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Abstract

Guarantee to converging to global minimum is hard to obtain, except for convex
cases. Recently, Caravelli et al. [2] proposed an optimization algorithm that
converges to the global minimum, but the reason of convergence is not clear. In this
paper, we argue that the algorithm can be approximated by optimizing a distribution
on the objective function. We further propose a new algorithm named SA-PEDS
and show that it performs better than the original algorithm on the Ackley function.

1 Introduction

The common form of unconstrained optimization is

min
X∈Rm

f(X), (1)

where m is the dimension of the original problem. If f is a convex function, a lot of algorithms
like Newton’s Method have guaranteed convergence bound[4]. However, for non-convex objective
functions, convergence to global minimum cannot be guaranteed in general[5]. Luckily, ensuring
global convergence for all functions is not what we want, as most optimization theories are developed
when the objective functions belong to certain hypothesis set. It is possible to provide a global
convergence theory under this restriction.

In the exploration of memristors, a circuit of memristors optimize their internal states to achieve
global minimum, even when it is initialized close to some local minimum [1]. In a following work,
they proposed an optimization algorithm, Projective Embedding of Dynamical Systems (PEDS),
which embeds the original m-dimensional problem to mN -dimensional space while using some
projection matrix to limit its degree of freedom[2]. This algorithms showcases capability to find the
global minimum, but the reason for convergence is not clear. To better understand this algorithm,
we present a new way to view PEDS when some particular configuration is chosen. Instead finding
one minimizer, the new approach utilizes distribution as the variable to learn in the training phase.
The distribution converges to a point (delta function) at the end of the training. This provides new
inspirations for optimization problems.

In this paper, after summarizing this PEDS algorithm, we will show that under some particular case,
the algorithm can be seen as a Stochastic Approximation algorithm and we will show that the new
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algorithm performs better than the original problem for the Ackley test function, especially when the
dimension of the problem is high.

2 Related Work

In this section, we are going to show that a particular case of PEDS can be seen as a particle algorithm
with some special interaction force among them. First, we formulize the algorithm. Given the
problem as stated in Eq. 1, extend the variable to M ∈ RN×m({mi,j}i=1,...,N ;j=1,...,m). Denote the
column vector as Yj . Then, the update is described by

Y t+1
j − Y tj = −γ(Ω Φ(∇F ;Y t1 , Y

t
2 , . . . , Y

t
m) + α(I − Ω)Y tj ), (2)

where Φ is matrix map, Ω is projection matrix (Ω2 = Ω), and γ and α are some hyperparameters.

For a particular choice of Φ, we define it as

Φ(∇F ;Y1, Y2, . . . Ym)i = ∇F
(
(mi,1,mi,2, . . .mi,m)T

)
= ∇F (Ri), (3)

whereRi is the ith row of the matrixM . For the projection matrix, we have Ω = Ω1 = 1
N

1 · · · 1
...
. . .

...
1 · · · 1

,

called mean-field projector.

With these two choice and through some straightforward algebra, we see that the update can be
written as

Rt+1
i −Rti = −γ

(
1

N

N∑
i=1

∇F (Rti) + α(Rti −R
t
)

)
, (4)

where R = 1
N

∑N
i=1Ri. Think of each Ri as a particle and at each update, they update according to

the average of all gradients and another attraction force that pulls all particles to the center of mass.

3 Method

Inspired by the formulation in Eq. 4, we design so-called Stochastic Approximation Projective
Embeddings of Dynamical Systems (SA-PEDS). To see this, we will take a closer look at Eq. 4.
Instead of treating the independent variable as a fixed variable, but rather as samples from some
distribution. Now we optimize over the distribution. The problem is then formulated as

min
D∈∆(Rm)

Ef(X) (5a)

s.t. X ∼ D (5b)

where ∆(Rm) is all distribution over Rm.

When D is limited to the family of delta distribution, this recovers the original problem as stated in
Eq. 1. It is also not hard to see, if the objective f has a unique global minimizer, the solution for
Eq. 5 is exactly a delta distribution. In other words, we have

min f(x) = min
D⊂{δ(x):x∈R}

Ef(X) = min
D∈∆(Rm)

Ef(X). (6)

Instead of limiting D to be delta distribution, we want to approximate it. In particular, recall that
N (θ, 0) = δ(θ). So it is equivalent to formulate the problem as

lim
σ→0

min
θ

Ef(X), (7a)

s.t. X ∼ N (θ, σ2) (7b)

which can be solved by a Stochastic Approximation algorithm.

