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Key Takeaways

® \We are able to approximate the probability of a rare event even in high dimensions.

e Using JAX's auto differentiation functionality, it is possible to get the gradient of
the probability estimation, enabling us to optimize with extreme events.
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Model
Consider a nonlinear stochastically forced damped harmonic oscillator:

m¢" + 79"+ G(, u, t) = on(t).

® G is a nonlinear deterministic forcing term, which depends on parameters u.

® We use G = 3¢ + us¢®, and ¢(0) = g, ¢'(0) = vy.

® o > 0, n is white noise.
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Random realizations (unlikely to have large displacement at final time)

Damped (y = 2.5)

0)

No Damping (7
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Probability Estimation

We compute low chance probability estimations using the following formula. [Schorlepp
et al, '23]

P[F(¢) > 2] — (2m) 2 Cr(2) exp (— I (2)),

1
I#(2) = 5 e s

CF(Z) = [2/,:(2) det(lNX,V — )\zprng_v2F(772)prn§_)]il/2,
Nz DNz
1722

proL = Inxn —
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Instanton
To calculate I¢(z) = 3||n.(t)||2., we must find n,(t) (Instanton), which is the solution
to the following optimization problem:

2
in_ S IOl

s.t. m¢” +~¢" + G(é, u, t) = on(t),
F(¢) > z.

® This is a PDE constrained optimization problem.

® |n terms of large deviation theory, this means that the 'most likely' forcing leading
to F(¢) > z tells us a lot about P[F(¢) > z].
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Instanton Paths

No Damping (v = 0)
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Prefactor
Eigenvalue computations are done to find the determinant of the operator in the
prefactor term,

Cr(z) = [2Ig(z) det (Iyxn — /\zprnZLV2F(nz)prnzl)]_1/2.

® The eigenvalues of the operator go to 1.
® There are several algorithms to do this, but we use randomized SVD.
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LDT approximation values with v = 1.5, m =1, o = 1. 10° samples calculated.

® Sampling estimation
® LDT Estimation

[ ]
° [

L J

o
[ J
]
®
014 0:6 018 1‘.0 1‘.2 1;4

9/14

= AN



JAX Introduction
Now that we have probability estimation, we use JAX Auto-diff to obtain the gradient of
the probability estimation.

® Google JAX is a python framework for transforming numerical functions.

e Often used in machine learning applications, designed to replace TensorFlow.
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Algorithmic Differentiation (AD)

JAX uses algorithmic differentiation to compute gradients of functions. The basic idea
is to calculate iterations of the chain rule.

Forward propagation
of derivative values

(a) Forward Differentiation

Diagrams of AD for F(x1,x2) =

Backward propagation

of derivative values
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(b) Backward Differentiation

x1x2 + sin(xq).
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Result
We can now control the behavior of the oscillator. One important application is in
solving such optimization problems:

n J(u),

s.t. P[F(u,n) > z] < a.

For example, we want to find the largest initial state such that the probability of
®(T) > 0.5 is less than 5%.

2 2
max Uy + ug,
s.t. P[¢(T) > 0.5] < 0.05,

$(0) = o, ¢'(0) = w,
0<u<3,0<u; <3.
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Key Takeaways

® \We are able to approximate the probability of a rare event even in high dimensions.

e Using JAX's auto differentiation functionality, it is possible to get the gradient of
the probability estimation, enabling us to optimize with extreme events.
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