
Monte Carlo methods
Syllabus, schedule (tentative)

Course description

The theory and practice of Monte Carlo methods. Random number generators
and direct sampling methods, visualization and error bars. Variance reduc-
tion methods, including multi-level methods and importance sampling. Markov
chain Monte Carlo (MCMC), detailed balance, non-degeneracy and convergence
theorems. Advanced MCMC, including Langevin and MALA, Hamiltonian, and
affine invariant ensemble samplers. Theory and estimation of auto-correlation
functions for MCMC error bars. Rare event methods including nested sampling,
milestoning, and transition path sampling. Multi-step methods for integration
including Wang Landau and related thermodynamic integration methods. Ap-
plication to sampling problems in physical chemistry and statistical physics and
to Bayesian statistics.

Prerequisites

Necessary

• A good probability course at the level of Theory of Probability (math,
undergrad) or Fundamentals of Probability (math, masters level)

• Linear algebra: Factorizations (especially Cholesky), subspaces, solvabil-
ity conditions, symmetric and non-symmetric eigenvalue problem and ap-
plications

• Working knowledge of a programming language such as Python, Matlab,
C++, Fortran, etc.

• Familiarity with numerical computing at the level of Scientific Computing

Desirable

• Numerical methods for ODE

• Applied Stochastic Analysis

• Familiarity with an application area, either basic statistical mechanics
(Gibbs Boltzmann distribution) or Bayesian statistics.
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Workload and grading

The grade will be based on bi-weekly computing and analysis assignments and
on a final project. The project can be individual or with a small group. There
will be project presentations during finals week.

Schedule (tentative, weekly)

1. Using random numbers, simulation, random number generators, histograms,
scatterplots, triangleplots, error bars.

2. Direct sampling methods. CDF inversion, mappings, rejection, multi-
variate normal (Cholesky, inverse Cholesky), (sequential Monte Carlo??)

3. Variance reduction. control variates (with multi-level?), importance sam-
pling/rare events

4. MCMC. Perron Frobenius (for discrete Markov chains?), detailed bal-
ance, symmetric proposal Metropolis (gaussian proposal?), composition
of “moves’‘ and the Gibbs sampler.

5. Auto-correlation, Kubo formula and auto-correlation time, spectral gap
(min acceptance probability), MCMC error bar.

6. Statistical estimates of the auto-correlation function and auto-correlation
time

7. Samplers with gradients, Langevin and MALA samplers. Hamiltonian

8. Application to Bayesian uncertainty quantification (UQ), estimating model
parameters from data.

9. Application to Gibbs Boltzmann distributions, local update methods, in-
troduction to multi-scale samplers.

10. Bayesian model selection and criteria for avoiding over-fitting.

11. Evidence integrals and partition functions. Thermodynamic integration
methods including nested sampling, the Wang Landau method and some
relatives.

12. Further methods for rare events and transition rates, transition paths and
checkpoints/ milestones.

13. MCMC theory – small sets, Lovasz Simonovich function, coupling .

2


