3.2 Swimming patterns 

On the curve on the right-hand side of bifurcation C in Figure 1, as 𝐷்  increases the turbulence 

of swimming patterns dissipate as they approach the curve and enter the isotropic steady state as 

they pass the curve. Below the curve as shown in the SOP plotted in Figure 2(a) turbulence 

nonlinear patterns occur due to the instable state of the system. Regardless of the swimming 

speed 𝛽, the presence of the active stress coefficient 𝜎଴ in the Navier-Stokes’ equation (11) 

assumes the particles to change alignment and perpetuate the turbulence. Figure 2(b) shows the 

SOP of the particles as 𝐷்  increases and the system approaches bifurcation C. The concentration 

of the SOP decreased. The system stabilizes in Figure 2(c) as 𝐷் >
ଵ

ଽ
  showing no change in fluid 

velocity and no directional preference.   

(a) (b) (c)  

Figure 2: Scalar order parameter plot (SOP) exerts with parameters 𝛽 =
√ଷ

ଽ
, 𝐷ோ = 0.001 and 𝐷்  

increases with every 300t (a) 𝑡 = 490 and 𝐷் = 0.07 (b) 𝑡 = 1010 and 𝐷் = 0.11 (c) 𝑡 = 1414 

and 𝐷் =
ଵ

ଽ
 



 

Figure 3: Nondimensionalized fluid velocity norm is plotted against the dimensionless time 

corresponding to the simulation run of Figure 2 

3.3 Patterns of aligned stripes  

On the curve on the left-hand side of bifurcation C in Figure 1, as 𝛽 decreases patterns of aligned 

stripes start to form. Similar to that of the simulation run shown in Figure 2, the system in the 

simulation run of Figure 4 enters the isotropic steady as the parameter ranges passes the curves to 

the right of point C in Figure 1. Figure 4(a) shows aligned stripe-like patterns with high 

concentration in the SOP plot and regardless of the weaker swimming speed 𝛽 the active stress 

coefficient 𝜎଴ in the system ensures the particles align. By Figure 4(b) their alignment 

concentration becomes weaker and completely dissipates in the isotropic steady state. 

(a) (b) (c)  

Figure 4: Scalar order parameter plot (SOP) exerts with parameters 𝐷் =
ଵ

ଽ
, 𝐷ோ = 0.001 and 𝛽 

increases with every 300t (a) 𝑡 = 247 and 𝛽 = 0.1 (b) 𝑡 = 400 and 𝛽 = 0.19 (c) 𝑡 = 640 and 

𝛽 = 0.2 



 

Figure 5: Nondimensionalized fluid velocity norm is plotted against the dimensionless time 

corresponding to the simulation run of Figure 4 

 

4 Conclusion 

In this paper, we developed a 2-dimensional kinetic model describing active suspension systems 

of rod-like swimmer particles and simulated it using MATLAB. The system was observed to 

form aligned stripe-like patterns and turbulence patterns in different parameter regions. These 

patterns formed in instable regions and as the model approached isotropic steady state, the 

change in the system with respect to time stabilized to zero with no directional preference.  

For future work, I would hope to produce the continuation of the linear stability analysis, 

eigenproblem and simulation runs with variation of the rotational diffusion. I would also like to 

use the simulation to locate boundaries between alignment strips and swimming patterns and to 

explore zero swimming bifurcation and other boundaries of interest. 
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