We will see later why the Gaussian distribution approximation is helpful. Compare this with the
formulation in Eq. 4. Observe that the first part is just the empirical evaluation of the gradient
E∇f(X), if Ri is sampled from the target distribution. The algorithm is described in Algorithm 1.
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Algorithm 1 Stochastic Approximation Projective Embeddings of Dynamical System (SA-PEDS)

Require: γ: Stepsize
Require: N : Number of samples
Require: f(X): Objective function
Require: Optim: Optimizer
Require: α: Linear decreasing rate for standard deviation
Require: θ0: Initial parameter vector
Require: σ0: Initial variance of the Gaussian distribution

1: t← 0 (Initialize timestep)
2: while θt not converged do
3: t← t+ 1
4: R1, . . . , RN ∼ N (θt−1, σt−1) (Draw samples from the normal distribution)
5: gi ← ∇θf(Ri) (Compute the gradient for each sample)
6: gt ← 1

N

∑N
i=1 gi (Calculate the average)

7: θt ← optim(θt−1, γ, gt) (Update the parameter)
8: σt ← max(σt−1 − α, 0) (Update the std)
9: end while

10: return θt (Mean of the resulting distribution)

Here are some intuitions for the method. If Ri is sampled from N (θ, σ). We have

E∇F (R) =

∫
∇F (R)N (R; θ, σ2I)dR =

∫
∇F (R)ρ(θ −R)dX = ∇F ∗ ρ(θ), (8)

where ρ(X) ≈ e−‖X‖2 (up to some constants). We know that the convolution is at least as smooth
as one of the convoluted functions, in this case, the Gaussian density function. The smoother the
Gaussian density function is, i.e. the larger σ is, the smoother the expectation of gradient will be. This
method is also used in the context of non-smooth Stochastic Gradient Descent, called Randomized
Smoothing [3].

4 Experiments

In this section, we present the experiment results. The test function is Ackley function, as defined by

F (X) = −a exp−b

√√√√ 1

m

m∑
i=1

X2
i − exp

1

m

m∑
i=1

cos(cXi) + a+ exp 1, (9)

where we use a = 20, b = 0.2, c = 2π. There are three methods: restart (take different initial
values and optimize to some local minimum), PEDS (the algorithm described in Eq. 4, and SA-PEDS
(the algorithm in Algorithm. 1. We are interested in two variables: success rate (the probability of
converging to the global minimum) and convergence time (how long does the convergence take). We
denote m for the dimension of Ackley function and N as the number of particles. The codes for
the experiments can be accessed in https://github.com/charliezchen/SA-PEDS. The result
of the experiment is shown in Figure. 1 and 2.

5 Conclusion

In conclusion, inspired by PEDS, we proposed SA-PEDS, which achieves successful convergence
behavior on the Ackley function. Note that in the derivation of SA-PEDS, we pick a particular case
in PEDS which is not true in general. It is still interesting to investigate why PEDS is an effective
method in finding the global minimum.

In the analysis part of the algorithm, we see that SA-PEDS filters out the high frequency content
of the signal and keep the lower frequency signal. This works if the high frequency part is noise
and the lower frequency part is useful information. If it is the other way around, it is not clear
why this method should work. This is part of the future work: testing this algorithm on more test
functions. Moreover, it is also interesting to investigate on the optimal schedule of α, which affects
the convergence results in the numerical experiments.
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(a) (b) (c)

Figure 1. Success rate for different methods: (a) Restart (b) PEDS (c) SA-PEDS. Both algorithms perform well
for low value of m, but for larger N , Restart and PEDS don’t work anymore while SA-PEDS still work.

Figure 2. Convergence time for SA-PEDS. The time scales linearly with the increase of N , but the success rate
has a jump, so the cost is acceptable. Furthermore, the algorithm can be accelerated using ideas of importance
sampling and sliding windows.
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